
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

On reducing spurious oscillations in discontinuous Galerkin (DG)

methods for steady-state convection-diffusion-reaction equations

Derk Frerichs1, Volker John1,2 

submitted: October 5, 2020

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: derk.frerichs@wias-berlin.de

   volker.john@wias-berlin.de

2 Freie Universität Berlin
Department of Mathematics and Computer Science
Arnimallee 6
14195 Berlin
Germany

No. 2769

Berlin 2020

2010 Mathematics Subject Classification. 65N30.

Key words and phrases. Steady-state convection-diffusion-reaction equations, convection-dominated regime, discontinu-
ous Galerkin finite element method, reduction of spurious oscillations, post-processing approaches, slope limiters.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


On reducing spurious oscillations in discontinuous Galerkin
(DG) methods for steady-state convection-diffusion-reaction

equations
Derk Frerichs, Volker John

Abstract

A standard discontinuous Galerkin (DG) finite element method for discretizing steady-state
convection-diffusion-reaction equations is known to be stable and to compute sharp layers in the
convection-dominated regime, but also to show large spurious oscillations. This paper studies
post-processing methods for reducing the spurious oscillations, which replace the DG solution in
a vicinity of layers by a constant or linear approximation. Three methods from the literature are
considered and several generalizations and modifications are proposed. Numerical studies with
the post-processing methods are performed at two-dimensional examples.

1 Introduction

Convection-diffusion-reaction equations model the transport of a physical species like temperature
(energy balance) or concentration (mass balance). In practice, the convective transport by the ve-
locity field is usually much stronger than the diffusive transport. This situation is called convection-
dominated regime. Characteristic features of the solution of a convection-diffusion-reaction equation
in this regime are layers, which are thin regions where the gradient of the solution possesses a very
large norm. These small spatial scales are present for both, solutions of time-dependent and steady-
state convection-diffusion-reaction equations. Since solutions of the time-dependent equation often do
not possess small scales with respect to time, such that the major feature are the small scales with
respect to space, we will concentrate here on the discussion of the steady-state problem.

The steady-state convection-diffusion-reaction equation is given by

−ε∆u+ b · ∇u+ cu = f in Ω,
u = g on ΓD,

ε∇u · n = 0 on ΓN,
(1)

where Ω ⊂ Rd, d ∈ {2, 3}, is a bounded domain with polyhedral Lipschitz boundary Γ = ΓD ∪ ΓN

with ΓD ∩ ΓN = ∅. The coefficient ε ∈ R, ε > 0, is the diffusion coefficient, b is the convection field,
c the reaction coefficient, and f models sources. The prescribed boundary conditions on the Dirichlet
boundary ΓD are denoted by g and n is the outward pointing unit normal vector on the boundary of
Ω. From the physical point of view, one has to prescribe Dirichlet boundary conditions at the inflow
boundary, i.e., Γ− = {x ∈ Γ : b(x) ·n(x) < 0} ⊂ ΓD. Mathematically, the convection-dominated
regime is described by ε � L‖b‖L∞(Ω), where L is a characteristic length scale. Note that this
inequality is correct with respect to the physical units.

Many discretizations are based on an underlying mesh. In the convection-dominated regime, the size
of the layers is much smaller than the affordable mesh width. It is well known that standard discretiza-
tions, like the central finite difference method or the Galerkin finite element method cannot cope with
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D. Frerichs, V. John 2

this situation. They try to compute all important scales of the solution, which is not possible since
the layers cannot even be represented on affordable grids. Numerical solutions computed with these
schemes are globally polluted by spurious oscillations, i.e., unphysical values. One has to introduce
some stabilizing component in the discretization, leading to so-called stabilized discretizations. A sur-
vey on stabilized methods, in particular in the framework of finite element methods, can be found in
the monograph [29]. Since the publication of this monograph, several methods and their numerical
analysis have been developed further, e.g., the analysis of algebraic flux correction (AFC) schemes,
e.g., see [3].

Screening the literature on finite element methods for steady-state convection-diffusion-reaction equa-
tions, one finds that by far most publications are for conforming finite elements with Lagrangian basis
functions, often of first order. But even for stabilized methods using such basis functions, there are a
number of important unresolved questions, which are formulated in [23]. The most popular stabiliza-
tion for conforming finite elements is the SUGP (streamline-upwind Petrov–Galerkin) or streamline-
diffusion method from [20, 5].

For discontinuous Galerkin (DG) methods, one can find, in comparison with conforming finite ele-
ment methods, only rather few contributions for convection-diffusion equations. The first proposal of
using discontinuous finite element functions, for first order hyperbolic problems, dates back to [27].
During the last decades, DG approaches gained also popularity for discretizing second order ellip-
tic equations, e.g., see the monographs [28, 11, 12]. Big advantages of DG methods, in comparison
with conforming finite element methods, are that they allow comparatively easily to use hp-adaptivity,
e.g., see [15], even for polygonal or polyhedral meshes, [7]. Concerning convection-diffusion-reaction
equations, error analysis can be found in [19, 17, 6, 25, 2, 11], which will be discussed in some detail
at the end of Section 2. In the competitive numerical study [1], a DG method was included. On the one
hand, this method computed numerical solutions with very sharp layers. But on the other hand, the
solutions possessed very large over- and undershoots in a vicinity of layers.

