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RANDOM WALK IN RANDOM SCENERY 1Abstrat: We investigate random walks in independent, identially distributedrandom seneries under the assumption that the senery variables satisfy Cram�er'sondition. We prove moderate deviation priniples in dimensions d � 2, overingall those regimes where rate and speed do not depend on the atual distribution ofthe senery. In the ase d � 4 we even obtain preise asymptotis for the annealedprobability of a moderate deviation, extending a lassial entral limit theorem ofKesten and Spitzer. In d � 3, an important ingredient in the proofs are new on-entration inequalities for self-intersetion loal times of random walks, whih are ofindependent interest, whilst in d = 2 we use a reent moderate deviation result forself-intersetion loal times, whih is due to Bass, Chen and Rosen.1. IntrodutionIn the world of stohasti proesses in random environments, random walks in random senery repre-sent a lass of proesses with fairly weak interation. Nevertheless, they have deservedly reeiveda lot of attention sine their introdution by Kesten and Spitzer [KS79℄ and, independently, byBorodin [Bo79a, Bo79b℄. A major reason for this interest is that in d � 2 the simple random walk inrandom senery exhibits super-di�usive behaviour. However, in dimensions d � 3, when the under-lying random walk visits most sites only one, the behaviour of the random walk in random seneryis di�usive. Here �ner features, like large deviation behaviour, have to be studied in order to get anunderstanding of the interation of walk and senery.To de�ne random walk in random senery, suppose fSn : n � 0g is an underlying random walk on Zdstarted at the origin, and f�(z) : z 2Zdg are independent, identially distributed real-valued randomvariables, whih are independent of the random walk and whih are alled the senery. Random walkin random senery is the proess fXn : n � 0g given byXn := X1�k�n �(Sk) = Xz2Zd `n(z) �(z) for n � 0,where `n(z) :=P1�k�n 1fSk = zg are the loal times of the random walk at the site z.Throughout this paper we make the following additional assumptions on the model. The underlyingwalk is a symmetri and aperiodi walk in dimensions d � 2, suh that the ovariane matrix � ofS1 is �nite and nondegenerate. Moreover, the random variable �(0) is entred, i.e. E�(0) = 0, withvariane �2 > 0, and satis�es Ej�(0)j3 <1 and Cram�er's ondition,E�e��(0)	 <1 for some � > 0: (1)The early papers by Kesten, Spitzer and Borodin establish entral limit theorems for the random walkin random senery. Indeed, it is (impliitly) shown in [KS79℄ that, for d � 3,Xnpn n"1=) N �0; �(2G(0)� 1)�; (2)where G is the Green's funtion of the underlying random walk. Bolthausen in [Bo89℄ extended thisto the planar ase by showing that Xnpn log n n"1=) N (0; ��1):



2 RANDOM WALK IN RANDOM SCENERYHene, moderate and large deviation problems for the random walk in random senery deal with theasymptoti behaviour of PfXn � bng for bn � pn, i.e. lim bn=pn =1, if d � 3, and bn � pn log n ifd = 2. Let us remark for ompleteness that Kesten and Spitzer have also established a limit theoremin distribution for Xn=n3=4 with non-Gaussian limits for d = 1, a ase we do not onsider in this paperas large and moderate deviations are more or less fully understood in this ase.1Large deviation problems for random walks in random senery in dimensions d � 2 have only reentlyattrated attention, see [GP02, GHK06, GKS05, As06, AC05, AC06℄, and also [CP01, AC03, Ca04℄where Brownian motions are used in plae of random walks. The fasination of this subjet stems fromthe rih behaviour that omes to light when large deviations are investigated. The intriate interplayof the walk with the senery leads to a large number of di�erent regimes depending on� the dimension d of the underlying lattie Zd,� the upper tail behaviour of the senery variable,� the size of the deviation studied,to name just the most important ones. For example, Asselah and Castell [AC06℄, restriting attentionto dimensions d � 5 and senery variables with superexponential deay of upper tails, have identi�ed�ve regimes with di�erent large deviation speeds. Heuristially, in eah regime the walk and thesenery `ooperate' in a di�erent way to obtain the deviating behaviour. Up to now only one of theseregimes has been fully treated, inluding the disussion of expliit rate funtions. This is the verylarge deviation regime disussed (together with a number of boundary ases) by Gantert, K�onig andShi in [GKS05℄. In this regime it is assumed thatlogPf�(0)> xg � �Dxq as x " 1;for some D > 0 and q > d=2. Then, for any n� bn � n 1+qq , as n " 1,logP�Xn > bn	 � K n� 2q�dd+2 b 2qd+2n ; (3)where K = K(D; q; d) > 0 is a onstant given expliitly in terms of a variational problem. Theunderlying strategy is that the random walk ontrats to grow at a speed ofn 1+qd+2 =b qd+2n � n 12 ;and the senery adopts values of size bn=n on the range of the walk. The right hand side in (3)represents the ombined ost of these two deviations.In the present paper we study moderate deviation priniples, providing a full analysis inluding expliitrate funtions and, in dimensions d � 4, even exat asymptotis of moderate deviation probabilities.We onsider as moderate deviations the regimes extending from the entral limit saling up to thepoint where either the deviation speed or the rate funtion start to depend on the atual distributionof the senery, or in other words where tail onditions stronger than Cram�er's ondition would havean impat on the speed or rate of the deviations.Heuristially, our results, whih will be desribed in detail in the next setion, show that in d � 3throughout the moderate deviation regime the deviation is ahieved by a moderate deviation of thesenery without any ontribution from the walk. The rates therefore agree with those obtained for�xed walk in a random senery by Guillotin-Plantard in [GP02℄. Cruial ingredients of our proofs areonentration inequalities for self-intersetion loal times of random walks, see Proposition 11. Ourexat asymptoti results for the moderate deviation probabilities build on lassial ideas of Cram�er.1This information was ommuniated to us by F. Castell.



RANDOM WALK IN RANDOM SCENERY 3In d = 2, by ontrast, the moderate deviation regime splits in two parts. If pn logn� bn � pn log nthen, again, we only have a ontribution from the senery and the walk exhibits typial behaviour.However, if pn log n� bn � n= logn the random walk ontrats, though in a muh more deliate waythan in the very large deviation regime: The self-intersetion loal times of the walk, whih normallyare of order n logn are now inreased to be of order pnbn. At the same time, on the (ontrated)range of the walk, the senery values perform a moderate deviation and take values of size bn=n. Ourresults in the ase d = 2 rely on moderate deviation priniples for renormalised self-intersetion loaltimes of planar random walks reently obtained by Bass, Chen and Rosen [BCR06℄.2. Main resultsReall that we assume that the random variable �(0) satis�es Cram�er's ondition (1) and �2 > 0denotes its variane. For d � 3 we de�ne the Green's funtion of the random walk byG(x) := 1Xk=0PfSk = xg for x 2Zd.Theorem 1 (Re�ned moderate deviations in dimensions d � 4).There exists a regularly varying sequene (an) of index 23, suh that, if d � 4 and n 12 � bn � an, thenP�Xn � bn	 � 1� �� bnp�2 n (2G(0)� 1)� as n " 1 ;where � denotes the standard normal distribution funtion.Remark 2. This result extends the entral limit theorem (2) to the moderate deviation regime. Notethat asymptotis of this degree of preision are very rarely enountered in stohasti proesses beyondthe independent ase. In this theorem we are restrited to dimensions d � 4 as our proof requires ananalysis of triple self-intersetions of random walks, for whih d = 3 is the ritial dimension.In dimension d = 3 we an no longer provide preise asymptotis, but we an still prove a full moderatedeviation priniple with the same speed and rate funtion as in d � 4.Theorem 3 (Moderate deviations in dimensions d � 3).If d � 3 and n 12 � bn � n 23 , then, as n " 1,logP�Xn � bn	 � �b2nn 12�2 (2G(0)� 1) :Remark 4. In this regime the deviation is entirely due to the moderate deviation behaviour of thesenery, whereas the random walk does not ontribute and behaves in a typial way. Asselah andCastell [AC06℄ show that the regime in this result is maximal possible under Cram�er's ondition, morepreisely, higher regularity features of the senery distribution deide whether this behaviour persistswhen bn grows faster than n2=3.Remark 5. For the sequene bn = n� with 1=2 < � � 2=3, the deviation speed n2��1, but not the ratefuntion, in this result was identi�ed by Asselah and Castell [AC06℄ in d � 5 and by Asselah [As06℄in d = 3, under the additional assumptions that the law of �(0) has a symmetri density whih isdereasing on the positive half-axis.



