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Abstract

The paper studies parametric minimum contrast estimates under rather gen-

eral conditions. The quality if estimation is measured by the rate function

related to the contrast which allows for stating the results without specifying

the particular parametric structure of the model. This approach permits also

to go far beyond the classical i.i.d. case and to obtain nonasymptotic upper

bounds for the risk. These bounds apply even for small or moderate sam-

ples. They also cover the case of misspecified parametric models. Another

important feature of the approach is that it works well in the case when the

parametric set can be unbounded and non-compact. In the case of a smooth

contrast, the obtained exponential bounds do not rely on the covering num-

bers and can be easily computed. We also illustrate how these bound can be

used for statistical inference: bounding the estimation risk, constructing the

confidence sets for the underlying parameters, establishing the concentration

properties of the minimum contrast estimate.

The general results are specified to the case of a Gaussian contrast and of an

i.i.d. sample. We also illustrate the approach by several popular examples

including least squares and least absolute deviation contrasts and the problem

of estimating the location of the change point. What we obtain in these

examples slightly differs from usual asymptotic results known in the classical

literature. This difference is due to the unboundness of the parameter set and

a possible model misspecification.
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1 Introduction

One of the most fundamental ideas in statistics is to describe the observation data using

a simple parametric family (IPθ,θ ∈ Θ) , where Θ is a subset in a finite dimensional

space, typically, in IRp . In this situation, an unknown distribution IP of the observa-

tions Y ∈ IRn is characterized by the value of the parameter θ ∈ Θ and the problem

of statistical inferences about IP is reduced to recovering θ . The classical parametric

theory mostly focuses on the asymptotic properties of estimates as the sample size n

tends to infinity. Typical results claim that the maximum likelihood and Bayes esti-

mates are asymptotically optimal under certain regularity conditions (see e.g. [6]). The

maximum likelihood and Bayes estimates can be generalized in several ways resulting in

the so-called minimum contrast and M-estimators proposed in [8] (see also [9] for more

detail). The idea behind this generalization is to estimate the underlying parameter θ

by minimizing over Θ of a contrast function which we denote by −L(θ) :

θ̃ = argmin
θ∈Θ

{−L(θ)} = argmax
θ∈Θ

L(θ).

The negative sign in this notation comes from the main example we have in mind when

L(θ) is the log-likelihood or quasi log-likelihood. The contrast function is a random field

on Θ which is somehow related to the underlying parametric family (IPθ, θ ∈ Θ) . A

natural condition on this field is that its expectation under the “true” measure IPθ0 is

minimized at the “true” parameter θ0 , i.e.

IEθ0L(θ0) = max
θ∈Θ

IEθ0L(θ). (1.1)

When the real distribution IP doesn’t belong to the parametric family (IPθ, θ ∈ Θ) ,

then the “target” of estimation can be naturally defined as the point of minimum of

−IE L(θ) . We will see that this point θ0 indeed minimizes a special distance between

the underlying measure IP and the measures IPθ from the given parametric family.

The classical parametric statistics focus mostly on statistical properties of the distance

between θ̃ and the true value θ0 . There is a vast literature on this issue. We only

mention the book [6], which provides a comprehensive study of asymptotic properties of

maximum likelihood and Bayessian estimators. Large deviation results about minimum

contrast estimators can be found in [7] and [10], while subtle small sample size properties

of these estimates are presented in [4] and [5]. There exists a number of important

studies properties of the minimum contrast estimates in a quite general situation, when
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the parameter set Θ is a subset of some functional space. We mention the papers [11],

[2], [3], [1] and the other related references therein. The principal facts established in

these papers claim some concentration properties for a rather general minimum contrast

estimate in term of metric entropy properties of Θ .

The approach of this paper is a bit different in the sense that we study exponential

moments, or more precisely the rate function, of L(θ̃) − L(θ0) under rather general

assumptions. To explain the main idea, denote L(θ, θ′) = L(θ) − L(θ′) and compute

the moment generating function log IE exp{µL(θ, θ0)} for this random variable. Let

µ∗(θ, θ0)
def= argmax

µ
{− log IE exp[µL(θ,θ0)]}

then the rate function is defined as follows

M(θ, θ0)
def= − log IE exp[µ∗(θ, θ0)L(θ,θ0)].

By the above definitions we obviously get the following identity

IE exp
{

µ∗(θ,θ0)L(θ, θ0) + M(θ,θ0)
}

= 1

which holds true for any θ ∈ Θ . We aim to extend this pointwise result to the supremum

over θ ∈ Θ , that is, by replacing θ with the estimate θ̃ . Unfortunately, in the general

situation IE exp
{
µ∗(θ̃, θ0)L(θ̃, θ0) + M(θ̃, θ0)

}
explodes. However, it turns out that

under some assumptions, for any ρ, s ∈ [0, 1) ,

IE exp
{

ρ
[
µ∗(θ̃, θ0)L(θ̃, θ0) + sM(θ̃, θ0)

]} ≤ Q(ρ, s), (1.2)

where the constant Q(ρ, s) can be easily controlled in typical examples. Section 2.5

presents some useful corollaries of this inequality including the bound for the estimation

risk of θ̃ with a polynomial loss function, concentration properties of θ̃ , confidence sets

for the target θ0 based on the maximum contrast L(θ̃) . In the i.i.d. case considered in

Section 5 the results also yield root-n consistency of θ̃ .

The basic inequality (1.2) allows to address the following questions important for

many practical applications:

• how one can extend the classical asymptotic results to the “small sample size”

situation. The upper bound (1.2) is nonasymptotic and it holds true for any sample

size. However, in some applications it is required that the sample size should be

larger than a fixed prescribed value.
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• what happens if the parametric model is misspecified. In the i.i.d. case studied

in Section 5, we show that the target of estimation is the point of the parametric

family which minimizes the Kullback-Leibler divergence between the underlying

measure and the given parametric family.

• what is the accuracy of estimation when the parameter set Θ is not compact. We

present some examples in Section 6 illustrating that the quality of the minimum

contrast estimates may heavily depend on Θ and on the behavior of the exponential

moments of the contrast function for large θ . In general, the rate of convergence

may differ from the classical root-n behavior.

Section 3 specifies the approach to the important case of a smooth contrast. In

this situations the main conditions ensuring (1.2) are simplified and the final bound can

be written as an integral over the parameter set. This allows, in particular, to avoid

computing the entropy numbers. Section 5 illustrates how our approach applies to the

classical i.i.d. case. Notice also that the main inequality (1.2) can be simplified in the

case of a Gaussian contrast, see Section 4 for more detail.

Section 6 illustrates the applications of the general bound for the problem of mean,

scale and median estimation. The last example in this section concerns the prominent

change point problem. We particularly show that in the case when the size of the change

is completely unknown, the rate of estimation of the location of the change differs from

the well known parametric rate 1/n and it depends on the distance to the edge and

involves some extra log-log factor.

2 Risk bound for the minimum contrast

This section presents a general exponential bound for the value of the minimal contrast in

the rather general set-up which includes the parametric situation as an important special

case. Let
(−L(θ), θ ∈ Θ

)
be a contrast function of a finite dimensional parameter

θ ∈ Θ ⊂ IRp . From now on we denote for brevity L(θ) = L(θ) and suppose that

L(θ) is a separable integrable random field on some probability space (Ω, F, IP ) . The

minimum contrast estimate is defined as the minimizer of −L(θ) or, equivalently, by

θ̃ = argmax
θ∈Θ

L(θ).
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The “target” of estimation is the value θ0 which minimizes the expectation of the con-

trast −L(θ) :

θ0 = argmax
θ∈Θ

IEL(θ).

We also denote L(θ, θ′) = L(θ) − L(θ′) . It is clear that θ̃ = argmaxθ∈Θ L(θ, θ′) and

θ0 = argmaxθ∈Θ IEL(θ,θ′) whatever θ′ ∈ Θ is.

The main object of our study is the value of the minimum contrast, or, equivalently,

the maximum of the random field L(θ,θ0) :

L(θ̃,θ0) = sup
θ∈Θ

L(θ,θ0).

By definition, L(θ̃,θ) is a non-negative random variable and we aim to show that it has

bounded exponential moments under some natural conditions.

2.1 Examples

Although the particular structure of the contrast function is not important for our results,

but it is useful to have some specific examples in mind.

2.1.1 Maximum Likelihood Estimate

One of the most popular examples of the contrast function is the log-likelihood. Let

(IPθ, θ ∈ Θ ⊂ IRp) be a parametric family dominated by a measure IP0 . Let also L(θ) be

the corresponding log-likelihood, i.e. L(θ) = log dIPθ/dIP0 , and L(θ′, θ) = L(θ′)−L(θ) ,

the log-likelihood ratio. The parametric maximum likelihood estimate (MLE) θ̃ is the

maximizer of L(θ) , θ̃ = argmaxθ∈Θ L(θ) . The main object of the study in this case

is the fitted log-likelihood L(θ̃,θ0) = supθ∈Θ L(θ,θ0) where θ0 is the “true” parameter

value.

It is worth mentioning that if the underlying measure IP coincides with some IPθ

from the given family P then −IE L(θ, θ0) = −IEθ0L(θ, θ0) is nothing but the Kullback-

Leibler divergence K(IPθ0 , IPθ) between IPθ0 and IPθ . It is well known that K(IPθ0 , IPθ)

is always non-negative and K(IPθ0 , IPθ) = 0 if and only if the measure IPθ0 and IPθ

coincide. This particularly implies the condition (1.1).
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2.1.2 Quasi Maximum Likelihood Estimate

Extensions of maximum likelihood principle are often called quasi likelihood estimators.

The quasi MLE θ̃ minimizes a “quasi” log-likelihood L(θ) which corresponds to some

parametric assumption while the real model does not necessarily follow this assumption.

This means that the “true” measure IP may not belong to the family (IPθ, θ ∈ Θ) .

Define the target parameter θ0 ∈ Θ by

θ0 = argmax
θ∈Θ

IEL(θ).

The measure IPθ0 can be viewed as the closest to IP from the given parametric family

and θ̃ is the empirical counterpart of θ0 . We will see that θ̃ indeed estimates θ0 .

