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a b s t r a c t

Multirate methods are specially designed for problems with multiple time scales. The
multirate infinitesimal step method (MIS) was developed as a generalization of the
so called split-explicit Runge–Kutta methods, where the integration of the fast part is
conducted analytically. The MIS method was originally evolved for applications related
to numerical weather prediction, i.e. the integration of the compressible Euler equation.

In this work, an extension to MIS methods will be presented where an arbi-
trary Runge–Kutta method (RK) is applied for the integration of the fast component.
Furthermore, the order convergence from the original MIS method will be reinves-
tigated including the derivation of conditions up to order four. Additionally will be
presented how well-known methods such as recursive flux splitting multirate method,
(Schlegel et al., 2012) partitioned Runge–Kutta method, (Jackiewicz and Vermiglio, 2000)
and generalized additive Runge–Kutta method, (Sandu and Günther, 2015) are related to
or can be cast as an extended MIS method. An exemplary MIS method of order four with
five stages will show that the convergence behaviour not only depends on the applied
method for the integration of the fast component. The method will further indicate that
the used fast time step plays a significant role.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Differential equations often exhibit solutions with different time scales. These are often inherited from the physical
nature of the solution which for instance contains waves of disparate speed. Another source is the concurrent different
processes like advection, diffusion and stiff chemical reactions in one equation. A further example is spacial discretization
on anisotropic grids like stretched grids or local regions of refined grids.

Efficient time integration methods have to be taken into account for such phenomena and multirate methods with
different time steps play an important role. The main idea in general is based on a splitting of an ordinary differential
equation into multiple components. Numerical methods for such problems have been developed and investigated since
1980s, see e.g. [1–3]. However, there are various methods depending on the structure of the differential equation. For
Runge–Kutta type methods, there is now existing a vast literature of multirate methods with different type of splitting,
see e.g. [4–6]. Another approach is related to local time stepping methods where especially for hyperbolic problems each
component is stepped forward with its own individual time step, see e.g. [7].

For an additive splitting of the right hand side, i.e.

ẏ = f (y)+ g (y) = F (y) , (1)
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with initial value y (0) = y0 ∈ Rd, Knoth and Wolke [8] proposed a multirate method which combines a Runge–Kutta
ethod for the slow time scale and the analytic solution of an auxiliary ordinary differential equation with a frozen

inear combination of the slow part. This construction principle inspired the development of further multirate integration
ethods. Wensch et al. [9] introduced a more general method named multirate infinitesimal step method (MIS) with focus
n the solution of the compressible Euler equation in the low Mach number regime. This regime is typical for numerical
eather prediction. As a special case, these methods include the so called split-explicit integration scheme, a common
ime integration scheme in numerical weather prediction [10,11].

In practical implementations, the exact solution has to be replaced by a finite integration scheme which introduces an
dditional error in the convergence behaviour of the whole algorithm. In [12], a method was presented where the auxiliary
rdinary differential equation of the method proposed in [8] is integrated with an explicit Runge–Kutta method. In [13],
n extension to the method proposed in [12] was presented where any RK method, explicit or implicit, with the first stage
iven in an explicit manner, has been used for the integration of the auxiliary ordinary equation. A second generalization
as proposed in [14] where the linear combination coefficients of the slow part are defined as time dependent coefficient,

.e. as polynomials in time. Finally, there are other approaches where the slow integration method is of a different type,
uch as Adams–Bashforth methods, compare [15,16], or Peer-methods, see e.g. [17].
The aim of this paper is the presentation of an extended multirate infinitesimal step method extMIS where the auxiliary

rdinary differential equation is solved with any arbitrary Runge–Kutta method (RK). Furthermore, it will be shown
ow this method is connected or can be reformulated to other existing multirate RK methods, including recursive flux
plitting multirate method, partitioned Runge–Kutta method and generalized additive Runge–Kutta method. Following
hese connections to other methods, they will be used to present a general concept of deriving order conditions for order
our or higher. Therefore, an extMIS method of order four will be suggested.

Moreover, it will be presented that the additional order conditions given in [9] are the only additional conditions up
o order three. This is justified if the applied RK methods for the integration of the auxiliary ordinary differential equation
re at least of the same order as the underlying explicit RK method.
An extend multirate infinitesimal step method of order four with five stages has been found for problems related to

he compressible Euler equation. The details will be discussed with the cold bubble downburst benchmark example, see
.g [18,19] and [9,20].

. Extended multirate infinitesimal step method (extMIS)

The newly derived extended MIS method is specially designed for problems of kind of Eq. (1). However, the method
s based on the original MIS method proposed in [9], which is defined by the following algorithm.

Zi(0) = yn +
i−1∑
j=1

[
αij
(
Yj − yn

)]
(2a)

dZi (τ )

dτ
=

1
h

i−1∑
j=1

[
γij
(
Yj − yn

)]
+

i−1∑
j=1

[
βijf

(
Yj
)]
+ dig (Zi (τ )) (2b)

Yi = Zi (h) (2c)
i = 1, . . . , s+ 1

yn+1 = Ys+1 (2d)

In each MIS stage i an initial value problem has to be solved, where Eq. (2a) represents the initial value and Eq. (2b) the
ordinary differential equation. The integration length for each MIS stage i is given by h, which is also the time step to
advance from yn to yn+1. Although there are formally s + 1 initial value problems, only s problems have to be solved in
reality. For i = 1, Y1 = yn since the parameters α, γ and β are strictly lower triangular matrices with (α)ij = αij, (γ)ij = γij
and (β)ij = βij, compare with [9,20]. The method is said to be balanced, if D is a diagonal matrix storing the sum of rows
of β, i.e. (D)ii = di =

∑i−1
j=1

[
βij
]
, see [9, equation (2.3)].

