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Abstract

We consider a bubble of vapor and inert gas surrounded by the corresponding liquid
phase. We study the behavior of the bubble due to phase change, i.e. condensation and
evaporation, at the interface. Special attention is given to the effects of surface tension
and heat production on the bubble dynamics as well as the propagation of acoustic
elastic waves by including slight compressibility of the liquid phase. Separately we
study the influence of the three phenomena heat conduction, elastic waves, and phase
transition on the evolution of the bubble. The objective is to derive relations including
the mass, momentum, and energy transfer between the phases. We find ordinary
differential equations, in the cases of heat transfer and the emission of acoustic waves
partial differential equations, that describe the bubble dynamics.

From numerical evidence we deduce that the effect of phase transition and heat
transfer on the behavior of the radius of the bubble is negligible. It turns out that
the elastic waves in the liquid are of greatest importance to the dynamics of the
bubble radius. The phase transition has a strong influence on the evolution of the
temperature, in particular at the interface. Furthermore the phase transition leads to
a drastic change of the water content in the bubble, so that a rebounding bubble is
only possible, if it contains in addition an inert gas.

In a forthcoming paper the equations derived are sought in order to close equations
for multi-phase mixture balance laws for dispersed bubbles in liquids involving phase
change. Also the model is used to make comparisons with experimental data on the
oscillation of a laser induced bubble. For this case it was necessary to include the
effect of an inert gas in the thermodynamic modeling of the phase transition.

1 Introduction

Mathematical modeling of fluid flow with phase change between liquid water and its vapor
has many applications in science and technology, such as the study of cloud formation, of
bubbles in boiling water, spray cooling in metal production or damage of ship propellers
due to cavitation. For numerical computations of such flows, via mathematical equations
describing the balances of mass, momentum and energy, one needs appropriate terms
modeling the transfer of these physical quantities between the phases. It is a commonly
found situation that one phase is dispersed in the other. Here we consider vapor bubbles
containing some additional inert gas in liquid water.

The subproblem concerning the precise modeling of the evolution of a single bubble is a
challenge, because various different phenomena are involved and strongly couple with each
other. For example, here we meet heat conduction, elastic waves, phase transitions and
diffusion. The latter occurs if the initial bubble is created by a laser beam, see e.g. Akhatov
et al. [1] and especially Müller et al. [15], so that the bubble might contain inert gas, i.e.
most probably hydrogen and oxygen, in the vapor due to the high temperature during
the bubble creation process. We aim to reproduce as closely as possible measurements
of the subsequent evolution of the bubble radius. Experimental results were obtained by
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the group of Lauterborn in Göttingen, see Müller et al. [15]. We will refer to this as
the Göttingen experiment in this paper. In the experiment one observes a collapsing and
rebounding bubble. In fact, the bubble radius increases to a maximum, then decreases to
a non-zero minimum, and hereafter the cycle is repeated, however, an apparent damping
is observed. We will present numerical results using four different models in order to give
an indication which terms are important. Detailed comparisons with experimental data
will be reported in a forthcoming joint paper with the experimental group. A comparison
of the observed evolution of a bubble with a model is a subtle problem, because the initial
states of all physical quantities involved cannot be precisely measured experimentally. At
this time we have to work with very incomplete experimental data.

In Akhatov et al. [1] the problem is treated numerically by a full system of coupled partial
differential equations, which obviously is the correct description. However, the objective of
our paper is to explore if a description by a much simpler system of equations is possible. To
this end it is important to determine the influence of the various participating phenomena
on the observed evolution. Thus we describe the problem by a hierarchy of model systems
of increasing complexity. We start out with the model of the undamped oscillation of
a bubble immersed in an incompressible liquid at constant temperature without phase
transition, given by the Rayleigh-Plesset equation [12], [10]. Hereafter we take the liquid-
vapor phase transition into account. Next we consider in addition heat conduction. Finally
elastic waves due to the compressibility of the liquid are incorporated.

In the Göttingen experiment a laser pulse is focussed inside a vessel of water. This leads to
the formation of a plasma and creation of a vapor bubble that collapses and rebounds. If a
liquid-vapor phase transition is allowed, the latter effect is only possible when an inert gas
is present in the bubble. A pure water vapor phase cannot persist beyond the first collapse
since the vapor phase is unstable under the conditions of the experiment. Currently it
is not known by measurements what constitutes the inert gas. The most likely seem to
be oxygen and hydrogen. So for this paper we are assuming this to be the case. We are
considering the data described in Müller et al. [15]. Earlier experimental work on this
topic is described in Akhatov et al. [1, 2] and Kurz et al. [8].

The theoretical study of a spherical bubble surrounded by liquid has quite a long history.
Much of the literature is an extension of the 1917 paper of Rayleigh [14] on the pressure
during collapse of a spherical bubble. He mentions that his work was motivated at that
time by the noise emitted by a boiling kettle and the cavitation behind propelling screws.
He considered a constant outer pressure and basically integrated the equations of motion,
under the assumption of complete radial symmetry, of an incompressible, inviscid liquid.
The work was then extended 1949 by Plesset [12] in a study on cavitation considering the
case of a non-constant external pressure P (t) leading to a bubble which grows and then
collapses. This was observed in the cavitation experiments he discussed. Let us consider
the density ρ of the liquid and the pressure of the liquid at the interface p(R). In his paper
he derived the second order nonlinear ordinary differential equation for the time dependent
bubble radius R

RR̈ +
3
2
Ṙ2 +

P (t)− p(R)
ρ

= 0 (1)

which has become known as the Rayleigh-Plesset equation of bubble dynamics.

Later extensions were summarized by Lauterborn [9] and studied numerically. Next Keller
and Miksis [7] were interested in the acoustics of oscillating bubbles and included the effect
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of acoustic radiation by considering compressibility. Also they carried the viscosity term
with viscosity µ through the derivation. Further their derivation involved the speed of
sound c in the liquid and the pressure inside the bubble pb(R). They considered a pressure
at infinity perturbed by an incoming sound wave P (t) = p∞ − P sinω

(
t + R

c

)
. Assuming

that the interface velocity is equal to the liquid velocity at the interface, i.e. the phase
transition is ignored, this leads to the Keller-Miksis equation [7, (3.9)], [13] which in our
notation is

R̈

(
4µ

ρ
−R(Ṙ− c)

)
=

1
2
Ṙ3 + Ṙ

pb(R)− p∞
ρ

− c

(
3
2
Ṙ2 +

4µṘ

ρR
+

2σ

ρR
− pb(R)− p∞

ρ

)

+R
ṗb(R)

ρ
+

(
1 +

Ṙ

c

)
cP

ρ
sinω

(
t +

R

c

)
.

This equation is only valid for small Mach numbers. We simplify the equation by setting
µ = 0. Then we divide by c and use the Laplace-Young relation pb(R) = p(R) + 2σ

R to
obtain

RR̈

(
1− Ṙ

c

)
=

3
2
Ṙ2

(
Ṙ

3c
− 1

)
+ Ṙ

pb(R)− P (t)
ρc

−
(

P (t)− p(R)
ρ

)
+ R

ṗb(R)
ρc

. (2)

Taking the limit c →∞ reduces this equation to the Rayleigh-Plesset equation (1). Pros-
peretti and Lezzi [13] have generalized these equations even further using singular pertur-
bation methods. Wu and Roberts [17] considered a version of this equation coupled to
radially symmetric Euler equations in order to study sonoluminescence. In Akhatov et al.
[1] a model for the laser induced bubble experiment ist introduced. Near the recollapse
of the bubble the bubble radius velocity becomes very high, so the Euler equations of gas
dynamics are used to simulate this part of the bubble dynamics. The paper [1] includes
quite extensive citations of the relevant literature.

