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Abstract: By molecular dynamics simulations we investigate the transport of charged

polymers in confinement, under externally applied electric fields, in straight cylinders of

uniform diameter and in the presence of monovalent or multivalent counterions. The applied

electric field has two components; a longitudinal component along the axis of the

cylinder and a transversal component perpendicular to the cylinder axis. The direction of

electrophoretic velocity depends on the polyelectrolyte length, valency of the counterions

present in solution and transversal electric field value. A statistical model is put forward in

order to explain these observations.
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1. Introduction

In the present work, we investigate by computer experiments new ways of separating charged

polymers in electric fields. We aim to distinguish between chains of different length by influencing their

direction of movement, rather than their electrophoretic velocities. The latter topic has been investigated

by us in previous papers [1,2]. We focus on very dilute solutions of polyelectrolytes in the presence
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of multivalent counterions. Here one can neglect other complex phenomena such as induced attraction

between charged molecules mediated by multivalent ions [3].

The motivation of our work comes from the observation that in an electric field, in free solution

and without a sieving media charged polymers move with the same velocity, irrespective of their size.

An excellent review of this topic is presented in Niedringhaus et al. [4]. If a sieving media is present,

the disentanglement time of the charged polymers from the topologically static obstacles depends on the

polyelectrolyte length [5]. The Ogston model envisions the charged polymer as a spherical random coil

that diffuses through the pores of the polymer network. At high applied fields the charged molecules are

pinned against the gel fibers, and the capillary electrophoresis method becomes ineffective in separating

polyelectrolytes. Further progress was possible by using pulsed electric fields [6]. The pinned molecules

retraced part of the path they had been traveling before and therefore the rate of advance in the forward

direction changed with molecular size. The assumption was that longer molecules backtracked further

than shorter molecules. In this non-equilibrium process, the duration of the pulse defines how much the

molecules are allowed to approach their steady state (which is fully stretched), at either direction of the

applied field.

Alternatively, ordered sieving media, in the form of small ordered confinements achieved by a

colloidal self-assembly (CSA) approach was used by Nazemifard et al. [7]. The authors showed that

stronger confinement (i.e., pore sizes smaller than the persistence length of the charged molecule) lead

to full stretching and more efficient separation as compared to larger pores, where fluctuations in size and

loops, or hernia formation affect the reorientation time. Recent experiments in arrays of nano-grooves,

separated by very thin slits, are reported in [8]. The authors showed that there were two distinct ways in

which the molecules preferred to migrate: (1) a folded state where the molecule advanced its monomers

from one groove to the next, just as water is poured from one glass into the other; and (2) a side movement

similar to sand flowing in an hour-glass from the top side to the bottom side. It was shown that the

dynamic interplay between these two modes of transport created a size-dependent velocity that could be

utilized for separation. The authors remarked that pure motion in either state exhibited a size-independent

velocity at fixed buffer velocity, or external pressure gradient.

Other novel separation methods are stretching of fluorescently labeled charged molecules in

channels, which are then imaged [9], threading of the charged chains through small openings in

membranes—either protein [10] or solid state pores [11–16], or translocation though conical-shaped

pores contained within glass membranes [17]. Here the amount of time that the ionic current signal

is altered during translocation can be measured, and this gives an indication of the total length of the

molecule. For larger pores, the translocation process is controlled by overcoming a free energy barrier,

which for not too long chains may depend on the chain length [18].

It is apparent that the trend in sequencing technologies is to use smaller and smaller devices with

exquisite control over the motion of each structural unit of the charged polymer, without perturbations

due to the counterion cloud or thermal fluctuations [19]. Here we study charged polymers separation

in straight cylinders of uniform diameter under the action of a constant electric field that has two

components: one component is parallel to the cylinder axis and the second component is orthogonal

to the cylinder axis. We call the latter component the transversal field. The separation principle is based

on two effects: (1) collapse of the chains in the presence of multivalent counterions [20,21] and (2)
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partial removal of condensed counterions from the polyelectrolyte cloud by transversal electric field ~E⊥.

In short, the chains are overcharged in the presence of multivalent counterions and move along

the cylinder axis in one direction or another, depending on how many counterions are still bound.