In the following, the strong assumption that the solution of Eq. (2b) is given by an exact integration will be weakened
due to integrating with an arbitrary Runge–Kutta method for each MIS stage i. The chosen RK method can be either an
explicit or implicit method.

Throughout this paper, subscripted indices will be used for the stages of the MIS method and superscripted indices for
the integration of the auxiliary ordinary methods. The Butcher tableau

ci Ai

bT
i

represents the utilized RK in stage i of the MIS method. Furthermore, Ai is the coefficient matrix and (Ai)λl = aλl
i represents

the RK coefficient of stage l while integrating the auxiliary ordinary equation in stage λ during the integration in MIS stage
i. The same holds similarly for b , i.e. b = bl as well as for c , i.e. c = cλ.
i ( i)l i i ( i)λ i
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The integration of Eq. (2b) in MIS stage i with an arbitrary RK is then given by the following algorithm

Zi(0) = yn +
i−1∑
j=1

[
αij
(
Yj − yn

)]
Zλ
i = Zi(0)+ h

si∑
l=1

⎡⎣aλl
i

⎛⎝1
h

i−1∑
j=1

[
γij
(
Yj − yn

)]
+

i−1∑
j=1

[
βijf

(
Yj
)]
+ dig

(
Z l
i

)⎞⎠⎤⎦
Zi(h) = Zi(0)+ h

si∑
λ=1

⎡⎣bλ
i

⎛⎝1
h

i−1∑
j=1

[
γij
(
Yj − yn

)]
+

i−1∑
j=1

[
βijf

(
Yj
)]
+ dig

(
Zλ
i

)⎞⎠⎤⎦
with time step h. λ is the index for the number of stages si of the applied RK method. This represents the integration
of Eq. (2b) in one RK step. Allowing an even smaller time step, i.e. micro time step hi =

h
mi

with mi being the number of
steps in MIS stage i, the algorithm reads then

Zi(0) = yn +
i−1∑
j=1

[
αij
(
Yj − yn

)]
Zµ,λ

i = Zi ((µ− 1) · hi)+ hi

si∑
l=1

⎡⎣aλl
i

⎛⎝1
h

i−1∑
j=1

[
γij
(
Yj − yn

)]
+

i−1∑
j=1

[
βijf

(
Yj
)]
+ dig

(
Zµ,l
i

)⎞⎠⎤⎦
Zi (µ · hi) = Zi ((µ− 1) · hi)+ hi

si∑
λ=1

⎡⎣bλ
i

⎛⎝1
h

i−1∑
j=1

[
γij
(
Yj − yn

)]
+

i−1∑
j=1

[
βijf

(
Yj
)]
+ dig

(
Zµ,λ

i

)⎞⎠⎤⎦
where µ = 1, . . . ,mi. For writing purpose, a special choice for the RK method has been made, i.e. asi+1,li = bli or given as
Butcher tableau ci Ai.

Substituting the integration in Eq. (2) gives the new extMIS method in a recursive form

Zµ,λ

i = yn +
i−1∑
j=1

[(
αij +

hi

h

(
µ− 1+ cλ

i

)
γij

) (
Yj − yn

)]
+ hi

(
µ− 1+ cλ

i

) i−1∑
j=1

[
βijf

(
Yj
)]

+ hidi
µ−1∑
k=1

si+1∑
l=1

[
blig
(
Zk,l
i

)]
+ hidi

si+1∑
l=1

[
aλl
i g
(
Zµ,l
i

)]
(3a)

µ = 1, . . . ,mi, λ = 1, . . . , si + 1

Yi = Zmi,si+1
i (3b)

i = 1, . . . , s+ 1

yn+1 = Ys+1. (3c)

ote that, the term hi
(
µ− 1+ cλ

i

)
defines the time point of stage Zµ,λ

i .

emark. There are several indices applied in equations or summations throughout this paper. Each index is used only
or a specific purpose. i represents the current MIS stage and if i is already used, then j is utilized. Furthermore, µ is
the current time point while integrating the auxiliary ordinary differential equation and if µ is already applied, then k
represents the current time point. Moreover, λ shows the current stage during the integration of the auxiliary ordinary
differential equation and l is used if λ is already applied.

For the derivation of order conditions the recursive formulation of the stages Yi is replaced with an explicit formulation.
This will ease further calculations. Applying a simplified notation for Eq. (3b),

Yi = Zmi,si+1
i = yn +

i−1∑[(
αij + γij

) (
Yj − yn

)]
+ h

i−1∑[
βijf

(
Yj
)]
+ hidi

mi∑ si+1∑[
bλ
i g
(
Zµ,λ

i

)]
, (4)
j=1 j=1 µ=1 λ=1
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Ui = Yi − yn

Ai = h
i−1∑
j=1

[
βij · f

(
Yj
)]
+ hidi

mi∑
µ=1

si+1∑
λ=1

[
bλ
i g
(
Zµ,λ

i

)]
σij = αij + γij.

q. (4) is then reformulated to

Ui =

i−1∑
j=1

[
σij · Uj

]
+ Ai

nd in vector notation

U = (Σ⊗ Id)U+ A = ((Is+1 −Σ)⊗ Id)−1 A =
(
R−1 ⊗ Id

)−1
A = (R⊗ Id)A,

here R = (Is+1 −Σ)−1 = (Is+1 − α− γ)−1. Hence, an explicit form for Yi is then given by

Yi = yn + h
i−1∑
j=1

[
aijf

(
Yj
)]
+

i∑
j=1

mj∑
µ=1

sj+1∑
λ=1

[
(RD)ij hjbλ

j g
(
Zµ,λ

j

)]
, (5)

ith the underlying explicit Runge–Kutta method (eRK) coefficient matrix A = Rβ and b = eTs+1A. Note that the
nderlying eRK method is represented by the coefficients (A)ij = aij.

emark. For each (extended) MIS method, an eRK method is embedded, i.e. by setting g ≡ 0, then Eq. (5) reduces to the
tandard eRK method formulation. This property was given in [8,9].