As a result of our considerations we obtain a hierarchy of models consisting of a system of
ordinary and partial differential equations describing the evolution of the bubble with the
main objective to identify the various driving forces involved.

From the numerical computations we can clearly see that the elastic waves in the liquid
are of greatest importance to the evolution of the bubble radius in comparison with the
experiment. Phase transition and heat conduction play no significant role for movement
of the bubble radius. The phase transition has an enormous influence on the evolution of
the temperature, in particular at the interface. Furthermore the phase transition leads to
a drastic change of the water content in the bubble, so that a rebounding bubble is only
possible, if it contains in addition an inert gas.

After this introduction we have organized the paper as follows. In Section 2 we first start
with the balances of mass, momentum and internal energy for an inviscid compressible fluid
in Subsection 2.2, including the jump relations that describe the conservation properties
at moving interfaces. Appropriate constitutive relations for mixtures are introduced in
Subsection 2.3 and complemented by the entropy principle in the bulk and in Subsection
2.4 at liquid-vapor interfaces. The entropy principle is exploited in Subsection 2.5 to
introduce the interfacial mobility. In Subsection 2.6 the constitutive relations for a vapor
phase containing water vapor and oxygen as well as hydrogen as inert gases are formulated.
Next we derive in Subsection 2.7 a kinetic equation for the evolution of the bubble mass

3



under phase transition. The condensation rate may be taken from well established kinetic
considerations. An important point is that the evaporation rate at the interface is derived
in a thermodynamically consistent way. In Section 3 we recall the data from the laser
induced bubble experiment that we are modeling.

The central part of the paper is Section 4 in which we give a hierarchy of models for radially
symmetric bubbles in order to study numerically which physical effects are important to
explain the experimentally observed dynamics of laser induced bubbles. Starting point is
the well known second order Rayleigh-Plesset equation in Subsection 4.3. In Subsection 4.4
the mass dynamics due to phase transition is introduced to give a system of implicit first
order ordinary differential equations. Then we add in Subsection 4.5 the heat conduction in
the liquid. Finally a wave equation for acoustic waves is coupled to the other phenomena.
The details of the derivations of these models are given in Section 5. In Section 6 we
present some of our numerical computations within the setting of these models. The paper
ends with a short summary of the main conclusions.

2 Variables, equations of balance and local entropy principle

2.1 Basic variables and constitutive quantities

As a starting point we take a spherical bubble B = BR(0) = {x ∈ R3| |x| < R(t)} of vapor
sitting at the origin surrounded by the liquid. Here t is time and R the time dependent
radius of the bubble. However, later on we also will treat the case of a bounded planar
interface between liquid and vapor. For the case of the bubble we will work in radial
coordinates assuming that all physical quantities depend on time and distance from the
origin. All vector fields are then assumed to be radial.

We have one vapor bubble in a closed, very large control volume. One could assume either
that the control volume is subject to a given constant outer pressure p0 or that the volume
in the control volume remains constant in time. Note that the physics of phase transition
depends considerably on whether the pressure or the volume is held constant in the control
volume. In the first case the phases cannot coexist in equilibrium, whereas in the second
case they may coexist. In nature the gas phase usually consists of a mixture of several
constituents, for example vapor, oxygen, and nitrogen. This again changes the physics of
the phase transition, allowing for fog in the pressure controlled situation found in nature.

In this paper we do not consider the case of constant volume. We only consider the case
that the outer pressure p0 of the global control volume is held constant, e.g. in a container
with a moveable piston that is controlled by the outer pressure.

2.2 Equations of balance in regular and singular points

Here we exclusively consider the gas and the liquid phase as inviscid heat conducting fluids.
The gas consists of water vapor, oxygen, and hydrogen. The appearance of oxygen and
hydrogen is due to the fact that a bubble is created by a focussed laser beam in water. This
initially leads to a high temperature so that some of the water vapor dissociates into O2 and
H2. In the following we will only consider temperatures under which no further chemical
reactions take place. Furthermore, we study short time bubble evolutions during which
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hydrogen and in particular oxygen cannot leave the bubble into the liquid. Consequently
the liquid consists of pure water only, thus we describe the liquid by 5 variables which are
the mass density ρ, velocity v, and temperature T . In the gas we have as variables three
partial mass densities ρa, with a = W,H,O for water, hydrogen, and oxygen. Further,
there are the velocity of the mixture v and the temperature T . Unless stated otherwise,
physical fields are assumed to depend on the time variable t ∈ R and space variable x ∈ R3.

The determination of the variables relies on the local conservation laws for mass and
momentum, as well as the balance law for internal energy. In regular points of the liquid
phase these are

∂ρ

∂t
+ div(ρv) = 0 (3)

∂ρv
∂t

+ div(ρv ⊗ v + p1) = 0 (4)

∂ρu

∂t
+ div(ρuv + q) = −p1 · gradv . (5)

Here we use the second order tensor 1 = (δij)1≤i,j≤3 with δij = 1 for i = j and = 0 for
i 6= j, the tensor product of vectors ⊗ giving a second order tensor. The divergence of a
second order tensor is the vector of divergences of each row and the product · of two such
tensors is the scalar obtained by double contraction.

In these equations there are further quantities which are not among the basic variables.
We call them constitutive quantities, and these are the internal energy density u, the heat
flux q and the pressure p. The constitutive quantities are related to the basic variables in
a material dependent manner, which will be given in Section 2.6.

In the gas phase, the equations for momentum and energy of the mixture have the same
structure as (4) and (5). However here we have to consider 3 conservation laws for the
partial mass densities

∂ρa

∂t
+ div(ρava) = 0. (6)

The partial mass densities are defined so that they sum up to the mass density of the
mixture, and the weighted sum of partial velocities gives the (barycentric) velocity of the
mixture, i.e.

ρ =
∑

a

ρa, v =
∑

a

ρa

ρ
va which implies with (6)

∂ρ

∂t
+ div(ρv) = 0.

The constitutive quantities are pressure p, internal energy e, and heat flux q, as before,
and the partial velocities va, but these are usually substituted by the diffusion fluxes
Ja = ρa(va − v).

We will use the superscripts L, V and the subscript I to specify physical quantities Ψ in
the liquid, the vapor, and on the interface respectively. The combination of the subscript
I with one of the superscripts denotes the one sided limit ΨL,V

I (t, xI) = limxL,V →xI
Ψ(t, x)

of the quantity in the respective bulk fluid at the interface. The superscript ν together
with I denotes the scalar obtained by projection of a vector on the chosen normal vector
ν on the surface. We denote vectors, except for the spatial coordinate vector of a point,
and higher order tensors in boldface.
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Along the singular surface I between the phases we consider the normal vector ν pointing
into the liquid region. It is moving with normal speed wν . Across this interface we use the
jump bracket JΨK = ΨL

I −ΨV
I for any physical quantity Ψ. We have the following relations

Jρa(vν
a − wν)K = 0 (7)

ρ(vν − wν)JvK+ Jp νK = 2σkmν (8)

ρ(vν − wν)Ju +
p

ρ
+

1
2
(v −w)2K+ JqνK = 0 . (9)

Here the interface is exclusively equipped with surface tension σ. This is the term appearing
on the right hand side of the momentum balance. We ignore for example tangential heat
and diffusion fluxes. Additionally we assume that the interface has no mass and no inertia,
and in particular we ignore the dependence of the surface tension on the concentration of
the constituents of the gas and the temperature. The complete interface relations may be
found in Dreyer [4, Sections 5-14] and Müller [11, Section 2.2.2, Chapter 3]. The term km

is the mean curvature of the surface, with km = − 1
R for a sphere and km = 0 for a plane.