4 RANDOM WALK IN RANDOM SCENERYTurning to d = 2, we de�ne { to be the optimal onstant in the Gagliardo-Nirenberg inequality,{ := inf � : kfk4 �  krfk 122 kfk 122 for all f 2 C1 (R2)	:This onstant features prominently in large deviation results for intersetion loal times of Brownianmotion and random walk intersetion loal times, see [Ch04℄ for further disussion of the Gagliardo-Nirenberg inequality and the assoiated onstant {.Theorem 6 (Moderate deviations in dimension d = 2).(a) If n 12plogn� bn � n 12 logn, then, as n " 1,logPfXn � bng � � b2nn logn �(det�)1=22�2 :(b) If n 12 logn� bn � n= logn, then, as n " 1,logPfXn � bng � � bnpn (det �)1=4{2� :() Finally, for every a > 0,logPfXn � an 12 logng � �I(a) logn;where I(a) := 8>><>>: �a2(det�)1=22�2 ; for a � ��{2(det �)1=4 ;a (det�)1=4�{2 � 12�{4 ; for a � ��{2(det �)1=4 :Remark 7. In regime (a) the deviation is due to the moderate deviation behaviour of the senery only,but in regimes (b) and () there is an additional ontration of the walks to ahieve the moderatedeviation. There is only a very small gap between our moderate deviation regime and the largedeviation regime studied in [GKS05℄: Assuming that all exponential moments of �(0) are �nite andbn = an, for some a > 0, they obtain a large deviation priniple with speed n1=2 and a rate funtionwhih is strongly dependent on the moment generating funtion of the senery variable.Remark 8. In the speial ase of simple random walk in Gaussian senery, Theorem 6(a) is knownfrom [GKS05℄.The regime n 12plogn � bn � n= logn, whih we onsider in Theorem 6, is maximal for a moderatedeviation priniple using only Cram�er's ondition. The following large deviation priniple shows thatfor bn � n= logn �ner features of the senery distribution (in this partiular ase the onstant D)enter into the large deviation rate.



RANDOM WALK IN RANDOM SCENERY 5Proposition 9 (Speial large deviations for d = 2). Assume that, for some D > 0,logP��(0) > x	 � �Dx as x " 1, (4)and suppose that (bn logn)=n!1 and log bn= logn! � 2 [1; 2). Then, as n " 1,logP�Xn � bn	 � �� bnlog n�1=2�8K2D2� � �1=2 ; (5)provided the underlying random walk is suh that the limit K2 := limn!1 E[`n (0)℄logn 2 (0;1) exists.Remark 10. Note that this result is the planar ase of the regimelogPf�(0)> xg � �Dx d2 as x " 1;whih is desribed as `deliate' in [GKS05, Remark 1.2℄. The proof of Proposition 9 is based on largedeviation results for the maximum of the loal times obtained in [GHK06℄.The remainder of the paper is strutured as follows. Setion 3 is devoted to statements about self-intersetion loal times of our random walk, whih are of independent interest. The proofs of ourthree theorems and Proposition 9 follow in the subsequent four setions.Throughout this paper we use the symbols P and E to denote probabilities, resp. expetations, with re-spet to the senery variables only, and the symbols Pand E to denote probabilities, resp. expetations,with respet to both the random walk and senery.We use the letters ; C to denote positive, �nite onstants, whose value an hange at every ourrene,and whih never depend on random quantities. For nonnegative funtions fn, gn, possibly dependingon the sampled walk or senery, the Landau symbols fn = o(gn) and fn = O(gn) denote lim fn=gn = 0,respetively lim sup fn=gn <1, uniformly in the sampled walk or senery.3. Conentration inequalities for self-intersetion loal timesReall that fSn : n � 0g is a symmetri, aperiodi random walk on the lattie Zd, d � 2, withnondegenerate ovariane matrix �. For integers q > 1 we de�ne the q-fold self-intersetion loal timef`(q)n : n � 0g of the random walk as`(q)n := Xz2Zd `qn(z) = X1�i1;��� ;iq�n 1�Si1 = � � � = Siq	 for n � 0 :We also denote the maximum of the loal times by`(1)n := maxz2Zd `n(z) :The most important quantity is f`(2)n : n � 0g, whih is simply alled the self-intersetion loal time.Its asymptoti expetations are E`(2 )n � ( n (2G(0)� 1) if d � 3 ;n logn 1�pdet� if d = 2 : (6)In d � 3 this is easy, for d = 2 in the strongly aperiodi ase this follows from the loal entral limittheorem in the form PfSn = 0g = 1=(n 2�pdet �)+o(1=n); see [Sp76, Proposition P7.9, p.75℄, and anbe extended to the periodi ase using Spitzer's trik, see [Sp76, proof of Proposition P26.1, p.310℄.The main results of this setion are the following onentration inequalities for double and tripleself-intersetion loal times, whih are of independent interest. They are therefore given in somewhatgreater generality than needed for the proof of our main results.



6 RANDOM WALK IN RANDOM SCENERYProposition 11 (Conentration inequalities). Let n � 2. There exists a onstant  > 0 suh that,(a) if d > 4, then for x � n 23 log2 n,P�j`(2)n � E`(2)n j � x	 � expn�  x 12logno ;(b) if d = 4, then for x � n 23 log3 n,P�j`(2)n � E`(2)n j � x	 � expn�  x 12log3=2no ;() if d = 3, then for x � n 12 log9=2 n,P�j`(2)n � E`(2)n j � x	 � expn �  x 23n 13 o ;(d) if d > 4, then for x � n 35 log2 n,P�j`(3)n � E`(3)n j � x	 � expn�  x 13log2=3no ;(e) if d = 4, then for x � n 35 log7=2 n,P�j`(3)n � E`(3)n j � x	 � expn�  x 13log7=6no :Remark 12. All of these inequalities are, to the best of our knowledge, new. Similar onentrationinequalities, but only for simple random walk and under onsiderably stronger assumptions on therelationship of x and n, have been found by Asselah and Castell in [AC06, Propositions 1.4 and 1.6℄if d � 5, and by Asselah in [As06, Proposition 1.1℄ if d = 3. In partiular, if d � 5, for the speialase x = yn they obtain an upper bound of expf�png, whih is an improvement of (a). The proofsin [As06, AC06℄ are based on a deliate and powerful analysis of the number of sites in Zd visited aertain number of times, and are therefore of independent interest. In this paper we give a diret proofof Proposition 11, whih entirely avoids the disussion of the number of visits to individual sites, andis therefore muh easier than the method of Asselah and Castell.3.1 Proof of Proposition 11We start with some useful estimates for the partial Green's funtions,Gn(x) := nXk=0PfSk = xg; for n � 2 and x 2Zd:Lemma 13. For all n � 2, Xz2ZdG2n(z) � 8<: Cpn if d = 3;C log n if d = 4;C if d > 4:Proof. If d = 3 we have from [Sp76, Proposition P26.1, p.308℄ that G(z) � C=(1 + jzj). ThenXz2Z3G2n(z) = Xjzj�pnG2n(z) + Xjzj>pnG2n(z) � Xjzj�pnG2(z) + � supjzj>pnG(z)� Xjzj>pnGn(z) :



RANDOM WALK IN RANDOM SCENERY 7The estimate for G(z) shows that the �rst sum on the right is bounded by Cpn. We further have,from the de�nition of Gn and Chebyshev's inequality,� supjzj>pnG(z)� Xjzj>pnGn(z) � C n�1=2 nXk=0PfjSkj > png � C n�1=2 nXk=0 EjSk j2n � Cpn ;whih ompletes the argument. In dimension d � 4 we use that, by [U98, (1.4)℄, we haveG(z) � Xx2Zd �(x)1 + jx� zjd�2 for all z 2Zd; (7)where (�(x) : x 2Zd) is a summable family of nonnegative weights. If d > 4, by the triangle inequality,� Xz2ZdG2(z)�1=2 � Xx2Zd� Xz2Zd �2(x)(1 + jx� zjd�2)2�1=2 = � Xx2Zd�(x)�� Xz2Zd 1(1 + jzjd�2)2�1=2;whih is bounded by a onstant. If d = 4 we use �rst thatXz2Z4G2n(z) = Xjzj�nG2n(z) + Xjzj>nG2n(z) � Xjzj�nG2(z) + � supz2Z4G(z)� Xjzj>nGn(z) :Clearly, G is bounded, see (7), and an argument analogous to the ase d = 3 shows that the seondsum on the right is bounded by a onstant. Using the triangle inequality as in the ase d > 4 weobtain for the �rst sum on the right� Xjzj�nG2(z)�1=2 � Xx2Z4�(x)� Xjz+xj�n 1(1 + jzj2)2�1=2 :It suÆes to show that the ontent of the round braket on the right is bounded by a onstant multipleof logn, uniformly in x 2 Z4. On the one hand, if jxj � 2n this follows easily from the fat that thesum an now be taken over all z 2 Z4 with jzj � 3n. On the other hand, if jxj > 2n the sum an betaken over the annulus jxj�n � jzj � jxj+n and is thus easily seen to be bounded by a onstant. �The proof of Proposition 11 requires the following `folklore' lemma about the intersetion of twoindependent random walks fSn : n � 0g and fS 0n : n � 0g with S0 = S 00. DenoteAn := nXi=1 n�1Xj=0 1fSi = S 0jg for n � 1:Lemma 14. There exists a onstant # > 0 suh that,(a) if d > 4, then supn�2 E exp �#A1=2n 	 <1 ;(b) if d = 4, then supn�2 E exp �# 1plogn A1=2n 	 <1 ;() if d = 3, then supn�2 E exp �# �Anpn�2=3	 <1:



8 RANDOM WALK IN RANDOM SCENERYProof. From the de�nition of An we obtain, for moments of order m � 1,EAmn � m! X1�j1�����jm�n X0�k1 ;:::;km<n E mYl=1 1fSjl = S 0klg� m! X�2Sm X1�j1�����jm�n X0�k1�����km<n Xx1 ;:::;xm E mYl=1 1fSjl = xlg E mYl=1 1fS 0kl = x�(l)g� m! X�2Sm Xx1;:::;xm mYl=1Gn(xl � xl�1)Gn(x�(l) � x�(l�1));where Sm denotes the group of all permutations of f1; : : : ; mg, and we set x0 := 0 =: x�(0) foronveniene. Applying H�older's inequality,EAmn � (m!)2 Xx1;:::;xm mYl=1G2n(xl � xl�1) = (m!)2� Xx2ZdG2n(x)�m;and from Lemma 13 we obtain, for all n � 2,EAmn � 8<: (m!)2Cm nm=2 if d = 3;(m!)2Cm (logn)m if d = 4;(m!)2Cm if d > 4:If d > 4 this implies E�pAn�m � pEAmn � m!Cm; and (a) follows by onsidering the exponentialseries. The analogous argument for d = 4 gives (b). In d = 3 we need an extra argument to ompletethe proof: We write `(m;n) := dn=me + 1. Using an inequality of Chen, [Ch04, Theorem 5.1℄ (withp = 2 and a = m), we get, for n � m,pEAmn � Xk1+���+km=mk1;:::;km�0 m!k1! � � �km!qEAk1`(m;n) � � �qEAkm`(m;n)� Xk1+���+km=mk1;:::;km�0 m!k1! � � �km!q(k1!)2Ck1`(m;n)k1=2 � � �q(km!)2Ckm`(m;n)km=2� �2m�1m � m!Cm � nm�m=4 � (m!)3=4Cm nm=4;and therefore EAmn � (m!)3=2Cm nm=2: For n � m we get the same estimate immediately from thetrivial inequality Amn � n2m � (m!)3=2Cm nm=2. We thus obtain, for all n;m, thatE�n�1=3A2=3n �m = n�m=3 E�Amn �2=3 � m!Cm;and () follows by taking the exponential series. �Introdue, for n � 1,�n := nXi=1 n�1Xj;k=0 1fSi = S 0j = S 0kg and ��n := n�1Xi=0 nXj;k=1 1fSi = S 0j = S 0kg:



RANDOM WALK IN RANDOM SCENERY 9Lemma 15. There exists a onstant # > 0 suh that,(a) if d > 4, then supn�2 E exp �#�1=3n 	 <1 ;(b) if d = 4, then supn�2 E exp �# �1=3n(logn)1=2	 <1.The same statements hold when �n is replaed by ��n.Proof. We only onsider �n, as ��n an be treated analogously. From the de�nition of �n we obtain,for moments of order m � 1,E�mn � m! X1�j1�����jm�n X0�k1 ;:::;km<n0�l1;:::;lm<n E mYi=1 1fSji = S 0ki = S 0lig� m! Xx1;:::;xm X0�k1 ;:::;km<n0�l1 ;:::;lm<n mYi=1Gn(xi � xi�1) E mYi=1 1fS 0ki = S 0li = xig;where we set x0 := 0 for onveniene. Continuing with Cauhy-Shwarz, we get� m!� Xx1;:::;xm mYi=1G2n(xi � xi�1)�1=2� Xx1;:::;xm � X0�k1 ;:::;km<n0�l1;:::;lm<n E mYi=1 1fS 0ki = S 0li = xig�2�1=2 :By Lemma 13 the �rst braket is bounded by Cm if d > 4, and by Cm(logn)m if d = 4. To analysethe seond braket we denote by Tm the set of all mappings � : f1; : : : ; 2mg ! f1; : : : ; mg suh that#��1fjg = 2 for all j 2 f1; : : : ; mg. For the ardinality of Tm we get#Tm � �2mm � (m!)2 � Cm (m!)2 : (8)Given (k1; : : : ; km) and (l1; : : : ; lm) there exists at least one ordered tuple (k01; : : : ; k02m) with k01 � � � � �k02m with fk1; : : : ; km; l1; : : : ; lmg = fk01; : : : ; k02mg and � 2 Tm suh that �(i) = j if k0i = lj or k0i = kj .Hene we obtain,X0�k1 ;:::;km<n0�l1 ;:::;lm<n E mYi=1 1fS 0ki = S 0li = xig � X�2Tm X0�k01�����k02m<n 2mYi=1P�S 0k0i � S 0k0i�1 = x�(i) � x�(i�1)	� X�2Tm 2mYi=1Gn(x�(i) � x�(i�1));and, using the triangle inequality,� Xx1;:::;xm � X�2Tm 2mYi=1Gn(x�(i) � x�(i�1))�2�1=2 � X�2Tm� Xx1;:::;xm 2mYi=1G2n(x�(i) � x�(i�1))�1=2� #Tm� Xx1;:::;x2m 2mYi=1G2n(xi � xi�1)�1=2 :



10 RANDOM WALK IN RANDOM SCENERYBy Lemma 13 the braket is bounded by Cm if d > 4, and by Cm(logn)2m if d = 4. Thus, togetherwith (8), we obtain the estimatesE�mn � ( �m!Cm�3 if d > 4;�m!Cm (logn)m=2�3 if d = 4:But E(�1=3n )m � �E�mn �1=3, and both statements follow by taking exponential series. �For any N � 0 we use the lassial deomposition`(2)2N � E`(2)2N = 2 NXj=1 2j�1Xk=1 Aj;k;where Aj;k := Aj;k(N) := X(2k�2)2N�j<l�(2k�1)2N�j(2k�1)2N�j<m�(2k)2N�j �1fSl = Smg �PfSl = Smg�:For �xed 1 � j � N the random variables Aj;k, for k = 1; : : : ; 2j�1, are independent, identiallydistributed with the law of A2N�j � EA2N�j . The next proposition exploits this independene, andthe moment results of Lemma 14 to give large deviation upper bounds.Proposition 16 (Large deviation upper bounds). For every " > 0 there exists  = (") > 0 suh that,for all 1 � j � N ,(a) if d > 4, then Pn��� 2j�1Xk=1 Aj;k(N)��� � " xo � exp�� px	 for all x � (2N)2=3;(b) if d = 4, then Pn��� 2j�1Xk=1 Aj;k(N)��� � " xo � expn � r xN o for all x � N(2N)2=3;() if d = 3, then Pn��� 2j�1Xk=1 Aj;k(N)��� � " xo � expn �  x22N o+ expn�  x2=32j=32N=3 ofor all x � N9=2 (2N)1=2.The proof of this result will be postponed to the next setion.Completion of the proof of Proposition 11(a) { (). We use two simple ingredients, stated belowas (9) and (10). First, note that, for any N � 0 and any hoie of nonnegative weights pj , 1 � j � N ,with P pj � 1, we haveP�j`(2)2N � E`(2 )2N j � "y	 = Pn2��� NXj=1 2j�1Xk=1 Aj;k��� � "yo � NXj=1Pn��� 2j�1Xk=1 Aj;k��� � "ypj2 o: (9)Seond, for any n � 2 there exists the representationn = 2N1 + � � �+ 2Nl ;where l � 1 and N1 > � � � > Nl � 0 are integers. Note that l �  logn. Write n0 := 0 andni := 2N1 + � � �+ 2Ni for 1 � i � l, and denoteBi := Xni�1<j<k�ni 1fSj = Skg; and Di := Xni�1<j�nini<k�n 1fSj = Skg:



RANDOM WALK IN RANDOM SCENERY 11Then P1�j<k�n 1fSj = Skg = Pli=1Bi + Pl�1i=1Di: We thus have, for any hoie of nonnegativeweights qi, 1 � i � l, with P qi � 1, for x large enough to satisfy xqi > 4EDi ,P�j`(2)n � E`(2)n j � x	 � lXi=1 P�jBi � EBi j � xqi4 	+ l�1Xi=1 P�Di � xqi4 	: (10)Depending on the dimension, we use the ingredients (9) and (10) with di�erent hoie of weights. Ifd = 3 we de�ne qi = b2(Ni�N1)=2 with b = (P1j=1 2�j=2)�1, and apply (9) forN = Ni; y = xqi4" and weights pj = aj�2 with a = � 1Xj=1 j�2��1;where " > 0 may be hosen independently of i; j suh that ypj=2 � N9=2i (2Ni)1=2. Using (9), Proposi-tion 16 () and that l �  logn, this giveslXi=1 P�jBi � EBi j � xqi4 	 � lXi=1 NiXj=1 expn �  (ypj)22Ni o+ expn�  (ypj)2=32j=32Ni=3 o� expn�  x2=3n1=3o: (11)As (with d= denoting equality of distributions)Di d= 2NiXj=1 n�niXk=1 1fSj = S 0kg � 2NiXj=1 2Ni�1Xk=0 1fSj = S 0kg = A2Ni ;the seond sum in (10) an be estimated using Chebyshev's inequality and Lemma 14,l�1Xi=1 P�Di � xqi4 	 � l�1Xi=1 P�A2Ni2Ni=2 � xqi42Ni=2	� l�1Xi=1 exp��  � xqi2Ni=2 �2=3	 � exp��  x2=3n1=3	; (12)and the proof of () follows by plugging (11) and (12) into (10). The proof of (a), (b) is analogous,but now the weights are hosen to be equal, i.e. pj = 1=N and qi = 1=l. We leave the obvious detailsto the reader. �An analogous argument an be arried out for triple self-intersetions. Indeed, for any N � 0 we have`(3)2N � E`(3)2N = NXj=1 2j�1Xk=1 �j;k + NXj=1 2j�1Xk=1 ��j;k (13)where �j;k := X(2k�2)2N�j<l�(2k�1)2N�j(2k�1)2N�j<m;n�(2k)2N�j �1fSl = Sm = Sng � PfSl = Sm = Sng�and ��j;k := X(2k�2)2N�j<l;m�(2k�1)2N�j(2k�1)2N�j<n�(2k)2N�j �1fSl = Sm = Sng � PfSl = Sm = Sng�:



12 RANDOM WALK IN RANDOM SCENERYAgain, for �xed 1 � j � N the random variables �j;k , for k = 1; : : : ; 2j�1, are independent, identiallydistributed with the law of �2N�j � E�2N�j , and the random variables ��j;k , for k = 1; : : : ; 2j�1, areindependent, identially distributed with the law of ��2N�j � E��2N�j .Proposition 17 (Large deviation upper bounds). For any " > 0 there exists  = (") > 0 suh that,for all 1 � j � N ,(a) if d > 4, then Pn��� 2j�1Xk=1 �j;k��� � " xo � exp��  x1=3	 ; for all x � (2N)3=5;(b) if d = 4, then Pn��� 2j�1Xk=1 �j;k��� � " xo � exp��  � xN3=2 �1=3	 ; for all x � N3=2(2N)3=5.The same estimates hold for �j;k replaed by ��j;k.Again we postpone the proof of Proposition 17 to the next setion and �rst omplete the details ofthe remaining parts of Proposition 11.Proof of Proposition 11(d),(e). For any N � 0, we have by (13),P�j`(3)2N � E`(3 )2N j � "y	 = Pn��� NXj=1 2j�1Xk=1 �j;k��� � "y2 o+ Pn��� NXj=1 2j�1Xk=1 ��j;k��� � "y2 o� NXj=1Pn��� 2j�1Xk=1 �j;k��� � "y2N o+ NXj=1Pn��� 2j�1Xk=1 ��j;k��� � "y2N o: (14)For any n � 2 there exists the representation n = 2N1 + � � � + 2Nl ; where N1 > � � � > Nl � 0 areintegers. Note that l �  logn. Write n0 := 0 and ni := 2N1 + � � �+ 2Ni for 1 � i � l, and denoteBi := Xni�1<j;k;l�ni 1fSj = Sk = Slg;Di := Xni�1<j;k�nini<l�n 1fSj = Sk = Slg and Ei := Xni�1<j�nini<k;l�n 1fSj = Sk = Slg:Then `(3)n = Pli=1Bi +Pl�1i=1Di +Pl�1i=1Ei: As EDi and EEi are bounded by a onstant multiple oflogn, we get for all suÆiently large x,P�j`(3)n � E`(3)n j � x	 � lXi=1 P�jBi � EBi j � x3l	+ l�1Xi=1 P�Di � x3l	+ l�1Xi=1 P�Ei � x3l	: (15)We now look at the ase d = 4. Using (14) with y = x=(3l"), Proposition 17(b) and that l �  logn,this gives lXi=1 P�jBi � EBi j � x3l	 � 2 lXi=1 NiXj=1 expn �  � xlN5=2i �1=3o � expn�  x1=3log7=6no: (16)As we have Di d= 2Ni�1Xj;k=0 n�niXm=1 1fSj = Sk = S 0mg � 2Ni�1Xj;k=0 2NiXm=1 1fSj = Sk = S 0mg = ��2Ni ;



RANDOM WALK IN RANDOM SCENERY 13the seond sum in (15) an be estimated using Chebyshev's inequality and Lemma 15(b),l�1Xi=1 P�Di � x3l	 � l�1Xi=1 Pn��2NiN3=2i � x3lN3=2i o � l expn � � xlN3=21 �1=3o � expn �  x1=3log5=6 no: (17)The same estimate holds for Ei in plae of Di, using the estimate for �2Ni instead of ��2Ni . The proofof () follows by plugging this, (17) and (16) into (15). The ase d � 5 is analogous. �3.2 Proof of Propositions 16 and 17Proof of Proposition 16. We �rst give the argument in the ase d � 5. Take a ontinuouslydi�erentiable funtion g : (0;1)! R with non-inreasing derivative, suh that(a) g0(x) > 2=x for all x > 0,(b) g(x) = #px for all x � x0,where # is hosen as in Lemma 14. For 1 � j � N denotebj(N) := Eh exp�g�Aj;1(N)�	 1fAj;1(N) > 0gi;and reall from Lemma 14(a) that bj(N) is uniformly bounded in j and N . By Theorem 2.3 of [Na79℄(with 1 = 2 = 3 = 1=3,  = 2=3 and Æ = 2) we obtain the boundPn2j�1Xk=1 Aj;k � " xo � e1=2 expn� a2 "2 x22(a+1)2j�1Vj(N)o (18)+ e1=2 expn� 2a " x3S�1� a"x3ea2j�1bj(N)�o (19)+ 2j bj(N) e1=2 expn� g�23 " x�o + 2j�1PnAj;1 � 23 " xo; (20)where Vj(N) is the variane of Aj;1, the onstant a is the unique solution of the equation (u+1) = eu�1,and S�1 is the inverse of the stritly dereasing funtion u 7! S(u) := e�g(u)g0(u)u2, see [Na79, p.765℄.By Chebyshev's inequality, P�Aj;1 � x	 � � supN supj�N bj(N)� e�g(x);and therefore the two terms in (20) are bounded by a onstant multiple of2N expn � g�23 " x�o for all j � N:Realling the de�nition of g we arrive at an upper bound ofC exp��  px	 for all N � 1: (21)If x � (2N)2=3, then x2=2j�1 = x1=2 x3=2=2j�1 > px for all j � N . Further, using this inequality andthe boundedness of Vj(N), the term in (18) is also bounded by a onstant multiple of expf�pxg.To show that also the term in (19) is negligible, reall that the funtion S is stritly dereasing. Hene,the term in (19) is bounded by C expn �  xS�1� 2N=3 �o:From the de�nition of the funtions g and S it is easy to see thatS�1� 2N=3 � � CN2:



14 RANDOM WALK IN RANDOM SCENERYThis implies that the term in (19) is bounded by a onstant multiple of expf� x=N2g, and is thereforealso negligible ompared to (21). This ompletes the bound for PAj;k . The same reasoning an beapplied with �Aj;k in plae of Aj;k, using only the trivial fat that �Aj;1 is bounded from above, uni-formly in j. Hene we get the same bound for �PAj;k. This ompletes the proof in dimensions d � 5.The result in d = 4 is a modi�ation of this argument, using the random variable (N�j)�1Aj;k insteadof Aj;k, and details are left to the reader.Turning to dimension d = 3, we use thatPn2j�1Xk=1 Aj;k � "xo = Pn2j�1Xk=1 Aj;k2(N�j)=2 � " x2(N�j)=2o;and hoose a funtion g : (0;1)! Rwhih satis�es the same onditions as above, exept that we nowreplae ondition (b) by g(x) = # x2=3 for all x � x0, and # as in Lemma 14. We de�nebj(N) := E� exp�g�Aj;1=2(N�j)=2� 1fAj;1 > 0g�;and by Theorem [Na79, Theorem 2.3℄ we obtainPn2j�1Xk=1 Aj;k2(N�j)=2 � " x2(N�j)=2o � exp n�  x22N o+ expn�  x2(N�j)=2S�1� x2(N+j)=2 �o (22)+ C 2j bj(N) expn� g� x2(N�j)=2�o + 2j�1Pn Aj;12(N�j)=2 �  x2(N�j)=2o: (23)The two terms in (23) are bounded by 2N expf� x2=3=2(N�j)=3g. To bound the last term in (22) weuse that, for x � 2N=2=N2,S�1� x2(N+j)=2� � S�1� x2N � � S�1� N22N=2� � CN3=2 ;to get expn�  x2(N�j)=2S�1� x2(N+j)=2 �o � expn�  x2j=22N=2N3=2o :As x � 2N=2N9=2 this term is also bounded by expf� x2=3=2(N�j)=3g, ompleting the proof. �Proof of Proposition 17. We use the same arguments as in Proposition 16, but now for a funtiong : (0;1)! R with ondition (b) replaed by g(x) = #x1=3 for x � x0. Then both terms in (20) giveontributions bounded by expf� x1=3g. If x � (2N)3=5, then x2=2j�1 � x1=3, and hene we obtainthe same bound for (18). Under the same ondition x � (2N )3=5, we haveS�1�x=2j�1� � S�1�=(2N)2=5� � C N3 ;hene the term in (19) is of smaller order. �3.3 A large deviation bound for the maximum of the loal timesWe omplete this setion with an easy lemma, whih provides bounds for the large deviation prob-abilities of the maximum `(1)n of the loal times. Ideas for this proof are taken from Gantert andZeitouni [GZ98℄.