Substituting Eq. (5) into Eq. (3a) returns an explicit formulation of the extMIS method from Eq. (3), i.e.

Zµ,λ

i = yn + h
i−1∑
j=1

[(
αA+

1
mi

(
µ− 1+ cλ

i

)
(A− αA)

)
ij
f
(
Yj
)]

+

i−1∑
j=1

mj∑
k=1

sj+1∑
l=1

[(
αRD+

1
mi

(
µ− 1+ cλ

i

)
γRD

)
ij
hjbljg

(
Zk,l
j

)]
+ hidi

µ−1∑
k=1

si+1∑
l=1

[
blig
(
Zk,l
i

)]

+ hidi
si+1∑
l=1

[
aλl
i g
(
Zµ,l
i

)]
(6a)

Yi = Zmi,si+1
i (6b)

yn+1 = Ys+1. (6c)

or further discussions, the special case with the assumption that the integration of the auxiliary ordinary differential
quation in each MIS stage i will be performed with only one time step, i.e. mi ≡ 1, is used. Hence, Eq. (6) reads

Z1,λ
i = yn + h

i−1∑
j=1

[(
αA+ cλ

i (A− αA)
)
ij f
(
Yj
)]

+ h
i−1∑
j=1

sj+1∑
l=1

[(
αRD+ cλ

i γRD
)
ij b

l
jg
(
Z1,l
j

)]
+ hdi

si+1∑
l=1

[
aλl
i g
(
Z1,l
i

)]
(7a)

Yi = Z1,si+1
i (7b)

yn+1 = Ys+1. (7c)

emark. Conducting the integration of the auxiliary ordinary differential equation mi times can also be achieved by the
omposition of the applied Runge–Kutta method, see e.g. [21]. Hence, the number of time steps will then be equal to one.

Further, the RK method for the integration in MIS stage i will be assumed to be performed with time step hi = h,
.e. m = 1, if not stated otherwise. In this case, the superscript µ of Zµ,λ is replaced by 1, i.e. Z1,λ.
i i i



T.P. Bauer and O. Knoth / Journal of Computational and Applied Mathematics 387 (2021) 112541 5

3

m
s
s

s
α

3

K
t
M
[

H
i
i

R
o
i

3

r
c
i

w

. Comparison to other methods

There are several well known methods, which are related to the extMIS method, e.g. recursive flux splitting multirate
ethod (RFSMR), partitioned Runge–Kutta method (PRK) or generalized additive Runge–Kutta method (GARK). However,
ome of these connections are only valid for the method proposed in [8] which is a special case of the MIS method by
etting

α =

⎛⎜⎜⎜⎜⎝
0 0
1 0
0 1 0
...

. . .
. . .

. . .

0 . . . 0 1 0

⎞⎟⎟⎟⎟⎠ , γ = 0 and R = (I− α− γ)−1 =

⎛⎜⎜⎜⎜⎝
1 0
−1 1
0 −1 1
...

. . .
. . .

. . .

0 . . . 0 −1 1

⎞⎟⎟⎟⎟⎠ , (8)

ee [9]. The abbreviation MIS-KW will be applied throughout the paper, whenever the special case with the parameters
and γ as chosen in Eq. (8) is used.

.1. extMIS as recursive flux splitting multirate method (RFSMR)

In [12], a method called recursive flux splitting multirate method (RFSMR) was proposed which is based on the MIS-
W method where the auxiliary ordinary differential equation (2b) was integrated with an explicit RK method in one
ime step, i.e. mi ≡ 1. The same explicit Runge–Kutta method was applied in each MIS stage i, i.e. Ai is identical for all
IS stages. Substituting these properties into Eq. (7) returns the explicit formulation of the RFSMR method proposed by

22, equation (17)], i.e.

Z1,λ
i = yn + h

i−1∑
j=1

[(
a(i−1)j + cλ

i

(
aij − a(i−1)j

))
f
(
Yj
)]
+ h

i−1∑
j=1

sj∑
l=1

[
djbljg

(
Z1,l
j

)]

+ hdi
λ−1∑
l=1

[
aλl
i g
(
Z1,l
i

)]
(9a)

Yi = Z1,si+1
i (9b)

yn+1 = Ys+1. (9c)

ence, the RFSMR method is a special case of the extMIS method. Additionally, all the properties of the RFSMR method
ncluding the possibility to reformulate Eq. (9) as a PRK method are applicable as well as all applications suggested
n [12,22,23].

emark. One of the applications of the RFSMR method is a recursive applying of the same eRK method. Therefore, in case
f the extMIS method, the chosen arbitrary eRK method for the integration of the auxiliary ordinary differential equation
n each MIS stage is identical with the underlying eRK method of the MIS-KW method.

.2. extMIS as partitioned Runge–Kutta method (PRK)

Since Eq. (9) may be rewritten as a PRK method, see [12, equation (17-23)], the likewise general validity of this
eformulation for the extMIS method will be shown. Hence, the following demonstrates how the general extMIS method
an be cast as a partitioned Runge–Kutta method (PRK). A PRK method for a split into two components problem, see Eq. (1),
s given by

Yq = yn + h
sp+1∑
r=1

[
afqr f (Yr)

]
+ h

sp+1∑
r=1

[
agqrg (Yr)

]
yn+1 = Ysp+1

ith two Butcher tableau, cf Af and cg Ag , as well as number of stages sp, see e.g. [24]. Note that bf
= eTsp+1A

f and
bg
= eTsp+1A

g as well as
(
cf
)
sp+1
= 1 and (cg)sp+1 = 1.