The assumption that there is no oxygen and hydrogen in the liquid phase implies that the
equations (7) can be written as

vν
O = vν

H = wν and JρW (vν
W − wν)K = 0 . (10)

In contrast to the need of partial mass balances, even for a mixture we only have to take
a single energy balance, as it was given above, because there is only one temperature of
the mixture. However, for a reduction of the necessary numerical data, which are needed
to evaluate the energy balance, it is useful to decompose the internal energy density,
the pressure, and the heat flux of the mixture into the corresponding quantities of the
constituents, according to the detailed description in [11] without quadratic terms of the
diffusion fluxes we have

ρu =
∑

a∈{W,H,O}
ρaua, p =

∑

a∈{W,H,O}
pa, and q =

∑

a∈{W,H,O}

(
qa +

(
ua +

pa

ρa

)
Ja

)
.

(11)
In terms of these quantities the balance of internal energy (5) in the gas phase now reads

∑

a∈{W,H,O}

(
ρau̇a + div(qa + Ja

pa

ρa
)
)

=
p

ρ
ρ̇ , (12)

where ()· = ∂
∂t() + v · grad() denotes the material time derivative. Across the interface the

internal energy balance (9) assumes the form

qν
L −

∑

a∈{W,H,O}
qν
a = ρL(uL +

pL

ρL
)(vν

L − wν)−
∑

a∈{W,H,O}
ρa(ua +

pa

ρa
)(vν

a − wν) . (13)

2.3 General constitutive model and local entropy principle for the bulk
phases of the two phase system

The general constitutive model for the system under consideration relies on two functions
for the specific Helmholtz free energy

ψ = u− Ts (14)
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that is a combination of specific internal energy u and specific entropy s. We assume that
we have in the liquid resp. the vapor phase

ψL = ψ̂L(T, ρL) and ψV = ψ̂V (T, ρW , ρH , ρO) = ψ̃V (T, ρV , XW , XH),

where the mole fractions are defined by Xa = ρa/ma∑
b ρb/mb

. The knowledge of the specific
free energy allows in combination with the local entropy principle for the bulk phases to
calculate the pressure p, the specific entropy s, the specific Gibbs free energy g, and the
chemical potentials µa, see Müller [11],

p = ρ2 ∂ψ̃

∂ρ
, s = −∂ψ̃

∂T
, g = ψ +

p

ρ
, µa =

∂ρψ̂

∂ρa
. (15)

Moreover the Gibbs-Duhem equation for the two phases, viz.

gL = µL
W , gV =

∑
a=W,H,O µV

a ρa

ρ
(16)

is likewise a consequence of the entropy principle, which also gives the entropy flux φ, and
an inequality that controls the flow of heat

φL =
qL

T
, φV =

qV

T
−

∑
a=W,H,O µaJa

T
, q · grad 1

T
≥ 0. (17)

2.4 The local entropy principle across the liquid-vapor interface

The entropy principle holds point wise in a given body, thus we also must have an en-
tropy principle at the interface. In the current study that principle relies on two basic
assumptions: (i) There is no tangential entropy flux within the surface, (ii) the tangential
velocities of the bulk phases at the interface are zero.

In this case the entropy principle at the interface consists of two parts

JT K = 0 ρ(vν − wν)JsK+ JφνK ≥ 0 . (18)

The continuous temperature at the interface is denoted by TI . In equilibrium the equality
sign holds, whereas in nonequilibrium the left hand side of the inequality in (18) must be
greater than zero. The axiom of continuous temperature across the interface can be given
up. However, in this case the subsequent treatment of the problem becomes very involved.

2.5 Exploitation of the entropy principle

We introduce the jump of the specific kinetic energy JekinK = J1
2(v−w)2K = J1

2(vν−wν)2K.
Next we multiply the entropy inequality (18) by T , subtract the result from the energy
equation at the interface (9), and use (15) to obtain

ρ(vν − wν)Jg + ekinK+ J
∑

a=W,H,O

µaJaK ≤ 0 . (19)
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Now we assume that oxygen and hydrogen cannot cross the interface from the bubble into
the liquid, i.e. vν

O = vν
H = wν . In this case the inequality (19), using gL = µL

W , can be
reduced to

ρW (vν
W − wν)JµW + ekinK ≤ 0. (20)

In nonequilibrium the flux ρW (vν
W−wν) of mass across the interface is driven by JµW +ekinK.

For this reason that factor is called the driving force. The left hand side of (20) is of the
form flux × driving force.

In thermodynamics it can be shown that in equilibrium the driving force must be zero.
Thus the product assumes its maximum in equilibrium. We now assume that there is a
relation between the flux and the driving force in non-equilibrium which usually is called
kinetic relation. A consequence of the existence of the kinetic relation is that

JµW + ekinK = 0 ⇐⇒ ρW (vν
W − wν) = 0 , (21)

see [6].

The simplest ansatz to satisfy the inequality in nonequilibrium is to assume that the two
factors of the product are positively proportional to each other. We write

−4πR2ρ(vν − wν) = 4πR2BIJµW + ekinK with BI > 0 , (22)

the quantity BI is called interfacial mobility which must be measured or calculated from
an underlying model. Such a model will be discussed in Section 2.7.

2.6 Special constitutive model for the two phase system

The vapor phase consists of the three constituents water vapor, hydrogen and oxygen.
These are described by the ideal thermal and the caloric equations of state for the partial
pressures and for the partial internal energies. These are for a ∈ {W,H, O}

pa(T, ρa) = ρa
kT

ma
and ua(T ) = za

k

ma
(T − T∗) + ua(T∗) (23)

with

za =





3/2 for a monoatomic,
5/2 ′′ diatomic,
3 ′′ polyatomic gas.

The Boltzmann constant is denoted by k, the molecular mass of constituent a is ma. We
use the symbol ∗ to denote arbitrary reference values.

The constitutive laws for the partial specific entropies are also needed here

sa(T, ρa) = za
k

ma
log

T

T∗
− k

ma
log

ρa

ρ∗a
+ sa(T∗, ρ∗a) . (24)

Likewise to (11) the entropy density ρs for the mixture is given by

ρs =
∑

a∈{W,H,O}
ρasa . (25)
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We have already assumed that the vapor mixture is inviscid but we allow heat conduction.
However, due to a homogeneity assumption in the bubble we do not need the constitutive
law for the heat flux q.

The liquid phase consists only of water which is modeled as a compressible inviscid liquid.
We use the following constitutive laws for the liquid pressure and energy

pL = p∗ + K

(
ρ

ρ∗
− 1

)
(26)

and
uL(T, ρ) = c(T − T∗) + (p∗ −K)

(
1
ρ∗
− 1

ρ

)
+

K

ρ∗
ln

ρ

ρ∗
+ uL(T∗, ρ∗) . (27)

The pressure is related to the density variation by a linear law, and additionally we ignore
thermal expansion and the temperature dependence of the modulus of compression K.
Thus the pressure is assumed to be independent of temperature. For the specific heat
capacities we have cp = cv = c. This implies that the specific entropy of the liquid does
not depend on the mass density, and we have

sL(T ) = c log
T

T∗
+ sL(T∗) .

