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Abstract
An extreme-ultraviolet (XUV) laser pulse consisting of harmonics of a fundamental
near-infrared (NIR) laser frequency is combined with the NIR pulse to systematically study
two-color photoionization of helium atoms. A time-resolved photoelectron spectroscopy
experiment is carried out where energy- and angle-resolved photoelectron distributions are
obtained as a function of the NIR intensity and wavelength. Time-dependent Schrödinger
equation calculations are performed for the conditions corresponding to the experiment and
used to extract residual populations of Rydberg states resulting from excitation by the XUV +
NIR pulse pair. The residual populations are studied as a function of the NIR intensity
(3.5 × 1010 − 8 × 1012 W cm−2) and wavelength (760–820 nm). The evolution of the
photoelectron distribution and the residual populations are interpreted using an effective
restricted basis model, which includes the minimum set of states relevant to the features
observed in the experiments. As a result, a comprehensive and intuitive picture of the
laser-induced dynamics in helium atoms exposed to a two-color XUV–NIR light field is
obtained.

Keywords: attosecond, high-harmonic generation, photoionization, Rydberg states,
photoelectron angular distributions

(Some figures may appear in colour only in the online journal)

1. Introduction

Modern table-top high-harmonic generation (HHG) sources
routinely provide extreme-ultraviolet (XUV) attosecond
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pulses that can be used in laboratory-scale pump-probe
experiments, enabling the study of quantum phenomena with
attosecond time resolution [1]. In these experiments, the XUV
pulse is usually combined with a near-infrared (NIR) pulse. In
an XUV–NIR configuration, attosecond resolution is obtained
by using the well-characterized electric field of the NIR pulse
as a time reference for the attosecond dynamics [1]. In order
to unravel the dynamics, it is necessary to understand the
interplay between the interactions of the atom with the NIR
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and XUV pulses. In this work, we systematically explore the
NIR-assisted XUV ionization of helium from low to medium
NIR intensities as a function of the NIR wavelength and the
relative delay between the XUV pulse, containing frequency
components both above and below the helium ionization
threshold, and the NIR pulse.

As a model for more complex systems in XUV–NIR exper-
iments, helium has been studied extensively both theoretically
and experimentally. In a seminal paper from 2007, Johns-
son et al demonstrated that a two-color XUV–NIR field can
be used to control the ionization yield of helium on a sub-
cycle timescale, i.e. by varying the time delay between the
attosecond pulse train (APT) and the NIR pulse [2]. Observed
fast oscillations of the He+ yield as a function of the time
delay between the APT and the NIR pulse were understood
in a time domain picture in terms of an interference between
wavepackets created in the presence of the NIR field by
consecutive attosecond pulses within the APT. In a comple-
mentary frequency-domain picture, these oscillations may be
understood as the result of an interference between ioniza-
tion pathways via different intermediate states dressed by the
NIR field [3, 4]. In reference [2], it was further shown that the
amplitude of the oscillations strongly depends on the inten-
sity of the NIR laser pulse. Later works [5–8] investigated
the intensity- and wavelength-dependence of the He+ yield
by means of cold target recoil ion momentum spectroscopy
(COLTRIMS) and showed that resonant absorption of the
XUV and NIR light by Rydberg states has a major influence
on the observed dynamics, as it affects the phase associated
with each ionization pathway. The energies of these Rydberg
states are strongly influenced by the moderately intense NIR
field, which induces an AC Stark shift, which can shift the
states into or out of resonance with the available XUV frequen-
cies. Several experiments have focused on this effect using
the attosecond transient absorption spectroscopy (ATAS) tech-
nique, providing time- and frequency-resolved information
on the time-dependent dynamics of laser-assisted ionization
of helium [9–17]. For instance in reference [13] an isolated
attosecond pulse was combined with an NIR field of mod-
erate intensity (3 TW cm−2) in order to observe the sub-
cycle dependence of the AC Stark shift on the XUV–NIR
time delay.

Compared to photoion detection and ATAS, photoelectron
spectropscopy (PES) can directly provide information on the
population of Rydberg states [18]. PES experiments on helium
exposed to a two-color XUV–NIR light field at moderate
NIR intensities (few TW cm−2) revealed intensity-dependent
modulations in the photoelectron angular distributions (PADs)
[5–8], which were attributed to contributions of G-waves
(photoelectrons with the angular momentum � = 4), hence
suggesting the excitation of |1snf〉 (� = 3) Rydberg states.
In reference [5], it was proposed that population transfer to
these bound states occurs through an NIR-induced two-photon
transition from the lower-lying |1s2p〉 state, which is itself

excited by the XUV radiation, but no quantitative analysis was
provided.