The goal of this paper consists in studying approaches for reducing these spurious oscillations. Of
course, the ideal situation in practice is a numerical solution without such oscillations, but often small
spurious oscillations can be tolerated. For conforming finite elements, there are many proposals of
methods for reducing spurious oscillations. A large number of these methods takes the SUPG method
as basic stabilized discretization and then adds an additional term to reduce the spurious oscillations of
the SUPG method, e.g., see [22] for a survey of these so-called SOLD (spurious oscillations at layers
diminishing) methods and [30] for a more recent proposal. Usually, SOLD methods are nonlinear and
they are used for lowest order finite elements. Another idea consists in optimizing the stabilization
parameter of the SUPG method in order to reduce spurious oscillations, e.g., see [24, 26]. For DG
methods, the numerical analysis in [17, 6, 25, 2, 11] shows that there is a control of the error of the
streamline derivative without introducing a stabilization term of streamline-diffusion type. This situation
is of advantage in practice since there is no need to choose a stabilization parameter. Because of this
advantage, we will not consider the SUPG stabilization for DG methods, although it is possible to
utilize it, e.g., see [2, Remark 3.1]. Thus, the optimization of a stabilization parameter is not possible.
There would be still the way of adding terms like in SOLD methods, but we decided not to pursue
this approach for the following reasons. First, we liked to consider only linear methods. It has been
observed for many SOLD methods that the solution of the nonlinear problems requires often many
iterations and it is time-consuming, e.g., see [22]. And second, we liked to study also methods with
higher polynomial degree. A high polynomial degree is a good choice away from layers, but in a vicinity
of layers a low polynomial degree is more appropriate, since Sobolev norms of the analytic solution
at layers, which have an impact on the error, scale with inverse powers of the diffusion parameter and
the power increases with the order. For these reasons, post-processing approaches will be considered
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On reducing spurious oscillations in DG methods for convection-diffusion-reaction equations 3

that replace in a vicinity of layers the higher order polynomial by a low order one, whose definition
utilizes a slope limiter. Such methods were proposed for constant replacements in [13, 14] and for (at
most) linear replacements in [9, 28]. Note that such an easy local change of the polynomial degree
is not possible for conforming finite elements. A main contribution of this paper consists in presenting
some generalizations and modifications of the post-processing methods. A second main contribution
is the first step of a systematic numerical investigation of these methods for steady-state convection-
diffusion-reaction equations.

The paper is organized as follows. Section 2 introduces the DG method that is studied. The ap-
proaches for reducing spurious oscillations are described in Section 3. Numerical studies of these
approaches at two standard problems are presented in Section 4. Finally, a summary and an outlook
are provided.

2 DG Methods for Convection-Diffusion-Reaction Equations

Throughout the paper, standard notations will be used for Lebesgue and Sobolev spaces and their
norms. A norm of a space X is denoted by ‖ · ‖X , a seminorm by | · |X , and the inner product in
L2(Ω) is denoted by (·, ·).

Starting point of a DG method is the weak formulation of (1): Find u ∈ H1
D,g(Ω) such that

(ε∇u,∇v) + (b · ∇u+ cu, v) = (f, v) ∀ v ∈ H1
D,0(Ω), (2)

where
HD,g =

{
v ∈ H1(Ω) : v|ΓD

= g
}
, HD,0 =

{
v ∈ H1(Ω) : v|ΓD

= 0
}
.

The Lax–Milgram theorem shows that under the conditions

(µ(x))2 = c− 1

2
∇ · b ≥ µ0 > 0, ΓD 6= ∅, b · n ≥ 0 on ΓN,

problem (2) possesses a unique solution, e.g., see [29, Section III.1.1].

Let Th be a decomposition of Ω into simplicial or quadrilateral/hexahedral mesh cells {K} with pair-
wise disjoint interiors such that Ω = ∪K∈ThK . The triangulation should be admissible in the usual
sense, see the definition in [8, p. 38, p. 51]. Regular families of triangulations will be considered,
e.g., see [4, Def. 4.4.13], such that each (open) facet of a mesh cell which lies on Γ is either con-
tained in ΓD or in ΓN. The area of a mesh cell K is denoted by |K|, its diameter by hK , and it is
h := maxK∈Th hK . For each mesh cell K ∈ Th, the set of all facets E ⊂ ∂K is denoted by Eh(K).
Then, the set of all facets is Eh := ∪K∈ThEh(K), such that Eh = E I

h∪∂Eh, where E I
h denotes the set

of all interior facets and ∂Eh := Eh ∩ ∂Ω the set of facets on the boundary. Furthermore, the set of
the facets on the Dirichlet boundary is denoted by ED

h := ΓD ∩ Eh and the notation E ID
h := E I

h ∪ ED
h

is used. The inflow boundary edges are denoted by E−h := Γ−∩Eh. Let hE be the diameter of a facet
E. Because of the regularity of the families of triangulations, there exists a constant C > 0 such that
for all Th and all K ∈ Th it holds that hE ≤ hK ≤ ChE .

Two mesh cells Ki, Kj ∈ Th are called neighbors along a facet E ∈ Eh if E = Ki ∩ Kj . For
K ∈ Th, let nK denote the unit outer normal vector on ∂K . Given a fixed numbering of the mesh
cells K0, K1, K2, . . ., the unit normal vector nE on a facet E ∈ Eh is defined as follows

nE :=

{
nK , if E ∈ ∂Eh ∩ Eh(K) for a K ∈ Th,
nKi

, if Ki and Kj are neighbors along facet E and i < j.
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D. Frerichs, V. John 4

The space of polynomials of at most degree r on simplicial mesh cells K is denoted by Pr(K)
and the space of tensor products of polynomials of degree at most r in each coordinate direction on
quadrilateral/hexahedral mesh cells by Qr(K). For DG methods, the broken Sobolev space

Hs(Th) =
{
v ∈ L2(Ω) : v|K ∈ Hs(K) for any K ∈ Th

}
⊃ Hs(Ω), s ≥ 0,

together with the norm and seminorm

‖v‖2
Hs(Th) :=

∑
K∈Th

‖v‖Hs(K), |v|2Hs(Th) :=
∑
K∈Th

|v|Hs(K)

is defined. Then, the finite element space withR either P (simplices) or Q (quadrilaterals/hexahedra)
is given by

Rh,r :=
{
vh ∈ L2(Ω) : vh|K ∈ Rr(K) for any K ∈ Th

}
⊂ Hs(Th).