This happens because the role of the transversal field is to remove counterions from the chains and

therefore switch the sign of their effective charge. The direction of the motion depends on chain length,

the valency of the counterions, the strength of Coulomb interaction [22] between polymer monomers and

bound counterions, and ~E⊥. The relative electrophoretic velocity depends on the diameter of the cylinder

and concentration of free ions. In this work, we focus on scaling laws for velocities, effective charge,

radii of gyration and chain extensions in the direction of motion, without quantitative calculations of

electrolyte friction or hydrodynamic friction effects. The collapse of the chains may be triggered by

attractive dipole-dipole and correlation-induced electrostatic interactions [23,24].

2. Method

By molecular dynamics simulations we investigate the electrophoretic motion of charged polymers

in solution, in cylindrical confinement, in the presence of longitudinal ~E‖ (along the cylinder axis) and

transversal electric ~E⊥ fields. The charged polymers are coarse-grained models where each monomer

carries a unit negative electric charge, −e. The polymer monomers are connected by finitely extensible

nonlinear elastic (FENE) and Lennard–Jonnes potentials. The Lennard–Jones potentialULJ acts between

all particle pairs in the system and is defined by unit energy ǫ and unit length σ:

ULJ =







4ǫ((σ/r)12 − (σ/r)6) + ǫ, for r ≤ 21/6σ

0, for r > 21/6σ
(1)

The FENE potential UFENE is given by the following relation:

UFENE = −kR2
0log(1− (r/R0)

2) (2)

where k = 30 and maximum bond extension is R0 = 3σ. The system contains added salt, and all coions,

counterions and fluid monomers are explicitly modeled. The walls of the cylinder are made of uncharged

monomers with fixed positions in space. We investigate cylinders with the following radii R = 7.74σ,

11.62σ, 15.5σ and 23.24σ.

All monomers interact through Lennard-Jones potential, Equation (1), and Coulomb potential

UC = zizjkBT lB/r, if they are charged. The variables zi and zj are valencies of interacting charges.

The temperature of the system is set at kBT = 1.2ǫ. The Bjerrum length [25] is set to

lB = e2/kBT ≈ 12σ. (The bond length of the polymer is approximately σ). When mapping the

present simulations to real systems, one may consider that in water the Bjerrum length is 0.7 nm,

where the dielectric constant of bulk water is about 80 at room temperature. This would give a very

small value of parameter σ. However, the dielectric constant of water in confinement is not clearly

defined. For example, in [26], the authors showed that the dielectric constant of water can be as low as

37 in micro-sized confinements. Notice further that additional binding forces such as hydrogen bonds

between more complex counter ions and the charged groups have a similar effect as to increase the local

electric attraction. The present polymer physics study extends therefore the parameter space to explore

new phenomena.
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The multivalent counterions may carry charges from +1e up to +4e. Apart from coions of charge −e,

the MD (molecular dynamics) simulation box may contain therefore monovalent counterions, or mixture

of counterions with +e and +2e charges, or +e and +3e charges, etc. In all cases, the multivalent

monomer concentration is set to Cz = 3.56 × 10−3σ−3. The monovalent coions concentration C−1

is 0.031σ−3, while monovalent counterions of concentration C+1 are added to the system to fulfill

the electric neutrality condition. For the range of chain lengths investigated here, C+1 varies between

0.017σ−3 and 0.024σ−3. The number density of fluid monomers is set to 0.82σ−3.

We consider a very low concentration of charged polymers, which means that inter-chain interactions

are negligible. The Debye length λD = ((z2Cz + C+1 + C−1)e
2/kBT )

−1/2 for each counterion valency

z = 1, 2, 3, 4 is λD ∼ 2σ, 1.6σ, 1.4σ and 1.25σ, respectively. Given that the Debye lengths are

so small, one may alternatively consider a calculation of the Coulomb potential using Debye-Hückel

approximation. For computational reasons we simply use a bare Coulomb potential and use a cutoff

radius of about half the simulation box length. This is of the order of 300σ. We assume that all monomers

have the same mass and LJ parameters, ǫ and σ. A few snapshots from MD simulations are presented

in Figure 1. We remark here that monovalent counterions are not able to fully collapse the chains, while

higher valent counterions lead to the collapse of the polyelectrolytes (e.g., Figure 1d).

Figure 1. Sideview snapshots of equilibrium configurations for chains of length (a) N = 70;

(b) N = 400 with monovalent counterions; and (c) N = 70 and (d) N = 400 with tetravalent

counterions. The polymer monomers and coions are represented in white, the gray is for

solvent and wall particles, the red color represents monovalent counterions, and the blue

color is used for monovalent or tetravalent counterions. The radius of the straight cylinder is

R = 7.74. A schematic of the applied electric field components is shown under the graphs.