The constitutive law for the heat flux in the liquid is given by Fourier’s law, i.e.

qL = −κLgradT with κL > 0 . (28)

The liquid heat conductivity κL is assumed to be constant.

From the above constitutive equations for the vapor we obtain

µV
a (T, p, Xa) = ga(T, p) +

kT

ma
ln Xa , (29)

where the terms have been combined, s.t. the chemical potential of constituent a can be
written as the specific Gibbs free energy for the pure substance a under the total pressure
of the mixture pV plus the so called entropy of mixing. Thus ga(T, p) is defined by

ga(T, p) = ga(T∗, p∗a)+
kT

ma
ln

(
p

p∗a

)
+(za +1)

k

ma

[
T − T∗ − T ln

(
T

T∗

)]
− (T −T∗)sa(T∗) .

(30)
Recall that the liquid consists of the single substance water. Its specific Gibbs free energy
can easily be calculated and reads

gL(T, p) = gL(T∗, p∗) +
K

ρ∗
ln

(
1 +

p− p∗
K

)
+ c

[
T − T∗ − T ln

(
T

T∗

)]
− (T − T∗)sL(T∗) .

(31)
The incompressible liquid is included here as the limiting case K →∞ that gives

gL(T, p) = gL(T∗, p∗) +
1
ρ∗

(p− p∗) + c

[
T − T∗ − T ln

(
T

T∗

)]
− (T − T∗)sL(T∗) . (32)
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2.7 Simple kinetic model for the evolution of a single bubble

In this section we introduce a kinetic model for the case at hand. To this end we consider a
bubble with radius R(t) filled with the vapor mixture from above. The bubble is immersed
in the liquid, and the evolution ṁ of the total bubble mass is given by

dm

dt
=

d

dt

∫

ΩV

ρV dx = −
∮

∂ΩV

ρV (vν − wν) dS = −4πR2ρV (vν − wν) , (33)

where we have used the continuity equation (3) and Reynolds transport theorem [16]. Now
we calculate ṁ by a simple kinetic model. We start from the representation

ṁ = mW (γE − γC) (34)

where γE and γC are the evaporation respectively the condensation rate. The latter results
from the encounters of the gas molecules with the interface of the bubble. We assume that
each incoming water molecule leads to condensation, and furthermore we assume that the
two other constituents remain in the bubble. In this case the kinetic theory of ideal gases
gives the condensation rate by the expression

γC(R, TI , pW ) = 4πR2

√
kTI

2πmW

ρW

mW
= 4πR2 pW√

2πmW kTI
. (35)

The relation (34) is usually called kinetic relation, but it is also known as the classical
Hertz-Knudsen-theory, see Bond and Struchtrup [3].

Next we calculate the evaporation rate γE . At first we calculate γE in equilibrium, and
according to (21) and (33) we have here ṁ = 0. As stated in (34) this is equivalent to
γ̃E = γ̃C , where ˜ indicates an equilibrium state.

The necessary condition can be read from (21)1 with ekin = 0. At the interface it states
that µL

W (TI , p
L
I , XL) = µV

W (TI , p
V , XW ). In the liquid we have XL = 1. For the vapor we

insert into (29) the relation XW = pW /pV , which holds for ideal gases. Thus we obtain
from (30) that gL(TI , p

L
I ) = gW (T, pW ). Thus for given TI and pL

I we may solve this
condition for pW = p̃(TI , p

L
I ), so that the condensation rate in equilibrium can be written

as

γ̃C = γC(R, TI , p̃(TI , p
L
I )) = 4πR2 p̃(TI , p

L
I )√

2πmW kTI
. (36)

Next we introduce a trick to represent the function pW = p̃(TI , p
L
I ) by a form that does not

explicitly refer to equilibrium. To this end we introduce the saturation pressure p̄, which
denotes the equilibrium pressure at a planar interface between the vapor and the liquid
phase of pure water. In such a situation the equation gL(TI , p) = gW (TI , p) holds for the
equilibrium pressure p̄. Consequently for a given TI we have p = p̄(TI).

Using (30) we calculate gW (TI , p̃) and gW (TI , p̄) to obtain the difference

gW (TI , p̃)− gW (TI , p̄) =
kT

mW
ln

p̃

p̄
. (37)

From gL(TI , p
L
I ) = gW (TI , p̃) we conclude

gL(TI , p
L
I ) = gW (TI , p̄(TI)) +

kT

mW
ln

p̃

p̄
, (38)
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thus we get

p̃ = p̄ exp
(

mW
gL(TI , p

L
I )− gW (TI , p̄)

kT

)
. (39)

In equilibrium we have γ̃E = γ̃C , so using (39) the evaporation rate in equilibrium can be
calculated according to

γ̃E = γ̃C = 4πR2 p̃√
2πmW kTI

= 4πR2 p̄(TI)√
2πmW kTI

exp
(

mW
gL(TI , p

L
I )− gW (TI , p̄(TI))

kTI

)
. (40)

Analogously to (37) we obtain from (30)

gW (TI , p̄) = gW (TI , pW )− kT

mW
ln

pW

p̄
. (41)

Using this expression the equilibrium evaporation rate can be given in the following form

γ̃E = 4πR2 pW√
2πmW kTI

exp
(

mW
gL(TI , p

L
I )− gW (TI , pW )

kTI

)
. (42)

Finally, due to gL(TI , pL) = µL(TI , pL, 1) and gV
W (T, pV

W ) = µV
W (T, pV , XW ) using (35) we

obtain
γ̃E = γC exp

(
mW

kTI
JµW K

)
. (43)

It is important to note that the equilibrium evaporation rate is now given in terms of non-
equilibrium quantities. This fact motivates to assume that the condensation rate γE in
non-equilibrium is given by the same expression as γ̃E . However, the presented motivation
has ignored the contribution of the kinetic energy to the chemical potential. A more careful
study leads to

γE = γC exp
(

mW

kTI
JµW + ekinK

)
. (44)

For small deviations from equilibrium the expression

γE = γC

(
1 +

mW

kTI
JµW + ekinK

)
(45)

gives a good approximation. A comparison with the phenomenological ansatz (22) identifies
the mobility BI as

BI = mW
pW√

2πmW kTI

mW

kTI
. (46)

As the final result we use

ṁ = 4πR2mW
pW√

2πmW kTI

mW

kTI
JµW + ekinK . (47)

Here we would like to make two remarks. (i) If the liquid were incompressible, a case that
we do not consider here, the relation (44) can be derived without the assumption from
above. (ii) If we were to ignore the kinetic energy the same result can also be obtained by
the principle of detailed balance. However, that principle must be handled with care. An
important counterexample is given by Dreyer and Duderstadt in [5].
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3 The Göttingen laser induced bubble experiment

Our objective is to apply the developed model to a single spherical bubble that is produced
by laser pulses. The bubble is created in a cuvette filled with clean distilled water. The
temperature and the pressure far from the bubble are kept constant at 20◦C and 1 bar.
Everything that is seriously known from the experiment can be read of from the Figure 1
that gives the bubble radius versus the time.

