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Abstract

We investigate the regularity of the weak solution to elliptic transmission problems that
involve several materials intersecting at a closed interior line of contact. We prove that local
weak solutions possess second order generalized derivatives up to the contact line, mainly
exploiting their higher regularity in the direction tangential to the line. Moreover we are thus
able to characterize the higher regularity of the gradient and the Hölder exponent by means
of explicit estimates known in the literature for two dimensional problems. They show that
strong regularity properties, for instance the integrability of the gradient to a power larger
than the space dimension d = 3, are to expect if the oscillations of the diffusion coefficient
are moderate (that is for far larger a range than what a theory of small perturbations would
allow), or if the number of involved materials does not exceed three.

1 Introduction

The paper is concerned with the regularity of weak solutions to

− div(κ∇u) = f in Ω, (1)

[u]S = 0 , [−κ∇u · ν]S = q on S =
m⋃
i=1

Si , (2)

where Ω ⊂ R3 is a bounded domain and S ⊂ Ω is a two-dimensional closed hypersurface
consisting of m ∈ N finitely many pieces S1, . . . , Sm of class C2 intersecting at a closed
contact line K contained in the interior of the domain Ω. The surface S is assumed inducing a
partition of the domain Ω into m open subsets Ω1, . . . ,Ωm.

In the equation (1), the function f is the given right-hand, and the matrix-valued coefficient
function κ is assumed to be material-dependent, that means

κ(x) = κi if x ∈ Ωi , (3)

with elliptic matrices κi ∈ R3×3
sym for i = 1, . . . ,m. The conditions (2) are the transmission

conditions: The symbol [·]S denotes the difference between the values of the enclosed quantity
from both sides of S, ν is a unit normal to the surface S, and q is a given function.

We prove the existence up to K of second weak derivatives for weak solutions to (1), (2). The
idea is to exploit that the problem is differentiable in the direction tangent to the line K . For
appropriate data, this property yields the higher regularity of the solution in this one direction,
a fact which allows to locally project the problem (1), (2) on a plane. This complexity reduction
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yields estimates for u and ∇u in L2−spaces weighted by some power of the distance to the
line K , which afterwards can be converted into regularity results for standard data norms.

This argumentation turns out not only able to deal with very general nonvanishing transmission
conditions, but it also leads to a characterization of the integrability of D2(u) and D(u) as
functions of a number 0 < αopt < 1 which we could call the best possible interior Hölder
exponent for local weak solutions to transmission problems in two-space dimensions, for which
explicit estimates are known. In the general case, we can choose

αopt = αopt(κ) ≥

√
inf
Ω

λmin(κ)

λmax(κ)

4

π
arctan

√
infΩ λmin(κ)

supΩ λmax(κ)
. (4)

In the case of isotropic diffusion, we even can choose

αopt(κ) ≥ max

{
4

π
arctan

√
infΩ κ

supΩ κ
, αiso

}
(5)

where αiso is a constant depending on the number m of materials involved and of the angles of
contact of the surfaces S1, . . . , Sm at K . In order to estimate αiso, we shall rely on the results
attained in the paper [Mer03] for the cases m = 2, 3. For m = 3, we need to further introduce
for x ∈ K the number γ(x) defined as the opening of the region Ωi0 where the coefficient κ
takes its intermediate value, that is i0 ∈ {1, 2, 3} is such that maxκ > κi0 > minκ. Then

αiso >
1

2
if m = 2 αiso > min

{
1

2
,

π

2 maxx∈K γ(x)

}
if m = 3 . (6)

For further inequalities concerning the number αiso in the case m ≥ 4, we refer to the Theorem
16 of [Mer03].

In this way, we obtain explicit formula showing in particular that the higher integrability of∇u ∈
Ls can degenerate only for one of the following two reasons:

(1) The ratio of the eigenvalues λmin(κi)/λmax(κi) is small for one of the materials i =
1, . . . ,m (strong anisotropy: Example in [ERS07]);

(2) The overall ratio λmin(κ)/λmax(κ) is small (strong discontinuity: Examples in [Mey63],
[Mer03]);

Moreover, we obtain the desirable integrability of |∇u| to a power larger than the space dimen-
sion d = 3 for many a situation where the mentioned ratios are moderate or m = 2, 3. The
remainder of the Introduction is devoted to the precise formulation of these statements.

The main result Throughout the paper, Ω denote a bounded domain. There are disjoint sub-
domains Ωi ⊂ Ω, i = 1, . . . ,m such that Ω =

⋃m
i=1 Ωi. The hypersurfaces ∂Ωi ∩ ∂Ωj ,

i, j = 1, . . . ,m, i 6= j are assumed to be of class C2 and intersecting only at a curve K , the
triple contact line contained in the interior of the domain.
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The surface S =
⋃m
i=1 Si ∪K with unit normal ν is the interface for the transmission problem.

With the superscripts νi, we denote the restriction of ν to Si. We choose the orientation of
νi according to a counter clockwise circulation around the curve K . A unit (co-)normal to the
surface Si at the curve K is given by

T i := τ × νi , (7)

where τ is the unit directional vector of the curve K . The angle of contact γ ∈]0, 2π[ between
the surfaces Si and Si+1 at the curve K is fixed via the relations{

cos γi = νi · νi+1

sin γi = νi · T i+1 for i < m,

{
cos γm = νm · ν1

sin γm = νm · T 1 on K . (8)

Due to the fact that there is a common contact line K , the angles must satisfy

m∑
i=1

γi = 2π . (9)

We require from the geometrical setting that

inf
i=1,...,m, y∈K

| sinαi(y)| > 0 . (10)

Otherwise, the surfaces S1, . . . , Sm would be pairwise tangent at some point of K , thus merg-
ing to a smooth surface. Beside the geometry, the diffusion coefficient κ is the essential param-
eter in the regularity discussion. We require for i = 1, . . . ,m that κi ∈ R3×3

sym and that there
are constants 0 < λmin(κi) ≤ λmax(κi) <∞ such that

λimin ξ
2 ≤ κiξ · ξ ≤ λimax ξ

2 for all ξ ∈ R3 . (11)

For the given flux q in the condition (2), we will need well-known trace spaces. We denote RSi

the restriction operator from S onto Si for i = 1, . . . ,m, and we define

W 1/2,2(S \K) := {q ∈ L2(S) : qi := RSi(q) ∈ W 1/2,2(Si)} (12)

W
1/2,2
00 (S \K) := {q ∈ L2(S) : qi := RSi(q) ∈ W

1/2,2
00 (Si)} . (13)

Theorem 1.1. For i = 1, . . . ,m, let κi ∈ R3×3
sym satisfy (11). Assume that f ∈ L2(Ω), and

q ∈ W 1/2,2(S \K). For 0 ≤ α ≤ 1, define

t(α) :=
2

2− α
, s(α) := 2 (1 + α) . (14)

Then, every local weak solution u ∈ W 1,2
loc (Ω) for the problem (1), (2) belongs to the space

W
2,t(α)
loc (Ω \ S) ∩W 1,s(α)

loc (Ω) for all 0 < α < αopt (cf. (4)). The continuity inequality

‖u‖W 2,t(Ω\S) + ‖u‖W 1,s(Ω) ≤ c (‖f‖L2(Ω) + ‖q‖W 1/2,2(S\K)) .

holds with a constant c depending only on the maximal main curvatures of the surfaces Si.
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The property∇u ∈ Ls(Ω) with a s > 3 is often desirable from the point of view of applications.