In order to apply the correct size of an extMIS method cast as a PRK method, the number of stages are related by

sp + 1 =
s+1∑

[mi (si + 1)] . (10)

i=1
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Note that in this case mi ≥ 1 is assumed. The coefficient matrices Af and Ag are then given by the following algorithm
where the indices q and r are similarly derived to the number of stages, see Eq. (10),

(q, r) ←→

(
i−1∑
o=1

[(so + 1)mo]+ (µ− 1) (si + 1)+ λ,

j−1∑
o=1

[(so + 1)mo]+ (k− 1)
(
sj + 1

)
+ l

)
(11a)

afqr =

{(
αA+ 1

mi

(
µ− 1+ cλ

i

)
(A− αA)

)
ij

, j < i, k = mj, l = sj + 1

0 , otherwise
(11b)

agqr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
αRD+ 1

mi

(
µ− 1+ cλ

i

)
γRD

)
ij

1
mj
blj , j < i

1
mi
dibli , j = i, k < µ

1
mi
diaλl

i , j = i, k = µ

0 , otherwise

(11c)

urthermore,

bf
= eTsp+1A

f
=

(
0T
m1(s1+1)−1, b1, 0

T
m2(s2+1)−1, b2, . . . , 0

T
ms+1(ss+1+1)−1

, bs+1
)T

(12a)

bg
= eTsp+1A

g
=

(̃
b1

1
m1

1T
m1
⊗ bT

1, b̃2
1
m2

1T
m2
⊗ bT

2, . . . , b̃s+1
1

ms+1
1T
ms+1
⊗ bT

s+1

)T

(12b)

and

c fq =
i−1∑
j=1

[(
αA+

1
mi

(
µ− 1+ cλ

i

)
(A− αA)

)
ij

]
= c̃i +

1
mi

(
µ− 1+ cλ

i

)
(ci − c̃i)

cgq =
i−1∑
j=1

mj∑
k=1

sj+1∑
l=1

[(
αRD+

1
mi

(
µ− 1+ cλ

i

)
γRD

)
ij

1
mj

blj

]
+

µ−1∑
k=1

sj+1∑
l=1

[
1
mi

dibli

]
+

si+1∑
l=1

[
1
mi

diaλl
i

]

=

i−1∑
j=1

[(
αRD+

1
mi

(
µ− 1+ cλ

i

)
γRD

)
ij

]
+

1
mi

di
(
µ− 1+ cλ

i

)
= c̃i +

1
mi

(
µ− 1+ cλ

i

)
(ci − c̃i) ,

where b̃ = eTs+1RD and c̃ = αc with (̃c)i = c̃i, compare [9]. Hence,

cf = cg , (13)

which represents internal consistency.

3.3. extMIS as generalized additive Runge–Kutta method (GARK)

The GARK method was proposed in [25] as a more general approach to PRK methods. The connection for MIS as GARK
has been suggested in [5]. The focus of that work was on the MIS-KW case.

Using the definition from [25, equation (2.5)], a GARK method for a split into two components problem is then given
by

Yi = yn + h
sp+1∑
i=1

[
afijf

(
Yj
)]
+ h

sp+1∑
i=1

[
agijg

(
Yj
)]

(14a)

yn+1 = Ysp+1 (14b)

r by

Yi = yn + h
sf∑
j=1

[
affij f

(
Yj
)]
+ h

sg∑
j=1

[
afgij g

(
Zj
)]

(15a)

Zi = yn + h
sf∑
j=1

[
agfij f

(
Yj
)]
+ h

sg∑
j=1

[
aggij g

(
Zj
)]

(15b)

yn+1 = yn + h
sf∑[

bffi f (Yi)

]
+ h

sg∑[
bggi g (Zi)

]
. (15c)
i=1 i=1
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q. (14) is exactly the definition of a PRK method, see also [25, theorem 2.4] and compare with Eq. (11). Henceforth, the
ocus for this section will be on the definition given by Eq. (15). The extended Butcher tableau from [25, equation (2.4)]
eads

cff Aff Afg

cgg Agf Agg

bff bgg
.

The coefficient matrices Aff and Agg are for the integration of the f and g component, respectively. On the other hand, the
matrices Afg and Agf represent the coupling between the f and g components. In each MIS stage i, an arbitrary RK method
with time step hi = h is applied, i.e. mi ≡ 1. Eq. (7) indicates how Aff

∈ Rsf+1×sf+1, Afg
∈ Rsf+1×sg+1, Agf

∈ Rsg+1×sf+1,
and Agg

∈ Rsg+1×sg+1 have to be chosen, i.e.

Aff
= A

Afg
=

⎛⎜⎝ (RD)11 bT
1 0

...
. . .

(RD)s+1,1 bT
1 · · · (RD)s+1,s+1 bT

s+1

⎞⎟⎠
Agf
=

⎛⎜⎝ (αA)11 1s1+1 0
...

. . .

(αA)s+1,1 1ss+1+1 · · · (αA)s+1,s+1 1ss+1+1

⎞⎟⎠
+

⎛⎜⎝ (A− αA)11 c1 0
...

. . .

(A− αA)s+1,1 cs+1 · · · (A− αA)s+1,s+1 cs+1

⎞⎟⎠

Agg
=

⎛⎜⎜⎝
0 0

(αRD)21 1s2+1b
T
1 0

...
. . .

. . .

(αRD)s+1,1 1ss+1+1b
T
1 · · · (αRD)s+1,s 1ss+1+1b

T
s 0

⎞⎟⎟⎠

+

⎛⎜⎜⎝
0 0

(γRD)21 c2bT
1 0

...
. . .

. . .

(γRD)s+1,1 cs+1bT
1 · · · (γRD)s+1,s cs+1bT

s 0

⎞⎟⎟⎠+
⎛⎜⎝d1A1 0

. . .

0 ds+1As+1

⎞⎟⎠ .

Remark. The matrices elements are given in the form of a multiplication of a scalar with either a vector or matrix, i.e. (.)ij
denotes an element of a matrix.