This space contains functions that are discontinuous along interior facets. The jump along a facet E,
whose sign depends on the numbering of the mesh cells, is defined by

JvKE :=


v|∂Ki∩E − |∂Kj∩E, if Ki and Kj are neighbors along facet E and

i < j,

v|∂K∩E, if E ∈ ∂Eh ∩ Eh(K) for a K ∈ Th,

and the average of a function on E by

〈v〉E :=


1
2
(v|∂Ki∩E + v|∂Kj∩E), if Ki and Kj are neighbors along facet E

and i < j,

v|∂K∩E, if E ∈ ∂Eh ∩ Eh(K) for a K ∈ Th.

The used DG discretization of (1) reads as follows: Find uh ∈ Rh,r such that

aDG(uh, vh) = fDG(vh) ∀ vh ∈ Rh,r, (3)

where the bilinear form aDG : H1(Th) × H1(Th) → R is defined as aDG(v, w) = aε(v, w) +
abc(v, w) with

aε(v, w) =
∑
K∈Th

∫
K

ε∇v · ∇w dx

−
∑
E∈EIDh

ε

∫
E

(
〈∇v · nE〉E JwKE + κ 〈∇w · nE〉E JvKE

)
ds

+
∑
E∈EIh

σ

hE

∫
E

JvKE JwKE ds+
∑
E∈EDh

2σ

hE

∫
E

vw ds

(4)

and

abc(v, w) =
∑
K∈Th

∫
K

(
b · ∇vw + cvw

)
dx−

∑
E∈EIh

∫
E

b · nE JvKE 〈w〉E ds

+
∑
E∈EIh

∫
E

η

2
|b · nE| JvKE JwKE ds−

∑
E∈E−h

∫
E

b · nEvw ds.

(5)
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The right-hand side fDG : H1(Th)→ R of (3) is given by

fDG(w) =
∑
K∈Th

∫
K

fw dx−
∑
E∈E−h

∫
E

b · nEgw ds

−
∑
E∈EDh

εκ

∫
E

∇w · nEg ds+
∑
E∈EDh

2σ

hE

∫
E

gw ds.

(6)

Method (3) contains three user-chosen parameters. The discretization (4) of the Laplacian is also
called interior penalty (IP) method. The parameter κ in (4) determines the symmetry properties of the
discretization of the Laplacian: κ = 1 gives the symmetric (SIP) method, κ = 0 the incomplete (IIP)
method, and κ = −1 the non-symmetric (NIP) method. It is well known, that aε is coercive for NIP and
any σ > 0 and for SIP and IIP if σ is sufficiently large, where the necessary magnitude of σ depends
on ε. e.g., see [28, Chapter 2.7.1]. Note that κ appears also on the right-hand side (6). The parameter
σ in (4) and (6) is a positive penalty parameter. The stabilization parameter σ is incorporated in the
way as proposed in [25, Section 2.2], since the analysis in this work shows that it is more equilibrated
in this form compared with other forms that can be found in the literature. Finally, the stabilization
parameter η ≥ 0 appears in (5), where η = 0 refers to a central flux and η = 1 refers to an upwind
flux across the facet E. In our simulations, always η = 1 was utilized.

A convergence analysis for the DG method (3)–(6) for the case κ = −1 (NIP) was developed in [19].
In particular, a robust error estimate was derived, i.e., the constant of the error bound does not blow up
as ε → 0. As usual for convection-diffusion equations, the norm for which the error bound is proved
contains contributions from the bilinear form. For functions that are piecewise sufficiently smooth, with
respect to the underlying grid, it is |||v|||2DG = aDG(v, v). An estimate of the form

|||u− uh|||DG ≤ Chr
(

ε

r2r−1
+
h‖b‖L∞
r2r+1

+ C1(∇ · b, c, µ)
h2‖µ‖2

L∞

r2r+2

)1/2

‖u‖Hr+1 ,

was proved, provided that σ = εr2, where the constantC is independent of ε. Thus, in the convection-
dominated regime, where ε ≤ h‖b‖L∞ , the order of error reduction is r + 1/2. All error bounds that
will be mentioned below have the same order of convergence r and the same order of error reduction
r + 1/2 if ε ≤ h‖b‖L∞ as the bound from [19].

A convergence analysis for the SIP method of the diffusive term and for a different norm is presented
in [25, Chapter 5.1], see also [17]. This norm contains explicitly a term with streamline derivative(∑

K∈Th

h‖b · ∇v‖2
L2(K)

)1/2

.

The derived error bound is robust, which shows that the DG method controls the streamline deriva-
tive even without the presence of a special stabilization term for this derivative. Another robust error
analysis for the SIP method of the diffusive term, even for heterogeneous diffusion, can be found in
[11, Chapter 4.6.3.2]. This analysis considers a slightly different norm than the analysis in [17, 25],
where besides a term for the streamline derivative also terms appear that contain the normal compo-
nent of the convection field on facets. In [6], the error analysis of a so-called multiscale DG method
is presented. A class of DG methods, which is derived with the so-called weighted-residual approach,
was analyzed in [2]. The methods from [19] and [6] belong to this class. A robust estimate for a norm
containing the streamline derivative is proved in [2].
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3 Approaches for Reducing Spurious Oscillations in Numerical
Solutions of Convection-Diffusion-Reaction Equations

This paper considers post-processing techniques for reducing spurious oscillations. After having com-
puted the discrete solution with the DG method (3)–(6), the idea consists in identifying those subre-
gions where unphysical oscillations might occur and then to reduce or clip the degree of the poly-
nomial approximation in these subregions, thereby utilizing slope limiters. Thus, the post-processing
techniques consist of the following two steps:

1 Identify and mark cells where the numerical solution might possess spurious oscillations.

2 Approximate the solution on the marked cells by a polynomial of lower degree by utilizing a
slope limiter.

Post-processing approaches of this kind, which are also included in the numerical studies, are pro-
posed in [9, 13, 14]. In this section, these approaches are described and several generalizations and
modifications will be proposed. The presentation will be restricted to the two-dimensional case. An
extension to three dimensions is generally straightforward.

