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MULTIPLE BERNOULLI SERIES
AND VOLUMES OF MODULI SPACES
OF FLAT BUNDLES OVER SURFACES.

VELLEDA BALDONI, ARZU BOYSAL AND MICHELE VERGNE

ABSTRACT. Using Szenes formula for multiple Bernoulli series, we
explain how to compute Witten series associated to classical Lie
algebras. Particular instances of these series compute volumes of
moduli spaces of flat bundles over surfaces, and also multiple zeta

values.
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INTRODUCTION

Consider a sequence of vectors @ lying in a lattice A of a vector space
V. We denote the dual of A by I', and let I'yee(®) = {7y € T'| (¢,7) #
0, for all ¢ € O}.

In this computational paper, we compute

217rv )

(0.0.1) B(® Z H¢6<I> T

’YGFre

a function on the torus V/A. This sum, if not absolutely convergent,
has a meaning as a generalized function. If ® generates V', then B(®, A)
is piecewise polynomial.

For example, for V= Re; ®Rey with standard lattice A = Ze, + Ze,
if we choose ® = [ey, €1, €9, €1 + €9, €1 — €3], then

! €2i7r(v1n1+v2n2)

Z (2imny)?(2imng) (2im(ny + n2))(2iw(ny — ngy))’

ni,n2

B(®, A)(vie1+vees) =

where the summation Y_' means that we sum only over the integers
ny and ng such that nyns(ny + na)(ny — na) # 0. The formula for
B(®,A)(vie; + v9ez) as a piecewise polynomial function of vy and wy
(of degree 5) is given in Section 2, Equation (2.5.4).

We call B(®, A) the multiple Bernoulli series associated to ® and A.
Multiple Bernoulli series have been extensively studied by A. Szenes
([12],[13]). They are natural generalizations of Bernoulli series: for
V =Rw, A = Zw and &y, = [w,w,...,w], where w is repeated k times
with & > 0, the function

B A)(tw) = >

, k
n#0, n€Z <2Z7Tn)

is equal to — B(k, {t}) where B(k,t) denotes the k™ Bernoulli poly-
nomial in variable ¢, and {t} = ¢ — [t| is the fractional part of ¢. If
k =2g and t = 0, due to the symmetry n — —n,

B(@a, A)(0) = 2@«29).

From the residue theorem in one variable, for k > 0,

21t

2imnt

e 1, 1
Z (2iﬂn)k_ReSZzo(ge 1—62)'
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Szenes multidimensional residue formula (see Theorem 1.33) is the
generalization of this formula to higher dimension, and it is the tool
that we use in our computations of B(®, A)(v) as a piecewise polyno-
mial function.

A particular but crucial instance of multiple Bernoulli series is when
A is the coroot lattice of a compact connected simple Lie group G, and
® is comprised of positive coroots of G. The series B(®o,_2, A), where
the argument ®o, o refers to taking elements of ® with multiplicity
2g — 2, appeared in the work of E. Witten ([16], §3), where Witten
shows that its value at v = 0 is (up to a scalar depending on G and g)
the symplectic volume of the moduli space of flat G-connections on a
Riemann surface of genus ¢. Similarly, for a regular element v of the
Cartan Lie algebra of G, Witten shows that the value of B(®q,_1, A)(v)
is (up to a scalar depending on G and g) the symplectic volume of the
moduli space of flat G-connections on a Riemann surface of genus g
with one boundary component, around which the holonomy is deter-
mined by v.

More generally, for the above choice of A and ®, when v = {vy, ..., vs}
is a collection of s regular elements of the Cartan Lie algebra, certain
linear combinations of B(®y,_2+5,A) at some particular values (de-
pending on v) is the symplectic volume of the moduli space of flat
G-connections on a Riemann surface of genus g with s boundary com-
ponents, around which the holonomy is determined by v. Then, its
dependance on v is piecewise polynomial.

Y. Komori, K. Matsumoto, H. Tsumura ([6],7],[8]) studied the re-
striction of the series (0.0.1) by summing over the cone of dominant
regular weights of a semi-simple Lie group G, and defined functions
((s,v,G) (cf. Section 5.2). They also obtained relations between these
functions over Q. When A is the coroot lattice of a compact connected
simple Lie group GG and the sequence @ is the set of its positive coroots
with equal even multiplicity for long roots and (possibly different) equal
even multiplicity for short roots, due to the Weyl group symmetry, the
summation B(®, A)(0) over the full (regular) weight lattice is just (up
to multiplication by an appropriate power of (27)) Komori-Matsumoto-
Tsumura zeta function ((s,0,G). Thus, the value of ((s,0,G) (up to
a certain power of (27)) is a rational number which can be computed
explicitly, and we give examples of such computations.

As it is observed in [6], some instances of the series ((s,v, G) also
compute certain multiple zeta values. In the last part of the article we
give various such computations of multiple zeta values using B(®, A).
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Here is the outline of individual sections.

In Section 1, we recall a formula due to A. Szenes, which allows an
efficient computation of B(®, A).

In Section 2, we give an outline of an algorithm that efficiently com-
putes the needed ingredients of this formula for classical root systems.
We also give several simple examples.

In Section 3, we show how this applies to the symplectic volume
of the moduli space of flat G-connections on a Riemann surface of
genus g with s boundary components. We obtain an expression for
the symplectic volume by taking the limit of the Verlinde formula. We
then show that our formula thus obtained coincides with that of Witten
(including the constants) given in terms of the Riemannian volumes of
G and T'. We also give examples of these functions.

In Sections 4 and 5, we give several examples and tables of Witten
volumes, which include some examples from ([6],[7],[8]). We give an
idea of computational limitation of our algorithm (written as a simple
Maple program) in terms of the rank of the group G and the number
of elements in ®. Following Y. Komori, K. Matsumoto, H. Tsumura,
we also give some examples of rational multiple zeta values.

To compute more examples, our Maple program will soon be avail-
able on the webpage of the last author.

Finally, in the appendix, for completeness, we include a proof of
Szenes formula.
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authors were at Mathematisches Forschunginstitut Oberwolfach as a
part of Research in Pairs programme in February 2012. We would like
to express our gratitude to the institute for their hospitality.
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We also thank Shrawan Kumar for pointing out a minor mistake in
the earlier version of this manuscript in the formula of Proposition 3.1
for the case of Lie group of type Gs.



BERNOULLI SERIES AND VOLUMES OF MODULI SPACES 5

NOTATIONS

r-dimensional real vector space.
dual of U; v € V.

the pairing between U and V.
a lattice in U; vy € T

S Enlh

=TI dual lattice in V; (I A) C Z, X € A.
a sequence of vectors in V; ¢ € .

(®,A) multiple Bernoulli series associated to ® and A.
H, hyperplane in U comprising of vectors u satisfying (u, ¢) = 0.
H arrangement of hyperplanes
Ped a set of equations for H.

Ry ring of rational functions on U with poles along H.
Syu a subspace of Ry given in Definition 1.2.

Gun a subspace of Ry given in Definition 1.2.

R projector from Ry to Sy.

T(H,A) topes associated to the system (#,A); 7 a tope.
B(Pe9) the set of subsets of ®“? forming a basis for V.
Moy, Ry spaces of functions defined in 1.8.

Vieg = Vieg(H,A) subset of V regular with respect to (#, A).

1. SZENES FORMULA FOR MULTIPLE BERNOULLI SERIES

1.1. Functions on complement of hyperplanes. In this subsec-
tion, U is an r-dimensional complex vector space, and we recall briefly
some structure theorems for the ring of rational functions that are reg-
ular on the complement of a union of hyperplanes [4].

Let V' be the dual vector space to U. If ¢ € V, we denote by
Hy={ueU;{(p,u) =0}.

Let H = {H,...,Hy} be a set of hyperplanes in U. Then, we may
choose ¢, € V such that H, = H,,; the element ¢, will be called an
equation of Hy. Clearly, an equation ¢y is not unique, it is determined
up to a nonzero scalar multiple.

We consider

Uy :={u € U;(¢x,u) # 0 forallk },
an open subset of U. An element in Uy will be called regular.

Definition 1.1. We denote by S(V') the symmetric algebra of V' and
identify it with the ring of polynomial functions on U.

We denote by Ry, the ring of rational functions on U regular on Usy.
That is, the ring generated by S(V') together with inverses of the linear
forms ¢y.
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The ring D(U) of differential operators on U with polynomial coeffi-
cients acts on Ry. In particular, U operates on Ry by differentiation.
We denote by O(U)Ry the space of functions in Ry obtained by dif-
ferentiation.

If V' is one dimensional, then the ring Ry is the ring of Laurent
polynomials C[z, 271], and the function 2, for i # —1, is obtained as a
derivative d%i%lz”l. Thus Ry = d%RH @Cz LIt f=3 a,2" is an
element of C[z, 27|, we denote by Res,—q f the coefficient a_; of 27! in
the expression of f. This linear form is characterized by the fact that
it vanishes on d%RH.

By analogy to this one dimensional case, a linear functional on Ry
vanishing on 0(U)Ry will be called a ‘residue’.

Let us thus analyze the space Ry modulo 0(U)Ry.

Let us consider a set @1 := {1, o, ..., dn} of equations for H. A
subset o of ®°? will be called a basis if the elements ¢, in ¢ form a
basis of V. We denote by B(P?) the set of such subsets 0. A subset
v of @ will be called generating if the elements ¢, in v generate the
vector space V.

Definition 1.2. e Let 0 := {ay,an,...,a,.} € B(P). Consider the
‘simple fraction’

1
&) = oy

We denote by Sy the subspace of R4 generated by the elements f,, o €

B(De).
e Let v = [ay,...,a4] be a sequence of k elements of 9 and n =
[n1,ng,...,ng] be a sequence of positive integers. We define
1
0 I/, n - —n.
o) =

e We denote by Gy the subspace of Ry generated by the elements
0(v,n) where v is generating.

As the notation suggests, the spaces Ry, Sy and Gy depend only
on H. The term simple fraction comes from the fact that if o =
{b1, P2, ..., 0.} is a basis, then we can choose coordinates z; on U so
that ¢;(z) = z;, so that for this system of coordinates f,(z) = ﬁ

We recall the following ‘partial fraction” decomposition theorem.

Lemma 1.3. Let v be a subset of ®°1 generating a t dimensional sub-
space of V.. Then 0(v,n) may be wrilten as a linear combination of

— 1 - ;
elements 0(o, m) = AT where o = {ay,,...,q;} is a subset of v
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consisting of t independent elements and m = {my, ..., m;} a sequence
of positive integers.

Example 1.4. If & = {21, 29, 21 + 25}, then
1 1 1

2129(21 + 22) 21(21 + 22)%  ze(z1 + 22)2'

Finally, the following theorem is proved in Brion-Vergne [4].

Theorem 1.5.
Ry = O(U)Ry @ Sy.

The projector, denoted by R, from Ry to Sy will be called the total
residue.

In view of this theorem, a residue is just a linear form on Sy. When
‘H is the set of hyperplanes with equations the positive coroots for
a simple compact Lie group G, the dimension of Sy is given by the
product of exponents of G ([10]). In Section 2, we will give an explicit
basis for Sy, for simple Lie algebras of type A, B and C' (which defines
the same set of hyperplanes as B).

1.2. Szenes polynomial. In this section and for the rest of the article,
V' will denote a real vector space of dimension r.

Let U be the dual vector space of V. Let A be a lattice in V' with
dual lattice I' in U.

Let H := {H;y, Hy, ..., Hy} be a real arrangement of hyperplanes in
U. We say that A and H are compatible if the hyperplanes in H are
rational with respect to A, that is, they can be defined by equations
or € AL

If A’ is another lattice commensurable with A, then A’ and H are
also compatible.