Figure 1:
Evolution of bubble radius, experimental data from [15].

Apparently there is a growing bubble that reaches its maximum radius Rmax = 7.469 ·
10−3 m at 70.7 µs and collapses hereafter to a minimal radius Rmin = 12.467µm which is
assumed at 140µs. Hereafter the bubble starts to grow again, however, the new maximal
radius is very much smaller than the first one, so that one may conclude that a large
damping mechanism accompanies the observed process. The experimental researchers in
Göttingen report that the second cycle is followed by further cycles that almost show no
damping. It is also reported that presumably there is plasma in the bubble, which is
created by the laser, which has completely recombined at time t = 0. Further observations
and in particular data, that give information on the thermodynamic state of bubble and
liquid, are not available.

Obviously, on this slim data basis a serious simulation of the described process is not
possible without further speculations. We do not describe here speculations that are given
in [15]. Instead from now on we present our point of view to formulate at least the necessary
initial conditions. For simplification we start the simulation at the first maximum radius
so that we need to know the thermodynamic state of the bubble-liquid system at that
instant.

According to our point of view the main assumption to reach coincidence between mea-
sured and simulated data concern the permanent existence of an inert gas in the bubble.
We believe that oxygen and hydrogen molecules have survived the dramatic period that

12



followed the bubble creation by the laser, and we properly adjust their amount at the first
maximal radius of the bubble, so that the first subsequent minimal radius is met. Thus the
initial data for our simulation are given by T = 293.15K, NW = 7.5 ·1015, NO = 2.5 ·1013

implying NH = 2NO, pV (t = 0) = 17350 Pa.

The temperature is assumed to be homogeneous in the bubble-liquid system at t = 0 and
is equal to the liquid temperature far away from the bubble. Initially we take R(0) = Rmax

and vL = 0.

We already mention here that agreement with the experimental data can only be achieved
if the bubble-liquid system enters a single phase state for a finite period of the evolution.
This happens if the interfacial temperature TI exceeds the critical temperature. In the
above model the single phase region is characterized by ṁ = 0.

4 Special cases

4.1 Introduction of special cases

The evolution of the bubble radius is accompanied by three damping mechanisms which
are due to: phase transition, heat conduction and generation of waves in the liquid. In
order to see their influence on the damping of the bubble radius we separately consider the
three phenomena.

In this section we give only the main results for the bubble dynamics. The detailed deriva-
tion of the formulas is given in Section 5.

4.2 Spherical symmetry and homogeneous bubble

We consider exclusively a bubble-liquid system with spherical symmetry which implies that
the conservation laws assume in the bubble as well as in the liquid the following form

∂ρ

∂t
+

1
r2

∂(r2ρv)
∂r

= 0 (48)

∂ρv

∂t
+

1
r2

∂(r2ρv2)
∂r

+
∂p

∂r
= 0 (49)

∂ρu

∂t
+

1
r2

∂(r2ρuv)
∂r

+
1
r2

∂(r2q)
∂r

= − p

r2

∂(r2v)
∂r

. (50)

The corresponding constitutive equations will be separately inserted for the various special
cases.

The interfacial conservation laws (10), (8) and (9) in spherical coordinates are with wν = Ṙ

vH
I (t) = vO

I (t) = Ṙ(t) and JρW (vW − Ṙ)K = 0, (51)

ρ(vI − Ṙ)JvK+ JpK = −2σ

R
, (52)

−ρ(v − Ṙ)Ju +
p

ρ
+

1
2
(v − Ṙ)2K+ JqK = 0 . (53)

13



The total mass of the spherical bubble B is given by m(t) = 4π
∫ R(t)
0 r2ρV (t, r)dr. From

now on we exclusively consider a homogeneous bubble, thus we have

m(t) =
4
3
πR(t)3ρV (t) implying ṁ = 4πR2ṘρV +

4
3
πR3ρ̇V . (54)

We eliminate ṁ by means of the mass balance (33) and obtain

ρ̇V = −3ρV vV
I

R
, (55)

so that (54)2 can be written as

ṁ = 4πR2ρV (Ṙ− vV
I ) = 4πR2ρL

I (Ṙ− vL
I ) . (56)

Now (56)2 is used to calculate the liquid velocity at the interface

vL
I = Ṙ− ṁ

4πR2ρL
I

. (57)

The assumption of a homogeneous gas phase means, that the processes of diffusion and
heat conduction are much faster than the adjustment to mechanical equilibrium. In the
homogeneous case from (23)1 and (25)1 we obtain

pV
I (t) =

3N(t)kT

4πR(t)3
, (58)

where the quantity N(t) = NW (t) + NH + NO gives the total number of particles in the
bubble. With

m(t) = NW (t)mW + NHmH + NOmO (59)

we have
ṁ = mW Ṅ . (60)

4.3 Case 1: The undamped oscillation of a bubble immersed in an in-
compressible liquid at constant temperature without phase transi-
tion

In this case the evolution law for the bubble radius can be reduced to a single ODE that
reads

R̈ +
3Ṙ2

2R
+

1
ρLR

(
p0 − 3NkT

4πR3
+

2σ

R

)
= 0 , (61)

which is known as the Rayleigh-Plesset equation. The total number of particles in the
bubble N is constant, because in this case the number of water molecules in the bubble
does not change. The equation describes an undamped periodic oscillation around the
equilibrium radius Req with p0 + 2σ

Req
= 3NkT

4πR3
eq
. With the initial conditions R(0) = R0 > 0

and Ṙ(0) = Ṙ0 integration of (61) leads to two solutions for the interfacial velocity

Ṙ = ± 1
R3/2

√
Ṙ2

0R
3
0 −

1
ρL

(
2
3
p0(R3 −R3

0)−
3NkT

2π
ln

R

R0
+ 2σ(R2 −R2

0)
)

, (62)

which describe a closed curve, see Subsection 5.1 and Figure in Section 6.
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4.4 Case 2: The oscillation of a bubble immersed in an incompressible
liquid at constant temperature with damping due to phase transition

Next we take into account phase transition, that means Ṅ 6= 0. This case can be described
by three ordinary first order differential equations

Ṅ =
4πR2pW√
2πmW kT

mW

kT

[
1
ρL

(pL
I − p̄)− kT

mW
ln

pW

p̄
+

(
1

(ρL)2
− 1

(ρV )2

)(
mW Ṅ

4πR2

)2
]
(63)

Ṙ =
F

R2
+

mW Ṅ

4πR2ρL
(64)

Ḟ =
F 2

2R3
− R

ρL
(p0 − pL

I ) , (65)

where the explicit representations of pW , pL
I , ρV are given in Subsection 5.2. The resulting

system describes a damped oscillation.

The system is implicit with respect to Ṅ . We are interested in solutions that lie in the
domain of positive R and NW , i.e. (R,NW , F ) ∈ ]0,∞[ × ]0,∞[ × R. The system is
solvable for the initial conditions R(0) = R0, Ṙ(0) = Ṙ0 and N(0) = N0.

Case 1 is included here by replacing equation (63) with Ṅ = 0.

4.5 Case 3: The oscillation of a bubble immersed in an incompressible
liquid with damping due to phase transition and heat conduction

In contrast to the previous cases the temperature field is unknown and controlled by heat
conduction. Therefore we now have to consider the energy balance equations.

