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Abstract

We derive a simple formula for the second-order subdifferential of the maximum of co-
ordinates which allows us to construct this set immediately from its argument and the direc-
tion to which it is applied. This formula can be combined with a chain rule recently proved
by Mordukhovich and Rockafellar [9] in order to derive a similarly simple formula for the
extended partial second-order subdifferential of finite maxima of smooth functions. Anal-
ogous formulae can be derived immediately for the full and conventional partial second-
order subdifferentials.

1 Introduction

In 1976, B. S. Mordukhovich introduced a nonconvex normal cone and a corresponding subdif-
ferential with the intention to derive necessary optimality conditions for optimal control problems
with endpoint geometric constraints [4]. These constructions, meanwhile carrying his name, may
have appeared unusual in the beginning because they fell outside the duality scheme between
tangents and normals or directional derivatives and subdifferentials dominating the ideas of vari-
ational analysis at that time. Soon it became evident, however, that the renunciation of convexity
was a key property for precise characterizations in dual terms of optimality conditions or stability
of multifunctions. The significance of Mordukhovich’s normal cone and related objects such as
the associated coderivative relies on the fact that they are small on the one hand but robust on
the other, the latter property being the basis for a surprisingly rich calculus which made it possi-
ble to benefit from these constructions in more and more complex settings. Among the abundant
proofs for the striking usefulness of the mentioned concepts, we just mention Mordukhovich’s
celebrated coderivative criterion for the Aubin property (and related) of general multifunctions
(see, e.g., [5]). As stated in the monograph by Rockafellar/Wets [10], "the Mordukhovich cri-
terion... is the key to a Lipschitzian calculus for set-valued mappings". For a comprehensive
account of similar results, the reader is referred to the basic monograph [6]. In the beginning,
first order variational analysis was a primary field of application. Later, the focus shifted from
’raw’ objects to derived ones, e.g. from constraint mappings to solution mappings to generalized
equations. A typical need for this transition arises in the derivation of dual necessary optimality
conditions for hierarchical problems such as bilevel optimization or, more generally, mathemat-
ical programming with equilibrium constraints. A typical problem of interest in this context is
given by

min{g(x, y) | y ∈ S(x)}, S(x) := {y ∈ Y |0 ∈ ∇yf(x, y) +NC(y)}.

This bilevel problem has numerous applications, for instance in the characterization of equilibria
in electricity spot markets (see, e.g., [3]). Upon observing that the feasible set of this problem,
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i.e. the graph of S, can be equivalently described by

grS = Φ−1(grNC), Φ(x, y) := (y,−∇yf(x, y)),

it becomes evident that dual necessary optimality conditions require the analysis of normal
cones to derived objects which are related to normal cones themselves. This means, that one
actually deals with second order variational analysis. Corresponding indispensable calculus
rules (first of all chain rules) for the so-called (full) second-order subdifferential can be found
in [6]. The application of the full second-order subdifferential is limited in the setting above,
however, to functions f of class C2 and to sets C not depending on x. Recently, however,
increasing interest has arised in more general settings, e.g., when considering moving sets
C(x) as in the control of the sweeping process [1] or functions f being just of class C1,1 as in
conditioning of linear-quadratic two-stage stochastic optimization problems [2]. In these cases
it is rather the so-called extended partial second-order subdifferential introduced in [9] whose
calculus is of interest. A fundamental chain rule for this object has been established in [9] which
basically allows to reduce the computation of the extended partial second-order subdifferential
of some composite function to the computation of the full second-order subdifferential of the
outer function. An extensive application can be found in the recent paper [8]. An important spe-
cial case of composite functions is given by maximum functions. For instance, the mapping S
considered above could be generalized to

S(x) := {y ∈ Y |0 ∈ ∂yf(x, y) +NC(y)}, f(x, y) := max
i=1,...,m

{fi(x, y)},

where the fi are possibly smooth. A potential application would again arise from electricity spot
market models with convex, nonsmooth bidding functions. Then, f is no longer differentiable
and so one deals with multi-valued base mappings. Lipschitz properties of mappings S with
such multivalued base have been studied in [7].