The experimental results mentioned above indicate that
signals observed in experiments on NIR-assisted XUV ion-
ization can change significantly when the NIR intensity is
tuned from a weak field regime where interactions may be
described within first-order perturbation theory (i.e. involving
processes where a single NIR photon is absorbed or emit-
ted) to one where a moderately intense NIR field can
induce multi-photon transitions. As many attosecond exper-
iments are carried out at these intermediate NIR intensi-
ties, it is crucial to understand and study this transition in
detail.

In this work we report time-, energy- and angle-resolved
photoelectron spectroscopy measurements on NIR-assisted
XUV ionization of helium using low (ca. 1010 W cm−2)
to intermediate NIR intensities (ca. 8 TW cm−2), which
are accompanied by detailed time-dependent Schrödinger
equation (TDSE) simulations in the single-active electron
(SAE) approximation. Based on experimental and computa-
tional results we develop an effective restricted basis model
that provides an intuitive picture of the photoionization
dynamics.

The paper is organized as follows: in sections 2 and 3, we
introduce the experimental setup and the numerical methods
for solving the TDSE, respectively; in section 4 we discuss
the experimental and numerical results and identify the Ryd-
berg states that play a role in the experiment; in section 5, we
introduce the effective restricted basis model, which emerges
from the conclusions from the previous sections; in section 6
we compare the results of the model with the experiment
and the TDSE simulations and provide a unified picture of
the dominant pathways in the time-dependent two-color
XUV–NIR dynamics underlying the experimental and numer-
ical observations; in section 7, we conclude and provide an
outlook.

2. Experiment

We use the same experimental set-up for generating high-
harmonics and measuring photoelectron momentum distri-
butions of helium as described in reference [18]. Figure 1
shows a schematic diagram of the experimental set-up from
the top view and the side view, parts (a) and (b), respectively.
In short, 35 fs, 4.2 mJ NIR laser pulses at a repetition rate
of 1 KHz are generated by a dual-stage femtosecond ampli-
fier system (Komodo-Dragon, KMLabs). We split the laser
beam by a 50% beam splitter into two arms, beam A and beam
B. Beam A is further split into two parts by a half-moon-
shaped fused silica plate (FS-1) with a thickness of 1 mm
in the proportion 70% (beam C) to 30% (beam D). For the
NIR intensity dependence measurements beam D was used.
Its intensity was controlled by closing an iris (not shown in
the figure). For the XUV–NIR delay dependence measure-
ment, for practical reasons, beam D was blocked and beam
B was introduced using an insertable half-moon mirror HM
(the lower 30% of the beam profile equivalent in shape to
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Figure 1. A schematic diagram of the experimental set-up from the top view (a) and the side view (b). The side views α and β correspond to
the regions α and β in the top view. FS1 and FS2 are fused silica plates, HM is a half-moon shaped mirror, Ge is a germanium mirror, TM is
a toroidal mirror, VMI is a velocity map imaging apparatus, Jet A is a pulsed gas jet to generate high-harmonics, Jet B is a pulsed gas jet to
inject helium gas to the interaction region of the VMI. The HM mirror is inserted to perform XUV–NIR delay dependence measurements
(see text). (c): the measured high-harmonic spectra as a function of the relative grating distance in the compressor of the laser system. The
NIR wavelength is given in the top axis. The horizontal line appearing around 23 eV is due to a background signal caused by the CCD
camera.

beam D). Both beams (beam C and beam B/D) are focused
into an argon gas jet ( jet A) to produce high-harmonic emis-
sion in the XUV region. Beam C is reflected from germa-
nium plates at a Brewster angle to suppress the co-propagating
NIR beam, while beam B/D is reflected from a silver-coated
surface and provides the NIR dressing field for the experi-
ment. Beam B/D is transmitted through a second half-moon-
shaped, fused silica plate (FS-2), which blocks the XUV light
generated by beam B/D in the jet. The XUV–NIR delay is
adjusted by a translational stage placed in the path of beam
B. XUV and NIR pulses have parallel polarizations and are
both focused by a gold-coated toroidal mirror (ARW optical
corporation) into a helium gas jet. The photoelectron momen-
tum distribution resulting from the ionization of helium is
measured by velocity map imaging (VMI) apparatus. The
image is captured by a CCD camera. The XUV pulse is dis-
persed by a flat-field grating placed after the VMI apparatus
and the spectrum is measured by a microchannel plate. We
scan the photon energy of the high-harmonics in the XUV
pulse by changing the grating distance in the compressor
of the Ti: Sapphire amplifier. In figure 1(c), we present the
measured high-harmonic spectra as a function of the grat-
ing distance in the compressor of the laser. As the grating
distance is changed, the photon energy of high harmonics
shifts monotonically. We calibrate the NIR intensity in the
interaction region of the VMI photoelectron spectrometer by
assuming that non-resonant two-color photoionization by the
XUV–NIR pulses causes a ponderomotive energy shift, Up =