Corollary 1.2. Assumptions of Theorem 1.1. Assume that one of the following conditions is
valid:

(1) r := supi=1,...,m
λmax(κi)
λmin(κi)

satisfies r < 4, and infi=1,...,m λmin(κi)

supi=1,...,m λmax(κi)
> tan2(r1/2 π

8
);

(2) The coefficient κ is a scalar function, and m = 2 or m = 3 and the opening of the domain
in which κ takes its intermediate value is everywhere strictly less than π at K ;

Then,∇u ∈ Ls(Ω) for a s > 3.

Our second statement puts the best Hölder exponent in three dimensions in relationship to the
two-dimensional Hölder exponent αopt of the formula (4).

Theorem 1.3. Assumptions of Theorem 1.1. Assume that u ∈ W 1,2
loc (Ω) is a local weak solution

to (1), (2) with f = 0 = q. Then, u belongs to Cβ
loc(Ω) for β := αopt

1+αopt
. If in addition at least to

of the surfaces S1, . . . , Sm are of class C3, then u belongs to Cβ
loc(Ω) for all β < αopt.

2 A starting inequality

2.1 An a priori estimate in two dimensions

The main idea of the paper is to use a dimension reduction method. In this preliminary section,
we consider a bounded domainG ⊂ R2 and a one dimensional submanifold Γ ⊂ G consisting
of m ∈ N curves Γi, of class C2 that meet at an interior point xK ∈ G. For i = 1, . . . ,m a
uniformly elliptic matrix Ai ∈ R3×3

sym is given. We denote A := Ai in Gi. For x ∈ G, we denote
dK(x) := |x− xK |.

Theorem 2.1. For u ∈ W 2,2(G \ Γ) ∩W 1,2(G) such that u d−1
K ∈ W 1,2(G) the inequality

‖u‖W 2,2
loc (G\Γ) ≤ c (‖ div(A∇u)‖L2(G) + ‖[A∇u · ν]Γ‖W 1/2,2

00 (Γ\{xK})

+ ‖u d−1
K ‖W 1,2(G))

The constant c depends only on the curvature of the curves Γi.

Proof. Denote f(u) := − div(A∇u) and q(u) := [−A∇u · ν]S . Then, for all φ ∈ C1
c (G)∫

G

A∇u · ∇φ+

∫
Γ

q φ =

∫
G

f φ . (15)

For x ∈ Γi, we call T i(x) the tangential unit vector pointing in the outward direction at xK . We
claim that there is a vector field T ∈ L∞(Ω \ R3) such that T ∈ W 1,∞

loc (Ω \ R3) and

T = T i on Si, |∇T | ≤ c d−1
K in G \ {xK} .
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This claim is indeed readily verified, since the vector field T̄ = dK T is Lipschitz continuous on
Γ, and thus possess an extension T̄ ∈ W 1,∞(G; R3). We can find a neighbourhood Bρ(xK)
such that |T̄ (x)| > 0 in Bρ(xK) \ {xK}. For x ∈ Bρ(xK) \ {xk}, we define T (x) :=
T̄ (x)/|T̄ (x)|, which is a unit vector with the required property.

Our assumptions and the properties of T now clearly imply that the function uT := T · ∇u
belongs to W 1,2(G), and that

‖uT‖W 1,2(G) ≤ c (‖u‖W 2,2(G\Γ) + ‖u d−1
K ‖W 1,2(G)) .

In the relation (15), we now insert a test function of the form φ = T · ∇η with η ∈ C2
c (G). A

few integration by parts yield for uT = T · ∇u the relation∫
G

A∇uT · ∇η =

∫
G

D(T )∇u · ∇η +

∫
Γ

q T · ∇η −
∫
G

f T · ∇η , (16)

Di,j(T ) := Ai · Tj,x + Aj · Ti,x − κi,j div T .

Observe that ‖D(T )∇u‖L2(G) ≤ c ‖∇u d−1
K ‖L2(G). Moreover, we will next show in the Lemma

2.2 that ∣∣∣∣∫
Γ

q T · ∇η
∣∣∣∣ ≤ c ‖q‖

W
1/2,2
00 (Γ\{xK})

‖η‖W 1/2,2(Γ\{xK}) .

The relation (16) now turns out valid for all η ∈ W 1,2
0 (G). Thus, we can insert a function of

the form η = ζ2 uT , ζ ∈ C∞c (G), ζ ≡ 1 on Bρ(xK). After a few calculations, we obtain the
estimate ∫

G

ζ2 |∇uT |2 ≤ c (‖f‖L2(G) + ‖q‖
W

1/2,2
00 (Γ\{xK})

+ ‖u d−1
K ‖W 1,2(G))

2 .

The regularity theory near the interior of each curve Γi is well known. We thus obtain that

‖uT‖W 1,2
loc (G) ≤ c (‖f‖L2(G) + ‖q‖

W
1/2,2
00 (Γ\{xK})

+ ‖u d−1
K ‖W 1,2(G)) .

We next use the validity of the equation− div(A∇u) = f almost everywhere inG\Γ, and call
ν the vector (−T2, T1) and uν := ν ·∇u the part of the gradient orthogonal to uT . Orthonormal
decomposition yields in Bρ(xK) \ Γ the identity

− (Aν · ν) ν · ∇uν = f

+∇u · {T [(T · ∇)AT · T + (ν · ∇)AT · ν] + ν [(T · ∇)Aν · T + (ν · ∇)Aν · ν]}
+ (T · ∇uT )AT · T + (T · ∇uν)AT · ν + (ν · ∇uT )AT · T .

We also note the formula T · ∇uν = ν · ∇uT + [(T · ∇)ν − (ν · ∇)T ] · ∇u. It thus follows
that

‖ν · ∇uν‖L2(Bρ(xK)) ≤ c (‖f‖L2(G) + ‖uT‖W 1,2(G) + ‖u d−1
K ‖W 1,2(G)) .

The claim follows.
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Lemma 2.2. Assume that q ∈ W 1/2,2
00 (Γ \ {xK}). For v ∈ W 1,2(Γ \ {xK}), define a linear

functional F (v) :=
∫
S
q T · ∇v. Then, F extends to an element of [W 1/2,2(Γ \ {xK})]∗ and

‖F (v)‖[W 1/2,2(Γ\{xK})]∗ ≤ c ‖q‖
W

1/2,2
00 (Γ\{xK})

.

Proof. For i := 1, 2, 3, and for q ∈ [C1
c (Γ \ {xK})]3, define (ai(q))(v) :=

∫
Γi
q T i · ∇v.