In the context of such maximum functions, the chain rule mentioned above requires an efficient
computation of the full second-order subdifferential of the maximum of coordinates. In principle,
this can be realized by using a formula provided in [9, Lemma 4.4]. A concrete application of
this formula, however, requires to evaluate differences of certain critical faces to the standard
simplex (see 5) which may be tedious work within a systematic study. In this paper we present
a very simple formula for the second-order subdifferential of the maximum of coordinates which
provides an immediate construction given the initial data, i.e., the point in the graph and the
direction of interest. The obtained formula is then used to prove a similarly immediate expression
for the extended partial second-order subdifferential of a finite maximum of smooth functions.

2 Basic concepts and notation

As usual, we denote by ’gr M ’ the graph of some multifunction M and by Z0 the polar of some
set Z . We recall the following definitions (see [6]):

Definition 1. Let C ⊆ Rm be a closed subset and x̄ ∈ C . The Mordukhovich normal cone to
C at x̄ is defined by

NC(x̄) :=
{
x∗|∃ (xn, x

∗
n)→ (x̄, x∗) : xn ∈ C, x∗n ∈ [TC(xn)]0

}
.
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Here, [TC(xn)]0 refers to the Fréchet normal cone to C at xn, which is the polar of the contin-
gent cone

TC(x) := {d ∈ Rm |∃tk ↓ 0, dk → d : x+ tkdk ∈ C, ∀k} . (1)

to C at xn. For an extended-real-valued, lower semicontinuous function f : Rm → R̄ with
|f(x̄)| <∞, the Mordukhovich normal cone induces a subdifferential via

∂f(x̄) := {x∗| (x∗,−1) ∈ Nepi f (x̄, f(x̄))} .

Definition 2. Let M : Rn ⇒ Rm be a multifunction with closed graph. The Mordukhovich
coderivative D∗M(x̄, ȳ) : Rm ⇒ Rn of M at some (x̄, ȳ) ∈ grM is defined as

D∗M(x̄, ȳ)(y∗) := {x∗ ∈ Rn| (x∗,−y∗) ∈ Ngr M(x̄, ȳ)}

Definition 3. For a lower semicontinuous function f : Rn → R̄ which is finite at x ∈ Rn and
for an element s ∈ ∂f(x) the second-order subdifferential of f is a multifunction ∂2f(x, s) :
Rn ⇒ Rn defined by

∂2f(x, s) (u) := (D∗∂f) (x, s) (u) ∀u ∈ Rn.

Definition 4. For a lower semicontinuous function f : Rn×Rm → R̄ which is finite at (x, y) ∈
Rn ×Rm, the partial subdifferential is defined as ∂yf(x, y) := ∂f (x, ·) (y). Following [9], for
(x, y) ∈ Rn × Rm and any s ∈ ∂yf(x, y) the (extended) partial second-order subdifferential
of f is a multifunction ∂̃2

yf(x, y, s) : Rm ⇒ Rn × Rm defined by

∂̃2
yf(x, y, s) (u) := (D∗∂yf) (x, y, s) (u) ∀u ∈ Rm.

3 A formula for the second-order subdifferential of the max-
imum of coordinates

Let θ : Rm → R be defined as
θ(x) := max

i=1,...,m
xi.

Our aim is to calculate the second-order subdifferential of θ. We denote by J(x) the set of active
indices at x:

J(x) := {i ∈ {1, . . . ,m}|xi = θ(x)}
and by J c(x) its complement. Furthermore for any fixed (x̄, s̄) ∈ gr ∂θ we introduce the fol-
lowing index sets

K := {i ∈ J(x̄)|s̄i = 0} , L := {i ∈ J(x̄)|s̄i > 0} .