Typical example is given by the regression model

Yi = f(Xi, θ) + εi.

If the errors εi are i.i.d. zero mean Gaussian random variables, then the MLE θ̃ coincides

with the least squares estimate, and it minimizes the least squares contrast L(θ) =
∑

i[Yi − f(Xi, θ)]2 . If we only assume that the errors are with mean zero and finite

variance, then the least squares estimate can be treated within the quasi maximum

likelihood approach. Similarly, the least absolute deviation contrast L(θ) =
∑

i |Yi −
f(Xi, θ)| can be interpreted as the quasi maximum likelihood for the regression with the

Laplace distribution with the density p(y) = e−|y|/2 .

2.1.3 Partial Maximum Likelihood Estimate

Finally, we mention the partial likelihood approach when the parameter of interest θ is

estimated under the presence of a nuisance parameter η . Since the likelihood function

depends on the both parameters, we write it in the form L(θ; η) . The full likelihood

approach means that the likelihood is optimized w.r.t. the couple (θ, η) . Equivalently,

one first optimize L(θ; η) w.r.t. η leading to L∗(θ) = supη L(θ; η) . Then θ̃ is the point

of maximum of the new contrast L∗(θ) .

However, partial optimizing of L(θ; η) w.r.t. η may be a difficult problem, espe-

cially if the nuisance parameter is high dimensional. A typical approach to overcome

this difficulty is to make use of a simple pilot estimate η̃ of η and then to optimize the

partial likelihood L(θ; η̃) w.r.t. the target parameter θ . Note also that the partial like-
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lihood estimation when L(θ; η) is only optimized w.r.t. θ with a probably misspecified

parameter η is an important special case of the quasi likelihood approach.

2.2 Auxiliary notations and definitions

To proceed with the statistical analysis of the minimum contrast estimates, we need some

additional notations and definitions. For any θ ∈ Θ denote

M(θ, θ0)
def= −IE L(θ, θ0),

where θ0 is the maximizer of IEL(θ) . It is clear that M(θ, θ0) ≥ 0 and M(θ0, θ0) = 0 .

Define also for any θ,θ′ ∈ Θ

ζ(θ,θ′) def= L(θ,θ′)− IEL(θ,θ′).

The basic assumption we make is that the increments L(θ,θ′) , or equivalently, their

stochastic components ζ(θ, θ′) have exponential moments. Define

N(µ,θ, θ′) def= log IE exp
{
µζ(θ,θ′)

}
. (2.1)

Notice that N(µ,θ,θ′) may be equal to infinity for some µ > 0 , but it is assumed that

for every pair θ, θ′ there exists µ > 0 for which N(µ,θ, θ′) is finite. Moreover we

assume that the following condition holds

(EG) For any θ ∈ Θ there exists a non-empty set Υ (θ) in (0,∞) , such that

N(µ,θ, θ0) < ∞, µ ∈ Υ (θ).

For µ ∈ Υ (θ) denote

M(µ,θ, θ0)
def= − log IE exp

{
µL(θ, θ0)

}
= µM(θ,θ0)−N(µ,θ, θ0).

Under the condition (EG) we can define optimal µ∗(θ, θ0) by

µ∗(θ, θ0)
def= argmax

µ
M(µ,θ, θ0) = argmax

µ
{µM(θ, θ0)−N(µ,θ, θ0)}. (2.2)

Denote for brevity M∗(θ, θ0) = M(µ∗(θ, θ0), θ,θ0) . Usually the functions µ∗(θ,θ0)

and M∗(θ,θ0) can be easily evaluated in a small neighborhood of the target parameter

θ0 . However, it might be difficult to compute them for all θ ∈ Θ . Therefore sometimes

it is more convenient to deal with another function µ(θ, θ0) , which can be viewed as a
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rough approximation of µ∗(θ, θ0) . Section 6 provides some examples. Let µ(θ, θ0) be

a given function such that µ(θ, θ0) ∈ Υ (θ) . Then we can define

N(θ, θ0)
def= N(µ(θ, θ0), θ, θ0),

M(θ, θ0)
def= − log IE exp

{
µ(θ,θ0)L(θ, θ0)

}
= µ(θ,θ0)M(θ, θ0)−N(θ, θ0).

The most important requirement on µ(θ, θ0) is that M(θ, θ0) is positive and grows to

infinity as θ moves away from θ0 . With these notations, the following identity holds

for any given θ ∈ Θ :

IE exp
{

µ(θ,θ0)L(θ, θ0) + M(θ,θ0)
}

= 1. (2.3)

This means that the random variable µ(θ,θ0)L(θ, θ0)+M(θ, θ0) has bounded exponen-

tial moments for every θ . Our main goal in this paper is to establish a similar fact for

the supremum of this function in θ ∈ Θ . More precisely, we are interested in bounding

the following function

Q(ρ, s) def= IE sup
θ∈Θ

exp
{

ρ
[
µ(θ, θ0)L(θ,θ0) + sM(θ,θ0)

]}
, (2.4)

where ρ, s ∈ [0, 1) .

2.3 The discrete case. A rough bound

We begin with an upper bound, which can be viewed as a simple corollary of (2.3).

Theorem 2.1. Assume (EG) and let Θ be a discrete set, then

Q(ρ, s) ≤
∑

θ∈Θ

exp
{−ρ(1− s)M(θ, θ0)

}
. (2.5)

Proof. Obviously

sup
θ∈Θ

exp
{

ρ
[
µ(θ, θ0)L(θ, θ0) + sM(θ, θ0)

]} ≤
∑

θ∈Θ

exp
{

ρ
[
µ(θ, θ0)L(θ,θ0) + sM(θ,θ0)

]}

and therefore

Q(ρ, s) ≤
∑

θ∈Θ

IE exp
{

ρ
[
µ(θ, θ0)L(θ,θ0) + sM(θ,θ0)

]}
. (2.6)

Now combining (2.3) with the Jensen inequality yields

IE exp
{

ρ
[
µ(θ, θ0)L(θ, θ0) + sM(θ, θ0)

]} ≤ exp
{
−ρ(1− s)M(θ, θ0)

}

and substituting this in (2.6) completes the proof.
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Although Theorem 2.1 is a rather simple corollary of (2.3), the bound (2.5) yields a

number of useful statistical corollaries. Some of them are presented in Section 2.5. Note

however, that even in the discrete case, this bound may be too rough (see the example

in Section 6.4). It is also clear that (2.5) has no sense in the continuous case. The next

section demonstrates how the bound (2.5) can be extended to the case of an arbitrary

parameter set.

2.4 The general exponential bound

The main idea of extending (2.5) is to evaluate the supremum of the contrast over the

whole parameter set Θ by a supremum over a discrete ε -net D plus an extra term

which controls the local fluctuations of the process L(θ) .

Usually the local properties of the centered contrast ζ(θ) = L(θ) − IEL(θ) are

controlled by the variance V2(θ, θ′) = VarL(θ, θ′) , which defines a semi-metric on Θ

see, e.g. [12]. However, in some cases, it is more convenient to deal with a slightly different

metric which we denote S(θ, θ′) . This metric usually bounds the variance VarL(θ, θ′)

from above and helps to control the local behavior of the function N(µ,θ,θ′) . Sections 3

and 5 present some typical examples of choosing this metric. Below we assume that the

metric S(·, ·) is fixed and defines for every θ◦ ∈ Θ and every ε > 0 a ball

B(ε, θ◦) =
{
θ : S(θ, θ◦) ≤ ε

}

with the center θ◦ ∈ Θ and the radius ε . We say that a discrete set D is an ε -net in

Θ , if

Θ ⊂
⋃

θ◦∈D

B(ε, θ◦). (2.7)

To control of local fluctuations of the contrast process L(θ) within the balls B(ε, θ◦) ,

we impose the following condition:

(EL) There exist ε > 0 and a function κ(λ) such that for any θ◦ ∈ Θ

sup
θ,θ′∈B(ε,θ◦)

N
( 2λ

S(θ,θ′)
, θ, θ′

)
= sup

θ,θ′∈B(ε,θ◦)
log IE exp

{
2λξ(θ, θ′)

} ≤ κ(λ), (2.8)

where

ξ(θ, θ′) def=
L(θ,θ′)− IEL(θ,θ′)

S(θ, θ′)
=

ζ(θ, θ′)
S(θ, θ′)

.
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By Nθ◦(ε′) for ε′ ≤ ε we denote the “local” covering number defined as the minimal

number of balls B(ε′, ·) required to cover the ball B(ε, θ◦) . With this covering number

we associate the local entropy

e(θ◦) def=
∞∑

k=1

2−k logNθ◦(2
−kε).

The next theorem generalizes the upper bound from Theorem 2.1.

Theorem 2.2. Assume the condition (EL) , (EG) , and (2.7). Then

Q(ρ, s) ≤
∑

θ◦∈D

exp
{
−ρ(1− s)M̆(θ◦,θ0) + (1− ρ)

[
κ

(
ρµ(θ◦)ε
1− ρ

)
+ e(θ◦)

]}
,

with

µ(θ◦) = sup
θ∈B(ε,θ◦)

µ(θ, θ0), M̆(θ◦, θ0) = inf
θ∈B(ε,θ◦)

M(θ,θ0). (2.9)

Compared with Theorem 2.1, the above exponential bound contains two additional

terms: e(θ◦) controls the local entropy of B(ε, θ◦) , and κ(·) bounds the local fluctua-

tions of the contrast process over the ball B(ε,θ◦) .

We also present another version of Theorem 2.2 which involves the standard chaining

construction. Consider the sets

A(r,θ0) = {θ : M(θ, θ0) ≤ r}, r ≥ 0. (2.10)

In the next theorem we use a growing sequence of radii rk, k = 1, 2, . . . such that

limn→∞ rk = ∞ . A standard example is given by rk = 2k−1r1 . We also set for con-

venience r0 = 0 . Then the large deviations of the contrast L(θ) may be controlled

separately for every set

Ck = A(rk+1, θ0) \A(rk,θ0). (2.11)

Let N(Ck) be the minimal numbers of balls B(ε, θ◦) from (2.7) required to cover Ck .