Then |(ai(q))(v)| ≤ ‖q‖L2(Γi) ‖v‖W 1,2(Γi). Since q has a compact support in Γ \ {xK},
integration by parts yields

ai(q)(v) = −
∫

Γi

divΓ(q T ) v

. Since | divΓ T | ≤ c d−1
K , the Hardy inequality implies that

|ai(q)(v)| ≤ c ‖q‖W 1,2
0 (Γi)

‖v‖L2(Γi) .

It follows that

ai ∈ L (L2(Γi), [W 1,2(Γi)]
∗), ai ∈ L (W 1,2

0 (Γi), [L2(Γi)]
∗) .

We note the interpolation identities ([LM68], Ch. 1, Section 6.2)

[L2(Γi), W
1,2
0 (Γi)]1/2 = W

1/2,2
00 (Γi), [(W 1,2(Γi))

∗, (L2(Γi))
∗]1/2 = (W 1/2,2(Γi))

∗ .

Thus ‖ai‖
L (W

1/2,2
00 (Γi), (W 1/2,2(Γi))∗)

≤ c, proving the claim.

2.2 Directional regularity

We now turn to the three-dimensional problem (1), (2). Observe at first that the vector fields τ ,
νi and T i possess natural extensions.

Remark 2.3. Since for i = 1, . . . ,m the surface Si is of class C2, there is an extension surface
S̃i of class C2 as well that contains the curve K in its interior. The unit normal to S̃i can be
extended into Ω using the ansatz νi = ∇di, where di is the signed distance function to S̃i. The
extension νi is a continuously differentiable unit vector in a neighbourhood Bρ(S̃i) := {x ∈
Ω : |di(x)| < ρ} of S̃i. The size of ρ > 0 is determined by the maximal main curvatures of the
surface, that is the number ‖ δ νi‖L∞( eSi). From the neighbourhood Bρ, an arbitrary extension

to the entire domain can be constructed so that νi ∈ [C1(Ω)]3.

We can construct an extension of the vector τ into Ω by setting

τ(x) :=
∇di(x)×∇dj(x)

|∇di(x)×∇dj(x)|
for x ∈ Bρ(K) ∩ Ωk , (17)

where Ωk denotes the part of the domain bounded by the surfaces Si, Sj . Observe that

|∇di(x)×∇dj(x)| = |νi(x)× νj(x)| = | sinαk(x)|

on K . Thus, in view of the assumption (10), |∇di(x) × ∇dj(x)| > 0 on K , and owing to
Remark 2.3, also |∇di(x)×∇dj(x)| > 0 in some neighbourhood Bρ(K) determined by the
curvatures of the surfaces. We commence with an auxiliary statement.
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Lemma 2.4. Assume that ζ ∈ W 1/2,2(S \K). For v ∈ W 1,2(S \K), define a linear functional
F (v) :=

∫
S
ζ τ · ∇v. Then, F extends to an element of [W 1/2,2(S \K)]∗ and

‖F (v)‖[W 1,2(Ω)]∗ ≤ c ‖ζ‖W 1/2,2(S\K) .

Proof. For i := 1, 2, 3, and for ζ ∈ C1(Si), define a linear functional ai(ζ) via

(ai(ζ))(v) :=

∫
Si

ζ τ · ∇v, v ∈ W 1,2(S \K) .

Clearly, |(ai(ζ))(v)| ≤ ‖ζ‖L2(Si) ‖v‖W 1,2(Si). Using integration by parts, and the fact that τ is
tangent across K , observe that ai(ζ)(v) = −

∫
Si
{divS τ ζ v + τ · ∇ζ v}, entailing that

|ai(ζ)(v)| ≤ c(τ) ‖ζ‖W 1,2(Si) ‖v‖L2(Si) ,

where c depends only on τ . Since C1(Si) is dense in L2(Si) as well as in W 1,2(Si), the
operator ai extends to an element of

L (L2(Si), [W 1,2(Si)]
∗) ∩L (W 1,2(Si), [L2(Si)]

∗)

with the inequalities

‖ai‖L (L2(Si), [W 1,2(Si)]∗) ≤ 1, ‖ai‖L (W 1,2(Si), [L2(Si)]∗) ≤ c(τ) .

Note that ([LM68], Ch. 1, Section 6.2)

[L2(Si), W
1,2(Si)]1/2 = W 1/2,2(Si), [(W 1,2(Si))

∗, (L2(Si))
∗]1/2 = (W 1/2,2(Si))

∗ .

Thus ‖ai‖L (W 1/2,2(Si), (W 1/2,2(Si))∗) ≤ c
√
c(τ) proving that

|F (v)| = |
3∑
i=1

(ai(ζ))(v)| ≤ c ‖ζ‖W 1/2,2(S\K) ‖v‖W 1/2,2(S\K) .

The claim follows.

In order to prove a basic result on directional regularity for the problem (1), (2), we next need a
technical description of how to locally flatten the curve K in order to reduce the problem to a
reference configuration where it is easier to separate variables. For x0 ∈ K and t, ρ > 0, we
define a curvilinear cylinder Zt,ρ(x0) ⊂ Bρ(K), and for j = 1, 2 also surfaces Γjt,ρ(x0) via

Zt,ρ(x0) := {x ∈ Ω : |(x− x0) · τ(x0)| < t, dK(x) < ρ} ,
Γ1
t,ρ(x0) := {x ∈ Ω : |(x− x0) · τ(x0)| < t, dK(x) = ρ} ,

Γ2
t,ρ(x0) := {x ∈ Ω : |(x− x0) · τ(x0)| = t, dK(x) < ρ} .

where dK is the distance to the curve K . We define Kt,ρ(x0) := Zt,ρ(x0) ∩ K , the piece of
the curve K contained in this cylinder. We introduce a reference domain, surfaces and curve
via

Z :=]− 1, 1[×B1,

Γ1
0 :=]− 1, 1[×∂B1, Γ2

0 := {−1, 1} × ∂B1

K0 := {z ∈ Z : z2 = 0 = z3} .

7



Here and in the remainder of the section, we use the notationBr only in connection with the two
dimensional ball of radius r centred at zero for the reference coordinates. Since K is a curve of
class C2, we claim that there is a diffeomorphism Φ = Φt,ρ,x0 of class C2(Z) mapping Z onto
Zt,ρ(x0), and moreover such that

Φ(Γj0) = Γjt,ρ(x0) for j = 1, 2, Φ(K0) = Kt,ρ(x0), Φ(0) = x0 .