RANDOM WALK IN RANDOM SCENERY 15Lemma 18 (Large deviation bounds for the maximal loal time). There exists  > 0 suh that(a) if d � 3, then for eah sequene an !1 and all n � 2,P�`(1)n > an	 � n exp��  an	 ;(b) if d = 2, then for eah sequene an= logn!1 and all n � 2,P�`(1)n > an	 � n expn�  anlogno :Proof. Without loss of generality we may assume that all an are positive integers. We �rst redue theproblem to a large deviation bound for `n(0). De�ning the stopping times Tz := minfk � 1: Sk = zgwe have, for all nonnegative integers x,P�`(1)n > x	 � Xz2ZdP�`n(z) > x	 = Xz2Zd nXk=1PfTz = kgP�`n�k(0) � x	� P�`n(0) � x	 Xz2ZdPfTz � ng :Now Pz PfTz � ng � PzPnk=1PfSk = zg = n, so that it suÆes to bound the large deviationprobabilities of `n(0). By the strong Markov property applied at the suessive hitting times of theorigin, we get P�`n(0) � an	 � P�T0 � n	an : (24)In the transient ase, d � 3, this gives (a) with  := � logPfT0 <1g > 0. In the reurrent ase d = 2,we use the last exit deomposition, for all 2 � k � n,1 � kXj=0PfSj = 0gPf`n�k(0) = 0g+ nXj=k+1PfSj = 0g :By [Sp76, Proposition P7.6, p.72℄ we have PfSj = 0g � j for j � 1. This implies that(log k)Pf`n�k(0) = 0g � Ch1� � nXj=k+1 1j�i :Now let k = d�ne and hoose � 2 (0; 1) suÆiently lose to one, so that the right hand side is boundedfrom zero by a positive onstant. Hene,PfT0 > n(1� �)g = Pf`bn(1��)(0) = 0g � logn ;and thus logPfT0 � ng = log(1�PfT0 > ng) � �= logn. Plugging this into (24) ompletes the proofof (b). �4. Preise asymptotis in dimensions d � 4: Proof of Theorem 1The main ingredient of the proof is the following proposition. Reall that the probability P refersexlusively to the senery variables with �xed random walk samples, and the Landau symbols areuniform in these samples.



16 RANDOM WALK IN RANDOM SCENERYProposition 19. Assume that, for some A > 0 and all suÆiently large n,�n := Xz2Zd `3n(z) � n log2 n and V 2n := �2 Xz2Zd `2n(z) � An :Then, for pn� bn � n2=3= log3=2n, we havePn Xz2Zd `n(z)�(z) � bno = Vnp2�bn expn � b2n2V 2n o (1 + o(1)) : (25)Proof of Theorem 1. On the event�j`(2)n � E`(2)n j � n2=3 log3 n; `(3)n � n log2 n	we have V 2n = �2 E`(2)n +O(n2=3 log3 n):Sine for d � 4, E`(2)n � n (2G(0)� 1) = O(logn);we obtain V 2n = n �2 (2G(0)� 1) + O(n2=3 log3 n) :Thus, if we assume pn� bn � n2=3= log3=2 n =: an, we have� b2n2V 2n = � b2n2n�2(2G(0)� 1) + o(1) :Using that 1� �(x) = 1p2�x e�x22 �1 +O(x�2)�; as x!1 ; (26)and abbreviating �2n := 2n�2(2G(0)� 1) we obtain, on the same event,Vnp2�bn expn� b2n2V 2n o1� �(bn=�n) = 1 + o(1):Therefore, for a onstant  > 0 and all large n,���� PfXn � bng1� �(bn=�n) � 1����� E"����PfP `n(z)�(z) � bngVnp2�bn exp�� b2n2V 2n 	 � 1���� 1�j`(2)n � E`(2)n j � n2=3 log3 n; `(3)n � n log2 n	#+ o(1)+P�j`(2)n � E`(2)n j > n2=3 log3 n	 e b2nn + P�`(3)n > n log2 n	 e b2nn :By Proposition 11 both probabilities in the last line are bounded by expf�n1=3g if d � 5, and byexpf�n1=3= log1=2 ng if d = 4. As bn � an we have b2n=n � n1=3 if d � 5, and b2n=n � (n= log2 n)1=3if d = 4, hene the summands in the last line go to zero, and together with Proposition 19 this impliesTheorem 1. �Proof of Proposition 19. Reall Cram�er's ondition (1) and denote f(h) := Eeh�(0) for all h 2 [0; �).For �xed n � 1 and h > 0 satisfying the onditionh `(1)n � �2 (27)



RANDOM WALK IN RANDOM SCENERY 17we introdue a family fYz : z 2Zdg of independent auxiliary random variables with distributionsP�Yz < x	 = �f(h`n(z))��1 Z x�1 ehy dPf`n(z)�(z) < yg :We de�ne mz := EYz; �2z := E[(Yz �mz)2℄; z := EjYz �mzj3;Mn(h) :=Pz2Zdmz; V 2n (h) :=Pz2Zd �2z ; �n(h) :=Pz2Zd z :From the de�nition of Yz we infer thatP�`n(z)�(z) < x	 = f(h`n(z)) Z x�1 e�hy dPfYz < yg ;and therefore Pn Xz2Zd `n(z)�(z) � bno = Yz2Zdf(h`n(z)) Z 1bn e�hy dPn Xz2ZdYz < yo :Substituting y = Mn(h) + xVn(h) and denoting T := (PYz �Mn(h))=Vn(h), we getPn Xz2Zd `n(z)�(z) � bno = expn� hMn(h) + Xz2Zd log f(`n(z)h)o� Z 1bn�Mn(h)Vn(h) expf�hxVn(h)g dP (T < x): (28)Now we show that (27) implies that, for some onstant  > 0, we haveh V 2n �  h3 �n �Mn(h) � h V 2n +  h2�n : (29)Obviously, mz = `n(z) f 0(`n(z)h)f(`n(z)h) and thus Mn(h) = Xz2Zd `n(z) f 0(`n(z)h)f(`n(z)h) :On the one hand, using that all derivatives of f are inreasing, we getf 0(`n(z)h) � f 00(0) `n(z) h+ 12 f 000(`n(z)h) `2n(z) h2 � �2 `n(z) h+ 12 f 000(�=2) `2n(z) h2;and the seond inequality in (29) readily follows from this together with the fat that f(`n(z)h) � 1.On the other hand, noting that f 0(`n(z)h) � �2 `n(z) h andf(`n(z)h) � 1 + f 0(`n(z)h) `n(z) h � 1 + f 0(�=2) `n(z) h ;we obtain the boundMn(h) � Xz2Zd �2 `n(z) h1 + f 0(�=2) `n(z) h = h �2 Xz2Zd `2n(z)� f 0(�=2) �2 h2 Xz2Zd `3n(z) :Summarizing, we see that (29) holds with  := maxf�2f 0(�=2); 12 f 000(�=2)g.Let h�n denote the positive solutions of the quadrati equationsV 2n h� �n h2 = bn :It is easy to see that h�n = bnV 2n + O��nb2nV 6n � as n!1 ; (30)provided that �nbn = O(V 4n ).



18 RANDOM WALK IN RANDOM SCENERYFrom our assumption �n � n log2 n we get `(1)n � n1=3 log2=3 n and thus (27) holds for allh � �=(2n1=3 log2=3 n). Sine bn � n2=3= logn and �nb2n � n7=3 but V 2n � n we obtain thath�n � n�1=3= logn + O(n�2=3) and thus h�n is in the domain given by (27), for all large n. Henethe inequalities (29) hold for all 0 < h � h�n and so, on the one hand, we have M(h�n ) � bn, and onthe other hand, as h+n < h�n , we have M(h+n ) � bn. Therefore there exists hn 2 [h+n ; h�n ℄ suh thatM(hn) = bn. Applying (30) giveshn = bnV 2n + O��nb2nV 6n � as n!1 : (31)Clearly, log f�`n(z)hn� = log �1 + �22 `2n(z) h2n +O(`3n(x)h3n)� = �22 `2n(z) h2n +O(`3n(x)h3n) :Thus, in view of (31),�hnMn(hn) + Xz2Zd log f�`n(z)hn� = �hn bn + 12 V 2n h2n +O��nh3n� = � b2n2V 2n + O��nb3nV 6n � : (32)Putting h = hn in (28) and using (32), we obtainP�`n(z)�(z) � bn	 = expn � b2n2Vn +O��nb3nV 6n �o Z 10 e�xhnVn(hn) dP (T < x): (33)Integrating by parts gives, for a standard normal random variable N ,Z 10 e�xhnVn(hn) dPfT < xg = Z 10 PfT < xg hn Vn(hn) e�hnVn(hn)x dx= Z 10 PfN < xg hn Vn(hn) e�hn Vn(hn)x dx+ Z 10 �(x) hn Vn(hn)e�hn Vn(hn) x dx= 1p2� Z 10 exp�� hn Vn(hn) x� x22 	dx+ Z 10 �(x) hn Vn(hn) e�hVn(hn) x dx;where �(x) := PfT < xg � PfN < xg. By Esseen's inequality, see for example [Pe75, Theorem V.3℄,there exists an abolute onstant C > 0, suh thatsupx j�(x)j � C �n(hn)V 3n (hn) :Therefore��� Z 10 e�xhnVn(hn) dPfT < xg � 1p2� Z 10 exp�� hn Vn(hn) x� x22 	dx��� � C �n(hn)V 3n (hn) :Evidently, 1p2� Z 10 exp�� hn Vn(hn) x� x22 	dx= 1p2� expnh2nV 2n (hn)2 o Z 10 expn � (x+ hnVn(hn))22 o dx= expnh2nV 2n (hn)2 o�1� ��hnVn(hn)�� : (34)We now show that, for a suitable onstant C > 0,V 2n (hn) = V 2n +O(�nhn) and �n(hn) � C �n: (35)