This means that there exists a discrete set Dk of cardinality at most N(Ck) such that

Ck ⊆
⋃

θ◦∈Dk
B(ε,θ◦) .

Theorem 2.3. Under the conditions of Theorem 2.2 it holds

Q(ρ, s) ≤
∞∑

k=0

N(Ck) exp
{
−ρ(1− s)rk + (1− ρ)

[
κ

(
ρµkε

1− ρ

)
+ ek

]}
,

with

µk = sup
θ∈Ck

µ(θ,θ0), ek = sup
θ∈Ck

e(θ).
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This theorem can be proved by bounding Q(ρ, s) from Theorem 2.2 on every coronae

set Ck and using that M(θ, θ0) ≥ rk on Ck .

2.5 Some corollaries

In this section, we demonstrate how the exponential bounds from Theorems 2.1–2.3

can be used in analyzing statistical performance of the minimum contrast estimator

θ̃ = argmaxθ∈Θ L(θ). It obviously follows from the definition (2.4) of Q(ρ, s) that

IE exp
{

ρ
[
µ(θ̃, θ0)L(θ̃, θ0) + sM(θ̃, θ0)

]} ≤ Q(ρ, s), 0 ≤ ρ, s < 1. (2.12)

Corollary 2.4. For any ρ, s < 1

IE exp
{

ρµ(θ̃,θ0)L(θ̃, θ0)
}

≤ Q(ρ, 0), (2.13)

IE exp
{

ρsM(θ̃, θ0)
}

≤ Q(ρ, s). (2.14)

Proof. Substituting s = 0 in (2.12) yields the first bound. To prove the second inequality,

notice that L(θ̃, θ0) ≥ 0 . Therefore the elementary inequality 1{x ≥ 0} ≤ exp(µx) for

any µ > 0 yields (see also (2.12))

IE exp
{
ρsM(θ̃, θ0)

}
= IE exp

{
ρsM(θ̃, θ0)

}
1
{
L(θ̃, θ0) ≥ 0

}

≤ IE exp
{
ρsM(θ̃, θ0) + ρµ(θ̃,θ0)L(θ̃, θ0)

} ≤ Q(ρ, s).

The second assertion of Corollary 2.4 presents an exponential risk bound for the

estimate θ̃ for the “natural” loss function M(θ̃, θ0) . Clearly, the exponential bound

(2.14) implies any polynomial moments of the loss
∣∣M(θ̃,θ0)

∣∣r , see Lemma 7.5 for a

precise formulation.

The assertion (2.13) can be used for establishing the concentration property of the

estimate θ̃ . Consider the sets A(r,θ0) from (2.10). The next result shows that the

estimate θ̃ deviates out of the set A(r,θ0) for some r > 0 with the exponentially small

probability of order exp
{−ρs r

}
.

Corollary 2.5. For any ρ, s < 1 , it holds

IP
(
θ̃ 6∈ A(r,θ0)

)
≤ Q(ρ, s) exp

{−ρs r
}
.
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Proof. Since L(θ̃, θ0) ≥ 0 and M(θ̃, θ0) ≥ r for θ̃ 6∈ A(r,θ0) , we obtain

eρs r1
(
θ̃ 6∈ A(r,θ0)

)
≤ exp

{
ρ
[
µ(θ̃, θ0)L

(
θ̃, θ0

)
+ sM(θ̃, θ0)

]} ≤ Q(ρ, s).

Finally we discuss confidence sets for the target θ0 . Since the inequality (2.13) claims

that L(θ̃, θ0) is bounded with exponential moments, we can use the following confidence

set:

E(z) =
{
θ ∈ Θ : L(θ̃, θ) ≤ z

}
.

To evaluate the covering probability, consider first the case when µ(θ, θ0) ≥ µ∗ > 0

uniformly in θ ∈ Θ .

Corollary 2.6. Assume that µ(θ,θ0) ≥ µ∗ > 0 . Then for any z > 0 and any ρ < 1

IP
(
θ0 /∈ E(z)

) ≤ Q(ρ, 0) exp
{−ρµ∗z

}
.

Proof. Now the bound (2.13) and the exponential Chernov inequality imply

IP
(
θ0 /∈ E(z)

)
= IP

(
L(θ̃, θ) > z

)

≤ IE exp
{−ρµ(θ̃,θ0)z

}
exp

{
ρµ(θ̃, θ0)L(θ̃, θ)

}

≤ exp
{−ρµ∗z

}
IE exp

{
ρµ(θ̃, θ0)L(θ̃,θ)

}

≤ Q(ρ, 0) exp
{−ρµ∗z

}

as required.

In the case when the function µ(θ, θ0) cannot be uniformly bounded from below by

a positive constant, we assume that such a bound exists for every set A(r,θ0) . Denote

µ∗(r)
def= inf

θ∈A(r,θ0)
µ(θ, θ0).

Then

IP
(
θ0 /∈ E(z)

) ≤ IP
(
θ0 /∈ E(z), θ̃ ∈ A(r,θ0)

)
+ IP

(
θ̃ /∈ A(r,θ0)

)

and combining Corollaries 2.5–2.6 results in

Corollary 2.7. For any z > 0 and any ρ, s < 1

IP
(
θ0 /∈ E(z)

) ≤ Q(ρ, 0) exp
{−ρµ∗(r)z

}
+ Q(ρ, s) exp

{−ρs r
}
.
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3 Exponential bounds for smooth contrasts

This section deals with the case when the contrast L(θ) is a smooth function of θ . In

this situation, we show that the local condition (EL) is easy to verify. Moreover, the local

balls B(ε, θ) nearly coincide with the usual Euclidean ellipsoids and the local entropy

can be easily bounded by an absolute constant only depending on the dimensionality p

of Θ . In addition, one can avoid computing the covering numbers by replacing the sum

over an ε -net by an integral.

Suppose that Θ is a convex set in IRp and the function L(θ) is differentiable w.r.t.

θ . Below, ∇L(θ) stands for the gradient of L(θ) . Define

V (θ) def= IE∇ζ(θ)
[∇ζ(θ)

]> (3.1)

and

H(λ, γ,θ) def= log IE exp
{

2λ
γ>∇ζ(θ)√
γ>V (θ)γ

}
. (3.2)

It is easy to see that H(0, γ,θ) = 0 , ∂H(0, γ,θ)/∂λ = 0 , and

∂2H(λ, γ,θ)
∂2λ

∣∣∣∣
λ=0

=
4γ>Var

{∇L(θ)
}
γ

γ>V (θ)γ
= 4.

So, H(λ, γ,θ) ≈ 2λ2 for small λ . This property justifies the following assumption:

(ED) There exists λ > 0 such that for some ν0 ≥ 1 uniformly in θ ∈ Θ

sup
|λ|≤λ

sup
γ∈Sp

λ−2H(λ, γ,θ) ≤ 2ν2
0 . (3.3)

In typical situations the matrix V (θ) is rather large (proportional to the sample size,

see Section 5). However, in some cases there are singular points θ◦ ∈ Θ such that V (θ)

becomes nearly degenerate when θ approaches θ◦ . In such cases the condition (3.3) is

difficult to check and it is reasonable to replace the matrix V (θ) in this condition by its

“regularization”, see Section 6.3 for an example. Without loss of generality we assume

that this “regularized” matrix V (·) satisfies V (θ) ≥ s0I for some s0 > 0 which means

that γ>V (θ) γ ≥ s0 for all unit vectors γ ∈ IRd , or equivalently, the smallest eigenvalue

λmin[V (θ)] is not smaller than s0 for all θ ∈ Θ .

Now we define the metric S(θ, θ′) by

S2(θ, θ′) def= sup
t∈[0,1]

(θ − θ′)>V
[
(1− t)θ′ + tθ

]
(θ − θ′). (3.4)
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Define also for every θ◦ ∈ Θ the ellipsoid B′(ε, θ◦) and the Euclidean ball B∗(ε,θ◦) as

B′(ε, θ◦) =
{

θ : (θ − θ◦)>V (θ◦) (θ − θ◦) ≤ ε2
}

,

B∗(ε, θ◦) =
{

θ : ‖θ − θ◦‖2 ≤ ε2/λmin[V (θ◦)]
}

.

Obviously B(ε, θ◦) ⊆ B′(ε,θ◦) and B∗(ε,θ◦) is the smallest Euclidean ball containing

B′(ε, θ◦) .

In what follows, we assume that the radius ε can be chosen in such a way that

the functions V (θ) and M(θ, θ0) have bounded fluctuations within the ball B∗(ε,θ◦)

for every θ◦ ∈ Θ . More precisely, for a given function f(·) define its magnitude over

B∗(ε,θ◦) by

Aεf(θ◦) def= sup
θ,θ′∈B∗(ε,θ◦)

f(θ)
f(θ′)

.

Similarly, the magnitude of the matrix V (θ) over B∗(ε,θ◦) is computed as follows

AεV (θ◦) def= sup
θ,θ′∈B∗(ε,θ◦)

sup
γ∈Sd

γ>V (θ)γ
γ>V (θ′)γ

.

Notice that under the condition AεV (·) ≤ ν1 , the topology induced by the metric S(·, ·)
is (locally) equivalent to the Euclidean topology and the set B(ε,θ◦) can be well ap-

proximated by the ellipsoid B′(ε, θ◦) . This yields that computing the local entropy e(·)
can be reduced to the Euclidean case, see Lemma 7.3 for more detail.

Now we are ready to state a result about deviations of the contrast process in the

smooth case. For simplicity we assume that µ(θ, θ0) ≤ µ for all θ and some given µ .