Moreover, for t + ρ sufficiently small, the piece of curve Kt,ρ(x0) is almost flat. Thus, there
is an orthogonal matrix O mapping the standard unit vector e1 onto τ(x0), and for z ∈ Z a
transformation Φ0(z) := Oz + x0, such that

‖Φt,ρ − Φ0‖C1(Z) → 0 for t+ ρ→ 0 . (18)

In order to save space, we do not attempt to describe the detailed construction of the mapping
Φ here. We then define a surface S0 ⊂ Z via

S0 = Φ−1(S), ν0(z) =
(dΦ(z))Tν(Φ(z))

|(dΦ(z))Tν(Φ(z))|
unit normal to S0 . (19)

Observe that the unit tangent vector of the line K0 is the standard unit vector e1, and that the
ansatz

τ(Φ(z)) =
dΦ(z)e1

|dΦ(z)e1|
,

provides an extension of class C1 for the vector τ into Ω

Lemma 2.5. Let u ∈ W 1,2
loc (Ω) be a local weak solution to (1), (2). Assume that f ∈ L2(Ω)

and q ∈ W 1/2,2(S \K). Then, the function uτ = τ · ∇u belongs to W 1,2
loc (Ω), and it satisfies

for all v ∈ C1
c (Ω) the relation∫

Ω

κ∇uτ · ∇v =

∫
Ω

{κD(τ)∇u · ∇v − f τ} · ∇v +

∫
S

q τ · ∇v (20)

Di,j(τ) := Ai · τj,x + Aj · τi,x − κi,j div τ .

Moreover, a continuity estimate is valid:

‖uτ‖W 1,2
loc (Ω) ≤ c (‖f‖L2(Ω) + ‖q‖W 1/2,2(S\K)) .

Proof. There are several ways to prove the claim. A possibility is to use the coordinate transfor-
mation Φ ∈ C2(Z) that maps a neighbourhood of the line K onto a reference configuration,
where the image of K is a line. In the reference coordinates, we obtain that∫

Z

A∇û · ∇φ+

∫
S0

q̂ φ =

∫
Z

f̂ φ, φ ∈ W 1,2
0 (Z) , (21)

where

A(z) := | det dΦ(z)| (dΦ(z))−1 ◦ κ ◦ (dΦ(z))−T ∈ C1(Z \ S0; R3×3
sym ) ,

q̂ := | det dΦ| q ◦ Φ ∈ W 1/2,2(S0 \K0), f̂ = | det dΦ| f ◦ Φ ∈ L2(Z) . (22)
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Here we can apply the method of finite differences. For h > 0 and φ ∈ W 1,2
0 (Z) such that

supp(φ) ⊂ Zh := {z ∈ Z : |z1| ≤ 1− h, we can define the averaging

φh(z) := h−1

∫ z1+h

z1

φ(t, z̄) dt ,

and we choose in (21) the test function φ = ∂z1φh = h−1 (φ(z1 + h, z̄) − φ(z)). Owing to
the assumptions, we obtain from Lemma 2.4 the estimate∣∣∣∣∫

S0

q̂ ∂z1φh

∣∣∣∣ ≤ c ‖q̂‖W 1/2,2(S0\K0) ‖φh‖W 1/2,2(S0\K0) .

Thus, the function ûh ∈ W 1,2
loc (Z) satisfies for all φ ∈ W 1,2

0 (Z) such that supp(φ) ⊂ Zh∣∣∣∣∫
Z

A∇ûh · ∇φ
∣∣∣∣ ≤ c (‖q̂‖W 1/2,2(S0\K0) + ‖f̂‖L2(Z)) ‖φh‖W 1,2(Z) .

We choose φ of the form η2 ûh, η ∈ C∞c (Zh) arbitrary, and after a few standard estimates, we
obtain that ∫

Z

|∇ûh|2 η2 ≤ cη (‖∇û‖L2(Z) + ‖q̂‖W 1/2,2(S0\K0) + ‖f̂‖L2(Z))
2 .

It follows that ûz1 ∈ W
1,2
loc (Z). Translated in the original coordinates, uτ ∈ W 1,2

loc (Ω). Thus, we
can use in (15) a test function of the form φ = τ ·∇η with η ∈ C2

c (Ω). The claim easily follows
(cp. (16)).

3 Dimension reduction

Consider the local coordinate transformation Φ in the previous section. Then, the transformed
û := u ◦ Φ for a local weak solution u to (1), (2) satisfies∫

Z

A∇û · ∇φ+

∫
S0

q̂ φ =

∫
Z

f̂ φ ∀ φ ∈ W 1,2
0 (Z) , (23)

with A, q̂ and f̂ according to (22). Observe that the unit tangent vector of the line K0 is the
standard unit vector e1, and that τ(Φ(z)) = dΦ(z)e1/|dΦ(z)e1|.
Thus, we easily verify that ν0

1(z) = 0 for all z ∈ S0. For t ∈] − 1, 1[, the intersection of the
surface S0 with the plane {z1 = t} is a one-dimensional submanifold of class C2. We set

S0(t) := {z̄ ∈ B1 : (t, z̄) ∈ S0} .

The curve S0(t) consists of the three smooth parts S0,i(t) analogously defined and intersecting
at the point {t, 0, 0}. Owing to ν0

1 = 0, the separation of variables formula∫
S

φ dS =

∫ 1

−1

∫
S0(t)

φ(t) ds dt

9



is valid. We further observe that

∂z1û(z) = (dΦ(z))T∇u(Φ(z)) · (dΦ(z))−1 τ(Φ(z))

|(dΦ(z))−1 τ(Φ(z))|
=

uτ (Φ(z))

|(dΦ(z))−1 τ(Φ(z))|
.

Therefore, the Lemma 2.5 yields ûz1 ∈ W 1,2(Z) together with the inequality

‖ûz1‖W 1,2(Z) ≤ cΦ ‖uτ‖W 1,2(Zt,ρ(x0)) ≤ cΦ (‖f‖L2(Ω) + ‖q‖W 1/2,2(S\K)) . (24)

The theory of Bochner-measurable vector-valued functions implies the existence of linear isome-
tries

L2(Z) ∼= L2(−1, 1; L2(B1))

W 1,2(Z) ∼= L2(−1, 1; W 1,2(B1)) ∩W 1
2 (−1, 1; L2(B1)) .

(25)

We identify∇ûz1 with a function of the class L2(−1, 1; L2(B1)), and

‖∇ûz1‖L2(−1,1;L2(B1)) ≤ c (‖f‖L2(Ω) + ‖q‖W 1/2,2(S\K)) .

This regularity allows to further modify the integral relation (21). We denote

∇ := (0, ∂z2 , ∂z3), g := f̂ + (A∇û · e1)z1 + div(Ae1 ûz1)

h := q̂ + [A]Se
1 · ν uz1 . (26)

and a few integration by parts in (23) show that∫
Z

A∇û · ∇φ+

∫
S0

hφ =

∫
Z

g φ ∀ φ ∈ W 1,2
0 (Z) .

The function g belongs to L2(−1, 1; L2(B1)) and it satisfies the inequality

‖g‖L2(−1,1;L2(B1)) ≤ c (‖f̂‖L2(−1,1;L2(B1)) + ‖ûz1‖W 1,2(Z))

≤ c (‖f‖L2(Ω) + ‖q‖W 1/2,2(S\K)) . (27)

The function h satisfies for almost all z1 ∈ (−1, 1) the inequality

‖h(z1)‖W 1/2,2(S0(z1)\{z1,0,0})

≤ c (‖q̂(z1)‖W 1/2,2(S0(z1)\{z1,0,0}) + ‖ûz1(z1)‖W 1,2(B1)) .