Thus we now consider a lattice A and a real arrangement of hyper-
planes H = {Hy, Hs, ..., Hy} in U rational with respect to A.

We consider ¢ = {41, s, ...,¢dn} a set of defining equations for
‘H, and we choose these equations in A. We sometimes refer to H only
via its set of equations ®° and write H = U{¢, = 0}.

We denote the complex arrangement defined by U{¢, = 0} in Uc by
the same letter . We denote by Uy = {[[, ¢« # 0} the corresponding
open subset of Ug.

An admissible hyperplane W in V' (for the system #) is an hyper-
plane generated by (r — 1) linearly independent elements ¢;. Such
an hyperplane will also be called an (admissible) wall. An admissible
affine wall is a translate of a wall by an element of A.
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T2

€1

FIGURE 1. T(#H,A) for Example 1.6

An element v € V is called regular for (H, A) if v is not on any affine
wall (we will just say that v is regular). The meaning of the word
regular is thus different for elements v € V' (v is not on any affine wall)
and u € Uc (u is such that [[,(¢x, u) # 0). However, it will be clear
what regular means in the context.

A tope T is a connected component of the complement of all affine
hyperplanes. Thus a tope 7 is an open set of V' consisting of regular
elements. We denote the set of topes by 7T(H,A). As the notation
indicates, 7 (H, A) does not depend on the choice of equations for H.

Example 1.6. Let V = Re; @ Rey, and A = Zey @ Zey. Let U be its
dual with basis {e!,e?}. We express z € Ug as z = zje! + 29¢?, and
consider the set of hyperplanes

H = {{21 = 0}, {22 = 0}, {21 + 29 = O}}

with the set of equations 7 = {ey, e, €1 +e2}. Figure 1 depicts topes
associated to this pair.

Example 1.7. Let V = Re; @ Rey and A = Ze; @ Zey. Let U be its
dual with basis {e',e*}. We express z € Uc as 2 = z1e! + 20¢%, and
consider the set of hyperplanes

H = {{Zl = 0}, {2’2 = 0}, {Zl + Z9 = O}, {21 — 29 = 0}}

with the set of equations &1 = {ey, €5, e1+e€9, 1 —es}. Figure 2 depicts
topes associated to this pair.

We denote by V,eo(H,A) (or simply V,.,) the set of (H,A) regular
elements of V. It is an open subset of V' which is the disjoint union of
all topes.

A locally constant function on V.4 is a function on V., which is
constant on each tope. A piecewise polynomial function on V., is a
function on V,.., which is given by a polynomial formula on each tope.
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T3
T2

7—151

FIGURE 2. T(H,A) for Example 1.7

If t € R, we denote by [t] the integral part of ¢, and by {t} =t — [t]
the fractional part of ¢. If v € I vanishes on an admissible hyperplane
W, and c is a constant, the function v — {(y,v) + ¢} is a piecewise
polynomial (piecewise linear) and is periodic with respect to A. Szenes
residue formula provides an algorithm to describe Bernoulli series in
terms of these basic functions.

Definition 1.8. Let My, be the space of functions h/Q) where @ is a
product of linear forms belonging to ®°?; and h a holomorphic function
defined in a neighborhood of 0 in Uc.

We define the space R4 as the space of functions h/ () where h =
> reo P is a formal power series and @) is a product of linear forms
belonging to ®¢? as before.

Taking the Taylor series h of h at 0 defines an injective map from
My to RH The projector R from Ry to Sy extends to RH Indeed
R vanishes outside the homogeneous components of degree —r of the
graded space Ry. Thus if A/Q is an element in My, with @ a product
of N elements of ®¢, we take the Taylor series [h|y_, of h up to order

N —r, and define R(%) = R(%) For example, the equality

ezt 1 ezt
=—(z
e —1 z( z— 1)
identifies the function 4= to an element of My, with H = {0}. Note
that each homogeneous term of the Taylor series expansion

2t > k

B(k.t) 35,

k=0

where B(k,t) is the k' Bernoulli polynomial in ¢ as before, is a poly-
nomial in ¢.
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Let f € Ry, z € Uy and v € I". Then if 2z is small, 2imy — 2z is still
a regular element of U. Consider the series

S(f7 2, U) - Z f(2l7rfy _ z>e<’v,2i7r'7>'
~yel

When f decreases sufficiently quickly at infinity, the series S(f, z,v)
is absolutely convergent and defines a continuous function of v. In
general, as f is of at most polynomial growth, the series

Z f(2imy — z)elv¥™
yel’

is the Fourier series of a generalized function on V/A.
Multiplying S(f,z,v) by the exponential e~**) we introduce the
following definition.

Definition 1.9. Let f € Ry, 2 € Uy and small. We define the
generalized function of v by

AN (z,0) = Z f(2imy — z)elv¥m=2),

yer

The meaning of A*(f) is clear : average the function z — f(—z)e™ ("
over 27l in order to obtain a function on the complex torus Ug/2inT.

We consider A*(f)(z,v) as a generalized function of v € V with
coefficients meromorphic functions of z on Ug/2inl". In fact, as we will
see, when f is in Sy, the convergence of the series

Z f(2imy — z)e<”’2im>

yel’

holds in the sense of the Fourier series of an L?- periodic function of
v e V/A, and

v — e~ (V2 (Z fQ2imy — Z)6<v’2im>> = AA(f)(z, v)

yel

is a locally constant function of v € V,., with values in My,.

Note the covariance relation. For A € A,

(1.9.1) AME) (2,0 + ) = e PPANf)(2,0).
It is easy to compare A*(f)(z,v) when we change the lattice A.
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Lemma 1.10. Let f € Ry. If At C A2, then
(1.10.1) AM(F)(z0) = [A/ATE ST AN (F)(z o+ ).

AEA2/AL
Proof. Denote the dual of A* by I'. Then,
AAl(f)(Z, v+ A) = Z f(2imy — Z)e<v+/\,2i7r'y—z>

yert

and the sum over A € A?/A' of e?™) is equal to 0 except when
v eI O

Example 1.11. Let V=R, A =7, z € Csmall, z # 0, and f(z) = 1.
For v € R,
v(2iTn—z) e2imnv
AA — € — RV )
(1)(z0) Z (2imn — 2) ‘ Z (2imn — 2)
neL nez

This series is not absolutely convergent, but the oscillatory factor e

insures the convergence in the distributional sense as a function of v.

We have

6_[U]Z
1—e?
(recall that [v] denotes the integral part of v).

Indeed, let us compute the L?-expansion of the periodic function
e(v=[v])=

(1.11.1) AN f)(z,0) =

v +— S ———. By definition, this is
b olv=[v])z . ) 1 Jv(z—2imn) '
Z (/ € 6217m'udv> eQszv _ Z (/ € dU> eQMrm)
0 1—e€? 0o l1—e*
nez ne”

6(2721'7”1) -1

_ 2imTnov — 2imTnuv
B Z (1—e?)(z— 22'7m)6 Z (2imn — z)e ‘

ne’l nez

We see in this one dimensional example that A*(f)(z,v) is a locally
constant function of v.
In general, we have the following proposition.

Proposition 1.12. If f € Sy, the function v — AM(f)(z,v) is a locally
constant function on V,e,, with values in My,.

We prove this by computing A*(f)(z,v) explicitly for a simple frac-
tion f = f,. Recall that the set of equations ®“¢ is a subset of A. Let
o ={ai,as,...,a,} be an element of B(P?). The elements oy, belong
to A. Let Q, := @_,]0, 1)y be the semi-open parallelepiped spanned
by o.
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Definition 1.13. Let v be regular in V', and let o € B(d%?) be a basis.
Define T'(v, o) to be the set of elements A\ € A such that v + A € Q.

This set depends only on the tope 7 where v belongs, hence we denote
it by T'(1,0).

Let A, be the sublattice of A generated by the elements in the basis
0. Then the set T'(7,0) contains exactly A/A, elements.

Proposition 1.14. Ifv € 7 and 0 = {ay, a9, ..., a,} € B(P),

7," — <Oéi,2> )
A/A] S T (=€)

Proof. It A = A,, the formula reduces to the one dimensional case.
Otherwise, we use Lemma 1.10 and the covariance formula 1.9.1. [

AMfo)(z,v) =

The dependance of A*(f,)(z,v) on v is only via the tope 7 where
v belongs. Thus we see that, for any f € Sy, the function v —
AMF)(z,v) is a locally constant function on V., with value in My.

Example 1.15. We return to Example 1.6, where & = {e;, €9, e +
es}. Using the covariance relation (1.9.1), to describe completely the
function v — A*(f)(z,v) on V., it is sufficient to describe its values
on the topes 7y and 7» depicted in Figure 1, as any element of V., can
be brought into 7y or 7 by an element of A and then use the covariance
relation (1.9.1).

Choose 0 = {e1, e; + e} a basis of ®%. Write z = z;e' + 22¢? in the
dual space, then f,(z) = m is in Sy.
Forven

et

A Z,v) =
A (fcf)( ) ) (1_6z1>(1_621+22)7

while if v € 7
1

A 5 ) = .
A (fa)( ) ) (1_ezl)(1_621+z2)

For v € V,,, denote by Z*(v) : S — My, the map given by
(Z2 (W) f)(z) = AY(f) (2, 0).

This operator is locally constant. We denote by Z*(7) its value on
T

(ZMT)H)(z) = AN)(z0)

for any choice of v € 7.
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We now define a piecewise polynomial function of v associated to a
function g(2) in Ry.

First, the operator on My given by multiplication by a function
h(z), that is f(2) — h(z)f(z), is simply denoted by f +— hf.

If v € V and g € Ry, then g,(2) = g(2)et*¥) is a function in My
depending on v.

Let v € V,¢y. Consider the map Sy — My which associates to f €
Sy the function g(2)e!*"(Z*(v)f)(z). We project back this function
on Sy using the projector R. Thus the map

(1.15.1) f(z) = R (g(2)e=(Z" () f)(2))
is a map from Sy to Sy depending on v. As Sy is finite dimensional,

we can take the trace of this operator. We obtain a function of v € V,.¢4.
Let us record this definition.

Definition 1.16. Let ¢ € Ry. Define the function P(H,A,g) on
Vieg(H, A) by

P(H, A, g)(v) :==Trs,, (Rgv ZA(U)) )

Let us see that P(H, A, g)(v) is a polynomial function of v on each
tope 7. Indeed, to compute P(H, A, g)(v) using (1.15.1), we have to
compute the total residue of functions g(z)e*™ AA(f;)(z,v) with f;
varying over a basis of Sy. If v € 7, then A*(f;)(z,v) = Z*(7) fi(2)
is constant in v. So when v stays in a tope 7, the dependance of
g(2)eE AN ) (z,0) = g(2)e® (ZM(7) £;)(2) on v is via e and the
map R involves only the Taylor series of this function up to some order.

Thus we have associated to g € Ry (and A) a piecewise polynomial
function P(H, A, g) on V..

It is easy to compare piecewise polynomial functions P(H, A, g) as-
sociated to different lattices.

Let A' C A?, then V. (H,A?) C V,eo(H, AL).

Lemma 1.17. If A C A2, then
(L17.1)  P(H, A% g)(v) = [N*/A|7H > P(H, AN g)(v+ N).
AeA2/AL

This follows right away from Lemma 1.10.

Our next aim is to compute the piecewise polynomial function P(H, A, g)
by residues. We need more definitions.

An ordered basis of ®°7 is a sequence [ay, ag, ..., a,] of elements of
®°? such that the underlying set is in B(P°?). We denote the set of

ordered bases by %(@eq).