Theorem 3.1. Assume (EG) and (ED) with for some ν0 and λ > 0 . Let also

µ(θ,θ0) ≤ µ . Suppose that there is a constant ε∗ ≤ min
{
λ,

√
2/ν0

}
/µ such that for a

fixed ν1 ≥ 1 and each θ ∈ Θ holds

Aε∗V (θ) ≤ ν1, Aε∗
{
1 + M(θ, θ0)

} ≤ ν1 . (3.5)

Then, there exists a constant Cp which depends on p only such that for any ρ, s < 1

Q(ρ, s) ≤ Cpν
p/2
1∣∣ε∗(1− ρ)

∣∣p
∫

Θ
exp

{−ν−1
1 ρ(1− s)M(θ, θ0)

}√
det

{
V (θ)

}
dθ. (3.6)

The bound (3.6) is only meaningful if the integral in the right hand-side of (3.6) is

finite. Fortunately it can be easily bounded in typical situations. For instance, in the

region Θ1 close to θ0 , the function M(θ, θ0) is nearly quadratic because it is smooth and
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satisfies M(θ0, θ0) = 0 , ∇M(θ0, θ0) = 0 , and the integral in (3.6) is easy to evaluate.

When θ is far away from θ0 , the logarithmic growth rate of the function M(θ, θ0)

is usually sufficient for bounding the integral. We postpone a precise formulation until

Section 5 where the results are specified to the case of the i.i.d. contrast.

4 Exponential bounds for the Gaussian contrasts

Here we provide some general results in the case where the contrast difference L(θ, θ′) is

a Gaussian random variable for any θ,θ′ ∈ Θ . Then L(θ, θ′) ∼ N
(−M(θ,θ′), V2(θ,θ′)

)

and ξ(θ, θ′) =
{
L(θ, θ′)− IEL(θ, θ′)

}
/V(θ, θ′) is N(0, 1) so, that for any θ ∈ Θ

N(µ; θ, θ0) = log IE exp
{
µζ(θ, θ0)

}
= µ2V2(θ,θ0)/2

and the optimized values µ∗(θ, θ0), M∗(θ, θ0) can be easily computed:

µ∗(θ, θ0) = argmax
µ≥0

{
µM(θ, θ0)− µ2 V2(θ,θ0

2

}
=

M(θ, θ0)
V2(θ, θ0)

,

M∗(θ, θ0) =
M2(θ,θ0)
2V2(θ, θ0)

. (4.1)

Moreover, the local condition (EL) is fulfilled globally with S(θ, θ′) = V(θ,θ′) and

κ(λ) = 2λ2 and the condition (ED) is not required. Equivalently one can say that

(ED) is fulfilled with λ = ∞ . Below we specify Theorem 2.2 to the two important

cases: a smooth univariate contrast and the Gaussian one. We assume throughout that

µ(θ,θ0) = µ∗(θ, θ0) and M(θ,θ0) = M(µ(θ, θ0), θ,θ0) .

4.1 The univariate case

Let θ ∈ Θ ⊂ IR1 . Then for any ε > 0 there exists a covering of the parameter set Θ by

the non-overlapping local balls B(ε, θ) , that is, every point θ ∈ Θ belongs to the only

one ball B(ε, θ) . Let π(dθ) be a σ -finite measure on the parameter set Θ . Denote by

Πε(θ) the π -measure of the local ball B(ε, θ) = {θ′ : V(θ, θ′) ≤ ε} .

For simplicity of formulation we assume in the next result that the local entropy e(θ)

of every local ball B(ε, θ) is uniformly bounded by some constant e and µ(θ, θ0) ≤ µ .

Theorem 4.1. Let L(θ) be a Gaussian contrast for θ ∈ Θ ⊂ IR1 . For given ρ, s < 1 ,

ν1 > 1 , choose ε ≤ µ−1
√

(1− ρ)/2 such that for any θ ∈ Θ :

Aε

{
1 + M(θ, θ0)

} ≤ ν1, AεΠε(θ) ≤ ν1 . (4.2)
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Let also the local entropy e(θ) be bounded by e for all θ . Then

Q(ρ, s) ≤ exp{(1− ρ)e}
∫

Θ
exp

{−ν−1
1 ρ(1− s)M(θ, θ0)

}dπ(θ)
Πε(θ)

Proof. Consider a non-overlapping covering of the set Θ by the local balls B(θ◦) , θ◦ ∈
D . For any θ ∈ B(θ◦) , the use of κ(λ) = 2λ2 , µ(θ◦) ≤ µ yields

(1− ρ)κ
(

ρµ(θ◦)ε
1− ρ

)
≤ 2ρ2µ2ε2

2(1− ρ)
≤ ρ2 ≤ 1.

Now the result follows from Theorem 2.2, see the proof of Theorem 3.1 for more detail.

4.2 A smooth Gaussian contrast

When the contrast is smooth and Gaussian, Theorem 3.1 reads as follows:

Theorem 4.2. Let L(θ) be a smooth Gaussian contrast, θ ∈ Θ ⊂ IRp . Let for some

ν1 ≥ 1 and ε∗ ≤ 1 and any θ ∈ Θ hold:

Aε∗V (θ) ≤ ν1, Aε∗
{
1 + M(θ, θ0)

} ≤ ν1 . (4.3)

Let, in addition, the matrix V (θ) be non-degenerated for every θ ∈ Θ . Then there exists

a constant Cp depending on p only and such that for any ρ, s < 1

Q(ρ, s) ≤ Cpν
p/2
1

ε∗p(1− ρ)p/2

∫

Θ
exp

{−ν−1
1 ρ(1− s)M(θ, θ0)

}√
det

{
V (θ)

}
dθ.

This integral can be easily bounded by C(1 − ρ)−p/2(1 − s)−p/2 under additional

conditions on the growth of the function M(θ, θ0) , cf. Theorem 5.1.

4.3 MLE for a Gaussian model

If the Gaussian contrast L(θ) coincides, in addition, with the log-likelihood ratio, i.e.

L(θ) = log dIPθ/dIPθ0 , the equality IE exp {L(θ)} = 1 implies M(θ, θ0) = V2(θ, θ0)/2

yielding µ∗(θ, θ0) ≡ 1/2 , M∗(θ, θ0) = M(θ, θ0)/4 . Then the exponential bound in the

univariate case θ ∈ Θ ⊂ IR1 has the following form

IE exp
{

ρ
[
L(θ̃, θ0)/2 + sM(θ̃, θ0)/4

]}

≤ exp{(1− ρ)e}
∫

Θ
exp

{
−ρ(1− s)M(θ, θ0)

4ν1

}dπ(θ)
Πε(θ)

.
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5 Quasi MLE for i.i.d. data

Let Y (n) = (Y1, . . . , Yn) be an i.i.d. sample with a marginal distribution P . By IP we

denote the joint distribution of Y (n) . Let also P = (Pθ, θ ∈ Θ ⊂ IRp) be a parametric

family. The parametric hypothesis assumes that P = Pθ0 for some θ0 ∈ Θ and our

goal is to recover this unknown parameter with the help of the data Y (n) . The family

(Pθ, θ ∈ Θ) and the underlying measure P are assumed dominated by some measure

P0 . We denote by p(y, θ) and p(y) the corresponding densities: p(y, θ) = dPθ/dP0(y) ,

p(y) = dP/dP0(y) .

The parametric assumption leads to the estimate θ̃ of θ0 defined by maximizing the

corresponding log-likelihood i.e.,

θ̃ = argmax
θ∈Θ

L(θ) = argmax
θ∈Θ

n∑

i=1

`(Yi, θ),

where `(Y, θ) = log
[
p(Y,θ)

]
. In this section we discuss the quality of estimation in the

case when the underlying measure P does not necessarily belongs to the parametric

family P . We will see that in this case the procedure estimates a point θ0 , which

minimizes some special “distance” between P and Pθ over θ ∈ Θ .

We begin with some notations. Denote

m(µ,θ, θ0) = − log E exp{µ`(Y,θ, θ0)},

where `(Y,θ, θ′) = `(Y, θ)− `(Y,θ′) . The i.i.d. structure of the Yi ’s implies

M(µ,θ, θ0) = nm(µ,θ, θ0).

This allows to define the function µ∗(θ, θ0) or µ(θ, θ0) in terms of the moment gener-

ating function m(·,θ, θ0) of the marginal distribution P :

µ∗(θ, θ0) = argmax
µ

m(µ,θ, θ0)

and µ(θ, θ0) can be viewed as a proxy for µ∗(θ, θ0) . Denote also

v(θ) = E∇ζ1(θ)[∇ζ1(θ)]>, h(δ, γ; θ) = log E exp
{

2δ
γ>∇ζ1(θ)√

γ>v(θ)γ

}
,

where ζ1(θ) = `(Y1, θ) − IE`(Y1, θ) . Notice that if P coincides with Pθ , then v(θ)

becomes the standard Fisher information matrix. One can easily check that h(0, γ; θ) =

0 , ∂h(0, γ; θ)/∂δ = 0 and ∂2h(0, γ; θ)/∂2δ = 4 . It follows from Lemma 7.6 that for
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every ν0 > 1 and θ ∈ Θ there exists δ(θ) > 0 such that h(δ, γ; θ) ≤ 2ν2
0δ2 for all unit

vectors γ in IRd . We assume a slightly stronger condition when δ(θ) can be taken the

same for all θ , δ(·) ≡ δ :

sup
θ∈Θ

sup
γ∈Sp

h(δ, γ; θ) ≤ 2ν2
0δ2, δ ≤ δ. (5.1)

In some cases, the matrix v(θ) has to be replaced by some its regularization v(θ) to

ensure this property, see Section 6.3 for an example.

Independence of the Yi ’s implies V (θ) = Cov
{∇ζ(θ)

}
= nv(θ) and

H(λ, γ,θ) def= log IE exp
{

2λ
γ>∇ζ(θ)√
γ>V (θ)γ

}
= nh(n−1/2λ, γ; θ)

for any µ and any γ ∈ Sp . Therefore, if n−1/2λ ≤ δ then by (5.1):

H(λ, γ,θ) ≤ 2ν2
0λ2

and the condition (ED) is fulfilled with λ ≤ n1/2δ .

Therefore, one can easily rewrite the conditions of Theorem 3.1 in terms of the

marginal distribution P .