Thus, due also to (24)∫ 1

−1

‖h(z1)‖2
W 1/2,2(S0(z1)\{z1,0,0}) dz1 ≤ c (‖f‖L2(Ω) + ‖q‖W 1/2,2(S\K))

2 . (28)

Now we choose φ of the form φ(z) = ψ(z1) η(z̄), z̄ := (z2, z3), where η(z̄) = 0 for |z̄| = 1,
and ψ(z1) = 0 for |z1| = 1. For almost all z1 ∈] − 1, 1[ we see that the function û(z1) ∈
W 1,2(B1) satisfies∫

B1

A(z1)∇û(z1) · ∇η +

∫
S0(z1)

h(z1) η =

∫
B1

g(z1) η , η ∈ W 1,2
0 (B1) . (29)
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For 1 < r < 2 arbitrary, the Sobolev theorem for two dimensional domains implies the following
inequalities: ∣∣∣∣∫

S0(z1)

h(z1) η

∣∣∣∣ ≤ ‖h(z1)‖Lr/2(r−1)(S0(z1)) ‖η‖Lr/(2−r)(S0(z1))

≤ cr ‖h(z1)‖Lr/2(r−1)(S0(z1)) ‖η‖W 1,r(B1)∣∣∣∣∫
B1

g(z1) η

∣∣∣∣ ≤ c ‖g(z1)‖L2r/(3r−2)(B1) ‖η‖L2r/(2−r)(B1)

≤ cr ‖g(z1)‖L2r/(3r−2)(B1) ‖η‖W 1,r(B1) .

As g(z1) ∈ L2(B1) and h(z1) ∈ Lt(S), 1 ≤ t < +∞ arbitrary, we thus obtain that the
right-hand of (29) generates a linear continuous functional on W 1,r(B1) for all r > 1. Owing to
an inequality due originally to deGiorgi and Nash (see [Tro87], Section 2.4 or [GT01], Section
8.9 for more recent detailed proofs), we obtain first for a certain 0 < α(A) < 1 the interior
Hölder regularity

[û(z1)]Cαloc(B1) ≤ c (‖g(z1)‖
L

2
2−α (B1)

+ ‖h(z1)‖
L

1
1−α (S0(z1))

) . (30)

Using (27) and (28), it follows that the function û satisfies the inequality

‖û‖L2(−1,1;Cαloc(B1)) ≤ c (‖f‖L2(Ω) + ‖q‖W 1/2,2(S\K)) . (31)

These preliminary considerations allow to state the following result.

Lemma 3.1. For all 0 < α < αopt (cf. (4)) the function û satisfying (29) belongs to the space
L2(−1, 1; Cα

loc(B1)) and it satisfies the continuity estimate

‖û‖L2(−1,1;Cαloc(B1)) ≤ cα (‖f‖L2(Ω) + ‖q‖W 1/2,2(S\K)) .

Proof. We first consider the general case of a matrix valued diffusion coefficient. The best
(actually the worst possible) Hölder exponent for the problem (29) with f̂ = 0 = q̂ is estimated
by the formula (cf. [Ric08], Th. 1 and [PS72])

αopt ≥

 sup
Bρ(z̄)⊂B1

1
2πρ

∫
Bρ(z̄)

Aν·ν√
det(A)

4
π

arctan

(
infBρ(z̄)

√
det(A)

supBρ(z̄)

√
det(A)

)1/2


−1

. (32)

Here Bρ(z̄) denotes arbitrary a disk contained in the interior of the domain B1. For ε > 0
arbitrary, the property (18), implies that there are t, ρ > 0 such that ‖A − κ‖C(Z) < ε. Thus,
we can obtain the estimate (31) with α = αopt − o(ε) (cf. (4)).

As second, we consider the case where the matrix κ is isotropic. In this case, the property (18)
implies that ‖A − κ Id‖C(Z) < ε, and therefore, the formula (32) directly implies that (31) is

valid for all α < 4/π arctan
√

inf κ/ supκ.
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To proceed, we consider the method of proof for the Hölder continuity of û in the paper [PS72].
It consists in showing the existence of constants c > 0 (the Hölder constant) and 0 < α < 1
(the Hölder exponent) such that∫

Bρ(z̄)

|∇û|2 ≤ c ρ2α, for all Bρ(z̄) ⊂ B1 arbitrary . (33)

In fact, in the precise geometrical situation here under investigation, it is not necessary to con-
sider every Bρ(z̄) ⊂ B1 in (33) for the following reason: If a disk Bρ(z̄) intersects several
different pieces among the curves S0,1(z1), . . . , S0,m(z1), then the distance |z̄ − zK | is pro-
portional to ρ by a fixed factor γ depending only on the openings of these curves at zK and on
their curvature. Thus, if (33) is valid for balls centred at zK , then also∫

Bρ(z̄)

|∇û|2 ≤
∫
B2γρ(zK)

|∇û|2 ≤ c (2γρ)1+2α ≤ c̃ ρ1+2α .

It is therefore possible to prove (33) considering only discs Bρ(z̄) that intersect at most one of
the curves S0,i(z1) for i = 1, . . . ,m, or discs centred at the point zK that intersect every curve
among S0,1(z1), . . . , S0,m(z1).

We now prove (33) for such balls with α = αopt − o(ε) where ε is arbitrarily small. Since û
satisfies (29) with f̂ = 0 = q̂, the Gauss integral theorem yields∫

Sρ

A∇û · ∇û =

∫
∂Sρ

A∇û · ν (û− c), c ∈ R arbitrary .

We choose c := (
∫
∂Sρ

κ)−1
∫
∂Sρ

κ û, which ensures that
∫
∂Sρ

κ (û−c) = 0 and that û(y) = c

at some point y ∈ ∂Sρ. Thus, denoting B := (κ−1A− Id), it follows that∫
Sρ

κ |∇û|2 +

∫
Sρ

κB∇û · ∇û =

∫
∂Sρ

κ∇û · ν (û− c) +

∫
∂Sρ

κB∇û · ν (û− c) .

Since (18) ensures that ‖B‖∞ < ε∣∣∣∣∣
∫
∂Sρ

B∇û · ν (û− c)

∣∣∣∣∣ ≤ ε supκ

∫
∂Sρ

|∇û · ν| max
y∈∂Sρ

|û(y)− c|

≤ ε
supκ

inf κ

∫
∂Sρ

|∇û · ν|
∫
∂Sρ

| δs û|

≤ c ε ρ

∫
∂Sρ

κ |∇û|2 .

Therefore, we easily obtain that

(1− c ε)
∫
Sρ

κ |∇û|2 ≤

∣∣∣∣∣
∫
∂Sρ

κ∇û · ν (û− c)

∣∣∣∣∣+ c ε ρ

∫
∂Sρ

κ |∇û|2 . (34)
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We now use the inequality (10) in Lemma 1 of [PS72], and obtain that∣∣∣∣∣
∫
∂Sρ(z̄)

κ∇û · ν (û− c)

∣∣∣∣∣ ≤
(∫

∂Sρ(z̄)

κ |∇û|2
)1/2 (∫

∂Sρ(z̄)

κ |û− c|2
)1/2

≤ ρ√
λ

∫
∂Sρ(z̄)

κ |∇û|2 ,

where λ > 0 is the smallest eigenvalue for the 1− d transmission problem{
(a(t)w′)′ + λ a(t)w = 0, t ∈]0, 2π[ ,
w periodic of period 2π .