3.1 Post-Processing Based on Linear Reconstructions Across Faces of Mesh
Cells

This post-processing approach was proposed in [9], see also [28, Chapter 4.3.1] for a presentation. It
is formulated for triangles, it is derived from the assumption that spurious oscillations in the discrete
solution only arise if they occur in its linear part, which is its L2(Ω) projection into the space of
piecewise linear functions, and it uses a (at most) linear approximation in a vicinity of layers.

Let K be an interior triangle, thus possessing three neighbors K̂K,0, K̂K1 , K̂K,2, where the num-
bering is in accordance to the local edge numbering of K . The barycenters of the triangles are de-
noted by bK and bK̂K,i

, i = 0, 1, 2, respectively, and the midpoints of the edges are labeled with

mK,i, i = 0, 1, 2, see Figure 1. Using the notation uh,K :=
∫
K
uh dx/|K|, it is checked whether

uh|K(mK,i) is between uh,K and uh,K̂K,i
for i = 0, 1, 2. If for at least one i, the value at the edge

midpoint is not between the cell averages of the adjacent cells, the cell K is marked.

For all marked cells three affine functions Lj(x, y) := aj0,K + aj1,Kx + aj2,Ky, j = 0, 1, 2, are
constructed. They are defined by

Lj(bK) = uh,K , Lj(bK,j+1) = uh,K̂K,j+1
Lj(bK,j+2) = uh,K̂K,j+2

,

where bK,3 := bK,0, bK,4 := bK,1, and K̂K,3 := K̂K,0, K̂K,4 := K̂K,1. Afterwards the three affine

functions are ordered by decreasing values
√

(aj1,K)2 + (aj2,K)2.

Starting with the largest of these values, the affine functions are now tested whether Lj(mi) lies
between uh,K and uh,K̂K,i

for i = 0, 1, 2. If for a j the affine function satisfies this condition, then
uh is locally replaced by this function and the remaining limiters are discarded. Otherwise, i.e., if
none of the three affine function fulfills the condition, uh gets replaced by uh,K . An advantage of this
approach is that it does not contain user-chosen parameters. Below, it will be called LinTriaReco (linear
approximation on triangles based on a reconstruction).
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bK

bK̂K,0

bK̂K,1

bK̂K,2

mK,0

mK,1

mK,2

K

K̂K,0

K̂K,1

K̂K,2

Figure 1: Notations for an interior triangle K having three neighbors K̂K,i with barycenters bK̂K,i
and

edge midpoints mK,i, i = 0, 1, 2.

∂Ω

bK

bK̂K,i

K

K̂K,i

mK,i

Figure 2: Construction of a ‘virtual’ triangle K̂K,i by reflecting the original triangleK across the bound-
ary edge Ei.

Algorithm LinTriaReco is only defined if the triangles possess three neighbors. Since layers appear
also on boundary triangles, it is desirable to extend the algorithm to those cells. A possible approach
for boundary triangles is to construct ‘virtual’ neighbors, define a solution on them and then apply the
algorithm as before. This is done in the following way. For a boundary edge Ei ∈ Eh(K) ∩ ∂Eh of
K , a ‘virtual’ triangle K̂K,i is constructed by reflecting the original triangle across Ei, see Figure 2. In
addition to that, the algorithm requires a mean value of some function uh on the ‘virtual’ triangles. For
such a triangle K̂K,i, the ‘virtual’ solution uh|K̂K,i

is defined to be the continuation of uh from K to

K̂K,i, which is well defined, since uh is a polynomial on K .

Since undershoots and overshoots can occur not only at the edge midpoint but also at a vertex of a cell,
it might be a good idea to include those points to the decision whether the finite element function on a
cell shall be limited or not. A possible generalization of the original indicator is, instead of considering
the value of uh at the edge midpoint, it is examined whether the integral mean along the edge lies
between the cell averages of the two adjacent cells.

Another crucial point of the original algorithm is the fact that it may decrease locally the maximum in a
cell but at the same time decreases also the minimum, or vice versa. In the worst case, it can happen
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that the total amount of overshoot is decreased but at the price that the total amount of undershoot is
increased. Altogether, it might be a safer choice, with respect to the size of the spurious oscillations,
to always replace the solution on marked cells by a constant, namely by its local integral mean.

The modified post-processing algorithm that uses the approach for boundary cells described above,
the integral mean values along the edges, and a locally constant approximation of marked cells is
denoted by ConstTriaReco.

Next, an extension of the post-processing approaches from triangles to quadrilaterals will be pro-
posed. Taking three out of the four edges, one can perform the same methods as for triangles. There
are four possibilities for choosing three edges and for the method LinQuadReco the post-processing
is computed for all of them. This gives four admissible affine functions, where admissible has to be
understood in the sense as explained for triangles. From these functions, this is chosen as local ap-
proximation with the smallest Euclidean norm

√
(a1,K)2 + (a2,K)2. The method ConstQuadReco

applies the ideas of ConstTriaReco to the quadrilateral. If in this method the cell is marked by one
combination of edges, it is not longer necessary to consider the other combinations since the locally
constant approximation does not depend on the neighbor cells.