The longitudinal field ~E‖ is orientated along the cylinder axis, while the transversal field ~E⊥

is perpendicular to the cylinder axis.

�� �
�� ���
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The time step in the simulations is 0.008σ
√

m/kBT . The applied electric field has two components:

a longitudinal component ~E‖ along the cylinder axis and a transversal component ~E⊥ perpendicular to

the cylinder axis. In the present work, the longitudinal field is set to E‖ = 0.81kBT/(eσ). The transversal

component E⊥ may have one of the values 0, 0.81, 1.62, 2.43, 3.24, or 4.86 kBT/(eσ). The system is

periodic along the cylinder axis. For convenience, we drop the units in the rest of the paper and keep in

mind that they are given in LJ units.

3. Results and Discussion

The electrophoretic velocities v of polyelectrolytes as a function of chain length N for various

transversal field values E⊥ (at constant E‖) and valency z of the counterions are presented in Figures 2–5.

The velocities are obtained from measurements of the center of mass motion in systems with periodic

boundary conditions along the longitudinal axis of the straight cylinder. The graphs are grouped by the

same cylinder radius R. The electrophoretic velocities may be positive or negative, depending on the

effective charge of the chains. They depend strongly on chain length for the smallest cylinder of radius

R = 7.74 (Figure 2), at z > 2 and small E⊥, and are independent on N for z ≤ 2 for any value of the

applied field or cylinder radius. What is important for us, and what we focus on in the present work is the

critical chain length N∗ of the polyelectrolyte when electrophoretic velocities change sign. Particularly,

in the case of trivalent or tetravalent counterions. The separation principle works by splitting a group

of charged chains with lengths up to N in two subgroups: one with lengths N < N∗ and another one

formed by chains with lengths N > N∗. Chains with length N < N∗ move in, say, positive direction

along the cylinder axis, while chains with N > N∗ move in the opposite direction. The critical length is

controlled by E⊥ and is a complex function of R and z. For convenience, the critical chain lengths N∗

for trivalent and tetravalent counterions, at different radii R of the cylinder are read from Figures 2–5

and summarized in Table 1.

Table 1. Minimum critical chain length N∗ of the polyelectrolyte required for charge

inversion, for various radii R of the cylinder, valency z of the multivalent counterions and

transversal field values E⊥. In all cases, E‖ = 0.81.

R z
E⊥

0 1.62 2.43 3.24

7.74
3 100 100 100 100

4 600 450 100 50

11.62
3 600 250 150 50

4 600 600 600 400

15.5
3 600 450 300 100

4 600 600 600 400

23.24
3 600 600 500 250

4 600 600 600 400
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Figure 2. Electrophoretic velocities v as a function of chain length N for (a–d) transversal

fields E⊥ = 0, 1.62, 2.43 and 3.24, respectively. The radius of the cylinder is R = 7.74 and

the longitudinal field is E‖ = 0.81. For clarity of definition, in Figure (b,c), we show the

minimum critical chain length N∗.
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Figure 3. Electrophoretic velocities v = v(N) for cylinder of radius R = 11.62 for

(a–d) transversal fields of E⊥ = 0, 1.62, 2.43 and 3.24, respectively. The longitudinal field

is constant, E‖ = 0.81.
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Figure 4. Graphs similar to Figures 2 and 3 for cylinder radius of R = 15.5.
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Figure 5. Graphs similar to Figures 2–4 for the largest cylinder of radius R = 23.24.
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The sign change of the electrophoretic velocities is due to overcharging. In this case, without a

transversal field, a chain attracts and retains counterions around it, such that the overall electric charge

of the ensemble is positive. When the transversal field is switched on, some of these counterions are

unbound if the transversal field is strong, which leads to a reduced effective charge. Naturally, the loss

of counterions may also happen indirectly because of the action of a longitudinal field alone, without a

transversal field.

For the smallest cylinder of radius R = 7.74, we show in Figure 6 the chain extension

|δZ| = |min(zi) − max(zj)| along the cylinder axis, where zi and zj are any of the z-coordinates of

polymer monomers. Clearly, the static conformations of the chains (at E = 0), in the presence of

monovalent or divalent counterions indicates |δZ|/b ∼ N0.8, which is close to the scaling of chain size

in non-confinement. On the other hand, chains are fully collapsed by tetravalent counterions, which is

indicated by the scaling |δZ|/b ∼ N1/3. If a driving field is applied, E‖ = 0.81, these collapsed chains

unfold, even if no transversal field is applied yet, which may be a hydrodynamic effect specific to strong

confinements. We note that longer chains are easier to unfold than shorter chains.