(35)

where the function a(t) is defined as κ(z̄ + ρ (cos t, sin t)). In the case that the the disk Sρ is
centred at zK , the function a takes m ∈ N values, where m is the number of smooth pieces
S0,1, . . . , S0,m. Instead of using the estimate of the paper [PS72] for the number λ, we use the
estimates obtained for the same problem in [Mer03], Th. 16. For the cases m = 2 and m = 3
mentionned in the condition (6), it follows that λ1/2 ≥ αopt. If instead the disk Sρ crosses at
most one of the S0,1(z1), . . . , S0,m(z1), then, again according to the Theorem 16 of [Mer03],
we obtain that λ1/2 > 1/2. From (34), we can conclude as in the proof of [PS72], Th. 1 that

(1− c ε)
∫
Sρ(z̄)

κ |∇û|2 ≤ ρ

2

(
1√
λ

+ c ε

) ∫
∂Sρ(z̄)

κ |∇û|2 .

This implies for the function g(ρ) :=
∫
Sρ
κ |∇û|2 a differential inequality

g(ρ) ≤ 1

2(1− c ε)

(
1√
λ

+ c ε

)
ρ g′(ρ) ,

from which we can conclude in well-known manner to (33) with

α :=
1

2(1− c ε)

(
1√
λ

+ c ε

)
, ε > 0 arbitrary.

The claim follows.

On the footing of Lemma 3.1, we can introduce for z1 ∈] − 1, 1[ the auxiliary function w :=
u(z1)−u(z1, 0, 0) ∈ W 1,2(B1)∩Cα(B1). Note thatw = 0 at zK = {z1, 0, 0}. The following
statement on weighted regularity is now easily established.

Proposition 3.2. For all 0 ≤ α < αopt, the functions w d−1−α
K and |∇w| d−αK belong to

L2(B1), dK(z) := |z − zK |), with the inequality∫
B1

{ w2

d2+2α
K

+
|∇w|2

d2α
K

} ≤ c (‖g(z1)‖L2(B1) + ‖h(z1)‖W 1/2,2(S0(z1)\{zK}))
2 .
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Proof. We choose α < α0 < αopt. Note that∫
B1

w2

d2+2α
K

≤ c [w(z1)]2
Cα0 (B1/2)

∫
B1/2

1

|z̄|2+2(α−α0)
dz̄ + c ‖w(z1)‖2

L2(B1/2,2)

≤ c ([w(z1)]2
Cα0 (B1/2)

+ ‖w(z1)‖L2(B1))
2 .

At second, the function w satisfies for all φ ∈ W 1,2
0 (Ω) (cf. (29))∫

B1

A∇w · ∇φ = −
∫
S0(z1)

h(z1)φ+

∫
B1

g(z1)φ .

We fix a ζ ∈ C∞c (B1) such that ζ ≡ 1 on B1/2, and ζ = 0 outside of B2/3. Using elementary
truncature techniques arguments, we can insert φ = w d−2α

K ζ2 in the latter relation. We obtain
that ∫

B1

ζ2 d−2α
K A∇w · ∇w − 2α

∫
B1

A∇w · ∇dK ζ2 w

d2α+1
K

+ 2

∫
B1

ζ d−2α
K wA∇w · ∇ζ = −

∫
S0(z1)

h(z1)w d−2α
K ζ2 +

∫
B1

g(z1)w d−2α
K ζ2 .

We note the inequality∣∣∣∣2α ∫
B1

A∇w · ∇dK ζ2 w

d2α+1
K

∣∣∣∣ ≤ 1

2

∫
B1

ζ2 d−2α
K A∇w · ∇w

+ 2α2

∫
B1

A∇dK · ∇dK
w2

d2+2α
K

ζ2

≤ 1

2

∫
B1

ζ2 d−2α
K A∇w · ∇w + 2α2

∫
B1

w2 d
−[2+2α]
K . (36)

Moreover

2

∣∣∣∣∫
B1

ζ d−2α
K wA∇w · ∇ζ

∣∣∣∣ ≤ 1

4

∫
B1

ζ2 d−2α
K A∇w · ∇w + cζ

∫
B1

w2 d−2α
K .

It follows that

1

4

∫
B1

ζ2 d−2α
K A∇w · ∇w ≤

∫
S0(z1)

|h(z1)| |w| d−2α
K

+

∫
B1

|g(z1)| |w| d−2α
K + c ‖w d−1−α

K ‖2
L2(B1) .

To further estimate the right-hand side, we note that∣∣∣∣∫
S0(z1)

|h(z1)| |w| d−2α
K ζ2

∣∣∣∣ ≤ c [w]Cα0 (B2/3)

∣∣∣∣∫
S0(z1)

|h(z1)| d−αK

∣∣∣∣
≤ c [w]Cα0 (B1−δ/2) ‖h(z1)‖W 1/2,2(S0(z1)\{zK})∣∣∣∣∫

B1

|g(z1)| |w| d−2α
K ζ2

∣∣∣∣ ≤ c [w]Cα0 (B2/3) ‖g(z1)‖L2(B1) .

The claim follows.

14



We now turn our attention to the proof of the main Theorem 1.1. For n ∈ N we can choose a
function ψn ∈ C2

c ([0, ∞]) satisfying

ψn(t)


= 0 for 0 ≤ t ≤ 1/n

∈ [0, 1] for 1/n ≤ t ≤ 2/n

= 1 for 2/n ≤ t

,
|ψ′n(t)| ≤ c nχ[1/n, 2/n](t),
|ψ′′n(t)| ≤ c n2 χ[1/n, 2/n](t) .

(37)

For z ∈ B1, we denote dK(z) := dist(z, zK).

Lemma 3.3. Let 0 < α < αopt. Then, w d1−α
K ∈ W 2,2(B1 \ S0(z1)), and

‖d1−α
K w‖W 2,2(B1\S0) ≤ c (‖g(z1)‖L2(B1) + ‖h(z1)‖W 1/2,2(S0(z1)\{zK})) .

Proof. Since the function w is a modification of û(z1) by a constant, it satisfies (29) as well.
Classical results for transmission problems near smooth surfaces yieldw ∈ W 2,2

loc (B1,i \{zK})
for i = 1, . . . ,m. Here, the domains B1,i are generated by a partition of B1 due to S0(z1).

We choose functions ψn, n ∈ N according to (37), and implicitely assume for ease of writing
throughout the proof that these functions and their derivatives are evaluated at the point dK(x).
Define un := d1−α

K ψnw. Clearly, un ∈ W 2,2(B1 \ S0). Moreover, we can easily compute that

‖un d−1
K ‖W 1,2(B1) ≤ c (‖w d−1−α

K ‖L2(B1) + ‖∇w d−αK ‖L2(B1)) .