3.2 Post-Processing Based on Weighted Mean Derivatives

In [9], this approach is proposed only for axis-parallel rectangular grids, see [28, Chapter 4.3.1] for
another presentation. Here, a generalization to quadrilaterals being the image of a reference cell under
an affine transform is presented.

In the code used in the numerical simulations presented in Section 4, so-called mapped finite elements
are implemented, i.e., the basis functions and nodal functionals of a finite element are defined on a
reference cell K̂ and the functions and functionals on the physical cell K are given by the reference
transform FK : K̂ → K , where K̂ := [−1, 1]2.

Since mapped finite elements are used, it is near at hand to base the definition of the post-processing
technique on the reference cell and the reference transform. Consider from now on the case that the
transform is affine. Then, on K , the functions

ψ(x, y) =
F−1
K,1(x, y)

2
, ξ(x, y) =

F−1
K,2(x, y)

2

are defined, where F−1
K,1 and F−1

K,2 are the first and second component of the inverse of the transform
FK , respectively. Note that for axis-parallel rectangular cells both functions coincide with their respec-
tive definition given in [28, Chapter 4.3.1] and differ from [9] by a factor of one half, if the reference
transform does not rotate or reflect the vertices of the reference cell.

Locally on K , the discrete function uh can be expanded by

uh|K(x, y) = a0,K + a1,Kψ(x, y) + a2,Kξ(x, y) + higher order terms, (7)

where a0,K := uh,K is defined to be the integral mean of uh over K . Defining the following nodal
functionals

N0(vh) :=
1

|K|

∫
K

vh dx, N1(vh) := C1

∫
K̂

vh(FK(x̂, ŷ)) x̂ dx̂,

N2(vh) := C2

∫
K̂

vh(FK(x̂, ŷ)) ŷ dx̂,
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On reducing spurious oscillations in DG methods for convection-diffusion-reaction equations 9

then theNK -dimensional finite element space onK is equipped with a so-called local basis {ϕi}NK−1
i=0 ,

i.e., it holdsNi(ϕj) = δij , i = 0, . . . , NK−1, where δij is the Kronecker symbol, and ϕ0 = 1, ϕ1 =
ψ, ϕ2 = ξ. Note that the nodal functionals and the local basis functions for i ≥ 3 are not needed for
computing the coefficients in (7).

Altogether, the terms with a1,K and a2,K in (7) can be interpreted as the collection of all the linear
parts of uh. Neglecting the higher order terms in (7), denoting the resulting affine function with ũ, and
denoting by BK the matrix of the affine transform, one finds that

∇ũh =
B−1
K

2

(
a1,K

a2,K

)
.

The first factor on the right-hand side can be considered to be a weight. Since ũh comprises only the
linear part of uh, a1,K and a2,K can be thought of providing information on a weighted mean derivative
of uh in K .

If |a1,K | or |a2,K | are too large, then slope limiting is applied by considering the jumps of the mean
values across the edges in the respective directions. LetKl be the neighbor ofK across the image of
Êl, and use analogously the notations Kr, Kb, and Kt. It is assumed that Êl := (−1, 1)(−1,−1),
Êr := (1,−1)(1, 1), Êt := (1, 1)(−1, 1) and Êb = (−1,−1)(1,−1). Now, for two user-chosen
constants Mlim ≥ 0 and γ ≥ 0, modified coefficients

a1,K :=

{
a1,K , if |a1,K | ≤Mlim,

minmod (a1,K , γ(a0,Kr − a0,K), γ(a0,K − a0,Kl
)) , else,

a2,K :=

{
a2,K , if |a2,K | ≤Mlim,

minmod (a2,K , γ(a0,Kt − a0,K), γ(a0,K − a0,Kb
)) , else

are computed. The minmod function is defined by

minmod(a0, a1, a2) :=

{
s mini=0,1,2 |ai|, if s := sign(a0) = sign(a1) = sign(a2),

0, else.

For K owing boundary edges and therefore having less than four neighbors, the minmod function is
called without the entry that corresponds to the non-existing neighbor(s).

The indicator tests whether a1,K 6= a1,K or a2,K 6= a2,K . If this is the case, then the cell is marked
and the solution is replaced by the (at most) affine function

a0,K + a1,Kψ(x, y) + a2,Kξ(x, y). (8)

In the numerical simulations, we used the same parameters as proposed in [28, p. 104]:Mlim = 0 and
γ = 1. This method will be called LinQuadDeriv , because of the connection to the weighted mean
derivative explained above.

With the same arguments as for triangles, the linear approximation (8) might not sufficiently reduce
the spurious oscillations. For this reason, we studied also a slight variation of the method that uses
locally the constant approximation a0,K instead of (8), which is called ConstQuadDeriv .

A generalization of this approach to d-linear reference transforms will be subject to future research.

DOI 10.20347/WIAS.PREPRINT.2769 Berlin 2020



D. Frerichs, V. John 10

3.3 Post-Processing Based on Evaluating Jumps Across Facets

This section deals with a post-processing technique that reconstructs the solution on all marked cells
by a piecewise constant function. It was first introduced in [13] and further analyzed in [14].

The indicator is based on the observation from numerical studies with DG methods with r = 1 that on
mesh cells K where the numerical solution is smooth, it holds

∑
E∈Eh(K)∩EIh

∫
E

JuhK
2
E

h5
K

ds ≈
∑

E∈Eh(K)∩EIh

∫
E

(O(h2
K))2

h5
K

ds ≈ O(1), (9)

whereas in the vicinity of layers, it is

∑
E∈Eh(K)∩EIh

∫
E

JuhK
2
E

hK
ds ≈

∑
E∈Eh(K)∩EIh

∫
E

(O(1))2)2

hK
ds ≈ O(1). (10)

Hence, for α ∈ (1, 5), the quantity

∑
E∈Eh(K)∩EIh

∫
E

JuhK
2
E

hαK
ds (11)

can serve as an indicator [14]. Also note that this indicator works both on triangles and quadrilaterals.
In [13, 14], it is proposed to use basically α = 5/2. To be precise, all cells are marked for which

∑
E∈Eh(K)∩EIh

∫
E

JuhK
2
E

hK |K|3/4
ds ≥ 1. (12)

On the marked cells, the discrete solution is replaced by the integral mean value uh,K , i.e., always a
constant approximation is applied. Besides α, a second user-chosen constant is the 1 on the right-
hand side of (12).