Figure 6. Axial extension |δZ| = |min(zi) −max(zi)| (i = 1, N) along the cylinder axis

normalized by average bond length b as a function of chain length N , in a cylinder of radius

R = 7.74, for multivalent counterions of valency z = 1, 2, 3, 4, transversal field values

E⊥ = 0, 1.62, 2.43, 3.24, 4.86 and longitudinal field E‖ = 0.81. The static case of zero

applied field, E⊥ = 0 and E‖ = 0, is also shown.
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Before we comment on the conformations of the chains at E⊥ 6= 0, we remark here on chain

extensions in the largest cylinder, R = 23.24. These data are shown in Figure 7. At zero field (E = 0)

we have the known excluded volume result |δZ|/b ∼ N3/5 for chains in non-confinement at z = 1,

and full chain collapse for z ≥ 2, which means that |δZ|/b ∼ N1/3. A small driving field (E‖ = 0.81)

leads to chain stretching for mono- and divalent counterions, but the availability of space leads to internal
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segmental reorientations such that previously collapsed chains by tri- and tetravalent counterions cannot

be unfolded solely by E‖ (Figure 7, lower panels).

Figure 7. Graph similar to Figure 6 of axial extension normalized by the bond length, |δZ|/b,

as a function of chain length N , for the largest cylinder of radius R = 23.24.
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We discuss now the effect of the transversal field E⊥ 6= 0 on chain extension. In the smallest channel,

R = 7.74, at z = 1 and z = 2, the chain extension follows the scaling |δZ|/b ∼ N , independent

of the exact value of E⊥ (Figure 6). This means it is a strong confinement. As we shall see below,

the effective charge also follows the scaling Qeff ∼ N , and it not surprising that the electrophoretic

velocities in buffers containing monovalent or divalent counterions are independent of chain length.

On the other hand, in the largest channel at R = 23.24 (Figure 7), the chain extension varies as

|δZ|/b ∼ N0.7. The effective charge still remains proportional to N , and it is not immediately apparent

why the electrophoretic velocities are independent on N (at z = 1, z = 2). If we consider that chain

extension is an indicator of hydrodynamic friction, it follows that hydrodynamic friction in these cases

is a small perturbation and the effective charge of the chain dictates in fact the electrophoretic velocity.

In the largest channel, for z > 2, δZ decreases with increasing E⊥. It can be argued that stronger

transversal fields lead to higher axial extension of chains because transversal fields remove condensed

counterions, which in turn causes chain stretching due to Coulomb repulsive self interactions among

the charges on the polymer backbone. Although appealing, this argument is however not supported in

large channels (compare for example |δZ| for N = 600 and z = 4, at E⊥ = 1.62 with same chain at

E⊥ = 4.86 in Figure 7). The reason is that the Coulomb self repulsive interactions are not strong enough

to prevent hydrodynamic effects, such as chain folding. This works by noting that fluid resistance is

highest at the tip of the polymer chain and weaker towards the tail. The redistribution of tension along

the polymer bonds is simply realized by chain thickening in the direction of motion which translates

in a reduced size of the chain. The discussion must be however extended with care to cases where the
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transversal field succeeds in removing condensed counterions and have the direction of motion of the

chains reversed.

We define next the effective charge of the chain Qeff as the number of condensed counterions on

the chain which are found within a set distance from individual polymer monomers. In practice, the

effective charge is simply obtained by summing up all charges present within a set distance of about

two bond lengths around individual polymer monomers. These numbers are time averages over series of

conformations adopted by polyelectrolytes.