For simplicity, we denote throughout the proof div and ∇ instead of div and ∇ the differential
operators with respect to the z− variable in the two-dimensional domain B1. We compute the
operator

− div(κ∇un) = fn + f̃n, fn = − div(κ∇(w d1−α
K ))ψn

f̃n = −2∇(w d1−α
K ) · ∇ψn − div(κ∇ψn)w d1−α

K .

The pointwise majoration f̃n ≤ c (|w| d−1−α
K + |∇w| d−αK ) is easily shown to be valid. Thus,

f̃n → 0 in L2(B1). On the other hand

− div(κ∇(w d1−α
K )) = f̂(z1) d1−α

K − 2 (1− α)∇w · ∇dK d−αK − div(κ∇d1−α
K )w ,

and therefore |fn| ≤ c (|g(z1)|+ |w| d−1−α
K + |∇w| d−αK ).

We also compute the operator

[−κ∇un · ν]S0(z1) = qn + q̃n, qn := [−κ∇(w d1−α
K ) · ν]S0(z1) ψn

q̃n = [−κ∇ψn · ν]S0(z1) w d
1−α
K .

The functions q̃in := RS0,i(z1)q̃n possess a natural extension into B1 (cf. the Remark 2.3). We
note that

∂zj q̃
i
n = [−κνi]∇ψn,zjw d1−α

K + [−κνizj ]∇ψnw d
1−α
K + [−κνi]∇ψn(w d1−α

K )zj .
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Thus, owing to the properties (37), the majoration

|∇q̃in| ≤ c (|w| d−1−α
K + |∇w| d−αK ) ∈ L2(B1) ,

is valid, and we easily show that q̃n → 0 in W 1/2,2(S0(z1) \ {zK}). Moreover, choosing a
α < α0 < αopt, we can show that there is a sequence cn → 0 such that∫

S0(z1)

|q̃n|2

dK
≤ c

∫
S0(z1)

|ψ′n|2 |w|2 d1−2α
K

≤ c [w]Cα0
loc (B1)

∫
S0(z1)∩B2/n(zK)

1

d
1+2(α−α0)
K

≤ cn [w]Cα0
loc (B1) .

Thus, owing to a well-known characterisation of the W 1/2,2
00 −norm ([LM68], Th. 11.7), we see

that q̃n → 0 even in W 1/2,2
00 (S0(z1) \ {zK}). On the other hand

[−κ∇(w d1−α
K ) · ν]S0(z1) ψn = h(z1) d1−α

K ψn + (1− α)w d−αK [−κ∇dK · ν]S0(z1) ψn .

We observe that h(z1) ∈ W 1/2,2(S0(z1) \ {zK}). Thus, we can regard without loss of gener-
ality the funcitions hi := RS0,i(z1)h(z1) as elements of W 1,2(B1). Note that hi d

−α
K belongs to

L2(B1) for all α < 1. Therefore, it is readily shown that

‖qn‖W 1/2,2(S0(z1)\{zK}) ≤ c (‖h(z1)‖W 1/2,2(S0(z1)\{zK}) + ‖w d−αK ‖W 1,2(B1)) .

On the other hand∫
S0(z1)

|qn|2

dK
≤ c

∫
S0(z1)

{h2(z1) d1−2α
K + |w|2 d−1−2α

K }

≤ c (‖h(z1)‖W 1/2,2(S0(z1)\{zK}) + [w]Cα0
loc (B1)) ,

showing even that qn is uniformly bounded in W 1/2,2
00 (S0(z1) \ {zK}). We now apply the The-

orem 2.1 with G = B1, Γ := S0(z1) and xK := {z1, 0, 0}. We obtain that According to the
Theorem 2.1, we obtain that

‖un‖W 2,2(B1) ≤ c (‖g(z1)‖L2(B1) + ‖h(z1)‖W 1/2,2(S0(z1)\{zK}) + [w]Cα0
loc (B1)) + cn

≤ c (‖g(z1)‖L2(B1) + ‖h(z1)‖W 1/2,2(S0(z1)\{zK})) ,

with cn → 0. The claim follows.

Corollary 3.4. Assumptions of Lemma 3.3. The second derivatives of u belong to Lt(α)(Ω),
the first derivatives belong to Ls(α)(Ω) for all 0 < α < αopt, where the functions t, s are given
by Theorem 1.1. Moreover,

‖u‖W 2,t(Ω\S) + ‖u‖W 1,s(Ω) ≤ c (‖f‖L2(Ω) + ‖q‖W 1/2,2(S\K)) .
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Proof. We choose α < α0 < αopt. Then, in the reference coordinates∫
B1

|D2
z̄(û(z1))|

2
2−α ≤

∫
B1

(|D2
z̄(û(z1))| d1−α0

K )
2

2−α d
− 2−2α0

2−α
K

≤ ‖d1−α
K D2

z̄(û(z1))‖
2

2−α
L2(B1)

(∫
Ω

d
− 2−2α0

1−α
K

) 1−α
2−α

≤ c ‖d1−α
K D2

z̄(û(z1))‖
2

2−α
L2(B1) .

Thus, D2
z̄(û) ∈ L2/(2−α)(Z \ S0), and

‖D2
z̄(û)‖2

L2(−1,1;L
2

2−α (B1))

≤ c

(
‖g‖2

L2(−1,1;L2(B1)) +

∫ 1

−1

‖h(z1)‖2
W 1/2,2(S0(z1)\{z1,0,0}) dz1

)
≤ c (‖f‖L2(Ω) + ‖q‖W 1/2,2(S\K))

2 .

Since∇ûz1 ∈ L2(Z) (Proposition 2.5), the claim follows for the second derivatives.

In order to prove the higher-integrability of∇u, we again use to the reference coorindates in the
cylinder Z . Owing to Sobolev embedding theorem in two-dimesions

‖∇z̄û(z1)‖
L

2
1−α (B1)

≤ c ‖D2
z̄(û(z1))‖

L
2

2−α (B1\S0(z1))

≤ c (‖g(z1)‖L2(B1) + ‖h(z1)‖W 1/2,2(S0(z1)\{zK})) .

Thus, we obtain that

‖∇z̄û‖
L2(−1,1;L

2
1−α (B1))

≤ c (‖f‖L2(Ω) + ‖q‖W 1/2,2(S\K)) .

On the other hand, D2
z1,z̄
û ∈ L2(Z), and therefore ∇z̄û belongs to W 1

2 (−1, 1; L2(B1)).
Since∇ûz1 ∈ L2(−1, 1; L2(B1)), we obtain that∇û belongs toW 1

2 (−1, 1; L2(B1)), which
altogether implies that

∇û ∈ L2(−1, 1; L
2

1−α (B1)) ∩ L∞(−1, 1; L2(B1)) . (38)

Using well-known interpolation formulas, we obtain that

∇û ∈ Ls(Z), s = 2 (1 + α) .