The resulting ODE system is almost the same as before but coupled to the energy balance
equation in the liquid and to the corresponding interfacial boundary condition

Ṅ =
4πR2pW√
2πmW kTI

mW

kTI

[
1

ρL(T0)
(pL

I − p̄(T0))− kTI

mW
ln

pW

p̄(T0)

+
(

1
(ρL(T0))2

− 1
(ρV )2

)(
mW Ṅ

4πR2

)2

+(cL − cW )(TI − T0 − TI ln
TI

T0
)− (sL − sW )(TI − T0)

]
(66)

Ṙ =
F

R2
+

mW Ṅ

4πR2ρL(T0)
(67)

Ḟ =
F 2

2R3
− R

ρL(T0)
(p0 − pL

I ) (68)

∂T

∂r

∣∣∣∣∣
r=R

=
kṪ

4πR2κL

∑

a∈{W,H,O}
Naza +

Ṙp

κL
− kTṄ

4πR2κL
+

λmW Ṅ

4πR2κL
(69)

∂T

∂t
= aL

(
∂2T

∂r2
+

2
r

∂T

∂r

)
− F

r2

∂T

∂r
. (70)

In addition to R(0) = R0, Ṙ(0) = Ṙ0 and N(0) = N0 we need for the temperature the
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initial condition TL(0, r) = TL
0 (r) and at the outer boundary r = Ra we choose ∂T

∂r = 0
for Ra sufficiently large.

4.6 Case 4: The oscillation of a bubble immersed in a weakly compress-
ible liquid with damping due to phase transition, heat conduction
and acoustic waves

In the previous cases the liquid was assumed to be incompressible. This assumption is
too restrictive for the experiment at hand. Thus now we take weak compressibility of the
liquid into account. The necessary modifications lead to the following system

Ṅ =
4πR2pW√
2πmW kTI

mW

kTI

[
K

ρL(T0)
ln

(
1 +

pL
I − p̄(T0)

K

)
− kTI

mW
ln

pW

p̄(T0)

+
(

1
(ρL(T0))2

− 1
(ρV )2

)(
mW Ṅ

4πR2

)2

+(cL − cW )(TI − T0 − TI ln
TI

T0
)− (sL − sW )(TI − T0)

]
(71)

Ṙ =
φ(2Ra −R− c0t)− φ(R− c0t)

R2
+

φ′(2Ra −R− c0t) + φ′(R− c0t)
R

+
mW Ṅ

4πR2ρL(T0)
(72)

pL
I − p0

ρL(T0)c0
R = φ′(R− c0t)− φ′(2Ra −R− c0t) (73)

∂T

∂r

∣∣∣∣∣
r=R

=
kṪ

4πR2κL

∑

a∈{W,H,O}
Naza +

Ṙp

κL
− kTṄ

4πR2κL
+

λmW Ṅ

4πR2κL
(74)

∂T

∂t
= aL

(
∂2T

∂r2
+

2
r

∂T

∂r

)
− vL ∂T

∂r
. (75)

The newly introduced function φ describes in- and outgoing waves.

5 Detailed derivations

5.1 Case 1: A bubble immersed in an incompressible liquid at constant
temperature without phase transition

In the isothermal case the temperature T is given and considered to be constant. There-
fore we do not need the energy balance equation, we merely have to solve the mass and
momentum balance equations. The liquid is assumed to be incompressible, i.e. we require
that the liquid mass density ρL does not depend on pressure. Then mass conservation of
the liquid (48) simplifies to

∂(r2vL)
∂r

= 0 (76)

and leads to the liquid velocity

vL(t, r) =
F (t)
r2

(77)
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with the time dependent function F . For an incompressible liquid the momentum balance
equation (49) reduces to

∂vL

∂t
+

∂

∂r

(
(vL)2

2

)
= − 1

ρL

∂pL

∂r
. (78)

Using (77) we replace vL in the time derivative and obtain

Ḟ

r2
+

∂

∂r

(
(vL)2

2

)
= − 1

ρL

∂pL

∂r
.

We integrate the equation over [R(t),∞[ assuming the velocity vL to vanish at infinity and
here the pressure p becomes the outer pressure. The result is

Ḟ =
F 2

2R3
− R

ρL
(p0 − pL

I ) . (79)

Without phase transition the mass balance (51)2 at the interface I simplifies to

vL
I (t) = vV

I (t) = Ṙ(t) . (80)

This implies

vL
I (t) = vL(t, R(t)) =

F (t)
R(t)2

= Ṙ(t) i.e. F = ṘR2 . (81)

The velocity field in the liquid domain is given by

vL(t, r) = Ṙ(t)
(

R(t)
r

)2

. (82)

Using (81) in (79) we end up with

R̈R +
3
2
Ṙ2 = − 1

ρL
(p0 − pL

I ) . (83)

The momentum balance (52) at the interface can be written as

pL
I (t) = pV

I (t)− 2σ

R(t)
=

3NkT

4πR(t)3
− 2σ

R(t)
. (84)

We replace pL
I in (83) and obtain the oscillation equation

R̈R3 +
3R2Ṙ2

2
+

1
ρL

(
p0R

2 − 3NkT

4πR
+ 2σR

)
= 0 . (85)

This ordinary second order differential equation describes an oscillation around the sta-
tionary radius Rstat, that solves the equation p0R

3 + 2σR2 = 3NkT
4π . The left hand side of

this equation is monotone increasing in R and it is zero for R = 0. The right hand side of
the equation is positive. Thus there is a only one real positive solution Rstat.

Obviously we have (
R̈R3 +

3R2Ṙ2

2

)
Ṙ =

1
2
(Ṙ2R3)i̇ , (86)
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and by integration of (85) we derive

1
2
(Ṙ2R3 − Ṙ2

0R
3
0) +

1
ρL

(
1
3
p0(R3 −R3

0)−
3NkT

4π
ln

R

R0
+ σ(R2 −R2

0)
)

= 0 , (87)

where the integration constant is determined by the initial condition. This is a quadratic
equation in Ṙ with two solutions (63), which only depend on R and the initial conditions
R0, Ṙ0. Together these solutions describe a closed curve. We conclude, that (85) describes
an undamped oscillation.

5.2 Case 2: A bubble immersed in an incompressible liquid at constant
temperature with phase transition

In the case of phase transition we have to make some modifications in the interfacial mass
and momentum balance. We already derived the formula vL

I = F/R2 in Subsection 5.1.
Using the mass balance equation (57) at the interface and ṁ = mW Ṅ we obtain

F = R2Ṙ− mW Ṅ

4πρL
. (88)

The momentum balance equation (52) at the interface gives

pL
I =

3NkT

4πR3
− 2σ

R
−

(
1
ρL

− 1
ρV

)(
mW Ṅ

4πR2

)2

. (89)

For convenience we define the number of particles of the inert gas Ni := NH + NO and
the corresponding mass mi := NH · mH + NO · mO. This notation allows to apply all
the formulas to any arbitrary inert gas. Then the density of the gas phase assumes the
following form

ρV =
3(mW · (N −Ni) + mi)

4πR3
. (90)

We replace pL
I in (79) and obtain

Ḟ =
F 2

2R3
− R

ρL

(
p0 − 3NkT

4πR3
+

2σ

R
+

(
1
ρL

− 4πR3

3(mW · (N −Ni) + mi)

)(
mW Ṅ

4πR2

)2
)

.