Theorem 5. For any fixed (x̄, s̄) ∈ gr ∂θ and any fixed u ∈ Rm the second-order subdifferen-
tial ∂2θ(x̄, s̄)(u) is nonempty if and only if ui = c for all i ∈ L, where c is a constant. In this
case it holds that

∂2θ(x̄, s̄)(u) =

{
w

∣∣∣∣∣
m∑

i=1

wi = 0, wi ≥ 0 ∀i ∈ J>, wi = 0 ∀i ∈ J c(x̄) ∪ J<

}
, (2)

where J> := {i ∈ J(x̄) |ui > c} and J< := {i ∈ J(x̄) |ui < c}.
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Proof. We first notice that the function θ can be written in the equivalent form:

θ(x) = max
v∈S
〈v, x〉, where S :=

{
s ∈ Rm

∣∣∣∣∣
m∑

i=1

si = 1, si ≥ 0, i = 1, . . . ,m

}
. (3)

Denoting by ei the canonical unit vectors of Rm, the subdifferential of θ at x̄ is well known to
admit the representation:

∂θ(x̄) = conv {ei|i ∈ J(x)} ⊆ S.

Accordingly, the fixed (x̄, s̄) ∈ gr ∂θ satisfies

m∑
i=1

s̄i = 1, s̄i > 0 ∀i ∈ L, s̄i = 0 ∀i ∈ J c(x̄) ∪K, (4)

In particular, L 6= ∅. It is easy to see that the contingent cone TS(s̄) to the simplex S at
s̄ ∈ ∂θ(x̄) is given by

TS(s̄) =

{
h

∣∣∣∣∣
m∑

i=1

hi = 0, hi ≥ 0 ∀i ∈ J c(x̄) ∪K

}
.

By [9, Lemma 4.4], the second-order subdifferential of θ at (x̄, s̄) in direction u can be char-
acterized as follows:

∂2θ(x̄, s̄)(u) = {w | there are closed faces K1 ⊇ K2 of TS(s̄) ∩ x̄⊥ such that

w ∈ K1 −K2, −u ∈ (K1 −K2)0} (5)

We claim that the critical cone to S at s̄ is given by

TS(s̄) ∩ x̄⊥ =

{
h

∣∣∣∣∣
m∑

i=1

hi = 0, hi ≥ 0 ∀i ∈ K,hi = 0 ∀i ∈ J c(x̄)

}
. (6)

Indeed, if h ∈ TS (s̄) ∩ x̄⊥, then, by hi ≥ 0 for all i ∈ J c(x̄),

0 = 〈x̄, h〉 = θ(x̄)
∑

i∈J(x̄)

hi +
∑

i∈Jc(x̄)

x̄ihi ≤ θ(x̄)
m∑

i=1

hi = 0 (7)

which implies that the inequality above actually holds as an equality and, thus,∑
i∈Jc(x̄)

hi(x̄i − θ(x̄)) = 0.

Since x̄i < θ(x̄) for i ∈ J c(x̄), it follows that hi = 0 for all i ∈ J c(x̄), whence h belongs
to the right-hand side of (6). Conversely, if h belongs to the right-hand side of (6), then clearly
h ∈ TS (s̄). Now, (7) can be read from the right to the left in order to derive that h ∈ x̄⊥. This
proves (6).
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The application of (5) requires the knowledge of the closed faces of TS(s̄) ∩ x̄⊥. Owing to (6),
these are given by:

MI :=

{
h

∣∣∣∣∣
m∑

i=1

hi = 0, hi ≥ 0 ∀i ∈ K \ I, hi = 0 ∀i ∈ J c(x̄) ∪ I

}
(I ⊆ K).

We show that
I1 ⊆ I2 ⇔MI1 ⊇MI2 ∀I1, I2 ⊆ K. (8)

The direction ’⇒’ is evident. For the reverse direction let I1, I2 ⊆ K and assume that I1 * I2.
Then there exists some i′ ∈ I1\I2. As observed below (4), we may choose some index i∗ ∈ L.
Recall that K ∩ L = ∅. Hence, i∗ /∈ K and i′ 6= i∗. This allows us to define h by setting
hi′ := 1, hi∗ := −1 and hi := 0 for all remaining i. Then, hi ≥ 0 for all i ∈ K \ I2 due to
i∗ /∈ K . Furthermore, i′, i∗ /∈ I2 and i′, i∗ ∈ J(x̄) due to K,L ⊆ J(x̄). This implies that
hi = 0 for all i ∈ J c(x̄) ∪ I2, whence h ∈ MI2 . On the other hand, i′ ∈ I1, so that hi′ = 1
leads to h /∈MI1 . Altogether this proves (8).