4 The Hoelder exponent in three dimensions

In this last section, we want to determine the relationship between the Hölder exponent for local
weak solutions to

− div(κ∇u) = 0 in Ω, (39)

[u]S = 0 , [−κ∇u · ν]S = 0 on S , (40)
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and the number αopt. We shall here distinguish between the cases K ∈ C2 and K ∈ Ck,
k ≥ 3. We define a number p > 2 as the largest 2 < p = p(κ, Ω) ≤ 3 such that:

− div(κ∇ · ) : W 1,p
0 (Ω)→ [W 1,p′

0 (Ω)]∗ is continuously invertible . (41)

The existence of p > 2 was proved in [Mey63].

Lemma 4.1. Let u ∈ W 1,2
loc (Ω) satisfy (39), (40). Then, u, uτ ∈ W 1,p

loc (Ω) with p > 2 according
to (41). Assume in addition that the curve K is of class C3. Then, the function uτ,τ = τ · ∇uτ
also belong to W 1,p

loc (Ω).

Proof. By the definition of p, we directly obtain that u ∈ W 1,p
loc (Ω) and that ‖u‖W 1,p

loc (Ω) ≤
c ‖u‖W 1,2

loc (Ω). Now observe that uτ satisfies (20) with f = 0 = q. Since ∇u ∈ Lp(Ω), we

obtain in the same way that uτ ∈ W 1,p
loc (Ω) and that ‖uτ‖W 1,p

loc (Ω) ≤ c ‖u‖W 1,p
loc (Ω).

If K ∈ C3, then τ ∈ C2(Ω). We are allowed to differentiate in (20) once more in the direction
of τ , and we obtain that∫

Ω

κ∇uτ,τ · ∇φ =

∫
Ω

{κD(τ)∇uτ +M(τ)∇u} · ∇φ , (42)

where the matrix M(τ) satisfies ‖M‖L∞(Ω; R3×3) ≤ c ‖τ‖W 2,∞(Ω;R3). Thus, uτ,τ ∈ W 1,p
loc (Ω).

Using the same localisation and flattening technique as above, we denote (cp. (26))

∇ := (0, ∂z2 , ∂z3), g := κ (A∇û · e1)z1 , G := −κ ûz1 Ae1 , (43)

The function g belongs to Lp(−1, 1; Lp(B1)). The vector field G belongs to the space
Lp(−1, 1; W 1,p(B1)). Owing to the embedding W 1,p(B1) ↪→ L∞(B1) continuously for p >
2, the field G therefore also belongs to Lp(−1, 1 L∞(B1)). Moreover, owing to (24)

‖g‖Lp(−1,1;Lp(B1)) + ‖G‖Lp(−1,1 L∞(B1)) ≤ c ‖ûz1‖W 1,p(Z) . (44)

IfK ∈ C3, we see in addition that g belongs toW 1
p (−1, 1; Lp(B1)). The vector fieldG belongs

to W 1
p (−1, 1; W 1,p(B1)), with the estimates

‖g‖W 1
p (−1,1;Lp(B1)) + ‖G‖W 1

p (−1,1 W 1,p(B1)) ≤ c (‖ûz1‖W 1,p(Z) + ‖ûz1,z1‖W 1,p(Z)) . (45)

For almost all z1 ∈]− 1, 1[ we see that the function û(z1) ∈ W 1,2(B1) satisfies∫
B1

A(z1)∇û(z1) · ∇η =

∫
B1

{g(z1) η +G(z1) · ∇η} , η ∈ W 1,2
0 (B1) . (46)

The Sobolev theorem for two dimensional domains implies the following inequalities:∣∣∣∣∫
B1

g(z1) η

∣∣∣∣ ≤ c ‖g(z1)‖L2(B1) ‖η‖W 1,1(B1)∣∣∣∣∫
B1

G(z1) · ∇η
∣∣∣∣ ≤ ‖G(z1)‖L∞(B1) ‖η‖W 1,1(B1) .
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Thus, the right-hand of (29) generates a linear continuous functional onW 1,r(B1) for all r ≥ 1.
Thus, we obtain an estimate

‖û‖Ls(−1,1;Cα(B1)) ≤ c ‖u‖W 1,2
loc (Ω) ,

with s = p for K ∈ C2, and even s = +∞ if K ∈ C3.

Corollary 4.2. Assume that K ∈ C3. Let u ∈ W 1,2
loc (Ω) satisfy (39), (40). Then, u ∈ Cα

loc(Ω)
for all α < αopt.

Proof. In the reference coordinates, the function ûz1 belongs to W 1
p (−1, 1; W 1,p(B1)). Since

p > 2, this is embedded in the space C1−1/p(−1, 1; C1−2/p(B1)), and therefore ûz1 is
bounded. Thus, for y, z ∈ Z

|û(y)− û(z)|
|y − z|α

≤
‖uz1‖L∞(Z) |z1 − y1|+ [û(z1)]Cα(B1) |ȳ − z̄|α

|y − z|α

≤ c (‖uz1‖L∞(Z) + ‖û‖L∞(−1,1;Cα(B1))) .

The claim follows.

If K is only of class C2, we have to work a little more. First, it is possible to obtain additional
regularity for the function uτ .

Lemma 4.3. The function uτ belongs to C1−2/p
loc (Ω).

Proof. We recall that u satisfies the relation∫
Ω

κ∇uτ · ∇v =

∫
Ω

κD(τ)∇u · ∇v, v ∈ C1
c (Ω) . (47)

In the reference coordinates, ∇z̄u belongs to W 1
p (−1, 1; Lp(B1)). Choosing Bρ(z̄) ⊂ B1

arbitrary, Hölder’s inequality yields∫
Bρ(z̄)

|∇z̄u(z1)|2 ≤ ‖∇z̄u(z1)‖2
Lp(B1) meas(Bρ)

1−2/p .

For t ∈]− 1, 1[ arbitrary, it follows that∫ t+ρ

t−ρ

∫
Bρ(z̄)

|∇z̄u(z1)|2 ≤ c ‖∇z̄u(z1)‖2
L∞(−1,1;Lp(B1)) ρ

3−2/p .

We can show that the∇z̄(u) belongs to the Campanato spaceL2,µ(Z), µ = 3−2/p. In curved

coordinates, observe that uτ ∈ L
3p/(3−p)
loc (Ω), which embeds into L2,µ

loc (Ω) for µ = 5 − 6/p
∇u ∈ L2,µ

loc (Ω), µ3 − 2/p. Applying standard results ([Tro87], Lemma 3.3), the function uτ
satisfying (47) is in Cδ

loc(Ω) with δ = 1− 2/p.
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We argue like in the preceding section. Without entering every detail, we obtain for the homo-
geneous problem q = 0 = f a slightly improved version of the relation (38) in the form of

∇û ∈ Lp(−1, 1; L
2

1−α (B1)) ∩ L∞(−1, 1; Lp(B1)) , (48)

for all α < αopt. Applying interpolation, this yields

∇û ∈ Ls(Z), s = p (2− (1− α)
p

2
) .

We now apply the embedding result of [KP11], Th. A.1 for the anisotropic Sobolev spaces.
Choosing α < αopt near enough, we obtain that

u ∈ Cβ
loc, β = 1− 2

s
≥ αopt

1 + αopt
.
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