The effective charge is shown in three representative cases: (1) the static case when longitudinal and

transversal fields are zero, E‖ = 0 and E⊥ = 0, respectively; (2) the longitudinal field case, E‖ 6= 0 and

E⊥ = 0; and (3) a normal operating case when both fields are not zero, E‖ 6= 0 and E⊥ 6= 0. In the static

case (Figure 8), both for monovalent and for divalent counterions the effective charge of the polymer

scales linearly with N , irrespective of cylinder radius R. Here we note that the effective charge at z = 1

is smaller than the effective charge at z = 2, for any R. It means that divalent counterions are better at

neutralizing the charge of the chains than monovalent counterions. The effective charge Q switches over

to the positive domain for z > 2, first for short chains in strong confinement and then all chain lengths

at R > 7.74. Considering that short chains are overcharged in strong confinements (Figure 8a, it can

be inferred from the simulation data that multivalent counterions of z > 2 may approach and condense

easier on shorter chains than on longer chains. This explains the decrease of Q with N seen also in

channels of larger radii, R > 7.74. These observations on the variation of Q with z are supported by our

theoretical model. In particular, numerical calculation based on Equation (5) show that Q is independent

of N and R for mono and divalent counterions.

Figure 8. Effective charge Q per chain length N at zero field (E‖ = 0 and E⊥ = 0) as a

function of the length N of the polyelectrolyte for (a–d) different radii R = 7.74, 11.62, 15.5

and 23.24 of the cylinder and valency z of the multivalent counterions. In the presence of

tri-, or tetra-valent counterions the effective charge charges sign at some critical chain length

N∗, which depends on cylinder radius and valency of the counterions.
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The effective charges in the longitudinal field case, E‖ 6= 0 and E⊥ = 0, are shown in Figure 9.

For monovalent, divalent, trivalent or tetravalent counterions there are no remarkable effects to be

noticed as compared with the static case in Figure 8: monovalent and divalent counterions have effective

charges proportional with N and for z > 2 we observe overcharging effects. It appears that the effective

charge levels off for longer chains, N > 400, which underlines once again the reason of why we need

transversal fields. This case is shown in Figure 10. Here, the chains remain hardly overcharged in

strong confinements. The effective charge per chain length stays close to unity for about any value

of z. In weaker confinements, the chains are seen to loose bound counterions abruptly, depending on

their length. This is one of the main results of our work and the critical chain length of the transition has

been given in Table 1. Another way to explain the transition is to recall from Figure 8 that charged chains

of length N are packed with multivalent counterions in a ratio that depends on N . The transversal field

removes these counterions more easily from longer chains than from shorter chains. The transition is

also abrupt, which we assume that it is a hydrodynamic effect. The physical separation boundary of the

coions and counterions flows at high transversal fields is quite steep and in this region there are strong

viscous shear forces. As soon as a charged polymer reaches this area, it is quickly unfolded by the shear

forces, looses bound counterions and it is carried away by any of the two flows, irrespective of the initial

direction of movement. This process is irreversible and it happens quite soon after the transversal field

is switched on. Another noteworthy observation in Figure 10 is that the ratio Q/N appears to approach

−2, below the limit of −1 which represents a chain with absolutely no bounded counterions. The surplus

charge comes from the charge of nearby coions, which are, together with the polymer, pushed towards

the walls of the confinement.

Figure 9. Effective charge Q per chain length N for non-zero longitudinal field E‖ = 0.81

and zero transversal field E⊥ = 0, as a function of N for (a–d) different radii

R = 7.74, 11.62, 15.5 and 23.24 of the cylinder, respectively.
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Figure 10. Graphs similar to Figures 8 and 9 of effective charge per chain length Q/N as

a function of N for applied field components E‖ = 0.81 and E⊥ = 3.24 at (a–d) different

radii R = 7.74, 11.62, 15.5 and 23.24 of the cylinder and counterion valency z. Strong E⊥

leads to an almost step function behavior of Q = Q(N).
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4. Theory

We consider in the following the effective charge of the chains and the minimum critical chain length

for charge inversion. The statistical model of a polyelectrolyte in an electric field is considered first for a

buffer solution containing monovalent counterions and coions. The chain model is a three states model

where each polymer monomer can be (1) in a state where a counterion is bound to it and the dipole thus

formed is orientated along the direction of the applied field; or (2) a state where the dipole formed with

the bound counterion is orientated in the opposite direction to the applied field; or (3) a state where there

is no counterion bound to it. Further, we note with P the probability of a polymer monomer being in

state (1), with Q the probability of state (2), and with R the probability of state (3). The normalization

condition requires that P +Q+R = 1. The electric dipoles are assumed to exist also in the absence of

the externally applied electric fields.

The above probabilities depend on the interaction energies of the pairs of polymer monomers and

condensed counterions or polymer charges without condensed counterions. These probabilities also

depend on the concentration of the counterions in the buffer solution. We may assume that they are the

product of a concentration dependent term and an interaction energy term.