RANDOM WALK IN RANDOM SCENERY 19First, we obtain thatV 2n (hn) = Xz2Zd�2z = Xz2Zd `2n(z) f 00(`n(z)hn)� (f 0(`n(z)hn))2f(`n(z)hn)= Xz2Zd `2n(z) ��2 + O(`n(z) hn)� = V 2n + O(�nhn) :Seond, for an upper estimate of �n(hn), we note thatEjYzj3 = 2 Z 0�1 jyj3 dPfYz < yg+EY 3z :From the de�nition of Yz we get, on the one hand,Z 0�1 jyj3 dPfYz < yg = 1f(`n(z)h) Z 0�1 jyj3 ehy dP��(z) < y`n(z)g� `3n(z) Z 0�1 jxj3 dP��(z) < xg � `3n(z)Ej�(0)j3 ;and, on the other hand, EY 3z = f 000(`n(z)h) `3n(z)f(`n(z)h) � `3n(z) f 000(�=2) :The two bounds imply that EjYzj3 � �f 000(�=2)+2�`3n(z); and ombining this with mz � f 0(�=2) `n(z)gives z � EjYzj3 +m3z � C`3n(z) and therefore we have proved (35).From (31) and (35) we thus gethnVn(hn) = � bnV 2n + O��nb2nV 6n �� �V 2n + O��nbnV 2n ��1=2 = bnVn �1 + O��nbnV 4n �� :Realling that bn � pn and V 2n � An we onlude that hnVn(hn)! 1. Then, using (26),eh2nV 2n (hn)=2�1� �(hnVn(hn)� = 1p2�hnVn(hn) �1 +O� 1h2nV 2n (hn)��= Vnp2�bn �1 + O��nbnV 4n �+O�V 2nb2n �� :Substituting this into (34) givesZ 10 e�hnVn(hn)x dPfT < xg = Vnp2�bn �1 +O��nbnV 4n �+ O�V 2nb2n �� ;and the result follows by plugging this into (33). �5. Moderate deviations in dimensions d � 3: Proof of Theorem 35.1 Proof of the upper bound in Theorem 3We �x � > 0 and let A := 2G(0)� 1 + 3�: Our aim is to show thatlim supn!1 nb2n logPnXz2Zd `n(z)�(z) � bno � � 12�2A: (36)



20 RANDOM WALK IN RANDOM SCENERYWe note that, for any �xed � > 0,PnXz2Zd `n(z)�(z) � bno � PnXz2Zd `n(z)�(z) � bn; `(1)n � �nbn ; `(2)n � Ano+Pn`(1)n � �nbno +P�`(2)n � An	: (37)To see that the seond summand is negligible apply Lemma 18 with an = �n=bn, whih giveslim supn!1 nb2n logP�`(1)n > �nbn 	 � lim supn!1 n log nb2n � �n2b3n = �1: (38)To see that the third term in (37) is negligible, reall from (6) that E`(2 )n � n(2G(0)�1) and therefore,for all large n,P�`(2)n � An	 � Pn`(2)n � E`(2)n � �A�1��2 �G(0)�no = P�`(2)n � E`(2)n � �n	:From Proposition 11 we know that for bn � n2=3, if d � 4,lim supn!1 nb2n logP�`(2)n � E`(2)n � �n	 � lim supn!1 � n3=2b2n logn = �1;and, if d = 3, lim supn!1 nb2n logP�`(2)n � E`(2)n � �n	 � lim supn!1 �n4=3b2n = �1:Combining this, we get lim supn!1 nb2n logP�`(2)n � An	 = �1: (39)It remains to investigate the �rst term on the right hand side of (37). For this purpose, for the moment�x f`n(z) : z 2Zdg suh that `(1)n � �nbn and `(2)n � An;and just look at probabilities for the i.i.d. variables f�(z) : z 2 Zdg. Denote f(h) := Eeh�(0) for allh < �, whih is well-de�ned by Cram�er's ondition. Reall thatf(h) = exp�12 h2 �2(1 + o(h))	 as h # 0:In partiular, given any Æ > 0, we may hoose a small � > 0 suh thatf�bn `n(x)�2 `(2)n � � expn(1 + Æ) b2n`2n(x)2�2 (`(2)n )2o; (40)where we use that bn`n(x)=`(2)n � �. From Chebyshev's inequality and independene we get thatPn Xx2Zd `n(x)�(x) � bno � Yx2Zdf�bn`n(x)�2 `(2)n � expn� b2n�2 `(2)n o� expn(1 + Æ) b2n2�2 `(2)n o expn � b2n�2 `(2)n o � expn� �1� Æ� b2n2�2Ano:We an now average over the random walk again, and get (36) from (37) together with (38) and (39),realling that Æ > 0 was arbitrary. This ompletes the proof. �



RANDOM WALK IN RANDOM SCENERY 215.2 Proof of the lower bound in Theorem 3We impose `typial behaviour' on `(2)n and `(1)n . More preisely, �x an arbitrary � 2 (0; 1), and also �x� > 0 whih we speify later. We havePnXz2Zd `n(z)�(z) � bno � PnXz2Zd `n(z)�(z) � bn; `(1)n � �nbn ; `(2)n � Ano= EnPn Xz2Zd `n(z) �(z) � bno 1f`(1)n � �nbn ; `(2)n � Ango; (41)where A := 2G(0)� 1 + 3� and P refers to the probability with respet to the senery only. To studythe inner probability we now suppose that, for the moment, a random walk sample is �xed, suh that`(1)n � �nbn and `(2)n � An:Denote  := Ej�(0)j3 < 1. Hene the variane of the random variable Pz2Zd `n(z)�(z) with respetto P is given by V 2n := �2Pz2Zd `2n(z) and the Lyapunov ratio by Ln :=  V �3n Pz2Zd `3n(z). By [Na02,Theorem 2℄ there exist onstants 1; 2 > 0 suh that, for all 32Vn � x � Vn196Ln ,Pn Xz2Zd `n(z)�(z) � xo � �1� �( xVn )� exp�� 1x3 LnV �3n 	�1� 2xLnV �1n �: (42)Now suppose that � > 0 is hosen to satisfy the three inequalities� < �4=(196); 1���6 < �; and 2���4 < �:Using the upper bound on `(1)n , we get that Ln � �n�2bnV �1n . Therefore,Pn Xz2Zd `n(z)�(z) � xo � �1� �( xVn )� exp�� 1 � x3bn �2 nV �4n 	�1� 2  � xbn �2 nV �2n �;for all (3=2)Vn � x � (bnVn)=(196�n). We an use this inequality for x = bn. Indeed, as V 2n � A�2 n weget bn � (3=2)Vn, if n exeeds some onstant depending only on �2. Also V 2n � �2n and � < �4=(196),therefore bn � bn�2V 2n =(196�n)� Vn=(196Ln):Hene, Pn Xz2Zd `n(z)�(z) � bno � �1� �( bnVn )� exp�� 1 �  ��6 b2nn 	�1� 2 ��4 ��: (43)Substituting (43) into (41) givesPnXz2Zd `n(z)�(z) � bno� �1� 2��4 �� exp�� 1 ��6 � b2nn 	 Eh�1� �( bnVn )� 1�V 2n � A�2 n; `(1)n � �nbn 	i� �1� �� exp�� � b2nn 	Eh�1� �( bnVn )� 1�V 2n � A�2 n	i �Pn`(1)n � �nbn o: (44)Sine, by a standard estimate, (1� �(z)� � expf�(1 + �) z2=2g for all suÆiently large z, we getEh�1� �( bnVn )� 1�V 2n � A�2 n	i � E exp n� (1 + �)b2n2V 2n o�P�V 2n � A�2 n	: (45)By Jensen's inequality, we obtainE exp n � (1 + �)b2n2V 2n o � expn� (1 + �)b2n2�2n E n`(2)n o:



22 RANDOM WALK IN RANDOM SCENERYUsing Proposition 11 and the Borel-Cantelli lemma,limn!1 `(2)nn = limn!1 E`(2)nn = 2G(0)� 1 almost surely,and using further that n=`(2)n � 1, we obtain thatlimn!1 E n`(2)n = 12G(0)� 1 :Then, for all n suÆiently large,Eh�1� �( bnVn )�i � expn � (1 + 2�)b2n2�2n(2G(0)� 1� �)o: (46)Combining (44), (45) and (46) givesPnXz2Zd `n(z)�(z) � bno � (1� �) expn � �� + 1+ 2�2�2(2G(0)� 1� �)�b2nn o�Pn`(1)n � �nbn o� P�`(2)n � An	:The required lower bound follows from the estimates (38) and (39) for the subtrated probabilities,and the fat that � > 0 an be hosen arbitrarily small, whene � also beomes arbitrarily small. �6. Moderate deviations in dimension d = 2: Proof of Theorem 6We use the following moderate deviation priniple for the self-intersetion loal time in the planar ase,whih is due to Bass, Chen and Rosen [BCR06, Theorem 1.1 and (3.2)℄: If xn ! 1 and xn = o(n),then for every � > 0,limn!1 1xn logP�`(2)n � E`(2)n � �nxn	 = limn!1 1xn logP�j`(2)n � E`(2)n j � �nxn	 = ��pdet �2{4 ; (47)where again { is the optimal onstant in the Gagliardo-Nirenberg inequality.6.1 Proof of Theorem 6(a)The proof is largely analogous to that of Theorem 3 replaing Proposition 11 by (47). Starting withthe upper bound, for any �xed � > 0, we use the deompositionPnXz2Z2 `n(z)�(z) � bno � PnXz2Z2 `n(z)�(z) � bn; `(1)n � pn(logn)5bn ; `(2)n � An logno+Pn`(1)n � pn(logn)5bn o+ P�`(2)n � An logn	;where A := (�pdet �)�1+ 4�. The estimate for the last probability follows from (47). Indeed, by (6),for suÆiently large n,P�`(2)n � An logn	 � P�`(2)n � E`(2)n � �A� (�pdet �)�1 � ��n logn	 � n��pdet�{�4 ;hene, as bn � n 12 log n, lim supn!1 n lognb2n logP�`(2)n � An logn	 = �1: (48)



RANDOM WALK IN RANDOM SCENERY 23Moreover, applying Lemma 18, we getlim supn!1 n lognb2n logP�`(1)n > b�1n pn (logn)5	� lim supn!1 n(logn)2b2n � n 32 (logn)4b3n = �1: (49)We now look at �xed loal times f`n(z) : z 2Z2g satisfying the onditions max `n(z) � b�1n pn(logn)5and `(2)n � An logn. Note that, together with the trivial inequality `(2)n � n, this implieslimn"1 bn`n(z)�2 `(2)n = 0:Hene, for arbitrary Æ > 0, if n is suÆiently large, an appliation of Chebyshev's inequality and theestimate (40) for the Laplae transform f of �(z), gives, for n larger than some absolute onstant,Pn Xz2Z2 `n(z)�(z) � bno � Yz2Zdf� bn`n(z)�2 `(2)n � exp�� b2n�2 `(2)n 	 � exp�� (1� Æ) b2n2�2 An logn	:Averaging over the loal times again, we obtainlim supn"1 n lognb2n logPnXz2Z2 `n(z)�(z) � bn; `(1)n � pn(logn)5bn ; `(2)n � An logno � �(1�Æ)2�2 A ;so that the laimed upper bound follows, as �; Æ > 0 were arbitrary.Turning to the lower bound, we �x � > 0 again, and use thatPnXz2Z2 `n(z)�(z) � bno � EnP� Xz2Z2 `n(z) �(z) � bn	� 1�`(1)n � pn(logn)5bn ; `(2)n � An logn	o; (50)where A := (�pdet �)�1 + 4�. To obtain a lower bound for the inner probability we argue as inTheorem 3, relying on the estimates of [Na02, Theorem 2℄. This givesPn Xz2Zd `n(z)�(z) � bno � �1� �( bnVn )� exp�� 1 ��6 b2n n� 32 (logn)3	 �1� 2 ��4n� 12 (logn)4�:We now show that limn"1 Ehn logn`(2)n i = �pdet� : (51)For this purpose de�ne the random variables Yn := 1n `(2)n � (�pdet �)�1 logn and note thatn log n`(2)n = �pdet �� �pdet � Yn1n `(2)n :It suÆes to show that the expetation of the fration on the right onverges to zero. As jYnj � " log nimplies that 1n`(2)n � ((�pdet�)�1 � ") logn we obtain, for any small " > 0, thatEh jYnj1n `(2)n 1fjYnj � " logngi � "(�pdet �)�1 � " : (52)Also, as 1n`(2)n � 1 and using (47) with � = " and xn = log n, for any 0 < " < Æ,Eh jYnj1n `(2)n 1f" logn < jYnj � Æ log ngi � Æ (logn)PfjYnj > " log ng �! 0; (53)



24 RANDOM WALK IN RANDOM SCENERYand, using (47) with � = Æ and xn = logn, if Æ > 0 is suÆiently large,Eh jYnj1n `(2)n 1fjYnj > Æ log ngi � nPfjYnj > Æ logng �! 0 : (54)We obtain that lim EjYn j= 1n`(2)n = 0, and hene (51), by ombining (52), (53), and (54).Repeating the arguments of the d � 3 ase, given in Setion 5.2, givesPnXz2Zd `n(z)�(z) � bno� �1� 2 ��4n� 12 (logn)4� exp�� 1 ��6 b2n n� 32 (logn)3	 expn� (1 + ")2�b2n2�2n logn o�P�`(1)n � pn(logn)5bn 	�P�`(2)n � An logn	:The result follows, by observing that the �rst two fators on the right onverge to one, realling (49),(48) and that � > 0 was arbitrary. �6.2 Proof of Theorem 6(b)Again, we start with the upper bound. Sine E`(2)n � (�pdet �)�1n logn, we an onlude from (47)that, for logn� xn � n, limn!1 1xn logPf`(2)n � �nxng = � �2{4 pdet � : (55)For arbitrary N � 1 and 0 < Æ < 1,PfXn � bng � N�1Xi=0 P�Xn � bn; `(2)n 2 (iÆan; (i+ 1)Æan℄	+Pf`(2)n > NÆang; (56)where an := bnpn. Note that an � n logn. Hene, in view of (55),Pf`(2)n > NÆang � expn�NÆanpdet �3{4n o (57)for all suÆiently large n. Fix i � 1 and � 2 (0; ��2). Then,P�Xn � bn; `(2)n 2 (iÆan; (i+ 1)Æan℄	� PnXn � bn; `(2)n 2 (iÆan; (i+ 1)Æan℄; `(1)n � �iÆpno+ P�`(1)n > �iÆpn	 :Using Lemma 18, we get P�`(1)n > �iÆpn	 � expn��iÆpnlog n o: (58)On the event �`(1)n � �iÆpn; `(2)n 2 (iÆan; (i+ 1)Æan℄	, we obtain,bn`n(z)�2`(2)n � bn�iÆpn�2iÆan = ��2 < �:Therefore, we an use Chebyshev's inequality as before, whih givesPnXz2Z2 `n(z)�(z) � bno � expn�(1� �=2)b2n2�2`(2)n o � expn� (1� �)b2n2�2(i+ 1)Æano;



RANDOM WALK IN RANDOM SCENERY 25and thus, applying (55) again and realling the de�nition of an, for suÆiently large n,PnXn � bn; `(1)n � �iÆpn; `(2)n 2 (iÆan; (i+ 1)Æan℄o� expn� (1� �)b2n2�2(i+ 1)ÆanoPf`(2)n > iÆang � expn� (1� �)bn2�2(i+ 1)Æpn � (1� �)pdet �iÆbn2{4pn o: (59)It remains to onsider the summand orresponding to i = 0 in (56), whih for any � > 0 is bounded byPnXn � bn; `(2)n � Æan; `(1)n � �pno+ Pn`(1)n > �pno : (60)Applying Chebyshev's inequality on the event f`(2)n � Æan; `(1)n � �png we get, for any a > 0 and� < �=a, Pn Xz2Z2 `n(z)�(z) � bno � expn� a bnpn + C Xz2Z2 a2n `2n(z)o;for a onstant C > 0 depending only on the distribution of the senery and the random walk. Usingthis estimate for a = 1=(4CÆ) and � < 4CÆ� we getP�Xn � bn; `(2)n � Æan; `(1)n � �pn	 � expn � bnpn 18ÆCo : (61)Combining (56) { (61) gives usPfXn � bng � N�1Xi=1 expn� (1� �)bn2�2(i+ 1)Æpn � (1� �)iÆbnpdet�2{4pn o+ expn� bnpn 18ÆCo +N expn��Æpnlog n o+ expn�NÆbnpdet �2{4pn o: (62)It is easily seen, thatlimn!1 pnbn logN�1Xi=1 expn� (1� �)bn2�2(i+ 1)Æpn � (1� �)iÆbnpdet �2{4pn o= �(1� �) min1�i�N�1� 12�2(i+ 1)Æ + iÆpdet �2{4 �:Furthermore, if we hoose Æ > 0 small and N large, we getmin1�i�N�1� 12�2(i+ 1)Æ + iÆpdet�2{4 � � (1� �) minx>0 � 12�2x + xpdet�2{4 � = (1� �)(det �)1=4�{2 :Therefore, for all n large enough,N�1Xi=1 expn� (1� �)bn4�2(i+ 1)Æn1=2 � (1� �)iÆbnpdet �{4pn o � expn�(1� �)3 bn (det�)1=4�{2pn o: (63)Making �rst Æ smaller, and then N larger, if neessary, we see that all other terms in (62) are ofsmaller order than (63). Taking into aount that � > 0 was arbitrary, we havelim supn!1 pnbn logPfXn � bng � �(det �)1=4�{2 :To obtain a lower bound, note that for all 0 < � < � and � > 0,PfXn � bng � P�Xn � bn; `(2)n 2 [�an; �an℄; `(1)n � �pn	 ; (64)



