Weierstraß-Institut für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.
Preprint
ISSN 0946 - 8633

A solution of Braess' approximation problem on Powers of the Distance Function

Christiane Kraus
submitted: October 19, 2006
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Mohrenstrasse 39
10117 Berlin, Germany

No. 1171
Berlin 2006

[^0]Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: $\quad+49302044975$
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract

The polynomial approximation behaviour of the class of functions

$$
F_{s}: \mathbb{R}^{2} \backslash\left\{\left(x_{0}, y_{0}\right)\right\} \rightarrow \mathbb{R}, \quad F_{s}(x, y)=\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right)^{-s}, \quad s \in(0, \infty)
$$

is studied in [Bra01]. There it is claimed that the obtained results can be embedded in a more general setting. This conjecture will be confirmed and complemented by a different approach than in [Bra01]. The key is to connect the approximation rate of F_{s} with its holomorphic continuability for which the classical Bernstein approximation theorem is linked with the convexity of best approximants.
Approximation results of this kind also play a vital role in the numerical treatment of elliptic differential equations [Sau].

1 Introduction

We consider the following class of continuous functions

$$
\begin{aligned}
& F_{s}: \mathbb{R}^{2} \backslash\left\{\left(x_{0}, y_{0}\right)\right\} \rightarrow \mathbb{R}, \quad s \in(0, \infty), \\
& F_{s}(x, y)=\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right)^{-s}
\end{aligned}
$$

The polynomial approximation behaviour for that type of functions is of special interest in the numerical treatment of elliptic differential equations when fundamental solutions are to be approximated, see [Sau].
In [Bra01] the polynomial approximation error of the functions $F_{s}, s \in(0, \infty)$, is examined for the closed unit disk $\bar{B}_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$, where the singular point $\left(x_{0}, y_{0}\right)$ of F_{s} lies in the complement of \bar{B}_{2}, i. e. $\rho:=\sqrt{x_{0}^{2}+y_{0}^{2}}>1$.
To this end let us define the deviation of the set of real-valued polynomials $P_{n}, n \in \mathbb{N}$, to the function $F_{s}, s \in(0, \infty)$, by the standard approximation error

$$
E_{n}\left(K, F_{s}\right):=\inf \left\{\left\|F_{s}-P_{n}\right\|_{K}, P_{n}: \mathbb{R}^{2} \rightarrow \mathbb{R}, P_{n} \text { a polynomial of degree } \leq n\right\},
$$

where $\|\cdot\|_{K}$ denotes the supremum norm on a compact set $K \subset \mathbb{R}^{2}$.
The results of [Bra01] can be summarized as follows:
For every function $F_{s}, s \in(0, \infty)$, the n-th approximation error satisfies the exponential decay

$$
\begin{equation*}
E_{n}\left(\bar{B}_{2}, F_{s}\right) \leq \frac{M}{R^{n}} \tag{1}
\end{equation*}
$$

where R is any real number of the interval $(1, \rho)$ and $M>0$ is a constant independent of n. Consequently,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}\left(\bar{B}_{2}, F_{s}\right)} \leq \frac{1}{\rho} \tag{2}
\end{equation*}
$$

for every $s \in(0, \infty)$ and $\rho \in(1, \infty)$.
In addition, if $\rho \in(3, \infty)$ and $s \in(0, \infty)$ or $\rho \in(1, \infty)$ and $s \in(0,1]$ then R in inequality (1) can't be replaced by any number greater than ρ. Hence the relation

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}\left(\bar{B}_{2}, F_{s}\right)}=\frac{1}{\rho} \tag{3}
\end{equation*}
$$

holds for $\rho \in(3, \infty)$ and $s \in(0, \infty)$ or $\rho \in(1, \infty)$ and $s \in(0,1]$.
Estimate (2) is verified by means of Newman's trick and Cauchy's estimates whereas the winding number theorem and the de la Valee-Poussin theorem are applied to establish relation (3). The restrictions for ρ and s in (3) are caused by the method of the proof and don't seem natural. Therefore Braess conjectures that (3) is true for any $\rho \in(1, \infty)$ and any $s \in(0, \infty)$.
The aim of this note is to establish relation (3) for all $\rho \in(1, \infty)$ and $s \in(0, \infty)$. Thus
we obtain a characterization of the asymptotic approximation behaviour for the functions F_{s} in terms of their singularities.
According to (1) we only have to focus on the lower estimate

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}\left(\bar{B}_{2}, F_{s}\right)} \geq \frac{1}{\rho} \tag{4}
\end{equation*}
$$

for $\rho \in(1, \infty)$ and $s \in(0, \infty)$.
The nub for this bound is to study the behaviour of the functions F_{s}, $s \in(0, \infty)$, outside the unit disk. This stands in contrast to [Bra01], where all the estimates are deduced from the special structure of the functions F_{s} on the closed unit disk.