14 VELLEDA BALDONI, ARZU BOYSAL AND MICHELE VERGNE

Let & = [y, a0, ..., a,] € g(q)eq). Then, to this data, one asso-
ciates an iterated residue functional Res® on Ry as follows. For z € U,
let z; = (z, ;). Then a function f in R4 can be expressed as a function
f(z1,22,...,2). We define

Res?(f) := Res,,—o(Res,,—o - (Res,,—o f(z1,22,. .., 2)) -+ ).

Clearly Res?(fa) = 1.

The functional Res” factors through the canonical projection R :
Ry — Sy Res” = Res® R.
Definition 1.18. A diagonal subset ofg(tbeq) is a subset D of g(q)eq)
such that the set of simple fractions f,, s B, forms a basis of Sy:

Sn = @5 3Cl

and the dual basis to the basis {f,, @ € Z_?>} of Sy is the set of linear
forms Res?, that is, Res?(fg) = o7, for = %

A total order on ®°? allows us to construct the set of Orlik-Solomon
bases (see [4]), which provides diagonal basis of Sy. However we will
use also some other diagonal subsets.

If B: Sy — My is an operator, the trace of the operator A := RB
is thus

Tr(A) = Z Res” BY,.
FeDB

Definition 1.19. Let g € Ry and 7 a connected component of V4.
We denote by P(H, A, g, 7)(v) the polynomial function on V' such that

P(H, A, g)(v) = P(H, A, g,7)(v)
forv e .
Hence, we may give a more explicit formula for the polynomial

P(H,A,g,7)(v) using a set D.

Proposition 1.20. Let g € My. Let 7 € T(H,A) be a tope. Let B
be a diagonal subset of b (®1). Then

PO g, 7)(0) = 3 Res” (59(2) 22 (1)(J2)(2)).
FeD

Furthermore Z(7)(f,)(2) is given explicitly by Proposition 1.14.
Thus, in principle, the formula above allows us to compute P(H, A, g).

It is important to remark that the determination of a diagonal subset
depends essentially only on the system of hyperplanes H and not on
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the choice of ®¢1. The difficulties in writing an algorithm for P(H, A, g)

lies in the description of a diagonal subset B, and also for each 0 € D,
in the computation of A*(f,). The difficulty of this last computation
depends on the lattice A.

Definition 1.21. Let &7 C A. A basis o € B(P?) is called unimod-
ular (with respect to A) if o is a basis of the lattice A. A set & is
called unimodular, if any basis o € B(®%Y) is unimodular.

Example 1.22. The set

o = {e', e?, (¢! +¢%), (¢! — &)}
is contained in A = Ze' + Ze?. Then o = {e' + €% e' — €*} belongs to
B(P), and the index of A, in A is 2. So ®°? is not unimodular.

Definition 1.23. Let 0 = {3, as,..., .} be a basis. For 1 <i <r,
the linear form v — ¢7(v) is the coefficient of v with respect to «;.

Consider the function {t} = ¢ — [t|. On each open interval 7 =
|n, n+ 1], the function {t} coincide with the linear function ¢t — (t—n).

If o is a unimodular basis, we express v = Y ., ¢7(v)a;. Then

v= Yl )l = Y (e @)es

is in @,. Thus the set T'(r,0) contains exactly the element A\ =
— > 117 (v)]a; (which depends only on the tope 7 where v lies).

Corollary 1.24. Let o be a unimodular basis in B(®?). Let v € T,
and A = —> " [¢Z(v)]a;. Then

(]

AMfo)(z,0) =

ch2)

[Liey (1 = etes®)”

It may happen that even when the system ®¢ is not unimodular

for the lattice A, we can choose D to consist of unimodular bases. In
particular, using Proposition 1.20, we can give an explicit algorithm for
computing the piecewise polynomial function P(H, A, g) for classical
root systems in the form of a step polynomial. Let us define what this
means.

Definition 1.25. Let B be a subset of E(@eq). We denote by Step(B)
the algebra of functions on V' generated by the piecewise linear func-
tions v — {¢7(v)} with ¢ running over D and 1 < i < r. An element
of the algebra Step(D) will be called a step polynomial (associated to

D).



16 VELLEDA BALDONI, ARZU BOYSAL AND MICHELE VERGNE

It is clear that a step polynomial is a periodic function on V', which
is expressed by a polynomial formula on each tope.

%
Proposition 1.26. Let g € Gy. Assume that D is a diagonal subset

of B(9) consisting of unimodular basis (with respect to A). Then
the piecewise polynomial function P(H,A,g) belongs to the algebra

Step(B).

Proof. This is clear, as we have the formula
(1.26.1)

P(H, A, g)( Z Res? g(z)eXim{ef (0)Haiz)
ZeD

and the dependance on v is through the Taylor expansion (in z) of
eXim il (WHai2) yp to some order. O

1
H::]_(]‘ — e(Oﬁ,z))?

1.3. Multiple Bernoulli series. We return to our main object of
study: the multiple Bernoulli series.

Let V', A and H be as before. We denote by I' C U the dual lattice
to A, and by I',,(H) the set TN Uy. If v € I'ey(H), a function g in
Ry is defined on 2imy.

Definition 1.27. If g € Ry, the generalized function B(H, A, g)(v) on
V' is defined by

B(H, A, g)(v) = Z g(gmv)emﬂvm'
V€ reg(H)

The above series converges in the space of generalized functions on
V.
We state some obvious properties of B(H, A, g).

Lemma 1.28. If A' C A%, then T2 C T, and
B(H, A g)(v) = [N /AT >0 Y g(2imy)e
AEAZ /AL yeTL, (H)
so that
(1.28.1)  B(H, A% g)(v) = [N/ATN DY BH. A g)(v+ ).

AEAZ /AL

If we dilate a lattice A by ¢, and if g is homogeneous of degree h, we
clearly have

(1.28.2) B(H, (A, g)(v) = ("B(H, A, g)(%).
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With these two properties, we can compare B(H, A, g) over commen-
surable lattices.

Definition 1.29. A generalized function b on V' will be called piecewise
polynomial relative to H and A if

e the function b is locally L!,

e for each tope 7 in T(H,A), there exists a polynomial function b7
on V such that the restriction of b to 7 coincides with the restriction
of the polynomial b™ to 7.

As an L'-function is entirely determined by its restriction to V;e,, we
will not distinguish between piecewise polynomial generalized functions
on V and piecewise polynomial functions on V,., as defined in the
preceding section.

Be careful: the restriction to any tope 7 of a piecewise polynomial
generalized function b is polynomial. However, the converse is not true.
For example the § function of the lattice A restricts to 0 on any tope
7, but is not a piecewise polynomial generalized function, as it is not
an L!'-function.

Recall the definition of Gy, given in Definition 1.2. If we multiply ¢
by a polynomial p, the function v — B(H, A, pg)(v) is obtained from
the function B(H, A, g)(v) by differentiation (in the distribution sense).
Any function f in Ry is of the form p/g, with g € Gy. Thus we can
reduce the computation of B(H, A, f) to the computation of B(H, A, g)
for g € Gy. Thus the following proposition follows from calculations
in dimension one, Lemma 1.3 and comparison formulae on different
lattices as given in Lemma 1.28.

Proposition 1.30. If f € Ry, the restriction to any tope T of B(H, A, f)
is given by a polynomial function.

Furthermore, if f € Gy, the generalized function B(H,A, f) is a
piecewise polynomaial generalized function.

Let us emphasize on the subtle difference between the conditions
f € Ry, or f € Gy. Consider f = 1 in the one dimensional space U
and H = {0}. The function f is not in Gy. Let v € V. Then

B(H? A7 f)(v) = Z 62i7rn'u = —1 + ZQQiﬂnv‘
n#0 nez

Thus B(H, A, f)(v) is the constant function equal to —1 on any tope.
However, it has some singular part .
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NONCNINCNCN
NN N N NN

FIGURE 3. Graph of B({0},Z,1/z)(v) = 5 — {v}

1
In contrast, if f = —, the generalized function
z

eZMrnv

BOH.A f)(v) =

n#0

is locally L' and equal to the piecewise polynomial function —B(1, {v}) =
1/2 — {v} (see Figure 3).

Definition 1.31. Let f € Ry. Given a tope 7 in T (H,A), we denote
by B(H, A, f,7) the polynomial function on V' which coincides with
B(H, A, f) on the tope 7.

2imn

Remark 1.32. It is interesting to understand the space of polynomials
generated by the polynomial functions b™ = B(H, A, f,7), when 7 runs
over the topes, and the wall crossing formula between b™ and b™ when
71 and 7y are adjacent. We addressed some aspects of these theoretical
questions in [3].

Consider the piecewise polynomial function P(H, A, f) on V,,(H, A)
as given in Definition 1.16.

Theorem 1.33. (Szenes) Let f € Ry. On Vieg(H,A), we have the
equality
B(H, A, f) = P(H, A, f).

For completeness, we give a proof of this theorem in the Appendix.

Our Maple program computes, given data H, A, f, where H is the
hyperplane arrangement associated to a classical root system, a piece-
wise polynomial function on V' in terms of step polynomials. Naturally,
we can also evaluate this function at any point v € V.

We return to the definition of multiple Bernoulli series in the way
we introduced them in the introduction.
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Let V be a vector space with a lattice A with dual lattice I'.  We
considered ® in the introduction as a list of elements of A. We then
introduced the following definition. Let I'ieo(P) = {v € I';(0,7) #
0 for all ¢ € ®} and defined

227w )

(1.33.1) B(® = >

€T o (®) H¢e<1> 211, 7)

Consider H = Ug{¢r = 0} (some elements of the list & might define
the same hyperplane) and g(z) = 1/[[,cq (¢, 2), then

B(®,A)(v) = B(H, A, g)(v).
We will also call the functions B(#, A, g)(v) multiple Bernoulli series.

2. CLASSICAL ROOT SYSTEMS

Let G be a simple, simply connected, compact Lie group of rank
r with maximal torus 7. We denote the Lie algebra of T" and G by
t and g respectively. Then the complexification h := t¢ is a Cartan
subalgebra of g¢.

For o € b*, define (gc)o = {X € g¢; [H, X] = (o, H)X for all H €
h}. If @ # 0 and (gc)a # 0, then « is called a root of b in ge. Let
R = R(gc,bh) C b* be the set of roots; roots @ € R take imaginary
values on t. We denote the root lattice by ) and its dual, the coweight
lattice, by P.

For o € R, there exists a unique element H,, in [(g¢)a, (gc)—a) satis-
fying (o, H,) = 2; it is called the coroot associated to the root . For
any o € R, iH, is in t, and for any «, 5 € R, f(H,) is integral. The
lattice spanned by H, is called the coroot lattice and denoted by Q.

Define the weight lattice P = {\ € h*; \(H,) € Z, Va € R}; it is
the dual of the coroot lattice Q). A regular weight A € P9 is such that
A(H,) # 0 for all H,.

We denote by hr := > RH,, the real span of coroots. In this
section we have V' = b, and its dual by is denoted by U as before. We
follow the notation of Bourbaki for root data.

2.1. Diagonal subsets. To compute multiple Bernoulli series associ-
ated to classical root systems we need to construct explicit diagonal
bases for the corresponding Sy. Such bases can be constructed by an
algorithmic procedure, based on Orlik-Solomon construction. However

in some cases we can describe a diagonal subset B of g((beq) whose
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associated simple fractions form a basis for Sy in a direct way, and
that we present now.