As indicated by the extended Butcher tableau, the internal consistency is also fulfilled, i.e.

cff = Aff 1sf+1 = Afg1sg+1 = c

cgg = Agf 1sf+1 = Agg1sg+1 =

(̃
c11T

s1+1 + (c − c̃)1 c1T , . . . , c̃s+11T
ss+1+1 + (c − c̃)s+1 cs+1T

)T
,

compare [25, equation (2.6)]. Finally,

bff
= b and bgg

=
(̃
b1bT

1, b̃2b
T
2, . . . , b̃s+1b

T
s+1

)T
.

emark. Although, mi ≡ 1 has been assumed, this was only made for writing purposes. The general extMIS method with
i ≥ 1 for stages i can also be cast as GARK method. The coefficient matrices Afg , Agf and Agg are then becoming larger
nd overcrowded.

emark. Several other methods are related to extMIS methods. Examples are multirate generalized additive Runge–Kutta
ethod (MGARK), [5,26], relaxed MIS methods (RMIS), [13] and multirate infinitesimal GARK schemes (MRI-GARK), [14].
owever, some of these connections are only possible for the MIS-KW method.

. Order conditions for extMIS

In this section, a general approach for the derivation of order conditions of extMIS methods will be presented. The
eformulation to PRK methods is applied for the calculation. This is justified since every extMIS method can be represented
s a PRK or GARK method. The order theory given in [25] is utilized. This work was based on the order theory using N-trees
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from [27]. All the conditions up to order four are given by [25, theorem 2.6]. Therefore, the conditions up to order four
for the extMIS method will be calculated. Due to internal consistency, see Eq. (13), there are some conditions which are
identical to others. This will reduce the number of conditions.

In the following, the abbreviations f = f (yn) and g = g (yn) as well as F = f+g will be used. Moreover, the consistency
or the utilized RK methods in MIS stage i will always be assumed, i.e.

si+1∑
λ=1

[
bλ
i

]
= bi • 1si+1 = 1.

Furthermore, if the applied RK methods are of sufficient order, then the conditions for the extMIS method simplify to the
conditions of the general MIS method. Hence, this approach returns also the conditions for the MIS method from [9,20].
However, the conditions for order four have not been derived, yet.

4.1. Order p = 1

For order one, only two conditions are appearing. Using Eqs. (12) and (13), the following is gained

⟨f ⟩ bf
• 1s+1 = b • 1s+1 = 1

⟨g⟩ bg
• 1s+1 =

s+1∑
i=1

[̃
bibi • 1si+1

]
=

s+1∑
i=1

[̃
bi
]
= b̃ • 1s+1 = eTs+1RD1s+1 = eTs+1c = cs+1 = 1.

oth conditions are representing the same equation since by definition cs+1 = b •1s+1. Therefore, the remaining condition
is the classical order one condition for an arbitrary RK method.

4.2. Order p = 2

Like for order one, only two conditions appear for order two. Using Eqs. (12) and (13), the following is achieved

f ′ ⟨F⟩ bf
• cf =

s+1∑
i=1

[
bi
(̃
ci + 1

mi

(
mi − 1+ csi+1i

)
(ci − c̃i)

)]
= b • c =

1
2

g ′ ⟨F⟩ bg
• cg =

s+1∑
i=1

mi∑
µ=1

si∑
λ=1

[̃
bi 1

mi
bλ
i

(̃
ci + 1

mi

(
µ− 1+ cλ

i

)
(ci − c̃i)

)]
=

1
2 b̃

T (c+ c̃)+
s+1∑
i=1

[̃
bi 1

mi

(
bi • ci − 1

2

)
(ci − c̃i)

]
=

1
2 .

f bi • ci = 1
2 for every RK method in MIS stage i, which is the standard order condition for a RK method, the last condition

educes to the additional MIS condition for order two, see [9, equation 3.7], i.e.

b̃T (c+ c̃) = 1.

Hence, for order two, the exact integration of the auxiliary ordinary differential equation of the original MIS method
s not required, if every RK method in stage i is of order two.

Note that if a RK method of only order one in MIS stage i is chosen, then the arbitrary number of steps mi linearly
influences the method parameters α, γ and β.

4.3. Order p = 3

For order three, the internal consistency, see Eq. (13), allows a reduction of the number of order conditions. Table 1
shows how the order conditions from a standard PRK method are modified.

Therefore, only six conditions remain,

bf
• cf 2 = b • c2 =

1
3

(16a)

bg
• cg 2 =

1
3
b̃T (c2 + c̃c+ c̃2

)
+

s+1∑
i=1

[̃
bi

1
mi

(
bi • ci −

1
2

) (
c2i − c̃2i

)]

+

s+1∑
i=1

[̃
bi

1
m2

i

(
bi • c2i − bi • ci +

1
6

)
(ci − c̃i)2

]
=

1
3

(16b)

bf
• Af cf = b • Ac =

1
(16c)
6
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bf
• Agcg =

1
2
bTRD (c+ c̃)+

s+1∑
i=1

[(
bTRD

)
i

1
mi

(
bi • ci −

1
2

)
(ci − c̃i)

]
=

1
6

(16d)

bg
• Af cf =

1
2
b̃T (I+ α)Ac+

s+1∑
i=1

[̃
bi

1
mi

(
bi • ci −

1
2

)
(Ac− αAc)i

]
=

1
6

(16e)

bg
• Agcg =

1
2
b̃T
(
α+

γ

2

)
RD (c+ c̃)+

1
6
b̃TD (c+ 2̃c)

+

s+1∑
i=1

i−1∑
j=1

[̃
bi

1
mj

(
bj • cj −

1
2

)(
(αRD)ij +

1
2

(γRD)ij

) (
cj − c̃j

)]

+
1
2

s+1∑
i=1

i−1∑
j=1

[̃
bi

1
mi

(
bi • ci −

1
2

)
(γRD)ij

(
cj + c̃j

)]

+

s+1∑
i=1

i−1∑
j=1

[̃
bi

1
mi

(
bi • ci −

1
2

)
1
mj

(
bj • cj −

1
2

)
(γRD)ij

(
cj − c̃j

)]

+

s+1∑
i=1

[(̃
bTD

)
i

1
mi

(
bi • ci −

1
2

)
ci

]

+

s+1∑
i=1

[(̃
bTD

)
i

1
m2

i

(
1
3
− bi • ci + bi • Aici

)
(ci − c̃i)

]
=

1
6
. (16f)

Remark. A full derivation of the conditions can be found in the supplement.