Theorem 5.1. Assume (5.1) for some δ and ν0 ≥ 1 . Let µ(θ, θ0) ≤ µ . Suppose that

there are constants ε∗ ≤ µ−1 min
{
λ,

√
2/ν0

}
and ν1 ≥ 1 such that for each θ ∈ Θ

Aε∗v(θ) ≤ ν1, Aε∗
{
n−1 + m(θ,θ0)

} ≤ ν1 . (5.2)

Let also the matrix v(θ) be non-degenerated for every θ ∈ Θ . Then for any ρ, s < 1

Q(ρ, s) ≤ Cpν
p/2
1 np/2

∣∣ε∗(1− ρ)
∣∣p

∫

Θ
exp

{−ν−1
1 ρ(1− s)nm(θ, θ0)

}√
det

{
v(θ)

}
dθ . (5.3)

where a constant Cp only depends on p .

Moreover, the integral in (5.3) can be easily bounded in typical situations. We present

one result of this sort in which we assume that the matrix v(θ) is uniformly bounded.

An extension to an unbounded v(θ) is straightforward.

Introduce for any r > 0 the level set Ar
def= {θ : m(θ, θ0) ≤ r} .

Theorem 5.2. Let the conditions of Theorem 5.1 be fulfilled. Suppose in addition that

• for some r > 0 there is a constant ar > 0 such that

m(θ, θ0) ≥ a2
r(θ − θ0)>v0(θ − θ0)/2, θ ∈ Ar, (5.4)

where v0 is a strictly positive definite matrix such that v(θ) ≤ v0 for any θ ∈ Θ ;
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• there are constants ν2 > 0 and C(ν2) such that

∫

Θ
exp

{−ν2m(θ, θ0)
}
dθ ≤ C(ν2). (5.5)

Then for any r > 0 there is n(r) such that with n ≥ n(r) it holds

Q(ρ, s) ≤ Cpν
p
1

a
p
rρp/2

∣∣ε∗(1− ρ)
∣∣p(1− s)p/2

. (5.6)

Proof. The conditions (5.4) and (5.5) helps easily to bound from above the integral in

Theorem 5.1. Indeed, changing the variable θ by

u = n1/2arρ
1/2(1− s)1/2ν

−1/2
1 v

1/2
0 (θ − θ0)

yields for any r > 0

np/2

∫

Ar

exp
{−ρ(1− s)nm(θ, θ0)/ν1

}√
det

{
v(θ)

}
dθ

≤ ν
p/2
1

a
p
rρp/2(1− s)p/2

∫

IRp

e−‖u‖
2/2du ≤ (2πν1)p/2

a
p
rρp/2(1− s)p/2

.

The integral over the complement Θ \Ar can be easily bounded using (5.5):

np/2

∫

Θ\Ar

exp
{−ρ(1− s)nm(θ, θ0)/ν1

}√
det v(θ) dθ

≤ C(ν2)
√

det(v0)np/2 exp
{
−nρ(1− s)r

ν1
+ ν2

}
.

If n(r) fulfills n(r)ρ(1 − s)r/ν1 − (p/2) log[n(r)] ≥ 0 , then the latter bound decreases

exponentially fast as n grows over n(r) . This yields (5.6) in view of (5.3).

Remark 5.1. Usually the condition (5.5) can be easily verified if m(θ, θ0) ≥ C log(‖θ−
θ0‖) for some sufficiently large C and ‖θ − θ0‖ .

6 Applications and examples

This section illustrates how the established exponential bounds can be applied to some

particular situations. To simplify technical details, we do not try to cover the most

general case. Rather we aim to show that the our basic conditions can be easily verified

in typical situations.
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6.1 The least squares contrast

Suppose we have at our disposal the following observations:

Yi = θ0 + εi, i = 1, . . . , n,

where εi are i.i.d. with a probability density p(x) satisfying IEεi = 0 and IEε2
i = 1 .

A particular example we have in mind is when εi follow the standard Laplace law with

p(y) = e−|y|/2 . We also assume that there is a positive δ > 0 such that

h1(δ)
def= log IE exp

{
δ|ε1|

}
< ∞.

Suppose that Θ = R1 and θ0 is estimated with the help of the standard least squares

contrast

L(θ) = −1
2

n∑

i=1

(Yi − θ)2.

It is easy to see that

L(θ, θ0) = (θ − θ0)
∑

i

(Yi − θ0)− n

2
(θ − θ0)2,

θ̃ =
1
n

∑

i

Yi, L(θ̃, θ) =
n

2
(θ̃ − θ)2.

Also ζ1(θ)
def= `(Y1, θ) − IE`(Y1, θ) = θ(Y1 − θ0) , and ∇ζ1(θ) = ε1 yielding v(θ) ≡ 1 .

Next, it is easy to check by simple algebra that

IE`(Y1, θ, θ0) = −(θ − θ0)2/2,

m(µ, θ, θ0) = µ(θ − θ0)2/2− h1

(
µ(θ − θ0)

)
.

Define for u ≥ 0 the functions µ1(u) and m1(u) by

µ1(u) = argmax
µ

{
µu2/2− h1(µu)

}
, m1(u) = max

µ

{
µu2/2− h1(µu)

}
.

Then obviously for every θ ∈ Θ and u = θ − θ0

µ∗(θ, θ0) = µ1(u), m∗(θ, θ0) = m1(u).

To apply Theorem 5.1, we need a lower bound for m1(u) . We first consider the case

when εi follow the standard Laplace law. Then h1(u) = log(1− u2) and

µ1(u) = argmax
µ

{
µu2/2− log(1− µ2u2)

}
= 1

/(
2 +

√
4 + u2

)
.
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This means that for small |u| , µ1(u) ≈ 1/4 . Therefore one can use sub-optimal µ1(u) =

1/4 for |u| ≤ 3 and µ1(u) = 1/
{
1 + |u|} for |u| ≥ 3 leading to

m1(u) ≥ C min{u, u2} (6.1)

for some fixed C > 0 . These arguments apply in the general case as well. Indeed,

Lemma 7.6 ensures that h1(δ) ≥ Cδ2 for all small |δ| . It obviously implies m1(u) ≥ Cu2

for small |u| . On the other hand, for large |u|

m1(u) = max
µ

{
µu2/2− h1(µu)

} ≥ δ|u|/2− h1(δ) ≥ δ|u|/4.

Thus, (6.1) is verified and Theorem 5.1 yields for some constant C with s = 0 and

ũ = θ̃ − θ0

IE exp
{

ρµ1(ũ) nũ2
}
≤ C(1− ρ)−1.

It is worth mentioning that for the model with Laplace’s errors εi , the exponential mo-

ment IE exp
{
µn(θ̃− θ0)2/2

}
for the LSE θ̃ does not exist whatever µ > 0 is. However,

Theorem 5.2 ensures bounded exponential moments for n(θ̃ − θ0)2
/[

4 + (θ̃ − θ0)2
]1/2 .

This particularly means that if Θ is a bounded set in R1 , then projecting θ̃ on Θ ,

i.e. computing θ̃Θ = argminθ∈Θ |θ̃ − θ| , ensures a bounded exponential moment of

µΘL(θ̃Θ, θ0) = µΘn(θ̃Θ − θ0)2/2 for some µΘ > 0 .

6.2 Estimation in the exponential model

The exponential model assumes that the observations Y1, . . . , Yn are i.i.d. exponen-

tial random variables with IP (Yi > y) = exp(−θ0y) , where θ0 ∈ R+ is an unknown

parameter of interest. In this case, the maximum likelihood contrast is given by

L(θ) = −θ
n∑

i=1

Yi + n log(θ)

yielding

θ̃ = n

/ n∑

i=1

Yi , L(θ̃, θ) = n log(θ̃/θ) + n(θ/θ̃ − 1) = nK(θ̃, θ),

where K(θ, θ′) is the Kullback-Leibler divergence between the exponential laws Pθ and

Pθ′ . In this example, we focus on statistical properties of θ̃ in the situation when Yi are

i.i.d. but not necessarily exponential. Instead, we assume that IE exp
{
δY1/IEY1

}
< ∞
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for some δ > 0 . Denote θ0 = 1/IEY1 and notice that IEL(θ) = −n[θ/θ0 + log(θ)] and

θ0 is the maximizer of IEL(θ) and thus, the target of estimation.

Let p(y) be the density of e1 = θ0Y1 on IR+ . Denoting v = VarY1 , one can easily

compute

ζ1(θ)
def= L(θ)− IEL(θ) = −θ(Y1 − 1/θ0), ∇ζ1(θ) = −(Y1 − 1/θ0) = −θ−1

0 (e1 − 1),

yielding v(θ) = IE
[∇ζ1(θ)

]2 ≡ v . Let

h1(δ)
def= log IE exp

{−δ(e1 − 1)
}

= log IE exp
{
δθ0∇ζ1(θ)

}
.

It is easy to see that the condition (5.1) is satisfied with some ν2
0 < ∞ . Define also

m1(u) = max
µ

{
µ[u− log(1 + u)]− h1(µu)

}
,

µ1(u) = argmax
µ

{
µ[u− log(1 + u)]− h1(µu)

}
.

Then, with u = θ/θ0 − 1 , we have

m(µ, θ, θ0) = µ[u− log(1 + u)]− h1(µu).

and the optimal choice of µ(θ, θ0) is given by µ∗(θ, θ0) = µ1(u) leading to m∗(θ, θ0) =

m1(u) for u = θ/θ0−1 . Thus, to make use of Theorem 5.2, we bound from below m1(u) .

If the underlying density p(y) is standard exponential, then

h1(δ) = δ − log(1 + δ),

and obviously

m(µ, θ, θ0) = log(1 + µu)− µ log(1 + u).

Simple algebra yields

µ1(u) = argmax
µ

{
log(1 + µu)− µ log(1 + u)

}
=

u− log(1 + u)
u log(1 + u)

.

A simplified choice is given by µ(u) ≡ 1/2 . This leads to

m(θ, θ0) = m(u) def= log(1 + u/2)− 0.5 log(1 + u) =
1
2

log
[
1 +

u2

4(1 + u)

]

for u = θ/θ0 − 1 > −1 . It is easy to see that m(u) ≥ c1u
2 for |u| ≤ 1 , and m(u) ≥

c2 log(1 + u) for u ≥ 1 with some c1, c2 > 0 . So, the conditions (5.2) and (5.4) of

Theorem 5.1 is easy to verify and we get the following exponential inequality

IE exp
{
ρL(θ̃, θ0)/2

} ≡ IE exp
{
ρnK(θ̃, θ0)/2

} ≤ C

1− ρ
. (6.2)
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An important feature of this result is that it applies uniformly over the whole (unbounded

and non-compact) parameter set [0, +∞] . Usually the accuracy bounds are stated only

uniformly on compact and separated away from zero subsets of Θ .