(91)
The evolution of the water particles in the bubble is described by (47). Here we replace
ṁ = mW Ṅ , choose T ∗ = T and calculate JµW + ekinK using (29), (30), (32) and (51). The
partial pressure pW is given by

pW =
3(N −Ni)kT

4πR3
.

Finally we have to replace the liquid pressure at the interface pL
I and the vapor density ρV

as in the previous subsection, using (89) and (90). We thus obtain

Ṅ =
3(N −Ni)mW

R
√

2πmW kT(
1
ρL

(
3NkT

4πR3
− 2σ

R
−

(
1
ρL

− 4πR3

3(mW · (N −Ni) + mi)

)(
mW Ṅ

4πR2

)2

− p̄

)

− kT

mW
ln

(
3(N −Ni)kT

4πR3p̄

)
+

1
2

(( 1
ρL

)2
−

( 4πR3

3(mW · (N −Ni) + mi)

)2
)(

mW Ṅ

4πR2

)2
)

,
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which can be simplified to

Ṅ =
3(N −Ni)mW

R
√

2πmW kT

(
1
ρL

(
3NkT

4πR3
− 2σ

R
− p̄

)
− kT

mW
ln

(
3(N −Ni)kT

4πR3p̄

)

−1
2

(
1
ρL

− 4πR3

3(mW · (N −Ni) + mi)

)2(mW Ṅ

4πR2

)2
)

. (92)

This equation together with (88) and (91) gives the resulting system in the considered case.

5.3 Case 3: A bubble immersed in an incompressible liquid with phase
transition and heat conduction

Now we take heat conduction into account, so that the temperature field is determined by
the energy balance equations of the phases and at the interface.

The energy balance of the phases can be written in the general form

ρ

(
∂u

∂t
+ v · gradu

)
+ divq =

p

ρ

(
∂ρ

∂t
+ v gradρ

)
. (93)

In the liquid phase this can be reduced, with temperature independent compressibility K
and using (14), (15)1 as well as (15)2, to

ρLcL

(
∂TL

∂t
+ vL gradTL

)
+ divqL = 0 ,

which holds for the incompressible as for the compressible case. Here qL is determined by
Fourier’s law (28) and with the thermal conductivity aL = κL/(ρLcL) the heat conduction
equation reads

∂TL

∂t
+ vL ∂TL

∂r
= aL

(
∂2TL

∂r2
+

2
r

∂TL

∂r

)
. (94)

In the gas phase we also start from (93) and replace the internal energy respectively the
pressure by the constitutive laws (23) and (25) and after some rearrangements of terms we
obtain

∑

a∈{W,H,O}
ρa(

∂ua

∂t
+va gradua)+div

∑

a∈{W,H,O}
(qa+(va−v)pa) =

p

ρ
(
∂ρ

∂t
+v ·gradρ) . (95)

We use (23)2 to substitute ∂ua
∂t + va · gradua, integrate (95) and get

∑

a∈{W,H,O}
qI
a = − kṪ

4πR2

∑

a∈{W,H,O}
Naza − Ṙp +

kTṄ

4πR2
. (96)

From the balance of internal energy at the interface we obtain

qL
I −

∑

a∈{W,H,O}
qI
a = −λmW Ṅ

4πR2
. (97)
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We use Fouriers law (28) on the liquid side of the interface to get

∂T

∂r
=

kṪ

4πR2κ

∑

a∈{W,H,O}
Naza +

Ṙp

κ
− kTṄ

4πR2κ
+

λmW Ṅ

4πR2κ
. (98)

The equations (88) and (91) remain the same as before, when we ignored heat conduction.
In the equation (92), which describes the mass transfer across the interface, the temperature
dependent function µ(T ) = (cL−cpW )(T −T0−T ln T

T0
)− (sL−sW )(T −T0) does not drop

out any longer here, and we set therein the reference temperature T ∗ = T0. This leads to

Ṅ =
3(N −Nf )mW

R
√

2πmW kT

(
1
ρL

(
3NkT

4πR3
− 2σ

R
− p̄

)
− kT

mW
ln

(
3(N −Nf )kT

4πR3p̄

)

−1
2

(
1
ρL

− 4πR3

3(mW · (N −Nf ) + mf )

)2(mW Ṅ

4πR2

)2

+(cL − cpW )(T − T0 − T ln
T

T0
)− (sL − sW )(T − T0)

)
. (99)

Finally we couple the system (88), (91), (99) with the energy balance equation (94) and
(98). In (94) we substitute vL(t, r) by (77) and get

∂TL

∂t
+

F

r2

∂TL

∂r
= aL

(
∂2TL

∂r2
+

2
r

∂TL

∂r

)
. (100)

5.4 Case 4: A bubble immersed in a weakly compressible liquid with
phase transition and heat conduction

The model from the previous subsection leads to a damping of the bubble oscillations that
is not sufficiently strong to describe the experimental data. A further damping effect is
related to the propagation of waves in the liquid, which are induced by the motion of the
bubble. In this case we must skip the assumption of an incompressible liquid. For this
reason we now consider a weak compressible liquid and in order to avoid extreme difficulties
we linearize the mass conservation law and the momentum balance, which then read

∂ρ

∂t
+ ρ0

∂v

∂r
= 0 (101)

ρ0
∂v

∂t
+

∂p

∂r
= 0 . (102)

With the definition v := ∂f
∂r and ∂p

∂ρ = c2
0 we can rewrite these equations in the following

form

1
c2
0

∂p

∂t
+ ρ0∆f = 0 (103)

∂

∂r

(
ρ0

∂f

∂t
+ p

)
= 0 . (104)

Integration of (104) leads to

p− p0 = −ρ0
∂f

∂t
. (105)
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Thus for the potential f we obtain the wave equation

1
c2
0

∂2f

∂t2
= ∆f . (106)

For radial symmetry its general solution is known to be

f(t, r) =
φ(r − c0t)

r
+

ϕ(r + c0t)
r

, (107)

where φ and ϕ describe outgoing respectively ingoing waves. We consider p = p0 at the
outer boundary r = Ra. This leads to the reflection condition ϕ(r + c0t) = −φ(r + c0t −
2(Ra − r)) = −φ(2Ra − r − c0t). We calculate

p(t, r) = p0 + ρ0c0
φ′(r − c0t)

r
− ρ0c0

φ′(2Ra − r − c0t)
r

and (108)

v(t, r) = −φ(r − c0t)
r2

+
φ′(r − c0t)

r
+

φ(2Ra − r − c0t)
r2

+
φ′(2Ra − r − c0t)

r
.(109)

Using the balance of mass at the interface we end up with

φ(2Ra −R− c0t)− φ(R− c0t)
R2

+
φ′(2Ra −R− c0t) + φ′(R− c0t)

R
= Ṙ− mW Ṅ

4πR2ρ0

(110)

and pL
I = p0 + ρ0c0

φ′(R− c0t)− φ′(2Ra −R− c0t)
R

. (111)

Unlike (88) and (91) we now get two differential equations including the unknown function
φ which depends on time explicitly and on the unknown time dependent bubble radius R.