2.1.1. The system of type A,.. Let n = r + 1. We consider R" with
standard basis {eq, es,...,¢e,}. Let

A =ei—e); 1 <i<j<n

be the root system of type A and rank r.
Let e’ be the dual basis to e; and

V={v= ifuiei; ivi = 0}.
i=1 i=1

Let 2 = > " 2%, be in U (hence > ;' 2" = 0) and let H* be the
system of hyperplanes in U given by

Hf = UlSi<an{Zi — 2 =0}
We take the set
PUA,) ={e'—e;1<i<j<n}
of positive coroots as equations of HA.

One way to find a diagonal basis of Sy 4 is as follows.

Let ¥ = [e! — e e? —¢3,...,e" — e be the set of simple coroots.
For a permutation w, we denote by @, = [e¥(® — @+ j =1, .. r].
Then o, is an ordered basis associated to w, and the corresponding
simple fraction is f,(z) := Hzﬂ(zw(s_zwﬁﬂ)).

Let W, be the subset of the Weyl group >.,.,; of permutations of
{el,e?, ..., e} leaving the last element ™! = ¢" fixed. Recall the

following result (see for example Baldoni-Vergne [2] for a proof).

Proposition 2.1. The set BW consisting of the ordered bases &, for
w € W, is a diagonal subset of %6 (P(A,)).

We use the above basis in our Maple program.
We now give another interesting diagonal subset.

Consider a sequence & = [ag, as, ..., ap] where a; = €' — e? with
j < 4. Thatis, as =e?> —e', as=e*—e?ore’ —e', ay =e* — €3, or
) s (3 ) )

et —e2 or e — ¢!, ete. Clearly, @ is in g(Cbeq(AT)). We call such &
a flag basis; there are r! such sequences o.

Lemma 2.2. The set B(Ar) consisting of flag bases is a diagonal
subset of %(@eq(flr)).



BERNOULLI SERIES AND VOLUMES OF MODULI SPACES 21

We only need to prove that if o and 7 are two flag bases, then
Res® fr =0 unless @ = 7. But this is evident.

2.1.2. The systems of type B, or C,.. We consider V' = R" with stan-
dard basis {e!,e?,... e"}.
Let
B, =[te;, £(e; £ej), 1 <i<r 1<i<j<r]
be the root system of type B and rank r.
Let
Cr =[+2e,£(e;te;), 1 <i<r 1<i<j<r]
be the root system of type C' and rank r.

As roots of systems of type B and C are proportional, the system
of hyperplanes in U = hj defined by coroots of B and C' are the same,
and we denote it by HZ. More precisely, let z = >_7_| 2%, in U, then
the system of hyperplanes HZ¢ in U is given by

HTBC = U1§i<jgr{2i + Zj == 0} U UlSiST{Zi = 0}
We take the set
CI)eq<BCT) = U1§i<jgr{6i + €j = O} U Ulgigr{ei = 0}

as equations of HZC.

We define similarly a flag basis @ of ®*/(BC,). This is a basis of the
form & = [ay, ag, . .., o] of r elements of ®¢4(BC,) so that a; = €/, or
e’ — el or e + e with j < i. That is, a; = e, ay = e? or €2 — ¢!, or
e +el,ag=edored—e? ore*+e2 ored—el, ore?+el, ete. Clearly,
there are (1)(3)(5)--- (2r — 1) such sequences @ .

Lemma 2.3. The set B(BC’T) consisting of flag bases is a diagonal
subset of g((p@(BCT))_

Proof. We first prove, by induction on r, that simple fractions f, asso-
ciated to a flag basis b generate Sysc. We use the identities

1 I T 11
(xr—xi)(xm%i)_(:rr+:ci)2xr+(:vr—xi)2xr’
o111 11
;r(xr+xi) B _($r+$i)$_i T,z

1 1 1 1 11

e (x, — ;) (v, —x) ;g  mexy
to reduce to the case where a simple fraction f, contains a linear form of
type e”, or e" +¢€’ or €” — e’ in the denominator, but not any two at the
same time. Then, by induction on r, we see that a simple fraction f,
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associated to flag basis b generates the space Sysc. The dual property
on the elements of B(BC’,,) is evident. O

Remark 2.4. Although the system ®°(BC,) is not unimodular for

; —
the lattice A = ®Ze’, we see that any o in the set D(BC,) above is
unimodular, so that the computation of Z*(7)(f,) is easy.

2.1.3. The system of type D,.. We consider V' = R" with standard basis
{et,e? ..., e"}. Let
D, =[£(e; e;); 1 <i<j<r]
be the root system of type D and rank r.
Let z =), | z'¢; in U. We consider the system of hyperplanes
,HrD = U1§i<]’§7«{2i + Zj = 0}

The dimension of Syp is known to be (1)(3)(5)---(2r — 3)(r — 1).
However, we did not find a nice diagonal basis for Syp.

The set Uyp of regular elements for HP contains Uyze. Indeed, for
any z in Uyp, we have 2* &+ 27 # 0, but z* may equal zero.
We define the set

Uk’r::{zkzo,zi:tzj%Oforl§i<j§randzi7é0for1Sigr,i#k}.

Then, we have the following disjoint decomposition
U’HP - U’;.[?l}C U Uzlek,T'

The set Uy, is clearly isomorphic to the open set UHBf‘l in rank r — 1
via the map 7, which inserts a zero coordinate in position k£, and hence,

(2.4.1) Uyg = UH7BC U UZ:lik<UH§_Cl>~

The above decomposition allows us to reduce calculations in system of
type D to that of systems of type B or C.

2.2. Calculations of multiple Bernoulli series for type A. We
use the same notation as in Section 2.1.1.

Let @4 C U be the root lattice generated by A,, and Py C U be
the weight lattice. Then P, is generated by Q4 and e; — :11(61 +e9 +
<o+ epqq) and P4/Q4 is of cardinality r + 1.

Let I' be a lattice such that Q4 C I' C P4. We denote by I, =
[' N Uya the set of regular elements in I,
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Let A C V be the dual lattice to I, and let s = [s,] be a series of

exponents. Define
1

A
gS (Z) = Sa )
[laso (Has 2)
where the set {H,,a > 0} is the set of positive coroots ®(A, ).
fveV,

62i7r(v7'y>
[Toso(2im(Ha, 7))

If we use the diagonal basis BW for @°1(A,.) as defined in Proposition
2.1, then the diagonal basis consists of elements [ew(l) —ev@ el
e’ where w is a permutation leaving e"*! stable. Thus if we express
v =Y v(e" — ), the algebra Step(BW) consists of functions
{>_;vi} where I runs over subsets of {1,2,...,r}.

We now discuss two simple cases, where I is either the weight lattice
Py, or the root lattice Q4.

BHA A g ) = S

V€ reg

2.2.1. Bernoully series for the weight lattice. If Py is the weight lat-
tice, then the dual of P, is the coroot lattice ()4 generated by simple
coroots H,, and the system ®°/(A,) of equations (the positive coroots)

is unimodular with respect to Q4.
Thus B(HA,Q4, g2")(v) is a piecewise polynomial function of degree

> o Sa and lies in the algebra Step(Dw). Our program then gives
B(H2,Q4,92)(v) as a polynomial expression of the functions {}, v;}.
It also computes numerically the value of this function at any point v.

Example 2.5. Consider the root system of type A and of rank r = 2.
We assume all multiplicities s, = 1, and compute B(H$', Q4, g2*)(v) for
v = viel + vye? + v3ed with v; + vy + v3 = 0. The simple coroots are
H,, =e'—e¢e*and H,, = ¢? — ¢®, and the remaining positive coroot
is their sum H,, + H,,. The dual lattice has basis dual to H,,, H,,.
Thus, for s = [1,1,1],
/

250 BO.Qa g0 = 3 s

m,neL

€2i7rmv1 —2imnus

(2imn)(2im(m +n))

The symbol > above means that we sum over the integers m,n with
mn(m +n) # 0.

Denoting the fractional part of ¢t with {t} € [0, 1] as before, we obtain
that P(vi,vs,v3) = B(HE, Qa, g2)(vie! + vee? + v3e?) is equal to
(2.5.2)

é({02}—{01})({’01}2—3{’01+U2}{Ul}+{v2}{vl}+3{vl+U2}—1—3{vl+v2}{v2}+{02}2)-
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We remark that the series (2.5.1) is not absolutely convergent, but the
sum has a meaning and is a piecewise polynomial function.

Let us give some numerical examples. Consider again As. Suppose
s = [10,10,10] and v; = vy = 0. Then

/

A A A — !
B(Hz, Qu9)0) = X i S o @i T )

m,n

is equal to
B 27739097
4174671932121099276691439616000000°

Consider now the system of type A and rank r = 4. Suppose v =
[0,0,0,0,0]. We list the exponents with respect to the following order
on the roots

[61—62, €1—€3,61—€4,€61—€5,€62—E€3,E2—€4,E3—€5,E3—E64,€3—C5, 64—65]-

Then for s = [6,6,6,6,4,2,2,2,2,2] we have

. 1
B(H{, Qa,92)(0) = o ¥
( 4 QA 9s )( ) (2271-)38
! 1
Z m¥mim3m3(m1 + m2)®(m1 + ma + m3)®(m1 + ma + m3 + ma)®(ma + m3)2(ma + ms + m4)?(ms + my)?

B 66581757

~ 2081416538897698301902069565296214016000000000
while for s = [4,4,4,4,4,4,4,4,4,4] we obtain
_ 3998447009863
~19318834119102098604968210835862034086625280000000000

B(H, Qa,921)(0)

2.2.2. Bernoulli series for the root lattice. Let € = Y."_ (eJ — e™T1).

L i=1
Then a system of representatives for Py /@ 4 consists of the elements
Aj = 75, with j varying between 0 and 7. Thus, using Formula

(1.28.1),
A P A _ 1 - A A A
B(HT7PA795>(U)_ T+1jZOB(Hr>QA>gs>(v+)\j>'

We obtain an expression for B(H, P4, g2) in terms of the functions
{(O>_;vi) +¢/(r+ 1)} where c are integers between 0 and 7.
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Recall Example 2.5. For the same data, we now compute B(H%, Py, a2h)
for v = vie! + vee? + vze? with vy 4+ v + v3 = 0. Hence, we express
v=uv(e! —e?) —v3(e? — €3), and compute for s = [1,1,1] :

/

BOHL, Pa,g)(0) = 3

m,n

e2i7rm(1)1 —vg)+2imn(ve—v3)

(2im(2m — n))(2i7(2n — m))(2im(m +n))

This is equal to
1 1 1 2 2 2 4
5 <P(U1,U2,U3> +P<Ul + g,vg + 5,03 — g) +P(U1 + g,Ug -+ 5,1}3 — §)>
where P is the piecewise polynomial function given in Equation (2.5.2).

2.3. Calculation of multiple Bernoulli series for type C' and B.
We use the same notation as in Section 2.1.2.

We now consider the system HZ of hyperplanes in U
HTBC = Ulgigr{zi = O} U U1§i<j§r{2i + Zj = 0}
Let A be a lattice commensurable with ©Ze’, with dual lattice I

Denote simply by Tyeq = Treg(HEC). If g € Ryse,
(2:5.3) BHP A g)(v) = Y g(2imy)e® ™.