The original method from [13, 14] is included in the numerical studies, where it will be denoted by
ConstJump. Note that the asymptotic behavior (9) for smooth solutions can be deduced also from error
bounds, since a sum of jumps across facets is on the left-hand side of these bounds. In addition, the
power in the denominator increases with increasing polynomial degree of the finite element function.
However, for the post-processing approach, (9) is not really of interest. because one likes to detect
the non-smooth subregions. These are indicated by (10), which holds independently of the polynomial
degree. Consequently, the approach from [13, 14] can be applied also for DG methods with r > 1.

Note that the method ConstJump should be utilized only for small mesh cells, for which a discussion
about an asymptotic behavior is meaningful. If hK |K|3/4 > 1, or even hK |K|3/4 � 1, then the
denominator in (12) is large. In this case, (12) might not be satisfied even for large jumps and the cell
is not marked.

The choice α = 2.5 seems to be based on the experience of the authors of [13, 14]. Other choices
are also possible, e.g., increasing α would increase the number of mesh cells to be marked. We did
not perform numerical studies with respect to choosing α, but investigated a different modification of
this method, which is inspired from (11) and will be called ConstJumpMod . First, instead of using the
sum over all facets of K , each facet is considered individually. In this way, it does not play any role if
the facets are of much different size. In addition, a non-smooth behavior of the discrete solution across
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just one facet can be detected better, which might occur if this facet is aligned with a layer. Then, the
ansatz for the smoothness indicator is

∫
E

JuhK
2
E ds = C0h

αE
E =⇒ αE =

ln
(

1
C0

∫
E

JuhK
2
E ds

)
ln(hE)

, for hE < 1, (13)

such that αE can be computed for each facet. Next, αK is set to be the smallest value of αE for
the facets of K . Finally, K is marked for a constant approximation if αK ≤ αref for some user-
chosen constant αref . The second user-chosen constant in this approach was set to be C0 = 1 for all
numerical simulations.

Similarly to the original method ConstJump, there is an issue if hE ≥ 1. We think that also in this
situation, the jumps of the numerical solution across facets provide information whether or not the
facet is in a vicinity of layers. Because, on the one hand, hE ≥ 1 did not occur in our numerical studies
and, on the other hand, we think that the ideas we have so far for a scaling invariant modification of
this approach need still to be improved, we like to postpone this issue to future research.

4 Numerical Studies

The goal of the numerical studies consists in investigating to which extent the methods presented in
Section 3 reduce spurious oscillations which are introduced by the DG method (3) – (6). To this end,
two standard benchmark problems for convection-diffusion equations in two dimensions are consid-
ered.

All simulations were performed with the code PARMOON, cf. [16, 31]. The implementation of the DG
method was validated by first considering a smooth solution and comparing the orders of conver-
gence for the pure diffusion problem with the orders proposed by numerical analysis, e.g., see [12,
Chapter 2.7]. Then, the same approach was performed for convection-diffusion-reaction equations
with respect to the analytic convergence results from [25, 11]. For the sake of brevity, we will present
below only results for the SIP discretization diffusive term, i.e., κ = 1 in (4) and (6). As already
mentioned, we used always the upwind scheme, i.e., η = 1 in (5). The choice of the last parame-
ter, σ = 5r2ε, was guided by [28, Chapter 2.7.1] and we did not encounter any instabilities in the
numerical simulations with this selection.

All linear systems of equations were solved with the sparse direct solver UMFPACK [10].

A first measure for the size of the spurious oscillations is just to take the smallest and largest value of
the discrete solution uh into account and compare them with the minimal value umin and the maximal
value umax of the solution of the continuous problem. This approach gives the measure

oscmax(uh) = max
(x,y)∈Ω

uh(x, y)− umax + umin − min
(x,y)∈Ω

uh(x, y). (14)

In this measure, just two values of uh determine the quality of the numerical solution. It will not be
distinguished between numerical solutions with many large spurious oscillations, close to the maximal
ones, and solutions with few or only one large spurious oscillations. For this reason, we decided to use
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also a measure that takes the size of all spurious oscillations into account. This measure is

oscmean(uh) =
1

|Th|

[ ∑
K∈Th

max{0, max
(x,y)∈K

uh(x, y)− umax}

+ max{0, umin − min
(x,y)∈K

uh(x, y)}

]
,

(15)

where |Th| is the number of mesh cells of Th.

The following approaches were studied in the numerical simulations:

• Galerkin. DG method (3)–(6) without post-processing for reducing spurious oscillations,

• LinTriaReco. triangular grids, post-processing with locally linear approximation, based on a recon-
struction across facets, see Section 3.1,

• ConstTriaReco. modification of LinTriaReco as described in Section 3.1,

• LinQuadReco. extension of LinTriaReco to quadrilaterals, see Section 3.1,

• ConstQuadReco. extension of ConstTriaReco to quadrilaterals, see Section 3.1,

• LinQuadDeriv . quadrilateral grids, post-processing with locally linear functions, post-processing
based on a mean derivative, Mlim = 0, γ = 1, see Section 3.2,

• ConstQuadDeriv . like LinQuadDeriv , but with locally constant approximation, Mlim = 0, γ = 1,
see Section 3.2,

• ConstJump. all types of grids, locally constant approximation, post-processing based on evaluating
jumps across facets, α = 2.5, see Section 3.3,

• ConstJumpMod . modification of ConstJump, αref = 4, C0 = 1, see Section 3.3.