Combining (8) with (5), we arrive at

∂2θ(x̄, s̄)(u) =
{
w
∣∣ ∃I1 ⊆ I2 ⊆ K : w ∈MI1 −MI2 , −u ∈ (MI1 −MI2)

0} , (9)

We show next that for I1 ⊆ I2 ⊆ K the sets MI1 −MI2 and (MI1 −MI2)
0 are given by:

MI1 −MI2 =

{
p

∣∣∣∣∣
m∑

i=1

pi = 0, pi ≥ 0 ∀i ∈ I2 \ I1, pi = 0 ∀i ∈ J c(x̄) ∪ I1

}
(10)

(MI1 −MI2)
0 = {p∗ | ∃c̃ ∈ R : p∗i ≤ c̃ ∀i ∈ I2 \ I1, p

∗
i = c̃ ∀i ∈ J(x̄) \ I2} . (11)

The inclusion ’⊆’ in (10) follows readily from the definitions. For the reverse inclusion, let p
belong to the right-hand side of (10) and define h(1), h(2) by

h
(1)
i : = pi, h

(2)
i := 0 ∀i ∈ J c(x̄) ∪ I2

h
(1)
i : = [pi]+ , h

(2)
i := [pi]− ∀i ∈ J(x̄)\ (I2 ∪ {i∗})

h
(1)
i∗ : = −

∑
i∈Jc(x̄)∪I2

pi −
∑

i∈J(x̄)\(I2∪{i∗})

[pi]+ , h
(2)
i∗ := −

∑
i∈J(x̄)\(I2∪{i∗})

[pi]− ,

where, [pi]+ , [pi]− denote the positive and negative parts of pi, respectively, and i∗ is an ar-
bitrarily selected index of the nonempty set L ⊆ J(x̄) as it has already been used before.

Then, by construction,
m∑

i=1

h
(1)
i = 0. The properties of p and the inclusion I1 ⊆ I2 ensure

that h(1)
i = pi = 0 for all i ∈ J c(x̄) ∪ I1. Finally, if i ∈ K\I1 is arbitrary then i 6= i∗ due

to K ∩ L = ∅. We distinguish the cases i /∈ I2 and i ∈ I2. In the first case it follows that
i ∈ J(x̄)\ (I2 ∪ {i∗}) by K ⊆ J(x̄). Then, h(1)

i := [pi]+ ≥ 0. Otherwise, i ∈ I2\I1 and

h
(1)
i = pi ≥ 0. Summarizing, h(1)

i ≥ 0 for all i ∈ K\I1 and, thus, h(1) ∈ MI1 . Similarly,

by construction,
m∑

i=1

h
(2)
i = 0 and h(2)

i = 0 for all i ∈ J c(x̄) ∪ I2. Moreover, if i ∈ K\I2 is
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arbitrary then i 6= i∗ due to K ∩ L = ∅. Therefore, i ∈ J(x̄)\ (I2 ∪ {i∗}) by K ⊆ J(x̄). We

conclude that h(2)
i = [pi]− ≥ 0, whence h(2) ∈ MI2 . It remains to show that p = h(1) − h(2).

Indeed, by construction one has the following exhaustive cases:

h
(1)
i − h

(2)
i = pi ∀i ∈ J c(x̄) ∪ I2

h
(1)
i − h

(2)
i = [pi]+ − [pi]− = pi ∀i ∈ J(x̄)\ (I2 ∪ {i∗})

h
(1)
i∗ − h

(2)
i∗ = −

∑
i∈Jc(x̄)∪I2

pi −
∑

i∈J(x̄)\(I2∪{i∗})

pi = pi∗ .

Here, the last equality follows from
m∑

i=1

pi = 0. Altogether this proves (10).