Y€ reg

2.3.1. Root system C... Let Fc be the weight lattice of the root system
C,. We thus have the coroot lattice Q¢ = @&]_,Ze".
Let s = [s,] be a series of exponents and let

1
¢ Z) = .
gs ( ) Ha>0 <Haa Z>Sa

Here {H,, « > 0} are positive coroots of the system C,, which are
explicitly

{1 <i<r(e+ed),1<i<ji<r}

Clearly, the function g¢ belongs to Ryse.
fveV,

B(HP, Qc, 95) (v) = Z

YE(PC)reg

€2i7r(v,'y)
[laso(2im(Ha, 7))

The function B(HZC, Q¢, ¢€) is a piecewise polynomial function on
V' of degree > s,. We use the diagonal basis constructed in Section
2.1.2 to compute it. Let us now compute the example given in the
introduction, which corresponds to Cy, and the exponent s = [2,1, 1, 1]
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for the order of roots [2e, 2eq, €1 + €9, €1 — €3] (so that coroots H, are in
order [e!,e? el +e2 e! —e?]) . We express v = vie! +vye? and compute
/

B(H7¢, Qo gd)(v) =

m,n

62i7rmv1 +2imnuvs

(2imm)?(2imn) (2im(m + n))(2im(m — n))

This piecewise polynomial function is given by
(2.5.4)
B(HQBC?Q07QS)(U) = Q(v1,v2) =

g5 (oot ) = 148 {un)? + 124 {n)® + 124 {un + 01} {12} -
1

1/48 {vz + o1} {va} =1/48 {v2 + 01} {2} — o

1 1 1 )
@ % {—U2+’U1}+%{_’U2+U1} —

1/32{—vy +v1}° + 15@ —vy 4+ o1} — 1748 {v1}* 4+ 1/24 {01} {wo} —
1/12 {or}? {va} +1/24 {o1}* {wH% (o9 + 01 +1/24 {—vs + 01} {v)} —

1/48 {—vg + v1}* {vo} — 1/48 {—va + v1}% {va} .

1
{Uz +Ul}+% {U2 +v1}2—

1
%{U2+v1}3_ {U2+U1}4+

Let’s see what happens on a tope. Figure 2 depicts topes associated
to the pair ®¢(BCy) = {e', €%, et + €% ¢! — e?} and A = Ze' & Ze?.
Consider for example the tope
7'2:{1}1 >O, Vo >07 V1 > Vg, V1 + Vo < 1}

Then on 7, the piecewise polynomial function B(HFY, Qc, ¢€)(v) co-
incides with the polynomial

BC A C _ _
(2.5.5) B(H;y", Qc, g5 )(v) = Qry(v1,v2) =
1 1
g(—@v2+1/21)12v2—v13v2+1/6v22—v1v22+vlv23+v12v22—1/6U23+1/6U24+1/2U14U2—012U23—%U25)

1 . 276037
Vg = 35 We obtain — 5 -

We give some more numerical examples with different exponents.

If we compute @, (111, 712) for v; = %’

For example, we may compute with exponents s = [sq, Sg, S3, S4]
associated to the order of roots [2e1, 2e5, €1 + €2, €1 — €3] and v = [vq, vy

/

BHEC, Qo g8 ) (vie'+vae?) = 3

)

e2i7rmvl +2imnuy

(2irm)$1(2imn)52 (2im(m + n))*3 (2im(m — n))s

810650239 if s=[2,2,1,1] and v=[1/5,1/19
:{ 1823165408589 8438854761301636459941 cht 52{2 3.4 5% and X:h% 1?17}

1529174429579197250943325345977126782238720
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2.3.2. Root system B,. We consider the root system of type B and
rank r. Let I' = Py be the lattice of weights of B, and as before the
dual lattice generated by the coroots is denoted by Qp.

Let s = [s,] be a series of exponents and

B/ 1
) o

Here, again, {H,, o > 0} are positive coroots of the system B,.
IfveV,s=]s,) then

B(HPC,Qp,92)(v) = Z

YE(PB)reg

62i7r(v,'y)
[laso(2im(Ha, 7))

Clearly, as long coroots of B are twice the short coroots of C, and
short coroots of B are long coroots of C', we have

1
D52¢q +F52e;

g2 =198, where ¢, =

We then use the comparison formula with two lattices. Indeed, we
have 2Q¢c C Q. The lattice 2Q¢ is of index 2771 in Y and a set of
representatives is given, for example, by

F:={0,e"+e2+ - 4e* 1 <ip <ipg < - <ip, k=25, 1 <5 <[r/2]}.

We then use Formulae (1.28.1) and (1.28.2). Since g¢ is homogeneous
of degree — > s,, we obtain

B(HchaQB7gsB)('U) = 21"1102 (ZB(HTBCaQC7gsC)<U i A))

2
XEF

where ¢, = 221<i<i<r Sei=¢; Te+e; I particular, if s = [m,...,m|, then
Cy = 2r(7“—l)m.

For example, for By, we compute for v = vye! +v,e? and multiplicities
s = [2,1, 1, 1] with respect to the order [e; — ey, €9, €1 + €2, €1] of roOtsS,
! 2im((m1+1/2ma)v1+1/2mava)
. ~ e
(2im)°B(H5C, Qp, g2)(v) = >

mi,ma2

m2msg (2my + mg) (mg + my)

where the symbol Y " means that we sum over the m;, my with

(2m1 + mg) <m2 + ml) mo1nq 7é 0.

We obtain
~ v U v +1 vy +1
B, Qo)) =2 (U3 2 + (T, 2

where Q = B(HEC, Qc, ¢€) is given in Equation (2.5.4).
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In particular, for u = [1/15,1/30] we obtain

. —276037
B(HEC, Qp, g7 -,
(M, @ 9)(0) = 5535600000
For B3, we compute for v = vie! +vye’+vsed and s = [1,1,1,1,1,1,1,1,1] :
(ZiW)QB(HLBB(/v’QVB’gf)(U) =
4 e2im((m14+ma+1/2mz)vi+(ma+1/2m3)ve+1/2mzvs)

>

m1,m2,m3

(2m1 + 2ma + m3) (2m2 + m3) mama (m1 + 2ma +ma) (M1 + m2) (m1 + ma + m3) ma (ma + m3)

We obtain
B(HEC,Qp. 92)(v) =
V1 V2 U3 vi+1 vo+1 v3 vi+1 v vg+1 v v9+1 vg+1
2t (2, 2,2 -3 22 1
(% 2 vt it By i 2 iy s g, 2 E )

where Q = B(HEC, Qc, g¢) is a piecewise polynomial that is too long
to be included here.

2.4. Calculation of multiple Bernoulli series for type D. We
follow the same notation as in Section 2.1.3.

Let HP = U, j{z' £ 27 =0,1<i<j<r}.

Let s = [s,] be a list of exponents for positive roots of D,. The
ordering of s, in the list s is taken to match the following ordering of
the roots [61—62,61 —63,...,61—€r,62—63,...,61—|—62,...,er_l—{—eT].

We denote by
1
D

s (Z) Ha>0 <Ho“ Z>Sa .
Here {H,, a > 0} are positive coroots of the system D,.

We embed the list of roots of D, in the list of roots of B,, writing
the short roots e; at the end. We denote by S = [s,,0,...,0] the list
obtained from s by adding to it a list of r zeros. Thus

95 (2) = g5 ().

We now associate to the list s a list of exponents s for the system
B of rank r — 1. We eliminate the position corresponding to the roots
e; £ ey, then add the element s., ., + S.,_, as exponent of the root e;.
We also let i, (v) to be the vector with » — 1 coordinates obtained from
v=>"_, ve" by putting v, = 0.

Let I' = Pp be the weight lattice of D and QD the dual lattice
generated by the coroots. Since Pp is the weight lattice of the simply
connected group Spin(2r), v = > .._ 7'e; isin Pp if 4' £ 47 € Z and
Pp = Pg. Consider the intersection of Pp with the hyperplane z¥ = 0.
Then, we see that this intersection is isomorphic to the weight lattice
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of a system C,_;, of type C, rank r — 1, embedded in C of rank r with
simple roots {61 — €2,62 —€3,...,€Ck—1 — €Ckt1,Ck+1 — €kr2,..., er}.
Using the decomposition (2.4.1), we decompose the set of regular
elements of the lattice Pp as a disjoint set of regular elements of the
lattice Pg, union a disjoint set of regular elements of the lattice Po of
rank r — 1.
In particular, if v € (Pp),ey and 7y, = 0, then

1
o @im(Ha, )
1 o
‘ o (20 —— = gl (ia(7))
o o @in (o = ) Qi )
with ¢, = (_1)2;:’““Sek’ej. In particular, if s = [m,...,m], then ¢, =

()b
Thus, we can compute multiple Bernoulli series for a system of type
D, by using computations for types B, and C,._; with appropriate
exponents. More explicitly,
e?iw(v,'y)

B, Qp, g7)(v) = ' -
Qo)) ve(%mg [oso(2im(Ha, 7))

BH, Qp,98)(0) + ) B, Qe, 00 95)(ir(0)).
k=1

3. WITTEN FORMULA FOR VOLUMES OF MODULI SPACES OF FLAT
CONNECTIONS ON SURFACES

Let G be a simple, simply connected, compact Lie group of rank
r with maximal torus 7. For ¢1,9o € G, we denote by [g1,g2] =
919297 “g5 * the commutator of gy, gs. Let ¥ be a compact connected
oriented surface of genus g and let p := U;{p,} be a set of s points on
2. Let C := (C;) be a set of s conjugacy classes in G. We consider the
representation variety
g9 s
M(G.g.5,C) = {(a,c) € G* x C; [[lazi-1,a2] = [[ ¢;}/G.
i—1 j=1
If the adjoint orbits C; are generic, this is an orbifold of dimension
(29 —2)dim G + sdim G/T. It parameterizes the set of flat G-valued
connections on X — p, with holonomy around p; belonging to the con-
jugacy class C; modulo gauge equivalence. As shown by Atiyah-Bott
[1], once a G-invariant inner product on g is chosen, the manifold
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M(G,g,s,C) carries a natural symplectic form, and Witten gave a
formula for the volume of M(G, g, s,C) that we recall.

We use the notation of Section 2. We need some more definitions.

Let Rt be a choice of positive roots; denote the highest root of
R by 0. Let by := {h € br; a(h) > 0 forall a« € R"} be the
positive chamber (closed) in hg. Let 2 := {h € by; 6(h) < 1} be
the fundamental alcove. An element of 2 is said to be regular if it lies
strictly inside the alcove.

Let W = W(gc, h) be the Weyl group (identified with Ng(T")/T).

We now give the Witten formula.

Let a = {ay,as,...,as} be a set of regular elements in A C h,. Let
C; be the adjoint orbit of exp(a;); we denote the collection of orbits C;
by C.

Consider the function on h* given by

Na) =T D ew)etves,
j=1 wew
Let ® = ®(G) be the list of positive coroots H,. Define
Na(2im)
2 T ca Qin{Ha )25

The above expression is always meaningful as a generalized function
of the parameters a;. If s = 0, this formula has to be understood as

WGP = 3 F—

which is meaningful if ¢ > 2.
Interchanging the sum and the product, N,(\) may be expressed as

Na(N) = Z ﬁ 6(1%)625:1 (wja;,A)

W(®(G), P, g,s)(a) :=

Hence the function W(®(G), P, g, s)(a) can be expressed as a sum over
W* with signs of Bernoulli series B(®gg-245,Q)(D_;wja;). Here, as
before, ®5,_54, means that each coroot in ® is taken with multiplicity
29 — 2+ s.

As is well known, the series W (®(G), P, g, s)(a) computes the sym-
plectic volume of M(G, g, s,C) up to a scalar factor, which we will give
in the next section.
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Let us now recall the normalization of the volume as the limit of the
Verlinde formula.

We need some more notation.

Let ( | ) denote the G-invariant symmetric form on g¢ normalized
such that (Hy|Hp) = 2. We will use the same notation for the restricted
form on b, and the induced form on h*. We call ( | ) the basic invariant
form. It is positive definite on the real span hg, and negative definite
on t.