Another corollary of the main result is that the true parameter θ0 lies with a high

probability in the confidence set E(z) of the form

E(z) = {θ ∈ Θ : θ/θ̃ − 1 + log(θ̃/θ) ≤ z/n}

with some sufficiently large z .

6.3 LAD contrast and median estimation

Suppose we are given a sample Y (n) = (Y1, . . . , Yn) . In the problem of median estimation

these random variables are assumed i.i.d. and we are interested in estimating the median

θ0 which is a root of the equation

IP (Yi ≤ θ0) = IP (Yi ≥ θ0).

Alternatively, the median minimizes the value IE|Yi − θ| . This remark leads to the

natural estimate θ̃ of the median as the minimizer of the contrast −L(θ) =
∑

i |Yi− θ| ,
i.e.

θ̃ = argmax
θ

L(θ) = argmin
θ

n∑

i=1

|Yi − θ|.

If the Yi ’s are i.i.d. with the Laplace density exp
(−|y−θ0|

)
/2 , then L(θ) coincides (up

to a constant factor) with the log-likelihood. In the general case, L(θ) can be treated as

the quasi log-likelihood contrast.

Assume first that Yi are i.i.d. with the density pθ(y) = p(y − θ) where p(·) is a

centrally symmetric density. To simplify the notation, we also assume that θ0 = 0 . The

general case can be reduced to this one by a simple change of variables. The density

p(y) is supposed to be positive for all y and we denote λ(y) = −(2y)−1 log[2IP (Y > y)]

for y ≥ 0 . Equivalently, we can write IP (Y > y) = e−2yλ(y)/2 for y ≥ 0 . The case with

λ(y) ≥ λ0 > 0 corresponds to the light tails while λ(y) → 0 as |y| → ∞ means heavy

tails of the distribution P . Below we focus on the most interesting case when λ(y) is

positive and monotonously decreases to zero in y > 0 . Later we also briefly comment

on the case when the Yi ’s are not i.i.d.



24 exponential bound for the minimum contrast with applications

Let

m(θ) def= IE|Y1 − θ|, q(θ) def= IP (Y1 ≤ θ)− IP (Y1 > θ).

Obviously m′(θ) def= ∂m(θ)/∂θ = q(θ) . It is also clear that |q(θ)| ≤ 1 . With ζi(θ)
def=

|Yi − θ| − IE|Yi − θ| , holds

∇ζi(θ) = ∂ζi(θ)/∂θ = 1(Yi − θ0 ≤ θ)− 1(Yi − θ0 > θ)− q(θ)

v(θ) def= IE
∣∣∇ζi(θ)

∣∣2 = 1− q2(θ).

Note that v(θ) can be arbitrary small as θ goes to −∞ or +∞ . Therefore, further we

consider its upper bound v(θ) ≡ 1 . Simple algebra yields for any δ > 0

h(δ, θ) def= log IE exp
{
2δ∇ζi(θ)

}

= log
[
1− (1− e−4δ)

{
1− q(θ)

}
/2

]
+ 2δ

{
1− q(θ)

}

thus revealing that h(δ, θ) ≤ 4δ2 for |δ| ≤ δ = 1/
√

2 .

Next note that for θ ≥ 0 it holds

`′(y, θ, θ0)
def=

∂

∂y
`(y, θ, θ0) =





0, y /∈ [0, θ],

2, otherwise,

and `(y, θ, θ0) = −θ for y 6∈ [0, θ] . Therefore, integration by parts yields

IEeµ`(Y,θ,θ0) = −
∫

eµ`(y,θ,θ0) dIP (Y > y)

= e−µθ +
∫

µ`′(y, θ, θ0)eµ`(y,θ,θ0)IP (Y > y) dy

= e−µθ + 2µ

∫ θ

0
eµ(2y−θ)IP (Y > y) dy

= e−µθ + µe−µθ

∫ θ

0
e2y[µ−λ(y)] dy.

and similarly for θ < θ0 . We now fix µ(θ, θ0) = λ(θ) . Monotonicity of λ(y) implies

IEeµ(θ,θ0)`(Y,θ,θ0) ≤ e−θλ(θ) + λ(θ)e−θλ(θ)

∫ θ

0
eyλ(θ)−yλ(y)dy ≤ {

1 + θλ(θ)
}
e−θλ(θ).

Therefore, for θ > 0 ,

m(θ, θ0) ≥ θλ(θ)− log
{
1 + θλ(θ)

}
.

The same low bound holds true for θ < 0 .
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The continuity condition (5.2) from Theorem 5.1 is obviously fulfilled for m(θ, θ0)

and v(θ) ≡ 1 . Also the condition (5.5) is fulfilled as soon as IE|Yi|γ < ∞ for some

γ > 0 . Theorem 5.2 applied with ρ = s leads to the bound for the loss ũ = |θ̃ − θ0| :

IE exp
{
ρ2n

[
ũλ(ũ)− log{1 + ũλ(ũ)}]} ≤ C

1− ρ

provided that n is sufficiently large.

Finally notice that the case of independent but non i.i.d. observations can be again

reduced to the considered case with the help of the averaged c.d.f. P = n−1
∑

i Pi . So,

the point θ0 is now a root of the equation

n∑

i=1

Pi(Yi < θ) =
n∑

i=1

Pi(Yi > θ).

6.4 Estimation of the location of a change point

Suppose we have at our disposal the noisy data

Yk = A1(k ≤ θ) + σξk, k = 1, . . . , n, (6.3)

where ξk is a standard white Gaussian noise. Our goal is to estimate the change point

θ ∈ Θn = {1, . . . , n − 1} . We begin with the case when the amplitude A is known. To

estimate θ , we use the maximum likelihood estimator

θ̃A = argmax
θ∈Θn

LA(θ),

where the maximum likelihood contrast is given by

LA(θ) =
A

σ2

θ∑

k=1

Yk − A2

2σ2
θ =

A2

σ2
min(θ, θ0)− A2θ

2σ2
+

A

σ

θ∑

k=1

ξk.

Note that this is a special case of a Gaussian likelihood contrast, see Subsection 4, with

M(θ, θ0) =
A2

2σ2
|θ − θ0|, V2(θ, θ′) =

A2

σ2
|θ − θ′|.

Therefore, for ρ < 1 , Theorem 2.1 implies

IE exp
{

ρ2 A2

4σ2
|θ̃ − θ0|

}
≤

∑

θ∈Θ

exp
{−ρ(1− ρ)

4
M(θ, θ0)

}

≤ 2
∞∑

k=0

exp
{
−ρ(1− ρ)A2

8σ2
k

}
=

2
1− C(ρ)
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where C(ρ) = exp{−ρ(1− ρ)A2/(8σ2)} . By Lemma 7.5

IE|θ̃A − θ0|r ≤ C1(r)
(
σ2/A2

)r

with some constant C1(r) .

Now we switch to the case when A > 0 is an unknown parameter. In this case, we

cannot use the contrast LA(θ) because it strongly depends on A . To get a reasonable

contrast one can use the maximum likelihood principle. Considering A as a nuisance

parameter and maximizing LA(θ) w.r.t. A ≥ 0 , leads to the following estimate

θ̃ = argmax
θ

{
max
A≥0

LA(θ)
}

= argmax
θ

1
2σ2θ

[ θ∑

k=1

Yk

]2

+

,

where [x]+ = max(x, 0) . In what follows we deal with a slightly modified version of this

estimator

θ̃ = argmax
θ∈Θn

L(θ), with a new contrast L(θ) =
1

σ
√

θ

θ∑

k=1

Yk,

which is again a Gaussian one. The model equation (6.3) allows to represent the contrast

in the form

L(θ) =
1√
θ

θ∑

k=1

ξk +
A min(θ, θ0)

σ
√

θ
.

It is easy to see that

M(θ, θ0) = ad(θ, θ0)

with a = σ−1A
√

θ0 , and

d(θ, θ′) = 1−
√

min{θ/θ′, θ′/θ} =





1−
√

θ/θ′, θ ≤ θ′,

1−
√

θ′/θ, θ ≥ θ′.

Similarly,

V2(θ, θ′) =
2|θ′ − θ|

(
√

θ +
√

θ′)
√

max(θ, θ′)
= 2d(θ, θ′)

and obviously, M(θ, θ0) = aV2(θ, θ0)/2 . Also V2(θ, θ0) ≤ 2 for all θ . Next, by (4.1)

µ∗(θ, θ0) =
M(θ, θ0)
V2(θ, θ0)

=
a

2
, M∗(θ, θ0) =

a2

8
d(θ, θ0).

Note that for every θ ∈ Θ , the value M∗(θ, θ0) is bounded by a2/8 . So, this example

is quite special in the sense that the Kullback-Leibler divergence between measures IPθ0
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and IPθ does not grow to infinity with θ . We will see that this fact results in an extra

loglog-factor in the bound for the minimum contrast.

For given ε > 0 and θ◦ ∈ Θ , the local ball B(ε, θ◦) = {V(θ, θ◦) ≤ ε} can be

represented in the form

B(ε, θ◦) =
{
θ : θ◦(1− ε2/2)2 ≤ θ ≤ θ◦(1− ε2/2)−2

}
.

First of all, notice that this ball becomes the usual symmetric interval around log θ◦ for

the parameter log θ :

B(ε, θ◦) = {θ :
∣∣log θ − log θ◦

∣∣ ≤ −2 log(1− ε2/2)}.

This immediately implies that the local entropy e(θ◦) is bounded by e = 1 for all

θ◦ ∈ Θ .