By duality theory for systems of linear equalities and inequalities we have that p∗ ∈ (MI1 −
MI2)

0 if and only if there are coefficients c̃, λi ∈ R for i ∈ J c(x̄) ∪ I1 and µi ≤ 0 for
i ∈ I2 \ I1 such that

p∗ = c̃1 +
∑

i∈Jc(x̄)∪I1

λiei +
∑

i∈I2\I1

µiei,

where 1 = (1, . . . , 1)T . For j ∈ I2\I1 it follows that j /∈ J c(x̄)∪I1, whence p∗j = c̃+µj ≤ c̃.
For j ∈ J(x̄) \ I2 it follows that j /∈ J c(x̄)∪ I1 (due to I1 ⊆ I2) and also j /∈ I2 \ I1, whence
p∗j = c̃. Summarizing, p∗ ∈ (MI1 − MI2)

0 if and only if it satisfies the conditions on the
right-hand side of (11).

(MI1 −MI2)
0 = {p∗ | J(x̄) \ I2 ⊆ {i ∈ J(x̄)|p∗i = max

j∈J(x̄)\I1
p∗j}}.

By (9) it holds that

∂2θ(x̄, s̄)(u) =


w

∣∣∣∣∣∣∣∣∣∣∣∣∣
∃I1 ⊆ I2 ⊆ K :

m∑
i=1

wi = 0,

wi ≥ 0 ∀i ∈ I2 \ I1,

wi = 0 ∀i ∈ J c(x̄) ∪ I1,

J(x̄) \ I2 ⊆ {i ∈ J(x̄)|ui = min
j∈J(x̄)\I1

uj}


.

(12)
With the notations

AI1,I2 :=

{
w

∣∣∣∣∣
m∑

i=1

wi = 0, wi ≥ 0 ∀i ∈ I2 \ I1, wi = 0 ∀i ∈ J c(x̄) ∪ I1

}
, (13)

J(I) = {i ∈ J(x̄) | ui = min
j∈J(x̄)\I

uj} (14)
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(12) can be written as

∂2θ(x̄, s̄)(u) =
⋃

I1⊆I2⊆K
J(x̄)\I2⊆J(I1)

AI1,I2 =
⋃

I1⊆I2⊆K
J(x̄)\J(I1)⊆I2

AI1,I2

=
⋃

I1⊆K
J(x̄)\J(I1)⊆K


⋃

I1⊆I2⊆K
J(x̄)\J(I1)⊆I2

AI1,I2

 (15)

In the iterated union on the right-hand side we consider the inner union over sets I2 to be
conditional with respect to the set I1 ⊆ K fixed in the outer union. Note that in case of
J(x̄)\J(I1) * K there exists no I2 satisfying the conditions of the inner union which allows us
to add the condition J(x̄) \ J(I1) ⊆ K to the outer union. Now, for any fixed I1 satisfying the
conditions of the outer union let Ia

2 ⊆ Ib
2 be two index sets satisfying the conditions for I2 in the

inner union. By (13), it then holds that AI1,Ia
2
⊇ AI1,Ib

2
. Thus, one may shrink the inner union to

the minimal set I2 of the indicated family which is evidently given by I2 = I1∪(J(x̄) \ J(I1)).
Consequently, for M := {I ⊆ K|J(x̄) \ J(I) ⊆ K} we have that

∂2θ(x̄, s̄)(u) =
⋃

I∈M

AI,I∪(J(x̄)\J(I)) =
⋃

I∈M

ÃI with ÃI := AI,I∪(J(x̄)\J(I)) (I ∈M).

(16)
From J(x̄) \K = L and (14) we derive that

M = {I ⊆ K|L ⊆ J(I)} = {I ⊆ K|ui = min
j∈J(x̄)\I

uj ∀i ∈ L}. (17)

Note that J(x̄) \ I 6= ∅ for all I ∈ M because of I ⊆ K and, thus, ∅ 6= L = J(x̄) \K ⊆
J(x̄) \ I . This implies that M is nonempty if and only if ui is constant for all i ∈ L which is
the first assertion of the theorem.

To show the asserted formula (2), assume now that M 6= ∅, hence ui = c for all i ∈ L
and for some constant c. Consequently, for J< as introduced below (2), one has that J< ⊆
J(x̄) \ L = K . Moreover, by (17),

I ∈M ⇐⇒ I ⊆ K and uj ≥ c ∀j ∈ J(x̄) \ I ⇐⇒ J< ⊆ I ⊆ K. (18)

In particular, because of J< ⊆ K , we infer that J< ∈ M and that J< is in fact the smallest
member of M .