For the sake of brevity, we do not report results of parameter studies, but show only results for the
parameters given above. For LinQuadDeriv and ConstJump, these parameters are proposed in the
literature.

Simulations were performed with polynomials of degree r ∈ {1, 2, 3, 4}.

Example 1 (Convection skew to the mesh). This example is a slight variation of a classical benchmark
problem proposed in [21]. It is given in Ω = (0, 1)2 with b = (cos(−π/3), sin(−π/3))T , c = f =
0 and the following Dirichlet boundary condition

u =

{
1 (y = 1 ∧ x > 0) or (x = 0 ∧ y > 0.75),

0 else,

see Figure 3 for a sketch of the solution. The solution has an interior layer in the direction of the
convection that starts at the jump of the boundary condition and two boundary layers at the outflow
boundary. It takes values in [0, 1] = [umin, umax].

The modification of the present configuration compared with [21] consists in placing the jump of
the boundary condition at (0, 0.75) instead of (0, 0.7). With this modified position, the jump of the
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Figure 3: Example 1, sketch of the solution for ε = 10−8, computed with a nonlinear algebraic flux-
corrected (AFC) finite element method with Kuzmin limiter, see [3].

boundary condition is situated at a vertex of the triangulation after few refinement steps starting with
a standard coarse grid. First, it is usually advisable to adjust the grid to known singularities of the
solution. And second, particularly for DG methods, the piecewise smoothness of the solution, with
respect to the given triangulation, plays a role. If the singularity is not located at a vertex, then this
smoothness is very low in the affected mesh cell.

The initial quadrilateral grid consists of just one mesh cell and the initial triangular grid of two cells,
which are obtained by dividing Ω with the diagonal from (0, 1) to (1, 0). Results will be shown
starting from appropriate refinements of these grids.

Results for two different parameters are presented: ε = 10−4 for a moderately convection-dominated
problem and ε = 10−8 for a strongly convection-dominated problem.

The results for ε = 10−4 can be found in Figures 4–7. Considering first triangular grids, a consid-
erable reduction of oscmax(uh) can be observed for ConstJump and ConstJumpMod on many grids,
where ConstJumpMod is often a little bit better. For ConstTriaReco, there is usually a notable reduc-
tion achieved whereas the maximal size of spurious oscillations for LinTriaReco is often the same as
for Galerkin. But there is no method that removes the spurious oscillations completely. Concerning
oscmean(uh), Figure 5, one can see that all approaches reduce the spurious oscillations compared with
Galerkin. Again, ConstJumpMod is usually among the best methods, followed by ConstJump and
ConstTriaReco. The values of oscmean(uh) for the last method increase sometimes on finer meshes.
The decrease of oscmean(uh) for successive mesh refinement is expected, since the total number of
mesh cells scales quadratically and the number of cells in a vicinity of layers, which are anticipated
to be marked, scales linearly.

On quadrilateral grids, Figures 6 and 7, good reductions of oscmax(uh) are usually obtained with
ConstQuadReco, ConstJumpMod and, apart of Q3 with LinQuadDeriv and ConstQuadDeriv. These
methods show also the best results with respect to oscmean(uh).
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Figure 4: Example 1, triangular grids, ε = 10−4, maximal value of oscillations defined in (14). The
results of LinTriaReco lie often above the ones of Galerkin. Results not shown lie out of range of the
plot.
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Figure 5: Example 1, triangular grids, ε = 10−4, mean value of oscillations defined in (15).
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Figure 6: Example 1, quadrilateral grids, ε = 10−4, maximal value of oscillations defined in (14). The
results of LinQuadReco lie often above the ones of Galerkin as well as the values for oscmax(uh) of
ConstQuadDeriv hide the results of LinQuadDeriv . Results not shown lie out of range of the plot.
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Figure 7: Example 1, quadrilateral grids, ε = 10−4, mean value of oscillations defined in (15). The
values for oscmean(uh) of ConstQuadDeriv may hide the results of LinQuadDeriv .
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Figure 8: Example 1, triangular grids, ε = 10−8, maximal value of oscillations defined in (14). The
values for oscmax(uh) of LinTriaReco may hide the results of Galerkin.

Figures 8–11 depict the results for the strongly convection-dominated regime ε = 10−8.

On triangular grids, good results concerning oscmax(uh) are usually obtained with ConstJumpMod.
Often, also ConstJump reduces the maximal oscillations quite well, sometimes ConstTriaReco. With
LinTriaReco, one can see in some cases even larger maximal oscillations than with Galerkin. How-
ever, Figure 9 demonstrates that all methods reduce the mean oscillations. In this respect, ConstJump-
Mod is again often the best approach. For LinTriaReco, one can conclude from the obtained results
that there are much less oscillations than for Galerkin, but there are still very few large ones among
them.

Evaluating the results on quadrilateral grids, one finds that ConstJumpMod belongs also in this case
to the best method concerning oscmax(uh). ConstJump for Q1 and LinQuadDeriv and ConstQuad-
Deriv for Q4 show also good results. With respect to oscmean(uh), ConstJumpMod was always a
good approach, for Q1 and Q2 usually the best one. For higher order elements, the methods Con-
stQuadReco, LinQuadDeriv, and ConstQuadDeriv lead usually to similar or even better results than
ConstJumpMod.