2 Sharp asymptotic approximation results

A famous result which links the polynomial approximation rate of a function in \mathbb{R} to its holomorphic continuability is Bernstein's classical approximation theorem, see Theorem 2.1. It is also an important tool for the verification of the lower bound (4).

Theorem 2.1 ([Ber52], 1912)
Let $f:[-1,1] \rightarrow \mathbb{R}$ be continuous and let $\rho>1$. Then

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}([-1,1], f)} \leq \frac{1}{\rho}
$$

if and only if f has a holomorphic extension to the set

$$
\{z \in \mathbb{C}:|h(z)|<\rho\},
$$

where $h: \mathbb{C} \rightarrow \mathbb{C} \backslash\{z \in \mathbb{C}:|z|<1\}$ is defined by $h(z)=z+\sqrt{z^{2}-1}$. The branch of the square root is chosen such that $h(x)>1$ for $x>1$.

A quick proof of Theorem 2.1 can be found in [DL93, p. 229-231].
Note, the function $h(z)=z+\sqrt{z^{2}-1}$ in Theorem 2.1 is the inverse of the Joukowski function with domain \mathbb{C} and range $\mathbb{C} \backslash \mathbb{D}$.
Beside Bernstein's theorem the proof of inequality (4) requires the following property of best approximants.

Lemma 2.1

Let X be the Banach space of all real-valued continuous functions defined on a compact subset $K \subset \mathbb{R}^{2}$ and let $X_{n}, n \in \mathbb{N}$, be the subspace of all real-valued polynomials P_{n}, $P_{n}: K \rightarrow \mathbb{R}$, of degree $\leq n$.
If K is symmetric with respect to the y-axis ${ }^{1}$, then an even function F in y has a best approximant \hat{P}_{n} which is even in y.

[^1]The proof follows immediately from the convexity of the (non-empty) set of best approximants, cf. [DL93].
Now we have all ingredients to establish the lower bound (4). Hence we achieve a complete characterization of the asymptotic behaviour of the approximation error for the functions $F_{s}, s \in(0, \infty)$.

Theorem 2.2

Let the function $F_{s}: \bar{B}_{2} \rightarrow \mathbb{R}$ be given by

$$
\begin{equation*}
F_{s}(x, y)=\frac{1}{\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right)^{s}} \tag{5}
\end{equation*}
$$

where $s \in(0, \infty)$ and $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ such that $\rho=\sqrt{x_{0}^{2}+y_{0}^{2}}>1$. Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}\left(\bar{B}_{2}, F_{s}\right)}=\frac{1}{\rho} \tag{6}
\end{equation*}
$$

Proof of Theorem 2.2: We justify the inequality

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}\left(\bar{B}_{2}, F_{s}\right)} \geq \frac{1}{\rho}
$$

for $\rho \in(1, \infty)$ and $s \in(0, \infty)$. Then the assertion follows in conjunction with estimate (2).

After rotating and translating coordinates we may assume that F_{s} takes the form

$$
F_{s}(x, y)=\frac{1}{\left((x-\rho)^{2}+y^{2}\right)^{s}}
$$

Since F_{s} is an even function in y there exists a best polynomial approximant \hat{P}_{n} of degree $\leq n$ to F_{s} on \bar{B}_{2} which is also even in y. Thus we can write

$$
\hat{P}_{n}(x, y)=\sum_{\substack{j, k=0 \\ 0 \leq j+2 k \leq n}}^{n} a_{j k} x^{j} y^{2 k}, \quad a_{j k} \in \mathbb{R}
$$

In view of the fact that $y^{2}=1-x^{2}$ for a any point $(x, y) \in \partial B_{2}, \partial B_{2}:=\left\{(x, y) \in \mathbb{R}^{2}\right.$: $\left.x^{2}+y^{2}=1\right\}$, we obtain

$$
\begin{aligned}
E_{n}\left(\bar{B}_{2}, F_{s}\right) & =\left\|F_{s}-\hat{P}_{n}\right\|_{\bar{B}_{2}} \geq\left\|F_{s}-\hat{P}_{n}\right\|_{\partial B_{2}} \\
& =\max _{x \in[-1,1]}\left|\frac{1}{\left(\rho^{2}-2 x \rho+1\right)^{s}}-\sum_{\substack{j, k=0 \\
0 \leq j+2 k \leq n}}^{n} a_{j k} x^{j}\left(1-x^{2}\right)^{k}\right| \\
& =\max _{x \in[-1,1]}\left|f_{s}(x)-p_{n}(x)\right| \geq E_{n}\left([-1,1], f_{s}\right),
\end{aligned}
$$

where $f_{s}(x)=1 /\left(\rho^{2}-2 x \rho+1\right)^{s}$ and $p_{n}(x)=\sum_{\substack{j, k=0 \\ 0 \leq j+2 k \leq n}}^{n} a_{j k} x^{j}\left(1-x^{2}\right)^{k}$.
Consequently,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}\left(\bar{B}_{2}, F_{s}\right)} \geq \limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}\left([-1,1], f_{s}\right)} \tag{7}
\end{equation*}
$$