The consideration of weak compressibility leads to a small modification in the derivation of
the equation to describe the mass transfer. In contrast to the previous cases in Subsection
5.2 and 5.3 we have to use (31) instead of (32) to calculate JµW + ekinK. Equation (99)
modifies to

Ṅ =
3(N −Nf )mW

R
√

2πmW kT

(
K

ρL
ln

(
1 +

(
3NkT

4πR3
− 2σ

R
−

(
1
ρL

− 1
ρV

)(
mW Ṅ

4πR2

)2

− p̄

)
/K

)

− kT

mW
ln

(
3(N −Nf )kT

4πR3p̄

)
− 1

2

(
1
ρL

− 4πR3

3(mW · (N −Nf ) + mf )

)2(mW Ṅ

4πR2

)2

+(cL − cpW )(T − T0 − T ln
T

T0
)− (sL − sW )(T − T0)

)
. (112)

The now more complicated resulting system consists of the ordinary differential equation
(112), the delay equations (110) and (111) which are coupled to the partial differential
equation

∂TL

∂t
+ vL ∂TL

∂r
= aL

(
∂2TL

∂r2
+

2
r

∂TL

∂r

)
. (113)

and to the corresponding interfacial boundary condition (98). The liquid velocity vL in
(113) can be calculated with (109).
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6 Numerical results

In this section we will discuss the four described cases on the basis of the numerical com-
putations for the corresponding systems of equations.

For all computations we choose the external pressure p0 = 101300Pa, initial radius R0 =
0.00075m, initial interface velocity Ṙ = 0, initial particle numbers NO = 2.5 · 1013, NH =
5 · 1013, NW = 7.5 · 1015, and initial temperature T = 293.15K.

The cases 1 and 2 are concerned with isothermal evolution, i.e. the temperature does not
change. However the given initial value determines the reference values for those quantities
that are listed in the table below. The composition of the gas in the bubble plays no role
in the dynamics of the first case. The sum of the three particle numbers is used in order
to determine the initial pressure.

Case 1: A bubble immersed in an incompressible liquid at constant temperature
without phase transition.
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Figure 2:
Calculated bubble radius according to Case 1. Dots: Experimental data, solid line:

Computation.

The numerical solution of the second order ordinary differential equation is obtained by
solving the corresponding first order system with one of the second order Runge Kutta
methods.

As was shown above, the bubble radius oscillates without damping in this case. This result
is compared in Figure 2 with experimental data. We observe that computational oscillation
period is longer than the experimental one.
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Figure 3:
Calculated bubble radius, bubble mass, liquid velocity and temperature at the interface

according to Case 2. Dots: Experimental data, solid line: Computation.

Case 2: A bubble immersed in an incompressible liquid at constant temperature
with phase transition. Again a second order Runge Kutta method is used for the system
of three ordinary first order equations, including a standard step size control. Due to
stability restrictions on the numerical scheme this is needed in the vicinity of the minimal
radius.

The incorporation of the phase transition leads to a damping, that however is too small
to describe the experimental observations. Moreover the comparison of this case with the
experimental data in Figure 3. The computational oscillation period is smaller now than
in Case 1.

Case 3: A bubble immersed in an incompressible liquid with phase transition
and heat conduction. The non-isothermal evolution is described by a system of three
first order ordinary differential equations that are coupled now to the partial differential
equation for the evolution of the temperature. The latter equation is solved numerically
by the method of lines. The resulting large system of ordinary differential equations is
again solved with a second order Runge Kutta method. For the spatial discretization finite
differences of second order are used.

In this case we observe an enormous variation of the temperature. However its influence
on the evolution of the bubble radius can be ignored, in particular there is only a small
additional damping in comparison to Case 2, see Figure 4 and Figure 3 for comparison.

The temperature variation has large impact on the phase transition. At the minimal
radius there is a large increase of temperature that leads to a change of the gas-liquid
phase transition. In fact, we observe here evaporation leading for some time to a reduction
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Figure 4:
Calculated bubble radius, bubble mass, liquid velocity and temperature at the interface

according to Case 3. Dots: Experimental data, solid line: Computation.

of the released latent heat. During that period where the temperature exceeds the critical
temperature we turn off the phase transition, by setting Ṅ = 0. Note, that in addition to
the initial data from above we start here with v = 0 at t = 0 in the whole liquid domain.

Case 4: A bubble immersed in a weakly compressible liquid with phase tran-
sition and heat conduction. Recall that in the cases 1 - 3 the momentum balance is
reduced to an ordinary differential equation. This is not possible anymore if the compress-
ibility of the liquid is taken into account. In order to reduce numerical complexity we
restrict here to the case where the momentum balance becomes a linear wave equation,
that is now coupled to a modified version of the equations of Case 3. The wave equation is
solved by means of in- and outgoing waves and the resulting system of two delay equations
is likewise solved with a second order Runge-Kutta method. Note, that we meet a free
boundary here, and in Case 3, i.e. at constant cell number we have a variable spatial mesh
size.

Figure 5 reveals a sufficiently strong damping now, so that we can observe good agreement
with the experimental data. On the other hand the oscillation period is slightly smaller
than in the experiment.
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Figure 5:
Calculated bubble radius, bubble mass, liquid velocity and temperature at the interface

according to Case 4. Dots: Experimental data, solid line: Computation.

σ = 0.07274N/m surface tension
p̄ = 2330Pa saturation pressure

ρ = 998.2kg/m3 liquid density
cL
p = 4183J/kg/K specific heat capacity of liquid water at constant pressure

cpW = 1882J/kg/K specific heat capacity of water vapor at constant pressure
sL = 296J/kg/K specific entropy of liquid water

sW = 8665J/kg/K specific entropy of water vapor
r = 2453300J/kg specific heat of evaporation

λ = 0.5984W/m/K heat conductivity
c = 1482m/s speed of sound in liquid water

MH = 2 · 1.0079g/mol molecular weight of hydrogen
MO = 2 · 15.9994g/mol molecular weight of oxygen

7 Conclusions

The main conclusions of this study concern the evolution of a laser induced bubble as it is
described in Section 3, and can be summarized in five statements.

• Isothermal treatment of liquid-vapor phase transitions is not appropriate if the two
phase system is exposed to atmospheric pressure.
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Figure 6:
Calculated bubble radii according to Cases 1 - 4. Dots: Experimental data, dashed line:
Case 1, dash-dotted line: Case 2, dotted line: Case 3, solid line: Case 4. (Remark: Case 2

and Case 3 are nearly the same.)

• The modeling of the liquid as an incompressible body ignores the crucial effect that
controls the damping of the bubble oscillation.

• The exclusive description of the evolution of the bubble radius, as it is done in the
framework of Keller-Miksis type approximation like (2), where the phase transition is
ignored, is possible. However, if the obtained data are used we calculate pressures and
temperatures in the bubble as well as in the liquid, one observes implausible values
for those quantities. This is related to the fact, that the Keller-Miksis approximation
relies on a small Mach number expansion, that becomes unrealistic in the region of
minimal bubble radius.

• If a liquid-vapor phase transition is allowed, the rebound of the bubble is only possible
when an inert gas is present in the bubble. A pure water vapor phase cannot persist
beyond the first collapse since the vapor phase is unstable under the conditions of
the experiment.

• Surprisingly, the non-isothermal treatment including phase transition has no large
impact on the evolution of the bubble radius but on the other variables of the ther-
modynamic states of the bubble-liquid system. However, the bubble radius is the
only quantity, that currently can easily be measured.

Finally we have collected the evolutions of the bubble radius corresponding to the four
considered cases in a common plot, see Figure 6.

In a further study, which is in progress, we will use the models developed in this paper in
the derivation of two-phase mixture conservation laws with phase transition from averaging
procedures.
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