Note that if a RK method of only order one in MIS stage i is chosen, then the method parameters α, γ and β are
influenced both linearly and quadratically by the arbitrary number of steps mi, compare Eq. (16). In case of order two,
only two conditions are quadratically manipulated by the number of steps mi, see Eqs. (16b) and (16f), i.e.

bf
• cf 2 = bT c2 =

1
3

bg
• cg 2 =

1
3 b̃

T
(
c2 + c̃c+ c̃2

)
+

s+1∑
i=1

[̃
bi 1

m2
i

(
bi • c2i −

1
3

)
(ci − c̃i)2

]
=

1
3

bf
• Af cf = bTAc =

1
6

bf
• Agcg = bTRD (c+ c̃) = 1

3

bg
• Af cf = b̃T (I+ α)Ac =

1
3

bg
• Agcg =

1
2 b̃

T
(
α+

γ

2

)
RD (c+ c̃)+ 1

6 b̃
TD (c+ 2̃c)

+

s+1∑
i=1

[(̃
bTD

)
i

1
m2

i

(
bi • Aici − 1

6

)
(ci − c̃i)

]
=

1
6 .

(17)

To some extend, with a significantly large number of time steps mi in MIS stage i, the overall quadratic influence towards
he MIS method parameters is very low. Furthermore, if every RK method in MIS stage i is at least of order three, then
he remaining conditions are

bT c2 =
1
3

bTAc =
1
6

b̃T
(̃
c2 + c̃c+ c2

)
= 1

bTRD (c+ c̃) = 1
3

b̃T (I+ α)Ac =
1
3

3̃bT
(
α+

γ

2

)
RD (c+ c̃)+ b̃TD (c+ 2̃c) = 1.

hese conditions were also derived in [9] for the general MIS method with an analytical integration of the auxiliary
rdinary differential equation. Therefore, the analytical integration is not required if RK methods of order three are chosen
or the inner stages i.

.4. Order p = 4

For order four, the procedure from order three for the derivation of the conditions is repeated.
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Table 1
Differentials and conditions for order three for a standard PRK method in comparison with the
differentials and conditions for an extMIS method.
PRK ⇒ extMIS

Differential Order conditions Differential Order conditions

f ′′ ⟨f , f ⟩ 1
3 = bf

• cf 2

⇒ f ′′ ⟨F , F⟩ bf
• cf 2 =

1
3

f ′′ ⟨f , g⟩ 1
3 = bf

• cf cg

f ′′ ⟨g, f ⟩ 1
3 = bf

• cgcf

f ′′ ⟨g, g⟩ 1
3 = bf

• cg 2

g ′′ ⟨f , f ⟩ 1
3 = bg

• cf 2

⇒ g ′′ ⟨F , F⟩ bg
• cg 2 =

1
3

g ′′ ⟨f , g⟩ 1
3 = bg

• cf cg

g ′′ ⟨g, f ⟩ 1
3 = bg

• cgcf

g ′′ ⟨g, g⟩ 1
3 = bg

• cg 2

f ′
⟨
f ′ ⟨f ⟩

⟩ 1
6 = bf

• Af cf
⇒ f ′

⟨
f ′ ⟨F⟩

⟩
bf

• Af cf =
1
6

f ′
⟨
f ′ ⟨g⟩

⟩ 1
6 = bf

• Af cg

f ′
⟨
g ′ ⟨f ⟩

⟩ 1
6 = bf

• Agcf
⇒ f ′

⟨
g ′ ⟨F⟩

⟩
bf

• Agcg =
1
6

f ′
⟨
g ′ ⟨g⟩

⟩ 1
6 = bf

• Agcg

g ′
⟨
f ′ ⟨f ⟩

⟩ 1
6 = bg

• Af cf
⇒ g ′

⟨
f ′ ⟨F⟩

⟩
bg

• Af cf =
1
6

g ′
⟨
f ′ ⟨g⟩

⟩ 1
6 = bg

• Af cg

g ′
⟨
g ′ ⟨f ⟩

⟩ 1
6 = bg

• Agcf
⇒ g ′

⟨
g ′ ⟨F⟩

⟩
bg

• Agcg =
1
6

g ′
⟨
g ′ ⟨g⟩

⟩ 1
6 = bg

• Agcg

Remark. The table showing the reduction of the number of order conditions is given in the supplement.