Next, for the number Πε(θ) of points θ in B(ε, θ◦) , it holds Πε(θ) ≈ K(ε)θ with

K(ε) = (1 − ε2/2)−2 − (1 − ε2/2)2 ≥ ε2 for ε ≤ 1 . Fix ε2 = 1/2 . Then for every

θ◦ 6∈ B(2ε, θ0) , the magnitude of 1 + M(θ, θ0) within the ball B(ε, θ◦) is bounded by a

fixed constant and the condition (4.2) is easily verified. This yields by Theorem 4.1

IE exp
{
a2d(θ̃, θ0)

} ≤ C1

n∑

θ=1

1
Πε(θ)

≤ C2

n∑

θ=1

1
θ
≤ C2 log n, (6.4)

thus resulting in

IE exp
{
ρ2a2d(θ̃, θ0)

} ≤ C2 log(n).

Combining this with Lemma 7.5 yields

IE
{
a2d(θ̃, θ0)

}r ≤ C| log log n|r.

It is interesting to compare this result with the accuracy of the maximum likelihood

method in the case, where the magnitude of jump A is known. One can see that there is

a payment for the adaptation to the nuisance parameter A which is in form of an extra

log log -factor. Another observation is that the accuracy of estimation strongly depends

on the true location θ0 , more precisely, on the value a2 = A2θ0/σ2 . In the “classical”

situation this value is of order n leading to the accuracy of order n−1 log log(n) . If

this value becomes smaller in order than n , then the accuracy decreases with the same

factor. In particular, if A2θ0/σ2 is of order one, then even consistency for the estimate

θ̃ cannot be stated.
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7 Proofs

This section collects proofs of the main theorems and some auxiliary facts.

The important technical result behind our bounds for contrast process is related to the

behavior of the supremum of the stochastic component ζ(θ, θ¦) of the contrast process

L(θ,θ¦) over a local ball B(ε,θ◦) = {θ : S(θ, θ◦) ≤ ε} with some ε .

Theorem 7.1. Assume that ζ(θ) is a separable process satisfying for some θ◦ the

condition (EL) . Then for any θ¦ ∈ B(ε, θ◦)

log IE exp
{

λ

ε
sup

θ∈B(ε,θ◦)
ζ(θ, θ¦)

}
≤ e(θ◦) + κ(λ).

Proof. The proof is based on the standard chaining argument (see e.g. [12]). Without loss

of generality, we may assume that e(θ◦) < ∞ . Then for any integer k ≥ 0 , there exists a

2−kε -net Dk(ε) in the local ball B(ε, θ◦) having the cardinality Nθ◦(2−kε) . Using the

nets Dk(ε) with k = 1, . . . , K−1 , one can construct a chain connecting an arbitrary point

θ in DK(ε) and θ′ . It means that one can find points θk ∈ Dk(ε), k = 1, . . . , K − 1 ,

such that S(θk, θk−1) ≤ 2−k+1ε for k = 1, . . . , K . Here we denoted for θK = θ , and

θ0 = θ¦ . Notice that θk can be constructed recurrently θk−1 = τk−1(θk), k = K, . . . , 1 ,

where

τk−1(θ) = argmin
θ′∈Dk−1(ε)

S(θ, θ′).

It obviously holds

ζ(θ,θ′) =
K∑

k=1

ζ(θk,θk−1).

In view of the definition of ξ(·, ·)

ζ(θk, θk−1) = S(θk,θk−1)× ξ(θk, θk−1) = 2ε ck ξ(θk,θk−1)

with ck = ck(θ) = S(θk,θk−1)/(2ε) ≤ 2−k , thus resulting in

sup
θ∈Dk(ε)

ζ(θ, θ◦) ≤
K∑

k=1

sup
θ′∈Dk(ε)

ζ(θ′, τk−1(θ′))

≤ 2ε

K∑

k=1

sup
θ′∈Dk(ε)

ckξ(θ′, τk−1(θ′)). (7.1)
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Because of ck ≤ 2−k , this yields by Lemma 7.4 and condition (Mλ) :

logIE exp
{

λ

ε
sup

θ∈DK(ε)
ζ(θ, θ◦)

}
≤ log IE exp

{
2λ

K∑

k=1

sup
θ′∈Dk(ε)

ckξ(θ′, τk−1(θ′))
}

≤
K∑

k=1

2−k log
[
IE exp

{
sup

θ′∈Dk(ε)

2kck × 2λξ(θ′, τk−1(θ′))
}]

≤
K∑

k=1

2−k log
[ ∑

θ′∈Dk(ε)

IE exp
{
2kck × 2λξ(θ′, τk−1(θ′))

}]

≤
K∑

k=1

2−k
{
logNθ◦(2

−kε) + κ(λ)
}
.

These inequalities with the separability of ζ(θ, θ¦) yield

log IE exp
{

λ

ε
sup

θ∈B(ε,θ◦)
ζ(θ, θ¦)

}
= lim

K→∞
log IE exp

{
λ

ε
sup

θ∈DK(ε)
ζ(θ, θ¦)

}

≤
∞∑

k=1

2−k
{
κ(λ) + logNθ◦(2

−kε)
} ≤ κ(λ) + e(θ◦)

which completes the proof of the theorem.

7.1 Proof of Theorem 2.2

Fix a point θ◦ ∈ D . For given ρ, s < 1 , denote

θ¦ = argmax
θ∈B(ε,θ◦)

{
µ(θ, θ0)IEL(θ,θ0) + sM(θ,θ0)

}
.

It is clear that with µ(θ◦) = supθ∈B(ε,θ◦) µ(θ, θ0)

sup
θ∈B(ε,θ◦)

{
ρ
[
µ(θ,θ0)L

(
θ, θ0

)
+ sM(θ,θ0)

]}

≤ ρ
[
µ(θ¦,θ0)L(θ¦, θ0) + sM(θ¦, θ0)

]
+ ρµ(θ◦) sup

θ∈B(ε,θ◦)
ζ(θ, θ¦).

Next, Theorem 7.1 implies for any µ and ε

log IE exp
{

µ sup
θ∈B(ε,θ◦)

ζ(θ, θ¦)
}
≤ κ(µε) + e(θ◦).

By definition of M̆(θ◦, θ0)

log IE exp
{

µ(θ¦, θ0)L(θ¦,θ0)
}

+ sM(θ¦, θ0) = −(1− s)M(θ¦, θ0)

≤ −(1− s)M̆(θ◦, θ0).
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This yields by the Hölder inequality

log IE exp
{

sup
θ∈B(ε,θ◦)

ρ
[
µ(θ, θ0)L

(
θ, θ0

)
+ sM(θ,θ0)

]}

≤ log IE exp
{

ρ
[
µ(θ¦, θ0)L(θ¦,θ0) + sM(θ¦,θ0)

]
+ ρµ(θ◦) sup

θ∈B(ε,θ◦)
ζ(θ,θ¦)

}

≤ ρ log IE exp
{

µ(θ¦, θ0)L(θ¦, θ0)
}

+ ρsM(θ¦,θ0)

+ (1− ρ) log IE exp
{ρµ(θ◦)

1− ρ
sup

θ∈B(ε,θ◦)
ζ(θ,θ¦)

}

≤ −ρ(1− s)M̆(θ◦, θ0) + (1− ρ)e(θ◦) + (1− ρ)κ
(ρµ(θ◦)ε

1− ρ

)
.

Therefore, by (2.9)

IE exp
{

sup
θ∈Θ

ρ
[
µ(θ, θ0)L(θ,θ0) + sM(θ,θ0)

]}
(7.2)

≤
∑

θ◦∈D

IE exp
{

sup
θ∈B(ε,θ◦)

ρ
[
µ(θ,θ0)L(θ, θ0) + sM(θ, θ0)

]}

≤
∑

θ◦∈D

exp
{
−ρ(1− s)M̆(θ◦, θ0) + (1− ρ)κ

(
ρµ(θ◦)ε
1− ρ

)
+ (1− ρ)e(θ◦)

}

as required.

7.2 Proof of Theorems 3.1 and 4.2

In the proof by Cp we denote a generic constant (not necessarily the same) which only

depends on the dimensionality p . First we show that the differentiability condition

(ED) implies the local moment condition (EL) .

Lemma 7.2. Assume (ED) with some ν0 and λ . Then for any θ, θ′ ∈ Θ and any λ

with |λ| ≤ λ ,

log IE exp
{

2λ
ζ(θ, θ′)
S(θ, θ′)

}
≤ 2ν2

0λ2. (7.3)

Proof. For θ,θ′ ∈ Θ , denote for brevity u = θ−θ′ . With these notations, we obviously

have

L(θ, θ′) = u>
∫ 1

0
∇L(θ′ + tu)dt.

Similar expressions hold for IEL(θ,θ′) and for ζ(θ,θ′) = L(θ, θ′)− IEL(θ,θ′) i.e.,

ζ(θ, θ′) = u>
∫ 1

0
∇ζ(θ′ + tu)dt.
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The definition of S(θ, θ′) implies for any t ∈ [0, 1]

c(t) def=

√
u>V (θ + tu)u

S(θ, θ′)
≤ 1,

and therefore Lemma 7.4 and (3.3) with γ = u/‖u‖ yield

log IE exp
{

2λ
ζ(θ, θ′)
S(θ, θ′)

}
= log IE exp

{
2λ

∫ 1

0
c(t)

γ>∇ζ(θ + tu)√
γ>V (θ + tu)γ

dt

}

≤
∫ 1

0
c(t) log IE exp

{
2λ

γ>∇ζ(θ + tu)√
γ>V (θ + tu)γ

}
dt ≤ 2ν2

0λ2.

Due to the next lemma, the smoothness of the contrast implies that the topology

induced by the metric S(·, ·) is (locally) equivalent to the Euclidean topology and com-

puting the local entropy e(·) can be reduced to the Euclidean case.

Define also for every θ◦ ∈ Θ the elliptic set B′(ε, θ◦) by

B′(ε, θ◦) =
{

θ : (θ − θ◦)>V (θ◦) (θ − θ◦) ≤ ε2
}

.

The definition of B(ε,θ) implies that B(ε,θ◦) ⊆ B′(ε,θ◦) .

Lemma 7.3. Assume (ED) with some λ , and let, for some fixed ν1 ≥ 1 , ε > 0

AεV (θ) ≤ ν1, θ ∈ Θ. (7.4)

Then

• (EL) is fulfilled with κ(λ) ≤ 2ν2
0λ2 , for λ ≤ λ , i.e. (7.3) holds for all λ ≤ λ .