In the last step of the proof we show that ÃI defined in (16) is a decreasing family of sets.
To this aim, we define JI := J(x̄) \ (J(I) ∪ I) for I ∈ M , and observe that JI = [I ∪
(J(x̄) \ J(I))] \ I , whence by definition of ÃI and by (13)

ÃI = {w |
m∑

i=1

wi = 0, wi ≥ 0 ∀i ∈ JI , wi = 0 ∀i ∈ J c(x̄) ∪ I}. (19)

From the definitions of JI and J(I) we conclude that

JI = {i ∈ J(x̄) \ I | ui > min
j∈J(x̄)\I

uj}. (20)
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Now let Ia, Ib ∈M be arbitrary with Ia ⊆ Ib. We claim that ÃIb ⊆ ÃIa . For arbitrarily given
w ∈ ÃIb one has by (19) that

m∑
i=1

wi = 0, wi ≥ 0 ∀i ∈ JIb , wi = 0 ∀i ∈ J c(x̄) ∪ Ib. (21)

Since Ia ⊆ Ib, it is sufficient to show that wi ≥ 0 for all i ∈ JIa \JIb . Let such i be arbitrarily
given. Then, by (20), i ∈ J(x̄) \ Ia and by (17)

ui > min
j∈J(x̄)\Ia

uj = c. (22)

Moreover, i /∈ JIb leaves two possibilities according to (20): either i /∈ J(x̄) \ Ib which by
i ∈ J(x̄) \ Ia leads to i ∈ Ib \ Ia, whence wi = 0 (see (21)); or, again relying on (17),

ui ≤ min
j∈J(x̄)\Ib

uj = c,

which is a contradiction with (22). Summarizing, wi ≥ 0 and, thus, ÃIb ⊆ ÃIa .

The fact that ÃI defined in (16) is a decreasing family of sets yields along with (18) that

∂2θ(x̄, s̄)(u) =
⋃

I∈M

ÃI = ÃJ<

=

{
w |

m∑
i=1

wi = 0, wi ≥ 0 ∀i ∈ JJ< , wi = 0 ∀i ∈ J c(x̄) ∪ J<

}
by (19). Observing that by (20), (18) and (17)

JJ< = {i ∈ J(x̄) \ J< | ui > c} = {i ∈ J(x̄) | ui > c} = J>

for J> being defined below (2), we finally derive the asserted formula (2).

Corollary 6. In the setting of Theorem 5 one has that

∂2θ(x̄, s̄)(0) = {w |
m∑

i=1

wi = 0, wi = 0 ∀i ∈ J c(x̄)}.

Proof. Since L 6= ∅, it follows that c = 0 for the constant c defined in the statement of
Theorem 5. Accordingly, J< = J> = ∅ and the assertion follows from (2).

In order to illustrate how Theorem 5 reduces the effort to calculate the second order subdiffer-
ential of a maximum of coordinates, we pick up an example from [9]:

Example 7 ([9], Example 3.5). Let m = 4, x̄ = (0, 0, 0, 0), s̄ = (1
2
, 1

2
, 0, 0), u = (0, 0, 1,−1).

Then, J(x̄) = {1, 2, 3, 4}, J c(x̄) = {∅} and L = {1, 2}. Since ui = 0 =: c for all i ∈ L, it
follows that J> = {3}, J< = {4}. Thus,

∂2θ(x̄, s̄)(u) =

{
w

∣∣∣∣∣
4∑

i=1

wi = 0, w3 ≥ 0, w4 = 0

}
.
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4 A formula for the extended partial second-order subdiffer-
ential of a finite maximum of smooth functions

We are now going to apply the result of Theorem 5 to the maximum not just of coordinates but
of general smooth functions:

ϕ(x, y) := max
i=1,...,m

gi(x, y).