26 RANDOM WALK IN RANDOM SCENERYwhere we still use an = bnpn. Reall (42) and the de�nition of Ln and Vn. Note that on the setf`(2)n 2 [�an; �an℄; `(1)n � �png and for suÆiently large n, we have 32Vn � 32�(�bn)1=2n1=4 � bn ��an=`(1)n � (�=��2)V 2n =`(1)n � Vn=(196Ln) if � > 0 is suÆiently small. Hene,Pn Xz2Zd `n(z)�(z) � bno � �1� �( bnVn )� exp�� 1b3nLnV �3n 	�1� 2bnLnV �1n �:We observe that Ln � ��2 pnVn and heneb3nLnV �3n � ��2 b3n pnV 4n � ��6�2 bnpn and bnLnV �1n � ��2 bn pnV 2n � ���4 :Therefore, for all large n,PfXn � bng � expn�(1 + �) bn2��2pn � 1�bn�2�6pno�1� 2 ���4��hP�`(2)n 2 [�an; �an℄)	� P�`(1)n > �pn	i: (65)From (55) we onlude that for all � < �,logP�`(2)n 2 [�an; �an℄	 � ��bnpdet�2{4n1=2 : (66)Applying (66) and (58) to the right hand side of (65), we get for n1=2 log n� bn � n= logn,lim infn!1 pnbn logPfXn � bng � �1 + �2��2 � 1��2�6 � �pdet �2{4 :Sine �; � > 0 an be hosen arbitrarily small, and � is arbitrary,lim infn!1 pnbn logPfXn � bng � �min�>0� 12��2 + �pdet �2{4 � = �(det �)1=4�{2 :This ompletes the proof of Theorem 6(b). �6.3 Proof of Theorem 6()We now assume that bn := apn log n. In this ase we use the following deomposition,PfXn � bng � P�Xn � bn; `(1)n � n; `(2)n � E`(2)n � Æan	+ NXi=1 P�Xn � bn; `(1)n � n; `(2)n � E`(2 )n 2 (iÆan; (i+ 1)Æan℄	+P�`(1)n > n	+P�`(2)n � E`(2)n > NÆan	;here an := n logn, n := �n logn=bn. Estimating every term as in the proof of the upper bound in (b)and using the relation E`(2)n � (�pdet�)�1n logn, one an getlim supn!1 1log nPfXn � bng � �minx�0� a22�2((�pdet �)�1 + x) � xpdet�2{4 � = I(a):In order to get a lower bound we onsider the ases a � �=(�{2(det �)1=4) and a > �=(�{2(det�)1=4)separately. In the �rst ase we usePfXn � bng � PnXn � bn; `(1)n � n; j`(2)n � E`(2)n j � Æano;



RANDOM WALK IN RANDOM SCENERY 27and in the seond asePfXn � bng � PnXn � bn; `(1)n � n; `(2)n � E`(2)n 2 (�an; �an℄ofor some 0 < � < �. The further proof is similar to that of the lower bound in Theorem 6(b) anddetails are left to the reader. �7. Large deviations in dimension d = 2: Proof of Proposition 9We �rst derive an upper bound for PfXn � bng. For arbitrary N � 1 and 0 < Æ < 1,PfXn � bng � N�1Xi=0 PfXn � bn; `(1)n 2 (iÆan; (i+ 1)Æan℄g+Pf`(1)n � ÆNang; (67)where an := (bn log n)1=2. By assumption (4), there exists CÆ suh thatEeh�(0) � expfCÆh2g for h � (1� Æ)D:From this bound and Chebyshev's inequality we getPnXz2Zd `n(z)�(z) � bno � exp��hbn + CÆh2`(2)n 	 for h � (1� Æ)D=`(1)n : (68)Letting here h = (1� Æ)D=`(1)n , we obtainPnXz2Zd `n(z)�(z) � bno � expn� (1�Æ)Dbn`(1)n �1� CÆ(1�Æ)D`(1)n bn `(2)n �o:Therefore, for any i � 1,PfXn � bn; `(1)n 2 (iÆan; (i+ 1)Æan℄g� exp�� (1�Æ)2Dbn(i+1)Æan 	Pf`(1)n > iÆang+ P�`(2)n > iÆ2(1�Æ)CÆD bnan	: (69)Using [GHK06, Lemma 1.3℄ and realling the de�nition of an, we getlogPf`n(0) > xang � �K2x (bn log bn)1=2logn � (1=2) log bn � �2K2x2 � �� bnlogn�1=2: (70)Hene, arguing as in Lemma 18, for all x � Æ and n large enough n,Pf`(1)n > xang � expn�(1� Æ)22K2x2 � �� bnlogn�1=2o: (71)Combining (69) and (71), and noting that bn=an = (bn= logn)1=2, we obtainPfXn � bn; `(1)n 2 (iÆan; (i+ 1)Æan℄g� expn�� (1�Æ)2D(i+1)Æ + (1� Æ)2 2K2iÆ2�� �� bnlogn�1=2o+P�`(2)n > iÆ2(1�Æ)CÆD bnan	: (72)Now we onsider the probability orresponding to i = 0. As `(1)n � Æan, we an use h = (Æ�1�1)Da�1nin (68). This gives us the boundPnXz2Zd `n(z)�(z) � bno � expn� (1�Æ)DbnÆan �1� CÆ(1�Æ)DÆanbn `(2)n �o:Averaging over the random walk, we havePfXn � bn; `(1)n � Æang � exp�� (1�Æ)2DbnÆan 	+ P�`(2)n > Æ2(1�Æ)CÆD bnan	: (73)



28 RANDOM WALK IN RANDOM SCENERYApplying (71) we obtain Pf`(1)n � ÆNang � expn�ÆN� bnlogn�1=2o: (74)Substituting (72) { (74) into (67) givesPfXn � bng � N�1Xi=0 expn�(1� Æ)2�(i+ 1)Æ + 2K2iÆ2� � �� bnlogn�1=2o+N P�`(2)n > Æ2(1�Æ)CÆD bnan	+ exp��ÆN� bnlogn�1=2	: (75)It is easily seen thatlimn!1� log nbn �1=2 logN�1Xi=0 expn�(1� Æ)2� D(i+ 1)Æ + 2K2iÆ2� � �� bnlog n�1=2o= �(1� Æ)2 min0�i<N� D(i+ 1)Æ + 2K2iÆ2� � �:Further, for small Æ and large N we have the inequalitymin0�i<N� D(i+ 1)Æ + 2K2iÆ2� � � � (1� Æ)minx>0�Dx + 2K2x2 � �� = (1� Æ)�8K2D2� � �1=2:Consequently, for all n large enough,N�1Xi=0 expn�(1� Æ)2�(i+ 1)Æ + 2K2iÆ2� � �� bnlog n�1=2o � expn�(1� Æ)4�8K2D2� � �1=2� bnlog n�1=2o: (76)Making N larger, we see that the last term in (75) is of smaller order than (76). By (47) we obtain,for some onstant  > 0, logP�`(2)n > tbnan	 � �t�anbnn �:By our assumption, bn log n� n. Therefore, n�1anbn = n�1b3=2n log1=2 n� (bn= logn)1=2. This meansthat the probability term in (75) is negligible ompared to (76). As a result we havelim supn!1 � lognbn �1=2 logPfXn � bng � �(1� Æ)4�8K2D2� � �1=2: (77)To derive a lower bound we note thatPnXz2Zd `n(z)�(z) � bno � P�`n(0)�(0) � (1 + Æ)bn	PnXz 6=0 `n(z)�(z) � �Æbno:Applying Chebyshev's inequality with seond moments gives usPnXz2Zd `n(z)�(z) � bno � Pn`n(0)�(0) � (1 + Æ)bno�1� �2`2nÆ2b2n �:Consequently, PfXn � bng � (1� Æ)Pf`n(0)�(0) � (1 + Æ)bng � Pf`(2)n > Æ2 b2n=�2g: (78)From (4) and (70) we get, for every x > 0,Pf`n(0)�(0)� (1 + Æ)bng � Pf`n(0) > xang � expn�(1 + Æ)2�Dx + 2K2x2� ��� bnlogn�1=2o:
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