The interaction energy of a dipole ~p with an external field ~E⊥ is −~p ~E⊥ and we take the probability

P as a product of a concentration or counterion valency dependent term c1 and an exponential term

of the form c1e
+βpE⊥/C, where C is a normalization constant. The probability Q of the dipole being

orientated in the direction opposite to the applied field is Q = c2e
−βpE⊥/C. Similarly, the probability
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R is taken as an exponential function that depends on the charge of a polymer monomer and the applied

electric potential δV in the transversal direction, i.e., R = c0e
βeδV /C. We shall describe in the ulterior

paragraphs how the constants c1, c2, and c0 are calculated, based on simulation data.

Generally, for a three states model without charge-charge, charge-dipole, dipole-dipole interactions,

and without confinement effects (i.e., all chain conformations are equally probable), the effective charge

Q
(m)
eff is given by a classical result of statistical mechanics for N non-interacting particles [27]:

Q
(m)
eff = −

N
∑

j=0

N−j
∑

n=0

n′′ N !

j!n!n′′!
PjQnRn′′

(3)

where n′′ is the number of polymer monomers without bound counterions, and N = j + n + n′′. The

number N !/(j!n!n′′!) represents the number of distinct states of N polymer monomers where j polymer

monomers form dipoles aligned in the direction of the field, n polymer monomers form dipoles orientated

opposite to the field, and n′′ polymer monomers are without condensed counterions. The Boltzmann

distribution of the system, or PjQnRn′′

represents the probability of a single particular configuration of

j parallel dipoles, n antiparallel dipoles, and n′′ polymer monomers without condensed counterions to

occur. The fundamental assumption is that P , Q and R are statistically independent probabilities.

To account for charge-charge, charge-dipole and dipole-dipole interactions we remain in the

framework of the three states model and consider that the total energy of the polymer chain is a separable

sum of field-dipole, field-charge, dipole-dipole, and charge-dipole energies. The new dipole moment p′

includes the induced polarization because of the other dipoles. Similarly, the new local potential δV ′ at

the place of a single charge includes the potential δVs of all the other charges. In the canonical ensemble,

the Boltzmann distribution of the system of j parallel with the field dipoles, n antiparallel dipoles, and

n′′ polymer charges without condensed counterions is thus:

E(j, n, n′′) ≈
1

V N

∫

e−β(−
∑j

u=1
p′E⊥+

∑n
u=1

p′E⊥−
∑n′′

u=1
qδV +

∑N
u=1

∑N
v>u φuv)dNV

≈ P ′jQ′nR′n
′′ 1

V N

∫

e−
∑N

u=1

∑N
v>u βφuvdNV (4)

where φuv is the full interaction potential between any two polymer monomers. The new probabilities

are P ′ = c1e
+βp′E⊥/C ′, Q′ = c2e

−βp′E⊥/C ′, and R′ = c0e
qδV /C ′, where p′ = p + αEγ

⊥. The relation

q ≈ e[1 + 1
2
(δVs/δV )] is used to account for the change in the local potential. The α, γ and q are

parameters of the model. In Equation (4), the integration over the polymer coordinates signifies the

fact that the Boltzmann distribution of the system is a sum of individual probabilities taken for any

possible values of polymer monomers coordinates. The integration space of the N-dimensional integral

is a cylinder of set diameter and of infinite length. The double sum in Equation (4) can be reduced if

we consider only pairwise interactions [28]. In this case, there are j(j − 1)/2 pairwise interactions of

dipoles aligned parallel with the applied field, n(n − 1)/2 pairwise interactions of dipoles antiparallel

with the applied field, and jn pairwise interactions of parallel-antiparallel dipoles. The dipole-dipole

interaction terms vary with the distance r between dipoles as 1/r3. For the polymer charge- dipole

interaction we note that there are jn′′ pairwise interactions of charge-parallel dipoles and nn′′ pairwise

interactions of charge-antiparallel dipoles. The corresponding interaction energy shows a 1/r2 distance
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dependency [29]. The charge-charge interaction is given by Coulomb’s law. Altogether, in the pairwise

approximation, the effective charge is given by the relation:

Qeff = −
N
∑

j=0

N−j
∑

n=0

n′′ N !

j!n!n′′!
E(j, n, n′′) (5)

where n′′ = N − j − n, and

E(j, n, n′′) ≈ P ′jQ′nR′n
′′

E1(j, n) (6)

with E1(j, n) given by the relation:

E1(j, n) ≈
1

V 2

∫

exp[(
j(j − 1)

2
+

n(n− 1)

2
− jn)

βp′2

Dr312
+ (j − n)n′′βq

′p′

Dr212
−

n′′(n′′ − 1)

2

βq′2

Dr12
]dV1dV2

(7)

where r12 is the distance between two dipoles p, dV1 = dr1dΩ1, dV2 = dr2dΩ2, with r1 and r2 radial

distances of the interacting dipoles, dΩ1, dΩ2 are solid angles, respectively, β = 1/kBT , and D is a

constant taken unity. The integration volume V of the confinement is πR2L, where R is the cylinder

diameter and the length L of the integration volume is taken arbitrarily large such that the integrals

converge. We note here that the correction term E1 does not depend explicitly on the transversal or

longitudinal field, but through the variation of the dipole moment itself with the field. This term adjusts

the effective charge as a function of R and is responsible for confinement effects. The influence of

transversal field on the number of dipoles that are fully aligned in the direction of the field or in the

direction opposite to the field is contained in the probabilities P ′ and Q′, respectively.

Now, for the case of multivalent counterions of valency z > 1, we start with two extreme cases.

First, let us hypothetically consider that each single polymer monomer forms a pair with a condensed

z-valent counterion. Then, the maximum effective charge of the chain is (z − 1)Ne. For a buffer

solution containing tetravalent counterions, for example, the maximum possible overcharge Qeff/N

is 300%. This is more than what is observed in the simulations (Figure 8). The second limiting case that

we consider is when each multivalent counterion attracts around it exactly z polymer monomers. Thus,

a N-mer chain can have at most N/z multivalent condensed counterions. And thus the chain cannot

become positively charged, irrespective of the value of z. In this approximation, a number of z polymer

monomers and a z-valent counterion may be virtually grouped together such that it forms an ensemble

of dipole moment z~p (Figure 11a). The dipoles may be orientated in the field direction, or in the opposite

direction, just as it was the case of monovalent counterions.

From the two limiting cases above we may assume that in fact some polymer monomers may have in

their neighborhood an arbitrary number of multivalent counterions (Figure 11b). In this sense, we refer

to these monomers as shared monomers. The physical origin of monomer sharing may be thought of as a

conformational effect, whereas the polymer is in a folded or collapsed state due to attractive dipole-dipole

interactions. Liu et al. [30] showed that bridging between polymer segments leads to an enhanced

shrinkage of polymer size. For two z-valent counterions sharing at most z polymer monomers, it follows

that the maximum overcharge of a chain is at most 100% for any value of z. In other words, we restrict

ourselves to cases where any polymer monomer may belong to at most two multivalent counterions.
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Figure 11. Illustrations of (a) associated dipoles formed between condensed multivalent

counterions and polymer monomers and (b) multivalent counterions sharing polymer

monomers. The latter case allows for overcharged chains. The effective charge increases

with the number of shared polymer monomers and is a nonlinear function of chain length.
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From the simulations we know the effective charge of the chains. At zero field ~E = 0 these are

(Figure 8): Qeff/N = −0.8 for monovalent counterions and Qeff/N = −0.3 for divalent counterions,

both independent of cylinder radius R. For trivalent and tetravalent counterions Qeff/N is not a constant,

but depends on R and slowly decreases to a plateau value as N increases. In the limit of large R and long

chain lengths (Figure 8d), we take Qeff/N = +0.43 for trivalent counterions, and Qeff/N = +0.67

for tetravalent counterions. We use these values from simulations as reference points in setting the

theoretical zero-field probabilities P ′, Q′, and R′.

This is done by a Monte Carlo algorithm as follows. We start with an empty array of arbitrary

length N , which is the length of the polymer chain. We use then series of random values 0 or 1 or 2

to simulate probable states of the N-mer polymer chain. The construction of the random series obeys

the rule that a polymer monomer may belong simultaneously to a maximum of two counterions. The

values of 1 in the random series are assigned to polymer monomers with condensed counterions that

form a dipole orientated in the field direction, the value of 2 is assigned to polymer monomers that form

dipoles orientated in opposite direction to the field, and any value 0 in the series is assigned to polymer

monomers without condensed counterions. The equilibrium effective charge per chain length is then

obtained by the formula: −1+z(C1+C2), where C1 is the probability of a polymer monomer being part

of a dipole aligned in the field direction and C2 is the probability of a polymer monomer being part of

dipole aligned in the opposite direction to the field. The target effective charge at equilibrium is achieved

by adjusting in the series, the weight given to polymer monomers without condensed counterions. The

end result gives P ′ = Q′ = 0.1 and R′ = 0.8 for monovalent counterions, P ′ = Q′ = R′ = 0.3 for
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divalent counterions, P ′ = R′ = 0.36 and R′ = 0.28 for trivalent counterions, and P ′ = R′ = 0.41 and