Let h := p(Hy) + 1 be the dual Coxeter number, where p is the
half sum of positive roots. Let Qiony C @ be the lattice spanned by
long roots. The basic invariant form identifies hg and hr*; under this
isomorphism the coroot lattice Q is identified to Qiong- Let g be the
index of Qong in @), and let f be the index of Q in P. Let Z = Z(G)
denote the center of G.

For a positive integer ¢, define the set

Ppi={pe Pnhi;u(Hy) < I}

An element of P, is said to be a weight of level /. We denote by
P] the subset of P, consisting of elements p satisfying pu(Hy) < ¢ and
p(Hy,) > 0 for any simple root a. By definition of h, there is a bijection
between sets P, and Pé% via p— p+ p.

Consider the maximal torus T of G with Lie algebra t. Ift = exp X €
T, with X € t, and « is a root (which takes imaginary value on t), we
denote by e*(t) = e*X). Let A(t) = [[cr(e*(t) — 1). An element
of T is said to be regular if A(t) # 0. Denote by T, the subgroup of
elements ¢ of T such that e®(t) is £+ h root of unity for each long root
a. We denote the set of regular elements in T, by 7,®.

We now give the Verlinde formula.

Consider the set A = {A, Ay, ..., As} with \; € P,. Then to this
collection of weights A of level £, the group GG, and a nonnegative integer
g, is associated a vector space V(G, g, s, A, £) (see [15]), called the space
of conformal blocks, whose dimension is given by the Verlinde formula

V(G, A g,0):

_ (g Xvylt
V(G0 = (fay e+ iy Y A,
¢TI /W

Above r is the rank of G, V(M) = V), @ V), ® --- ® V), where V),
denotes the simple g module with highest weight \;, and xy, denotes
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the character of Vy. By Weyl character formula xy, = J(e**)/J(e”)

where J(e”) = Z e(w)e*”.

weW

We remark that if Y7, ); is not in the root lattice, then V(G, A, g, ()
is zero.

Under the isomorphism given by the basic invariant form, an element
a lying in 2l C b, defines an element a of h7. We now consider a
collection {ay,as, ..., as} of rational elements in 2, that is, each a; lies
in the dense subset AN (Q ®Q) C 2A. We may choose ¢ large enough so
that each \; := {a; is a weight; which then lies in F,. We furthermore
choose ¢ so that Z;=1 Aj is in the root lattice and consider the space
of conformal blocks V(G, g, s, A, £) associated to this collection A =
{A1, A2, ..., A5} We can dilate simultaneously the weights A\; and the
level ¢ by a factor k. Then, the function

k— dim(V(G, g, s, [kA1, kXa, -+, kA, k0))

is a quasi-polynomial in k of degree m = dim(G)(g — 1) + s|R™|, the
complex dimension of the moduli space M(G,g,s,C). The volume
computes the highest term of this quasi-polynomial. More precisely,

vol(M(G, g,s,C)) = klim (k)" dim(V(G, g, s, [klay, . .., klag], k0).

Proposition 3.1. Let a = {ay, -+ ,as} be a collection of reqular ra-
tional elements in 2A. Let vol(G, g)(a) denote the symplectic volume of
the moduli space M(G, g,s,C). Then,

Z ~2+s
wol(G,g)(@) = (f0)" o )OI (W(G), P 5) o),
where p is the number of short positive roots of G, and e = 2 for any
simple Lie group except Go, it is equal to 3 for Gs.

We recall that for simply laced groups p = 0 since all roots are
considered as long.

Proof. Choose ¢ so that each \; := (a; lies in P, and 3 77_, A; is a root.
Then,
) 1
vol(G, g)(a) = klgg) WV(G,k&,g, ke),
where m = dim(G)(g — 1) + s|R*| is the dimension of the moduli space
M(G, g,s,C) and

V(G kA g, k) = (fa)*~ (ke + YO0 3 X’(‘t—;)@

LETISE /W
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An element p € P, determines a unique regular element h,, € 2, the
image of IZTJrif under the identification given by the basic invariant form.
Denote the image of h, under the exponential map by t, € Tgc. The
set {t, : p € P} form a set of representatives for 7, /WW. Using also

the bijection between sets P, and Pe/+h via p = p+ p,

V(G kA g k) = (fap (ke Ry Y el

-1
lH-peP];“_h A(t#)g
j [T, J(e"77)(t)
= (fq)9~ (k£ + h)"o=D W)~ j
o " #+06;Plg (J(eP)(tn))* Alty )~
s kX
= U= (ke + Ry D (1) A le- - §™ [T J (™ 9)(t)

2g—2+s
e N

The second line above follows from the fact that both xv () (t) and
A(t) are W-invariant. The third line follows from the second by the
identity A(t) = J(e?)(t)J(er)(t) = (=1 I(J(e?) (1))

We now analyze the above formula as k gets large.

The expression

ﬁ J(ek>\j+p H Z w(kAJ-HJ (tu)
j=1

=1 wew

- kla;
= H Z e(w) exp (2i7r (,u + p|Ma—M)> :
j=1wew kt+h
Now as k gets large, the expression exp <2i7r (u + p|%>) ap-

proaches to exp(2im(p+plwday)). Observe also that the set WP, ;. ap

proaches P™&. Denote an element p+ p of this limiting set by ~. Hence

=, J(e**?)(t,) approaches []5_, Z e(w)elBmrwa) — N, (2iry).
weW

Now we analyze the denominator of the summand,
1 1 1

J(e)tn)  Tlaso(e®?(tu) = e72(tn) T, 2 sin(r 8ty

kl+h

This expression explodes at each central vertex and the contribution

T
from each, as k gets large, is % Also observe that, for

z € Z(G) both T, and A(t) is invariant under ¢ — tz. Moreover,
since )7, A; is in the root lattice by construction, xv)(t) is also
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invariant. Therefore, we may add all these equal contributions from
central vertices. (see also Remark 5.8. [14]). Hence, we get that the
expression

Hj’:l J(ek)‘j+p)(tu>
2 U

!
ptpEW P,

approaches

1Z (G)|(k€+h)|R+|2g 2+5) Z -

yEPres

Na(2im7)

aso(2im(a]y))2072

By virtue of the normalization in the basic invariant form, if « is a
long root we have (H,,~) = («|y); otherwise (H,,7) = eg(a|Yy), where
e = 2 for any simple Lie group except Gs, it is equal to 3 for G5. Using
also that the dimension of G is r + 2|R*|, and that |R*| = |®(G)|, we
obtain

1
li
i V(G kA, g, k)

= (o ) O (06, P o) o)

as claimed. O

Remark 3.2. In the case of one marking, the Verlinde formula reduces

to

V(G A g,0) = (fa) (C+R)O™D Y o)
e D(t)A(t)s—1’

teT,"®

where D(t) = [[,-o(1 —e™(1)).
Following the same line of arguments as in the proof of Proposition
3.1 we get that for s = 1 with A = {a lying in the root lattice,

(3.2.1)

€<aa2i7r'Y>

vol(G, g)(a) = (fg)* ' 2] (—1)- D . .
“ ’YEPng HHQE(I)<2Z7T<HOMP)/>)29 !

That is,
vol(G, g)(a) = (fq)? | Z]en™ D (1)~ DI®IB(Dy,_1, Q)(a).

Let us demonstrate this with an example.
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Example 3.3. We consider the moduli space of SU(2) bundles on a
Riemann surface of genus g with one marking.

Let a = tH, be a regular element in 2(; in other words, 0 <t < 1/2.
Let a € by denote the dual of @ € A under the isomorphism given by
the basic invariant form. The Verlinde formula for SU(2) with marking
A = la = lta € P, such that t¢ is a positive integer (that is, A lies in
the root lattice) is

V(SU(2), ta, g, €) = 291 (0+2)712(— cht ) (0+2)20-1- nB((ng__ll__Z)’f),
where ¢, ;(n) is the n'" coefficient of the Taylor series expansion of
e”(9=2t) (6%1)29_1 in z around zero, and B(p, t) denotes the p*" Bernoulli
polynomial in ¢. Clearly ¢,.(0) = 1.
In the expression for V(SU(2), tkla, g, k¢) the highest term in k oc-
curs when n = 0. Hence,

. V(SU(2), thta, g, k¢
vol(SU(2), g)(a) = lim ( (/££>+2)39‘2 |
= 29_12(—1)gcg7t(0) S

— 9(_1)9B2e-10) oy
- (2g—1)!

We now calculate the volume using Equation (3.2.1).

We have P = Zp with (p, H,) = 1. In this case, with the notation of
Proposition 3.1, s=1,p=0,g=1, f =2 and |Z(SU(2))| = 2, hence
2P29=1)(fq)971Z(G)| = 29. Using the expression (3.2.1) of the volume
in the one marking case,

(g—1)|@| e<a72i7"'7> L 217rtn
g =29(—1)9~
2 e GintEa 2 it
B(2g —1,t
= 29(—1)9 L

(29 —1)!

Clearly we get the same formula.

3.1. Volume of the moduli space as a function of the volume
of T and G. Let us recall the formula for the symplectic volume of
the moduli space M(G, g, s,C) for a set of s regular conjugacy classes
C = (C;) in G as given by E. Witten ([16] equation 4.1.14),

(3.3.1)

vol(M(G, g, 5,C)) = ’QZ Gl ool T

2
( ’/T) AelrrG

[ D (€ AC)]
dim V), 29—2+s
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where 2m is the real dimension of M(G, g, s,C), and IrrG denotes the
set of irreducible representations of G. Above vol(G), vol(G/T) are
Riemannian volumes of G and G/T which we now express following
Bourbaki (Ch. IX, pages 396-411):

Choose a g-invariant scalar product. This determines a Lebesgue
measure g on g, via identification of g with R™ by an orthonormal
basis. Similarly let 7 be the Lesbegue measure on t corresponding to
the restriction of the scalar product on t. We can construct from p and
7 Haar measures pg and pr on G and T respectively.

Since we aim to compare the volume formula in Proposition 3.1 with
that of Witten in Equation (3.3.1), we choose the normalized Killing
form as the g-invariant scalar product in the above construction, as
this was our choice in the previous section. Then, for this choice, with
respect to ug and pr constructed as above, we get that

1 (2m)I"]

vo _ 1/2(9 IR 147 VO =77
(@) = (f)!22m) ™, vollG/T) = g s

Recall from the previous section that
A(t) = J(e”) ()T () (8) = (=)™ (T (e”) (1)),

hence it takes positive values on a regular element . Then, parametriz-
ing irreducible representation of G with the cone of dominant weights
Pt for C; the adjoint orbit of exp(a;), we may write

Z E(w)e2”<w(’\+p)’“j>
C.) — weW

H.) . : :
Let d(v) = H EZ’H i; it computes the dimension of V,,_,.

a>0

Thus
3 [T xn (C)VAG) 3 [[i=1 No, (2im(X + p))

dim VAQQ_Q"_S i8|R+|d()\ + p)29—2+s :

AelrrG AEPT

Observe that the summand above is invariant under the Weyl group
(both the numerator and the denominator are anti-invariant by factor
(sign(w))® for a Weyl group element w). We get,

[- xn(C)VAKG) 1 [Tj=i Na, (2imy)
2. =57 2

dim V)\Zg—2+s |W| is‘R+|d(’y)29—2+s :

AelrrG yeEPTeg
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Inserting the explicit expressions for the volume of G and G /T above
into Equation (3.3.1), all (27) factors cancel, and combining the terms
we get
1 (s (. Ha)) 2924 _
vol(M(G.g,5.C)) = i (fa)~ (et s (—1) VR IW(®(G), P.g)(a)

= P (fq)r e (1) VIEIW (9(G), P, g)(a),

Wi

which is precisely the formula that we obtained in Proposition 3.1.