Hence, the standard conditions for the underlying explicit RK method are

f ′′′ ⟨F , F , F⟩ bT c3 =
1
4

f ′′
⟨
F , f ′ ⟨F⟩

⟩
bTdiag (c)Ac =

1
8

f ′
⟨
f ′′ ⟨F , F⟩

⟩
bTAc2 =

1
12

f ′
⟨
f ′
⟨
f ′ ⟨F⟩

⟩⟩
bTAAc =

1
24

nd assuming that the auxiliary ordinary differential equations are solved with arbitrary RK methods of at least order
our, there are 14 additional conditions

g ′′′ ⟨F , F , F⟩ b̃Tdiag
(
c2 + c̃2

)
(c+ c̃) = 1

f ′′
⟨
F , g ′ ⟨F⟩

⟩
bTdiag (c)RD (c+ c̃) = 1

4

g ′′
⟨
F , f ′ ⟨F⟩

⟩
b̃T (diag (2c+ c̃)A+ diag (c+ 2̃c) αA) c =

3
4

g ′′
⟨
F , g ′ ⟨F⟩

⟩
2̃bTdiag (c+ c̃) αRD (c+ c̃)+ 4

3 b̃
Tdiag

(
c+ 1

2 c̃
)
γRD (c+ c̃)

+ b̃Tdiag
(
c+ 1

3 c̃
)
Dc+ b̃Tdiag

( 5
3c+ c̃

)
D̃c = 1

f ′
⟨
g ′′ ⟨F , F⟩

⟩
bTRD

(
c2 + c̃c+ c̃2

)
=

1
4

g ′
⟨
f ′′ ⟨F , F⟩

⟩
b̃T (I+ α)Ac2 =

1
6

g ′
⟨
g ′′ ⟨F , F⟩

⟩
4̃bT

(
α + 1

2γ
)
RD
(
c2 + c̃c+ c̃2

)
+ b̃TD

(
c2 + 2̃cc+ 3̃c2

)
= 1

f ′
⟨
f ′
⟨
g ′ ⟨F⟩

⟩⟩
bTARD (c+ c̃) = 1

12

f ′
⟨
g ′
⟨
f ′ ⟨F⟩

⟩⟩
bTRD (I+ α)Ac =

1
12

f ′
⟨
g ′
⟨
g ′ ⟨F⟩

⟩⟩
3bTRD

(
α + 1

2γ
)
RD (c+ c̃)+ bTRDD (c+ 2̃c) = 1

4

g ′
⟨
f ′
⟨
f ′ ⟨F⟩

⟩⟩
b̃T (I+ α)AAc =

1
12

g ′
⟨
f ′
⟨
g ′ ⟨F⟩

⟩⟩
b̃T (I+ α)ARD (c+ c̃) = 1

6

g ′
⟨
g ′
⟨
f ′ ⟨F⟩

⟩⟩
3̃bT

(
α + 1

2γ
)
RD (I+ α)Ac+ b̃TD (I+ 2α)Ac =

1
4

g ′
⟨
g ′
⟨
g ′ ⟨F⟩

⟩⟩ 1
2 b̃

T
(
α + 1

2γ
)
RD
(
α + 1

2γ
)
RD (c+ c̃)+ 1

6 b̃
T
(
α + 1

2γ
)
RDD (c+ 2̃c)

+
1
4 b̃

TD
(
α + 1

3γ
)
RD (c+ c̃)+ 1

24 b̃
TDD (c+ 3̃c) = 1

24 .

(18)

Note that the additional conditions are also recovered if the number of steps in each MIS stage i mi → ∞, which can
be interpreted as an exact integration. Hence, these conditions are also valid for a standard MIS method of order four.



T.P. Bauer and O. Knoth / Journal of Computational and Applied Mathematics 387 (2021) 112541 11

B

H

(
r

5

o
e

h

s
s
i

t
t

w
t
v
o
f

Table 2
MIS method parameters with 5 stages and order four, (MIS54).
αij γij βij

α21 −0.056843003311023 γ21 0.168489083931286 β21 0.219579314792533
α31 0.071035715986068 γ31 −0.025097850341834 β31 −0.032864918414060
α32 0.050143439731979 γ32 0.025515704040468 β32 0.634699918767414
α41 0.021491523917140 γ41 0.106139356407192 β41 −0.241761887431829
α42 0.287530720188756 γ42 0.264445452990869 β42 −0.120631540663984
α43 0.239030810792355 γ43 0.402246482358727 β43 0.374686620841487
α51 0.027558616966568 γ51 −0.031464053194458 β51 −0.058474324094343
α52 0.382675659910308 γ52 −0.068258296801680 β52 0.351217252190521
α53 0.177185696263246 γ53 0.027558616966568 β53 0.309657030167295
α54 −0.314894383613333 γ54 0.015830368641068 β54 0.168604799122988
α61 0.065158401284120 γ61 0.150547662349659 β61 −0.056205055946158
α62 0.079591607322196 γ62 0.088610905686011 β62 −0.068390330952311
α63 0.459806401597571 γ63 0.067880982803316 β63 −0.086209210260269
α64 0.086725275506356 γ64 −0.297416190393485 β64 0.034904705602768
α65 0.439945196292364 γ65 0.148246909195494 β65 0.448964988009822

However, the solution of Eq. (2b) must not be given by an exact integrator. An arbitrary RK method for MIS stage i may
be applied as long as it is of the same order as the MIS method.

Moreover, for a MIS-KW method, i.e. utilizing parameter from Eq. (8), the 14 additional conditions from Eq. (18) are
reduced to five additional conditions with the parameters from Eq. (8),

g ′′
⟨
F , f ′ ⟨F⟩

⟩
b̃Tdiag (2c+ c̃)Ac+ b̃Tdiag (c+ 2̃c) αAc =

3
4

f ′
⟨
g ′′ ⟨F , F⟩

⟩
b̃T (I+ α)Ac2 =

1
6

f ′
⟨
g ′
⟨
f ′ ⟨F⟩

⟩⟩
bTRD (I+ α)Ac =

1
12

g ′
⟨
f ′
⟨
f ′ ⟨F⟩

⟩⟩
b̃T (I+ α)AAc =

1
12

g ′
⟨
g ′
⟨
f ′ ⟨F⟩

⟩⟩
3̃bTαRD (I+ α)Ac+ b̃TD (I+ 2α)Ac =

1
4 .

y straight forward calculation can be shown that all other conditions from Eq. (18) are met.
The applied procedure for the derivation of the order conditions can also be repeated for higher order convergence.

owever, the number of conditions additional to a standard RK method increases drastically.
In the future, it is of interest to develop a theory based on trees for the derivation of the order conditions of the

extended) MIS method. Although, the order conditions from the PRK method were applied, a tree structure has not been
ecognized, yet.