R′ = 0.18 for tetravalent counterions. We remark that at least for monovalent and divalent counterions

these results were expected.

For buffers containing only monovalent counterions we have Qeff < 0 and we take the number

of shared monomers zero. In the case of divalent counterions, we take again the number of shared

monomers zero.

For multivalent counterions of valency z > 2, the equivalent formulation of Equation (5) is obtained

by working with a normalized chain length 2N/z, which comes from the fact that each multivalent

counterion is allowed to bind to z polymer monomers and each polymer monomer can be shared by

two counterions:

Qeff = −N + z

N ′

∑

j=0

N ′−j
∑

n=0

(j + n)
N ′!

j!n!n′′!
P ′jQ′nR′n′′

E1(j, n) (8)

where N ′ = 2N/z, and n′′ = N ′ − j − n.

The effective charge, Equation (8), allows us to obtain the minimum critical chain length N∗ for

charge inversion. We recall that the removal of counterions, or the unbinding process is an essential step

to charge inversion and we are interested in solutions of N∗ = N∗(E⊥). To do this, we start with a given

N = N∗ and solve for E⊥ the nonlinear implicit equation:

Qeff(N = N∗, E⊥) = 0 (9)

The theoretical plot of N∗ = N∗(E⊥) from Equation (9) together with data points from

simulations is presented in Figure 12. The values N∗ = N∗(E⊥) from Equation (9) are obtained

by using P ′ = 0.36e+βp′E⊥/C ′, Q′ = 0.36e−βp′E⊥/C ′, and R′ = 0.28e+qβδV /C ′, where

p′ = 0.5 × 10−3(1 + 16E
6/5
⊥ ) and q = −9 × 10−3 for trivalent counterions, and P ′ = 0.41e+βp′E⊥/C ′,

Q′ = 0.41e−βp′E⊥/C ′, R′ = 0.18e+qβδV /C ′, where p′ = 0.5×10−3(1+20E
6/5
⊥ ) and q = −8×10−3 for

tetravalent counterions. The normalization constant D in Equation (7) is taken unity, and |δV | = E⊥.

The range of comparison is restricted to short chain lengths and strong confinements. For clarity we

note that some curves may extend vertically much more than shown. We note that the minimum critical

chain length shows a decrease with increasing transversal field. This observation is in good agreement

with data shown in Table 1. In practical terms, this means that higher fields are required to remove

multivalent counterions from short chains than from long chains. As shown in Figure 12, N∗ increases

in weaker confinements (or larger cylinder radii). This further suggests that separation of chains of any

length is best achieved under confinement conditions and using externally applied fields that gives the

maximum variation of N∗ with E⊥.
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Figure 12. Theoretical and simulation data for the minimum critical chain length N∗ for

charge inversion as a function of the transversal field E⊥ in strong confinements.
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5. Conclusions

We carried out molecular dynamics simulations of electrophoresis of charged chains in confinement,

in cylinder geometries, in the presence of multivalent counterions and applied electric fields. The applied

field had both longitudinal (along the cylinder axis) and transversal (perpendicular to the cylinder axis)

components. The value of the longitudinal component has been kept constant, and only the transversal

field has been varied.

Multivalent counterions condensed on the charged polymers and led to overcharging effects.

The purpose of the transversal field had been to partially remove condensed counterions from the

polyelectrolytes and change the effective charge of the chains. The sign switch of the effective charge

caused a change in the direction of motion of the chains. The main observation is that the sign change

of the electrophoretic velocity is chain length dependent. A simple statistical model to support our

observations has been put forward. The ultimate goal of such computer experiments was to gain a

better understanding of the dynamics of polyelectrolytes dragged in externally applied fields in buffer

solutions without sieving media, in confining geometries, in the presence of multivalent counterions,

with applicability to electrophoretic separation methods.
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