4. VARIOUS EXAMPLES OF VOLUME CALCULATIONS

Example 4.1. We now compute the volume of the moduli space of
SU(3) bundles on a Riemann surface of genus one using the Witten
series.

Simple roots are a; = e1 — e, g = €5 — e3, and fundamental weights

are oy = 24=@=€ 5, — ate=2a  The positive coroots are

3
O(SUB)) ={H,, =" —€* Hyy =€* —€* Hyy 1o, = " — €}
and P = Zw, @ Zwsy. Let v = nywy +nsws. Then v € P8 if and only

if ny #£ 0, ny # 0 and nq + ny # 0.
Counsider

3

a=a Hy,, +ayH,, = a;(e’ — €*) + (az — a1)(e® — €*) € bp.

Suppose that a is a regular element in 2, in other words, 2a; — as > 0
2a5 —ay > 0 (in particular a; > 0 and ap > 0) and 6(a; H,, +a2H,,) =
a + as < 1.

We compute the volume using the Formula (3.2.1). In this case,
s=1,p=0,q=1, f =3 and |Z(SU(3))| = 3; hence, for g = 1,
) (Fqr1|2(G)| = 3.

627,7r<a,7>

HHQECD 2im(Hy, )

vol(SU(3),g =1)(a) =3 )

’YEPreg
2im(nia1+n2az)

€
_3 ' | |
m;éo,nz;;,nﬁn#o (2imny)(2imng)(2im(ny + na))

and we obtain
. . —1/2(1+a1 —2a2)(a1 —1+a2)(2a1 —CLQ), a1 < ag
VOI(SU(?))’Q B 1)(&) B { —1/2(0,1 — 2a2)(a1 -1 + G2)(2a1 —1- a2) al Z a9

Example 4.2. With the notation of Example 4.1, we make similar
computations for SU(3) when genus g = 2.
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We compute the volume employing the Formula (3.2.1). In this
case, s =1, p=0,q¢=1, f =3, |Z(SU(3))| = 3, hence, for g = 2,
2CoD (g | Z(G)) (~1) 6D =~

Q2im(a)
HHa€<I>(2i7T<Ha7 ’Y>)3
€2i7r(n1a1 +n2a2)

—o %
~ 3(9; 3(9; 3
10320 s a0 (2imn1)3(2imng)3(2im(n1 + na))

vol(SU(3),g =2)(a) =-9 ) _

YE Preg

and we obtain

. - 1/40320(@2—2a1)(a271+a1)(—1+2a2—a1)P1, a; < as
vol(SU(3),9 = 2)(a) = { 1/40320(az + 1 — 2a1)(2a2 — ay)(az — 1+ a1)Py, a1 > as

where the polynomials P; and P, above are too long to be included in
here.

Example 4.3. We now give an example of the volume of the moduli
space of Spin(5) bundles on a Riemann surface of genus g = 1 with one
marking.

Positive roots are {ag + as = e1, a0 = €3,0 = e + eg,1 = €1 —
es}, with associated coroots H,, = 2e!, H., = 2¢*, H., ., = e' — €2,
He ey, = €' + €2

Let a = a1 H,, + asH,, be a regular element in 2; in other words,
a; > as, 2a5 > ag, 2a; < 1. We can express a as a = tie! + tqe? (with
t1 = ay and ty = 2as — aq), t; and to satisfy t; > to,t5 > 0,61 + 1 < 1.

We calculate the volume for By and genus g = 1 employing the
Formula (3.2.1). In this case, s =1, p=2, ¢ =2, f =2, |Z(Spinb)| =
2. Hence, for g =1,

2Co=D(fq)971 Z(Spin)|(—1)@ VI = 8.
We get,

vol(By, g = 1)(a) — %@(tl ) — 1+ )t — t)
= (2as — a1)(a; — 1)(=1 + 2a2)(a; — as).

Example 4.4. With the notation of Example 4.3, we compute the
volume of the moduli space of Spin(5) bundles on a Riemann surface
of genus one and two markings.

Let a = {ay,as}, where a; and ay are regular elements in 2(. Write
a; = tie! + t2€? and ay = uje! + uge?. Then the function vol(By, 1)(a)
is a piecewise polynomial function of ¢y, t9, uy, us. For example, choose
v; = te' + 1e?, vy = el + §e? and consider T(v) C A x A, the open
set determined by the condition that a; + w(az) is in the same tope
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TABLE 1. Value tables

[ Gtype[ ¢ [ F [ p [IZGI[ W[ ]
A, 1 |r+1 0 r+1 | (r+1)!
B, 2 2 r 2 27r!
C, 2=t 2 |r(r—1) 2 277!
D, 1| 4 0 i | 2T

as v + w(vy) for each element w in the Weyl group of Bs. Then for
a € 7(v), we have

vol(By,1)(a) = 4W(®(By), P, 1,2)(a) =
1
—% u2u15 + 1/6t2u2t1u13 — 1/6t2u23t1u1 +1/6 u23u1t22 —1/6 u2t22u13 — 1/12ug3u1t23+
1 5 .
1/12u2t23u13f% u2°t1u1+1/12t2u2t13u1371/4tguzt12u13+1/4t2u23t12u1+1/6 t22u2t1u137

1 1
1/6 t22u23t1u1 + & u2t1u15 —1/12 t23u2t1u13 +1/12 t23u23t1u1 — 1/12t2u23t13u1 + & u25u1.

We compute some values.

vol(Bsy, 1)(a) =

141791 . 1 1 1 1
—raae if a1 = 5e1+ ez and a2 = ze1 + zes
{ 372443283928 4720960397931 2 5

; — (1 1 1 1 1 1
3731637036250000000000000000 @1 = (5 + T5o00)€1 + (5 + Toooon )2 and a2 = ze1 + ge2

5. MORE EXAMPLES

In this section we will compute some instances of the Witten volume
using the formula

vol(G, g)(a) = W(®(G), P, g, s)(a)2"®9~2) (£¢)9~1| Z(G)|(—1) 0~ DI*@l | =1
as given in Proposition 3.1. We will denote by ¢, the factor
Cool 1= Qp(2g—2+s)(fq)g—l’Z(G)’(_l)(g—l)@(G)\‘W|—1‘

For convenience, we list values of the parameters in ¢, for each type
of classical Lie group in Table 1.



40 VELLEDA BALDONI, ARZU BOYSAL AND MICHELE VERGNE

5.1. Tables of volumes of moduli spaces. We simply denote by
vol(G, g) the Witten volume in the case of no marking, that is, when
s = 0. We will list some values of vol(G, g) for classical Lie groups in
Tables 2 and 3. We will also list some values of the factor ¢, that we
will need in Section 5.2 to compare our computations with the other
numerical results in literature.

In the tables the column with heading G refers to the simple simply
connected Lie group type: for instance A, means of type A and rank r.
Computations are very quick for rank less or equal to 4 (and relatively
small genus). Beyond rank 5, computations cannot be made within a
time limit of half-hour with our method.
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5.2. Comparison results. In this section we compare some of our
computations of vol(G, g) with that of Komori-Matsumoto-Tsumura
([6],7],[8]). The setting is as follows.

As before, GG is a simple, compact Lie group of rank . We do not
assume that G is simply-connected. Let L be the weight lattice of G.
Let P be the weight lattice of the simply connected group covering G
and let ) be its root lattice. Then, Q C L C P. Let Pt be the ‘cone’
of dominant weights, and let Lt = L N P*.

Let s = [s,] be a sequence of real variables indexed by the positive
roots R*. For v € hr, Komori-Matsumoto-Tsumura introduced

((s,v,G) = Zemwﬂnﬁ.

yEp+LT aERT

If G is simply connected, then L = P, and we may denote ((s, v, &) by
((s,v,g), or for the Lie algebra g of type X, by ((s,v, X,) as in [8].

Example 5.1. Consider the simply connected group G = SU(4); its
positive roots are

[61 — €2,69 — €3,63 — €4,€1 —€3,69 — €4,€61 — 64]-

The cone of dominant weights is the simplicial cone generated by
fundamental weights wq,ws and ws that are dual to simple coroots
el —e?, e —e? and e® — e respectively. Then, if we order the exponents

s = [s;] with respect to the order of the roots as given above,

((s,v,5U(4)) = ((s,v, A3)

2im(v,miw1+mowa+msws)

e
Z Z Z m m m ml+m2)s4(m2_|_m3)55(m1+m2_|_m3)56

mi1=1mo=1msz=1

The series (s, v, G) converges when the elements s, are sufficiently
large. It can be shown that ((s,v,G) can be continued as a mero-
morphic function of s. Let S = > s,. Suppose s, are the same for all
short roots, respectively for all long roots, and both are equal to positive
even integers (that are not necessarily the same positive even integers).
Then (27)9¢(s,0,G) is rational. Indeed, using the invariance of the
sum under the Weyl group W, (2m)~9((s,0,G) is proportional to a
Bernoulli series (with repetition of coroots in ® matching the exponent
data) which is obtained by summing over all the regular elements of
the full lattice L. More precisely,

((s,0,G) 18 1
(5.1.1) “ams =" 722 oo @iy )




vol(G, g) 7

2
|| 3

_1
20160

19
41513472000

1031
189225711747072000

32293
487445433460457472000000

w|® o[ [Ple o

27739097
34359439770544026968653824000000

243

‘S
QDM

29835840687589
3031957229004108930561012205092864000000000

™
o0
J

71810708985991
598678146610235332992855225968816553984000000000

V)

N ‘

© 00 N O Ot = W N|®

221137132669842886663
151246026314426013297816671756013269041872371712000000000000

(=)
ot
(=]
sy

v ‘

—_
en)

7252062205115875364801443
406913205782775738093852803149608268676912309073384308736000000000000

[
©
{=2}
00
w

23
653837184000

14081
64814699109633048576000000

<

|8 [eo100 [eoio | o

17634884778757
11155091763154851836756404076509396992000000000

4257463829989959473
367215613941141638310663592914134282922173229170688000000000000

1
27303661403504640000

3998447009863
18546080754338014660769482402427552723160268800000000

63897294036759565910707701677
45362078256453588666977436687320229387024422032399906211071677239139256762368000000000000

46511 4 1
1266317152743400113929736683520000000

1
36 4

1
32400 16

1
14288400 64

1
5715360000 256

L 1024

2240649734400

477481 4096

417483460137744000000

1
340802824602240000 16384

© 00 N O O = W NN W N[O e W N

13082689
1737399167709235430400000000 65536

—
o

1024313689
99574446563452076311839744000000 262144

VELLEDA BALDONI, ARZU BOYSAL AND MICHELE VERGNE

23
653837184000

14081
64814699109633048576000000

w
0 |wloo |eoln

17634884778757
11155091763154851836756404076509396992000000000

o

42

4257463829989959473
367215613941141638310663592914134282922173229170688000000000000

Jun
™)
oo

[~ w‘

68227
1084047447508315948449792000000

-
[

3727283292300079
4163527227475565552987044342329298418787470879468908707840000000000

1 5372550944533148798111597103943896132463
1018 401595287497255375910389668105337327730608192879514113863554560467009086512201613320691542243934208

N[ W N[Ot = W N

IS

‘F‘ PHENMES

N»mewqmgaw 4
949559334622106350631397499004290699425805762560000000000

-
IS
o

TABLE 2. Witten volumes with s = 0 type A, D
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where the series on the right hand side is a multiple Bernoulli series
which has (in the case that it converges absolutely) rational value.