We partition the argument into two parts in order to discuss the extended second-order subd-
ifferential of ϕ. A completely analogous result will hold true for the conventional second-order
subdifferential. Clearly we may write ϕ = θ ◦ g with θ(z1, . . . , zm) := maxi=1,...,m zi and
g(x, y) := (g1(x, y), . . . , gm(x, y))T . We assume that g : Rn × Rd → Rm is of class C2.
The key tool for our result is the following chain rule:

Theorem 8 ([9], Theorem 3.3 & Theorem 4.3). Fix any (x̄, ȳ) and s̄ ∈ ∂yϕ(x̄, ȳ). Assume
that the basic second-order constraint qualification

∂2θ (g(x̄, ȳ)), v)) (0) ∩ ker∇T
y g(x̄, ȳ) = {0} (23)

is satisfied at some v ∈ ∂θ(g(x̄, ȳ)) with s̄ = ∇T
y g(x̄, ȳ)v. Then, v is uniquely defined and

for all u ∈ Rd it holds that

∂̃2
yϕ(x̄, ȳ, s̄)(u) =

[
∇2

xy〈v, g〉(x̄, ȳ)

∇2
yy〈v, g〉(x̄, ȳ)

]
u+

[
∇T

x g(x̄, ȳ)

∇T
y g(x̄, ȳ)

]
∂2θ(g(x̄, ȳ), v)(∇yg(x̄, ȳ)u),

(24)

The basic second-order constraint qualification (23) motivates us to introduce the following
weakened form of a linear independence condition:

Definition 9. A set {z1, . . . , zs} of vectors is called graphically linearly independent if the set
{(z1, 1), . . . , (zs, 1)} of enhanced vectors is linearly independent in the classical sense.

Clearly, graphical linear independence is a strictly weaker notion than classical linear indepen-
dence. Recalling that

∂̃yϕ(x̄, ȳ) = conv{∇ygi(x̄, ȳ)}i∈I(x̄,ȳ) where I(x̄, ȳ) := {i|gi(x̄, ȳ) = max
j
gj(x̄, ȳ)},

we observe that any s̄ ∈ ∂̃yϕ(x̄, ȳ) can be written in the form

s̄ =
∑

i∈I(x̄,ȳ)

vi∇ygi(x̄, ȳ),
∑

i∈I(x̄,ȳ)

vi = 1

or
(s̄, 1) =

∑
i∈I(x̄,ȳ)

vi(∇ygi(x̄, ȳ), 1).

It follows that the multipliers vi are uniquely defined by s̄. Now, we are in a position to make
formula (24) for the extended second-order partial subdifferential fully explicit:
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Theorem 10. In the setting of Theorem 8 assume that the set {∇ygi(x̄, ȳ)}i∈I(x̄,ȳ) is graph-

ically linearly independent. Denote by v ∈ ∂θ(g(x̄, ȳ)) the unique element defined by s̄ =
∇T

y g(x̄, ȳ)v (see discussion above) and let L := {i ∈ I(x̄, ȳ)|vi > 0}. Then, for arbitrary
u ∈ Rd, one has that:

∂̃2
yϕ(x̄, ȳ, s̄)(u) 6= ∅ ⇐⇒ ∃c ∈ R : 〈∇ygi(x̄, ȳ), u〉 = c ∀i ∈ L. (25)

In this case it holds that

w̃ ∈ ∂̃2
yϕ(x̄, ȳ, s̄)(u) ⇐⇒



∃w ∈ Rm :

w̃ =

[
∇2

xy〈v, g〉(x̄, ȳ)

∇2
yy〈v, g〉(x̄, ȳ)

]
u+

[
∇T

x g(x̄, ȳ)

∇T
y g(x̄, ȳ)

]
w,

m∑
i=1

wi = 0,

wi ≥ 0 ∀i ∈ I>,
wi = 0 ∀i ∈ Ic(x̄, ȳ) ∪ I<,

(26)

where

I> := {i ∈ I(x̄, ȳ) |〈∇ygi(x̄, ȳ), u〉 > c}
I< := {i ∈ I(x̄, ȳ) |〈∇ygi(x̄, ȳ), u〉 < c}

Ic(x̄, ȳ) := {1, . . . ,m} \ I(x̄, ȳ).