We next apply Theorem 2.1 to the function f_{s}. Note that

$$
\hat{f}_{s}(z)=1 /\left(\rho^{2}-2 z \rho+1\right)^{s}
$$

is a holomorphic extension of f_{s} to the set $L_{\rho}=\{z \in \mathbb{C}:|h(z)|<\rho\}$, where h is defined as in Theorem 2.1. Clearly, \hat{f}_{s} has a non-removable singularity at the point $\hat{z}=1 / 2(\rho+1 / \rho)$. Therefore the function \hat{f}_{s} cannot be continued analytically to any neighborhood of the point \hat{z}. In other words, \hat{f}_{s} has no holomorphic extension to any domain containing \bar{L}_{ρ}. Thus Theorem 2.1 implies

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}\left([-1,1], f_{s}\right)} \geq \frac{1}{\rho}
$$

The latter, combined with equation (7), gives finally

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}\left(\bar{B}_{2}, F_{s}\right)} \geq \frac{1}{\rho}
$$

Theorem 2.2 can be also generalized to higher dimensions.

Theorem 2.3

Let $\bar{B}_{d}=\left\{x \in \mathbb{R}^{d}:\|x\|=\left(\sum_{k=1}^{d} x_{k}^{2}\right)^{1 / 2} \leq 1\right\}, d \in \mathbb{N} \backslash\{1\}$, and let the function $F_{s}: \bar{B}_{d} \rightarrow \mathbb{R}$ be given by

$$
\begin{equation*}
F_{s}(x)=\frac{1}{\left\|x-x_{0}\right\|^{2 s}}=\frac{1}{\left(\sum_{k=1}^{d}\left(x_{k}-x_{0, k}\right)^{2}\right)^{s}} \tag{8}
\end{equation*}
$$

where $s \in(0, \infty)$ and $x_{0} \in \mathbb{R}^{d}$ such that $\rho=\left\|x_{0}\right\|>1$. Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}\left(\bar{B}_{d}, F_{s}\right)}=\frac{1}{\rho} \tag{9}
\end{equation*}
$$

Proof of Theorem 2.3: To establish the lower bound

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}\left(\bar{B}_{d}, F_{s}\right)} \geq \frac{1}{\rho}
$$

we only have to substitute y^{2} by $\sum_{k=2}^{d} x_{k}^{2}$ and \bar{B}_{2} by \bar{B}_{d} in the proof of Theorem 2.2. A simple argument for the upper bound can be found in [Bra].

Let us conclude by remarking that Theorem 2.3 extends easily to arbitrary closed balls in $\mathbb{R}^{d}, d \in \mathbb{N} \backslash\{1\}$.

Acknowledgement

This work was completed while the author had a position as a research assistant at the Institute for Algebra and Analysis, Department of Mathematics, University of Braunschweig. The author would like to thank the members of this institute, especially Karl-Joachim Wirths, for the kind atmosphere.

References

[Ber52] Bernstein, S. N., Collected works, Part I: Constructive Theory of Functions (19051930), 221, Academy of Sciences USSR Press, 1952.
[Bra01] Braess, D., Note on the Approximation of Powers of the Distance in TwoDimensional Domains, Constructive Approximation, 17 No. 1, 147-151 (2001).
[Bra] Braess, D., Note on the Approximation of Powers of the Distance in Two-Dimensional Domains, The extension to d-space with d greater than 2 has been described more recently, http://homepage.ruhr-unibochum.de/Dietrich.Braess/ftp.html Reprints .
[DL93] DeVore, R. A., Lorentz, G. G., Constructive Approximation, 449, Springer-Verlag, Berlin - Heidelberg - New York, 1993.
[Sau] Sauter, S., Paper on the fast solutions of equations arising in the boundary element method (in preparation)

[^0]: 2000 Mathematics Subject Classification. 41A25, 41A10, 41A60, 41A63, 41A17.
 Key words and phrases. Polynomial approximation in 2-space, Maximal convergence, Bernstein-Walsh's type. theorems

[^1]: ${ }^{1}$ We call a set $K \subset \mathbb{R}^{2}$ symmetric with respect to the y-axis, if $(x, y) \in K$ implies $(x,-y) \in K$.