If all s, are equal to an even integer 2k, we denote the sequence s =
[Sa] by sar. Then, for exponents sqk, and G simply connected, we may
compute ((sgx, 0, G) using the Witten volume formula for g = k + 1,

(5200, G) = W[ 2m) M =)W (@(G), L,k + 1)(0)
5.1.2 1
(5:12) = (W71 (2r) MBI (= 1) —vol(@, k + 1)(0).
ol
Above ®(G) denotes the set of positive coroots as before. Thus we can
use the values of the volume listed in the tables of the previous section

to compute some instances of the series ((sa, 0, G).

We now demonstrate some computations of {(sa, 0, G).

5.2.1. Ezxamples of type A,. Let n = r + 1. We consider the simply
connected group G = SU(n). If we write N = |RY| = @, then
Equation (5.1.2) is
11
C(s2r, 0, A,) = (1) (27)*"N = —~0l(SU(n), k + 1)(0),
Nn: Cyol
where ¢y = nk“(—l)kw <.
Thus we can recover, the values of ((sa, 0, A,.) for n = 3,4,5, 6 using
Table 2.
For instance, if n = 3 (that is » = 2), and k£ = 1, then we have
N =3, vol(SU(3),2)(0) = 55155 and cvor = —3/2, and we obtain
,11 1 o1

0,4;) = (2m)%(—=1)*= =T 5qar
C(sz, ) 2) (W)( )3!9(_1)3%20160 T 2835

as in [9] equation 7.11.

We give one other example whose parameters are not contained in
the tables. Consider n =4, k = 5. Then, N = 6 and

1393614066290742513412310095846
C(sax, 0, Ag) = (2m)%°

58203152419058513584890890509712229288124323632762771449711578369140625

5.2.2. Examples of type B,, C, and D,. For root systems of type B,
and C,, the number of positive roots is N = r? and the order of the
Weyl group is |W| = r!2". For example, for B, when all exponents
So = 2k,

1
C<S2k7 Oa Br) = |_

2PN (1N BHEC, Qp, 95,)(0)
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Explicitly for Cy, fundamental weights are e; and e;+e5, and positive
roots are [e; — eg, 2e9, 2e1, €1 + e3]. We consider the multiple zeta series

1
C([s1, 52, 83,84],0,C2) = ZZ ms1ins2(m + n)ss(m + 2n)st’

m=1 n=1

where we order the exponents with respect to the order given in the
list of roots above. In the particular case that all s; = 2, using |W| =8
and values in Table 3, we find that for sy = [2,2,2, 2]

11 1
—_ — T
16604800 302400

1
Cls2.0.Co) = H(-1)'(2m)
which is the equation (7.23) of [9].

We also give an example of D, with all exponents equal to 6 (that
is k =3 and sg = [6,6,6,6,6,6,6,6,6,6,6,6] ).

C(S(i? 07 D4) =

5372550944533148798111597103943896132463 79
™
21770524158223250767856810653451043131130341521323218291199402843808716814637083000000000000000000

It is also possible to compute ((s,0,G) when the exponents in the
list s = [s1, 9, S3, S4] are different positive even integers for short and
long roots. We conclude with one example of this kind.

Consider the list of exponents [2,4, 4, 2] corresponding to the list of
positive roots [e; — eg, 2€9, 2e1, €1 + €3]. Then,

53
2,4,4,2],0,Cs) =
¢([2, 2) Z Z ey +n) (m+2n)2 " 6810804000’

m=1 n=1

which coincides with equation (4.30) of [9].

5.3. Some multiple zeta values. Let k be a positive integer. Con-
sider the multiple zeta series

1
(2K, 2k, ..., 2 .
= D D S 3

mi1=1mgo=1 me= 1

Following [6], we want to demonstrate how the above series can be
computed using the Bernoulli series B(HEC, Qc, g€)(0) for the root
system of type C,, where the exponents s = [s,] are taken to be 0 for
long positive roots, and 2k for short positive roots. Using the invariance
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of the sum under the Weyl group, which is of order 2"r! for C., we may
write

1
BHEY, Qc,g)(0) =20 > b

2im(H,,
s ax0(20m(Ha, 7))

A dominant integral regular weight v € (PF )yeg 18 Of the form
v =Y muw; with m; > 1 (as before w; denotes the fundamental
weights). Also recall that the root system of type C, admits r long
roots {2¢; h1<i<, with corresponding (short) coroots {H2€ = e hcicr
If we express Ho., = €' = (el — ) 4 (et — ) + ... 4 €", then
(Hae,,v) = mi + mji1 + -+ -+ m,. Thus,

G (2k, 2k, ..., 2k) = (—1)’”(27r)2’” (HBC, Qc, 99)(0).

2rr
F 1 4.4) = —T (5(4,4,4,4,4) = it
or example, (5(4,4) = 134007 (5(4,4,4,4,4) = 575555180360160000”
— s
(5(6,6,6,6,6) = rammssaroraoesrsiiosess

6. APPENDIX: SZENES FORMULA

Let H be an arrangement of hyperplanes compatible with a lattice
A. Let g € Ry. Consider

BH, A g)(v) = > g(2imy)e 7,
1€T g (H)

This function (a generalized function on V') coincide with a poly-
nomial function B(H, A, g,7) on a tope 7 (see Proposition 1.30). The
piecewise polynomial function P(H, A, g) has been defined in Definition
1.16. Following Szenes [12], we prove the following formula.

Theorem 6.1. (Szenes) Let g € Ry. On Viey(H,A) we have the
equality
B(H,A,g9) = P(H, A, 9).

We recall that, for f € Sy,
= Z f(2imy — z)e<“’2im_z>,

vyel

and P(H, A, g)(v) is the trace on Sy of the operator A(v, g) : Sy — Su
defined by

(6.1.1) f(z) = R(e®g(2)(Z"(0) [)(2)).
Here R : Ry — Sy is the total residue.
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We first consider the one dimensional case where V =R, and A = Z.
Here H = {0}, with equation z = 0. The topes are the intervals

| = n,n 4+ 1], and the space Sy is one dimensional with basis f, = %

Let 7 =0, 1[. Assume v € 7 so that [v] = 0. If we consider g(z) = ,

the formula to be proven is

eanv

1
iy~ R0l

(6.1.2) S (2NN fo)(2).

n#

As ZM7)(f5)(2) = %= (see Example 1.11), we have thus to verify
that

e?imw 1 1

SR——t —o(— Zv )

(2imn)k esao( 3¢ )

= zk 1 —e?

The poles of the function 1er consist of the elements 2i7mn, with
n € Z, and , when k£ > 0, the equality above follows from the residue
theorem in one variable. If £ < 0, both sides vanish (the left hand side
gives a generalized function supported on Z, the right hand side has
no poles).

Szenes formula generalizes this result in higher dimensions, which we
aim to demonstrate below.

Proof. We first remark that using both the comparison formulae (1.17)
and (1.28) over commensurable lattices, it suffices to prove the equality
for any lattice A (compatible with H) of our choice.

We will prove Theorem 6.1 by the standard ‘deletion-contraction’
argument on arrangement of hyperplanes.

Choose a set ¢ of equations for H. For ¢ € ®°¢, we consider the
following two arrangements:

L Hl =H \ H¢'

o Hy={HNH, H e H'}, the trace of the arrangement H' on Hy.

Consider the vector space Vy := V/Re¢, let p : V. — V4 be the
projection. The dual space Uy of the vector space Vj is the hyperplane
H,.

We now compare the spaces Sy, Sy, and Sy .

Definition 6.2. We say that a function f € My has at most a simple
pole along the hyperplane ¢ = 0 if ¢ f € Myy. In this case, we define

resyf € My, by resyf = (0f)|n,

In other words, the meromorphic function f has at most a simple
pole on Hy if the denominator of f contains the factor ¢ at most once.
Then we multiply f by ¢, eliminating ¢ from the denominator of f,
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and we can restrict ¢ f to ¢ = 0. This operation kills the functions f
having no poles of ¢ = 0.
If f= %f’ with f € Mgy, then

(6.2.1) ressRf = Rresyf.

This is easy to verify using for example a decomposition of f’ with
denominator on a set of independent hyperplanes (see Lemma 1.3).

The map res, is well defined on Sy, as elements in Sy have at most
a simple pole on ¢ = 0. It is easy to prove that we have the exact
sequence

TeSy

(622) 0 > SH/ : > SH > SHO — 0.

Let v € Viey(A, H). Its projection vy = p(v) belongs to V,4(Ag, Ho)-
Lemma 6.3. Let v € Viey(A,H) and f € Sy. Then
ressZM(0)(f) = =Z" (o) (resy f),
with vg = p(v).
Proof. We have
ZMN0)()(z) = ) f(imy — 2)elH T
~er

If v is such that (¢,v) # 0, then the term f(2imy — z) has no pole on
¢ = 0. Thus we obtain, for z € H,

resyZ"(0)(f)(2) = Z (o(2) f(2imy — Z))|H¢€(vo,2i7r7_z>
YEL(7,9)=0
- Z ¢(27T/7 - Z)f(2’L7T”)/ — Z>|H¢e<”0,2i7r772).
YEL,(7,9)=0

O

Let g € Ry, and let gy be its restriction to H,. Then the operator
A(v, g) leaves Sy stable.

If F' has at most a simple pole on ¢ = 0, then gF also has at most
a simple pole on ¢ = 0, as g has no pole on ¢ = 0. Thus the maps
in the diagram below are well defined. Its commutativity follows from
Lemma 6.3.
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Lemma 6.4. Let g € Ry. Then the following diagram is commuta-

tive.

0 > 87_[/ > S’H — ’SHQ — 0
(6.4.1) lAmg) lA(w) l—Awo,go)

0 > 87-[’ > S’H — SHQ — 0

We are now ready to prove Theorem 6.1 by induction on the number
of hyperplanes in H. If there are less than r hyperplanes, then Sy =
{0}, the generalized function B(H, A, g) is supported on affine walls, so
both sides of the equation of Theorem 6.1 vanish.

Assume that H consists of r independent hyperplanes intersecting
on {0}. Changing the lattice A, we can eventually assume that A is
the lattice generated by the equations ¢ of the hyperplanes. Then,
the theorem follows from Formula (6.1.2) in the one dimensional case.

Assume that ‘H have more than r hyperplanes. Then by the Lemma
1.3, we can write a function in Ry as a sum of functions g whose poles
lie on an independent subset of hyperplanes of H, thus in number less
or equal to r. Thus Ry is linearly generated by functions g such that
some equation ¢ € ®° is not a pole of g. We consider such a couple
(g, ¢) and the arrangements H' and H associated to ¢ by deletion and
contraction. The function g is in Ry .

Let go € Ry, be the restriction of g to Hy,. Thus B(Ho, Ao, go) is a
generalized function on H; = V/R¢ and p*B(Ho, Ao, go) is a function
on V' (constant in the direction ¢).

We have the following recurrence relation for the function (eventually
generalized) B(H, A, g) associated to an element g € Ryy.

Proposition 6.5. If g € Ry, then
B(H, A, g) = B(H', A, g) — p"B(Ho, o, 90)-

This is clear. Indeed the set I, (') is larger than I';,(#) as it may
contain also elements v with (y,¢) = 0. This additional summation
gives rise to the term B(Ho, Ao, go)-

Let v € Vieg(H,A). As P(H,A, g)(v) is the trace of the operator
A(v,g) defined in (6.1.1), the commutativity of the diagram (6.4.1)
above implies that

P(H, A, g)(v) = P(H', A, g)(v) = P(Ho, Mo, go) (vo)-

Comparing with Proposition 6.5, we see by induction that Szenes for-
mula holds. U
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