Proof. By Corollary 6 we have that

∂2θ (g(x̄, ȳ), v) (0) =

{
w

∣∣∣∣∣
m∑

i=1

wi = 0, wi = 0 ∀i ∈ Ic(x̄, ȳ)

}
. (27)

Then, evidently the inclusion ’⊇’ in (23) is satisfied. Conversely, if w belongs to the left-hand
side of (23), then w satisfies (27) and w ∈ ker∇T

y g(x̄, ȳ). Hence,

∑
i∈I(x̄,ȳ)

wi(∇ygi(x̄, ȳ), 1) =
m∑

i=1

wi(∇ygi(x̄, ȳ), 1) = (0, 0).

The assumed graphical linear independence of the set {∇ygi(x̄, ȳ)}i∈I(x̄,ȳ) provides thatwi =

0 for all i ∈ I(x̄, ȳ). Along with wi = 0 for all i ∈ Ic(x̄, ȳ) by (27), we arrive at the desired
conclusion w = 0. Thus, (23) is satisfied and we may invoke Theorem 8 in order to derive (25).
Our first conclusion from (24) is that

∂̃2
yϕ(x̄, ȳ, s̄)(u) 6= ∅ ⇐⇒ ∂2θ(g(x̄, ȳ), v)(∇yg(x̄, ȳ)u) 6= ∅.

By virtue of Theorem 5 this entails (25). Similarly, (26) follows from (24) upon using the explicit
representation (2).
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Remark 11. Exploiting similar chain rules to the one given in Theorem 8 but relating to the
full and conventional partial second-order subdifferential rather than to its extended partial one
(see [6], [9]) one may derive in the same way corresponding fully explicit formulae for those
other types of second-order subdifferentials of finite maxima of smooth functions.

As an illustration of Theorem 10 we consider the following example:

Example 12. Define g : R2 → R by g(x, y) := (−xy, xy2) and consider the point (x̄, ȳ) :=
(1, 0). Then, ϕ(x̄, y) = max{−y, y2} and ∂yϕ(x̄, ȳ) = [−1, 0]. Moreover, I(x̄, ȳ) =
{1, 2}. Due to ∇yg1(x̄, ȳ) = −1 and ∇yg2(x̄, ȳ) = 0 the active gradients are graphically
linearly independent (while not linearly independent) as required in Theorem 10. Clearly, for any
s̄ ∈ ∂yϕ(x̄, ȳ) the vector v has the unique representation v = (−s̄, 1 + s̄). Now, (25) yields
that ∂̃2

yϕ(x̄, ȳ, s̄)(u) 6= ∅ if L = {1} or L = {2} or finally, if L = {1, 2} and u = 0. In
these cases, formula (26) reduces with our concrete data to:

∂̃2
yϕ(x̄, ȳ, s̄)(u) =

{(
−v1u

2v2u− w1

)
| w1 = −w2, wi ≥ 0 (i ∈ I>), wi = 0 (i ∈ I<)

}
.

Now, let u ∈ R be arbitrary. We consider three cases:

1 s̄ = −1. Then, v = (1, 0), L = {1}, c = −u. If u > 0, then I> = {2} else I> = ∅.
Similarly, if u < 0, then I< = {2} else I< = ∅. Thus,

∂̃2
yϕ(x̄, ȳ, s̄)(u) = {(−u, t)|t ∈ A} where A =


t ≥ 0 if u > 0
t ∈ R if u = 0
t = 0 if u < 0

2 s̄ = 0. Then, v = (0, 1), L = {2}, c = 0. If u < 0, then I> = {1} else I> = ∅.
Similarly, if u > 0, then I< = {1} else I< = ∅. Thus,

∂̃2
yϕ(x̄, ȳ, s̄)(u) = {(0, 2u− t)|t ∈ A} where A =


t = 0 if u > 0
t ∈ R if u = 0
t ≥ 0 if u < 0

3 −1 < s̄ < 0. Then, v = (−s̄, 1 + s̄), L = {1, 2}, c = −u. As mentioned above,
∂̃2

yϕ(x̄, ȳ, s̄)(u) = ∅ if u 6= 0. If u = 0 then I> = I< = ∅. Thus, ∂̃2
yϕ(x̄, ȳ, s̄)(u) =

{0} × R.
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