Two numerical solutions for approaches that lead to good solutions of both oscmax(uh) and oscmean(uh)
are presented in Figure 12. The exponential layers at the outflow boundaries are not present in these
solutions due to the weak imposition of the homogeneous Dirichlet boundary condition. In both nu-
merical solutions, one can observe that there are spurious oscillations caused by mesh cells on which
the numerical solution is not constant, i.e., these mesh cells were not marked by the respective meth-
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Figure 9: Example 1, triangular grids, ε = 10−8, mean value of oscillations defined in (15).
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Figure 10: Example 1, quadrilateral grids, ε = 10−8, maximal value of oscillations defined in (14). The
results of LinQuadReco lie often above the ones of Galerkin as well as the values for oscmax(uh) of
ConstQuadDeriv hide the results of LinQuadDeriv .

DOI 10.20347/WIAS.PREPRINT.2769 Berlin 2020



On reducing spurious oscillations in DG methods for convection-diffusion-reaction equations 21

102 103 104 105 106

10−4

10−3

10−2

10−1

Q1

number dof

o
sc

m
e
a
n
(u

h
)

102 103 104 105 106

10−4

10−3

10−2

10−1

Q2

number dof

o
sc

m
e
a
n
(u

h
)

102 103 104 105 106

10−4

10−3

10−2

10−1

Q3

number dof

o
sc

m
e
a
n
(u

h
)

102 103 104 105 106

10−4

10−3

10−2

10−1

Q4

number dof

o
sc

m
e
a
n
(u

h
)

Galerkin LinQuadReco ConstQuadReco LinQuadDeriv
ConstQuadDeriv ConstJump ConstJumpMod

Figure 11: Example 1, quadrilateral grids, ε = 10−8, mean value of oscillations defined in (15).

Figure 12: Example 1. Left: solution with P2 and ConstJumpMod for ε = 10−8. Right: solution with
Q4 and ConstQuadReco for ε = 10−8. The solutions are projected to piecewise linear or bilinear
functions by the visualization software.
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Figure 13: Example 2, sketch of the solution for ε = 10−8, computed with a nonlinear algebraic
flux-corrected (AFC) finite element method with Kuzmin limiter, see [3].

Figure 14: Example 2, initial grid.

Example 2 (Hemker problem). The Hemker problem, proposed in [18], is probably the benchmark
problem for convection-diffusion equations that possesses most features of problems which can be
found in application. It models the transport of energy from a body through a channel. The domain
for the Hemker problem is given by Ω = {(−3, 9) × (−3, 3)} \ {(x, y) : x2 + y2 ≤ 1},
and the coefficients by b = (1, 0)T , c = f = 0. Dirichlet boundary conditions are prescribed at
x = −3, with g = 0, and at the circular boundary with g = 1. On all other boundaries, homogeneous
Neumann conditions are used. A sketch of the solution is presented in Figure 13. The solution takes
values in [0, 1]. Boundary layers appear in front of the interior boundary and interior layers in the
direction of the convection starting at the body.

For the sake of brevity, only results on triangular grids and for a strongly convection-dominated
regime with ε = 10−8 are presented. The initial grid for the simulations, consisting 259 of triangles,
is shown in Figure 14.

Concerning oscmax(uh), see Figure 15, only ConstJumpMod was usually able to compute better
solutions than Galerkin and it was never worse than Galerkin. Again, LinTriaReco often increased
the maximal oscillations. With respect to the mean of the oscillations oscmean(uh), Figure 16, Con-
stJumpMod was the best method for P1. But for higher order elements, the reductions obtained with
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Figure 15: Example 2, triangular grids, ε = 10−8, maximal value of oscillations defined in (14). The
results of ConstJump may hide the ones of Galerkin and ConstTriaReco. Results not shown lie out of
range of the plot.

ConstTriaReco were often larger. Almost no improvement, compared with Galerkin, can be observed
for ConstJump.

Examples of numerical solutions are presented in Figure 17. Because of the weak imposition of the
Dirichlet boundary condition, the exponential layer at the front of the body is not present in these
solutions. Spurious oscillations occur above all at the starting points of the interior layers, which can
be seen best for the solution computed with P3 and ConstTriaReco.

5 Summary and Outlook

In this paper, a discretization of steady-state convection-diffusion-reaction equations by a DG finite
element method was considered. Post-processing methods for reducing the size of the spurious oscil-
lations in the obtained numerical solutions were studied: three methods from the literature and several
new modifications and extensions. All these methods are computationally very efficient since they do
not require to solve any linear or nonlinear system of equations.

The first step of a systematic numerical assessment was performed. It turned out that none of these
methods could remove all spurious oscillations in the considered examples. However, there were
always methods that could reduce the size of these oscillations, measured with the maximal value or
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Figure 16: Example 2, triangular grids, ε = 10−8, mean value of oscillations defined in (15). The
results of ConstJump may hide the ones of Galerkin.

with a mean value, considerably. On triangular grids, the method ConstJumpMod is the most promising
approach, but also ConstTriaReco led often to good results. On quadrilateral grids, there are even
more methods that behaved similarly well: ConstQuadReco, ConstQuadDeriv , LinQuadDeriv , and
ConstJumpMod .

Future work will include more studies on quadrilateral grids, which were deferred here because of the
length of the paper, and parameter studies for the methods with parameters. Algorithmic changes of
methods are possible, e.g., for ConstTriaReco. For this method, see Section 3.1, a different choice of
the extension to a virtual mesh cell could be a linear extension of the solution at the edge midpoint
with a slope given by the integral mean of the gradient of uh along the edge. Open issues are the
extension of LinQuadDeriv and ConstQuadDeriv for non-affine transforms, see Section 3.2, and the
scaling invariance of ConstJump and ConstJumpMod mentioned at the end of Section 3.3. Because
of the computational efficiency, it is also possible to combine methods, e.g., to mark mesh cells with
two different methods, which may be examined in the future.
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Figure 17: Example 2. Top: solution with P1 and ConstJumpMod . Bottom: solution with P3 and Con-
stTriaReco.
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