• supθ∈Θ e(θ) ≤ C(p, ν1), where C(p, ν1) is a constant depending on p and ν1 .

Proof. The first claim is an immediate corollary of Lemma 7.2. Next, for each fixed

θ◦ ∈ Θ , after the linear transformation, all the local balls B′(2−kε,θ) with θ ∈ B′(ε, θ◦)

and k ≥ 0 become the usual Euclidean balls and the corresponding covering number is

obviously bounded by a constant depending on the dimension p and ν1 only.

Now we are ready to proceed with the proof of Theorem 3.1. Define

ε
def= ε∗(1− ρ)

and consider the ellipsoid B′(ε, θ◦) = {θ : (θ − θ◦)>V (θ◦) (θ − θ◦) ≤ ε2} . Its Lebesgue

measure mes(B′(ε,θ◦)) is equal to Cp

/√
det{ε−2V (θ◦)} where Cp is the volume of the
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unit ball in IRp . First we bound the value 1/mes(B′(ε,θ◦)) . The conditions (3.5) imply

that for any θ ∈ B′(ε,θ◦)

det
{
ε−2V (θ◦)

} ≤ νp
1∣∣ε∗(1− ρ)

∣∣2p det
{
V (θ)

}
. (7.5)

Since µ(θ◦) ≤ µ ,

ρµ(θ◦)ε
1− ρ

≤ ε∗ρµ ≤ λ,

and therefore by (ED) and by Lemma 7.2 we obtain

(1− ρ)κ
(

ρµ(θ◦)ε
1− ρ

)
≤ (1− ρ)2ν0

(
ε∗ρµ

)2 ≤ 2ν0ρε∗2ρ2(1− ρ)µ2 ≤ ν0ρε∗2µ2/2 ≤ ρ. (7.6)

The condition (3.5) implies 1+ M̆(θ◦, θ0) ≥ {1+ M(θ, θ0)}/ν1 , and hence M̆(θ◦, θ0) ≥
ν−1
1 − 1 + ν−1

1 M(θ, θ0) . Combining this with (7.5) and (7.6) yields the following bound

exp
{
−ρ(1− s)M̆(θ◦, θ0) + (1− ρ)κ

(
ρµ(θ◦)ε
1− ρ

)}

≤ e2ρ

mes(B′(ε,θ◦))

∫

B′(ε,θ◦)
exp

{−ρ(1− s)M(θ, θ0)/ν1

}
dθ

≤ Cpν
p/2
1∣∣ε∗(1− ρ)

∣∣p
∫

B′(ε,θ◦)
exp

{−ρ(1− s)M(θ, θ0)/ν1

}√
det

{
V (θ)

}
dθ . (7.7)

Next, consider the set B∗(ε,θ◦) = {θ : ‖θ − θ◦‖2 ≤ ε2/λmin[V (θ◦)]} . By condition

(3.5), the matrix V (θ) is nearly constant within this set and hence the squared distance

S2(θ, θ′) can be well approximated by
(
θ − θ′

)>
V (θ◦)

(
θ − θ′

)
. This enables to build

easily an ε -net D(ε, θ◦) in the ball B∗(ε, θ◦) such that every point θ′ ∈ B∗(ε,θ◦) is

covered by the balls B′(ε,θ) for θ ∈ D(ε,θ◦) only a finite number of times depending

on dimensionality p . The use of (7.7) leads to

∑

θ∈D(ε,θ◦)

exp
{
−ρ(1− s)M̆(θ, θ0) + (1− ρ)κ

(
ρµ(θ)ε
1− ρ

)}

≤ Cpν
p
1∣∣ε∗(1− ρ)

∣∣p
∫

B∗(ε,θ◦)
exp

{−ρ(1− s)M(θ, θ0)/ν1

}√
det

{
V (θ)

}
dθ . (7.8)

To finish the proof, it remains to show that Θ ⊆ IRp can be covered by the balls

B∗(ε,θ◦) . Define rk = ν1k and consider the sets Ak = {θ : λmin[V (θ)] ∈ [rk−1, rk]} .

Condition (3.5) ensures that for every θ◦ ∈ Ak and every θ ∈ B∗(ε,θ◦) , it holds

ν−1
1 rk−1 ≤ λmin[V (θ)] ≤ ν1rk . This particularly implies that B∗(ε,θ◦) can only cross

Ak−1 and Ak+1 . Next, if θ◦ ∈ Ak then A(ε/rk, θ
◦) ⊆ B∗(ε, θ◦) ⊆ A(ε/rk−1, θ

◦) where
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A(a,θ◦) = {θ : ‖θ◦ − θ‖ ≤ a} . Clearly Ak can be covered by the balls A(ε/rk,θ
◦)

and hence, by the balls B∗(ε,θ◦) so that every point in Ak is only covered by a finite

number of times Cp which depends on p only. If Dk is the union of the sets D(ε, θ◦)

over these points θ◦ , then the result (7.8) extends to the set Ak . For the final extension

to the whole parameter space it only remains to note that any ball B∗(ε,θ◦) can only

intersect with at most two sets Ak for different k . Now the the assertion follows directly

from Theorem 2.2 and Lemma 7.3.

For the proof of Theorem 4.2 only observe that λ = ∞ , ν0 = 1 , and the choice of ε

can be slightly refined: ε = ε∗(1− ρ)1/2µ it holds

det
{

ε−2V (θ◦)
}
≤

[
ν1

ε∗2(1− ρ)

]p

det
{
V (θ)

}

and

(1− ρ)κ
(

ρµ(θ◦)ε
1− ρ

)
≤ 2

(
ε∗ρ

)2 ≤ 1.

The rest of the proof is the same as for Theorem 3.1.

7.3 Auxiliary facts

Lemma 7.4. For any r.v.’s ξk and any nonnegative coefficients λk with Λ =
∑

k λk ≤ 1

log IE exp
(∑

k

λkξk

)
≤

∑

k

λk log IEeξk (7.9)

Proof. Convexity of ex and concavity of xΛ imply

IE exp
{

Λ

Λ

∑

k

λk

(
ξk − log IEeξk

)} ≤ IEΛ exp
{

1
Λ

∑

k

λk

(
ξk − log IEeξk

)}

≤
{

1
Λ

∑

k

λkIE exp
(
ξk − log IEeξk

)}Λ

= 1.

Lemma 7.5. Let ξ be a nonnegative random variable and

ϕ(λ) = log IE exp
(
λξ

)

for λ ≥ 0 . Then for any r > 0

(
IEξr

)1/r ≤ inf
λ: ϕ(λ)≥r

λ−1ϕ(λ). (7.10)

In particular, if ϕ(λ) ≤ a + σ2λ2 for some a, σ ≥ 0 , then

(
IEξr

)1/r ≤ 2σ
√

max{a, r/2}. (7.11)
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Proof. Consider the following function

f(x) =





logr(x) for x ≥ er,

xrr/er for x ≤ er.

A simple algebra reveals that for x > er

f ′(x) = rx−1 logr−1(x),

f ′′(x) = r(r − 1)x−2 logr−2(x)− rx−2 logr−1(x)

= rx−2
[
r − 1− log(x)

]
logr−2(x) < 0.

Since the function f(x) is linear for x ≤ er , it is concave for all x ≥ 0 . It is also easy

to check that [log(x)]r+ ≤ f(x) , because for x ≤ er , the function f(x) coincides with

the tangent of logr(x) at x = er . Therefore,

xr = λ−r logr
(
eλx

) ≤ λ−rf(eλx)

and the Jensen inequality implies for any λ ≥ 0

IEξr ≤ λ−rIEf(eλξ) ≤ λ−rf
(
IEeλξ

)
= λ−rf

(
eϕ(λ)

)
. (7.12)

If ϕ(λ) ≥ r , then f
(
eϕ(λ)

)
= logr

(
eϕ(λ)

)
= ϕr(λ) and (7.10) follows from (7.12).

To prove (7.11), it remains to notice that the monotonicity of f(·) implies in view of

(7.12)

(IEξr)1/r ≤ inf
λ: a+σ2λ2≥r

{
a

λ
+ σ2λ

}
=

{
σr(r − a)−1/2, a < r/2

2σ
√

a, a ≥ r/2

≤
{

2σ
√

r/2, a < r/2

2σ
√

a, a ≥ r/2
≤ 2σ

√
max{a, r/2}.

Lemma 7.6. Let a r.v. ξ fulfill IEξ = 0 , IEξ2 = 1 and IE exp(λ1|ξ|) = κ < ∞ for

some λ1 > 0 . Then for any ρ < 1 there is a constant C1 depending on κ , λ1 and ρ

only such that for λ < ρλ1

log IEeλξ ≤ C1λ
2/2.

Moreover, there is a constant λ2 > 0 such that for all λ ≤ λ2

log IEeλξ ≥ ρλ2/2.
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Proof. Define h(x) = (λ− λ1)x + m log(x) for m ≥ 0 and λ < λ1 . It is easy to see by

a simple algebra that

max
x≥0

h(x) = −m + m log
m

λ1 − λ
.

Therefore for any x ≥ 0

λx + m log(x) ≤ λ1x + log
(

m

e(λ1 − λ)

)m

This implies for all λ < λ1

IE|ξ|m exp(λ|ξ|) ≤
(

m

e(λ1 − λ)

)m

IE exp(λ1|ξ|).

Suppose now that for some λ1 > 0 , it holds log IE exp(λ1|ξ|) = κ(λ1) < ∞ . Then the

function h0(λ) = IE exp
(
λξ

)
fulfills h0(0) = 1 , h′0(0) = IEξ = 0 , h′′0(0) = 1 and for

λ < λ1 ,

h′′0(λ) = IEξ2eλξ ≤ IEξ2eλ|ξ| ≤ 1
2(λ1 − λ)2

IE exp(λ1|ξ|).

This implies by the Taylor expansion for λ < ρλ1 that

h0(λ) ≤ 1 + C1λ
2/2

with C1 = κ(λ1)/
{
2λ2

1(1− ρ)2
}

, and hence, g(λ) = log h0(λ) ≤ C1λ
2/2 .
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