. Example of MIS method of order four for the compressible Euler equation

In the previous sections, the extMIS method has been introduced including the conditions up to order four. An example
f a MIS method of order four with five stages (MIS54) for the compressible Euler equation will be presented in this section,
xtending the set of already known MIS methods from [20]. However, there was no method of order four suggested.
In order to estimate a reasonably good method, the stability concept for the linear acoustic problem as given in [9]

as been utilized as a linear representative example for the compressible Euler equation. The set of equation is given by
∂u
∂t
+ U

∂u
∂x
= −cS

∂Π

∂x
and

∂Π

∂t
+ U

∂Π

∂x
= −cS

∂u
∂x

,

ee [9] or [20, equation (10)] with x-horizontal component of flow velocity (u), Exner function (Π ) as well as speed of
ound (cS) and a constant advection velocity (U). This equation is a linearized continuous one-dimensional compressible
nviscid equation. The stability region was calculated accordingly to [20].

To obtain a finite dimensional test problem, all spatial differential operators are replaced by finite differences and then
ransformed in to Fourier space. The pressure and divergence terms are discretized by central differences, the advection
erm by third order up-winding. The stability is tested for the CFL range U∆t < 1

6 cS∆t and 40 Fourier modes. Therefore,
the method is tailored for this special application where the spectra lies near the imaginary axis. For other applications
the standard way is to resort to the test equation y′ = λEy+ λFy and a suitable domain for λE and λF .

Table 2 gives the parameters α, γ and β for the MIS54 method with five stages and order four.
In [20], the MIS methods were derived by solving an optimization problem which has combined the stability properties

ith the small integration time interval
∑s+1

i=1 [di]. The aim was additionally to good stability the minimization of this
ime interval. However, the MIS54 method was chosen from a set of more than 100 different methods of order four by
isualizing the stability region. All these various methods were calculated by solving the non-linear system of equations
f all order conditions derived up to order four with random initial values for the MATLAB function fsolve. The step and
unction tolerance values were chosen to be 10−10 and 10−12, respectively. The corresponding stability region is given in
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Fig. 1. Results of MIS54 method.

ig. 1a. The stability region of this method has considerably expanded the regions given in [20]. The main advantage of
his specific method compared to all other calculated methods of order four is the large CFL number for speed of sound
CS) with a given Mach number or ratio of CA

CS
< 1

6 with CFL number for advection (CA). Even a CS as high as 50 is possible
or a Mach number as low as 1

6 .
Fig. 1b shows the order convergence of the MIS54 method, where the auxiliary ordinary differential equation was

olved with various explicit Runge–Kutta methods. The cold bubble downburst benchmark example as described in [20]
as used for the calculation of the error convergence. The calculation was performed for time steps ranging from 2−6 till
2 s. The integration was conducted for 900 s. No background wind was applied. The error was derived by the comparison
ith a simulation run using an eRK method of order four with a time step of 0.0001 s. Although each time step was applied

or each numerical test, the Runge–Kutta method with order two only converged for a time step of 0.25 s or less.
Furthermore, for some time steps, the method converges with a higher order, see e.g. Runge–Kutta method with order

wo and time step 0.0625 s and Simpson’s method with time step 0.5 s. This is related to the number of fast integration
ime steps applied for each MIS stage. Eq. (17) states that the number of fast integration time steps influences quadratically
he order conditions for order three and RK method applied for the fast integration of order two. However, if this number
s significantly large enough then there is almost no influence. Moreover, with a further decrease of the time step, the
umber of fast integration time steps were also reduced. Therefore, the test then converges more slowly. This can also
e seen by the fast integration with the Simpson method.
This characteristic allows the application of a RK method of reduced order for fast integration without an increase

n error as long as the number of fast time steps is large enough. This is exemplarily justified by the application of the
impson’s method for time steps larger than 0.5 s.
Furthermore, Fig. 1b also shows that the MIS54 method converges with order four by utilizing an exponential integrator

or the auxiliary ordinary differential equation.

emark. During this test, there has been no change of the RK method applied for the integration in each MIS stage.
owever, this is not required by the order condition from the previous section.

. Conclusions and outlook

In this work, an extension for the general MIS method has been presented. This allows an integration of the auxiliary
rdinary differential equation for the MIS stages with arbitrary RK methods. Furthermore, the suggested extMIS method
as been set into relation with other existing multirate RK methods such as RFSMR, PRK and GARK methods. Some of
hese known relations are only valid for the special case of the extMIS-KW method. However, these connections gave
he opportunity to apply the known order theory from the GARK method to the extMIS method. Therefore, a strategy to
erive conditions for higher order convergence was presented, including the conditions up to order four. Furthermore, it
as shown that by applying RK methods of sufficiently high order for the integration of the auxiliary ordinary differential

quation in each MIS stage, the order conditions are also valid for the general MIS method.
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Finally, a MIS method of order four was presented as well as the corresponding stability region for a linear acoustic
roblem. The order of this method has been numerically shown with the cold bubble downburst benchmark test. The
bserved error behaviour from the different RK methods indicates that for the integration of the auxiliary ordinary
ifferential equation a method of sufficient error convergence will result in a similar convergence behaviour. This implies
need in further research in the error convergence of the MIS method.
Moreover, a theory based on trees for the derivation of the order conditions of the (extended) MIS method will enhance

he development of MIS methods. Additionally, the combination of the extMIS method with the class of MRI-GARK
ethods suggested in [14] will be of interest. Currently, the MRI-GARK methods are derived on the basis of the MIS-KW
ethods. The result would be an even more generalized class of multirate infinitesimal step methods for additive split
roblems as given in Eq. (1).

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cam.2019.112541.
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