|FNIR|2/4ω2
NIR, in the photoelectron spectrum, where FNIR is

the electric field strength and ωNIR is the angular frequency of
the NIR pulse in atomic units. We also assume that the NIR

pulse has no chirp in the range where the photon energy is
scanned in this experiment.

3. Numerical simulations

We solve numerically the exact TDSE for a helium atom in
the SAE approximation in the presence of the electric field
of the combined XUV and NIR laser pulses. The code used
here is described in reference [19]. In the calculations, the
XUV and NIR pulses have a sine-squared envelope that is 4
and 40 NIR cycles long, respectively. Note that a 4-NIR-cycle
long XUV pulse is used in order to obtain harmonics with
a bandwidth corresponding to the experimentally observed
one. The XUV pulse consists of four equally intense (3.5
×1010 W cm−2) odd harmonics of the fundamental NIR
frequency, ranging from the 13th (H13) to the 19th (H19)
harmonic. Moreover, calculations were performed where
only one of these harmonics was included. The TDSE was
solved by expanding the wavefunction on a 2D grid contain-
ing 150 000 radial points equally spaced by Δr = 0.15 au
and including orbital angular momenta up to �max = 16.
Angle-resolved photoelectron spectra were evaluated up to
Emax = 0.4 au (ca. 11 eV) with a step of ΔE = 10−4 au.
An advantage of the code developed in [19] is that it allows
us to calculate the photoelectron spectrum both at positive
and ‘negative’ energies. While positive energies correspond to
the production of photoelectrons that can be detected exper-
imentally, the ‘photoelectron spectrum’ at negative energy
permits an extraction of the residual occupation of Rydberg
states of the atom at the end of both pulses. This allows us to
track the residual population in Rydberg states as a function
of the experimental parameters, i.e. the NIR intensity, the NIR
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Figure 2. Experimental photoelectron momentum distributions for ionization of helium by a two-color XUV–NIR field. Top row: the NIR
wavelength is fixed at λNIR = 788 nm; bottom row: the NIR intensity is fixed at INIR = 3.0 TW cm−2. In both of the rows the time delay
between the XUV and NIR pulses is τ = 0 fs. Each figure is normalized to the ionization signal corresponding to direct ionization of the
ground state by H17 at p � 0.4 au.

and XUV wavelength and the relative time delay between the
two pulses.

4. Results

4.1. Experimental results

Figure 2 shows a selection of experimental photoelectron
momentum distributions for ionization of helium by the two-
color XUV–NIR field for different NIR intensities (top row)
and wavelengths (bottom row). All experimental PADs shown
in figure 2 and in the rest of the manuscript are slices through
the 3D momentum distributions obtained from the experi-
mental VMI images by performing an Abel inversion with
the BASEX algorithm [20]. The rings in the first image of
the first row of figure 2 correspond to ionization of helium
atoms by harmonics H17 and H19. With the increasing NIR
intensity new features appear at lower photoelectron momenta
corresponding to ionization of Rydberg states prepared by har-
monics H13 and H15. For higher NIR field intensities the
angular distributions change revealing an eight-lobe structure.
The observed features are labeled in figures 3(a) and (b),
where distributions for λNIR = 788 nm and INIR = 3.5 ± 0.17
TW cm−2 are shown for the relative XUV–NIR delay of
0 fs (figure 3(a)) and 360 fs (figure 3(b)), where positive
time delays indicate that the XUV pulse arrives before the
NIR pulse. Based on the detected momentum of the photo-
electrons, we can assign a specific ionization process to each
feature. The outer feature at |p| � 0.40 au (corresponding to
a kinetic energy of 2.16 eV) is the result of direct ioniza-
tion of the helium ground state |1s2〉 by H17 (26.74 eV).
We label it as H17. The feature at 0.63 au (5.40 eV) cor-
responds to ionization of the helium ground state by H19,
which we label as H19. The angular distributions of these two
features do not change appreciably with time delay because
the NIR pulse is not directly involved in these ionization

channels (i.e. they only change to the extent that ionization
by H17 or H19 is implicated in other ionization mechanisms).
Their angular distributions correspond to the emission of a
P-wave, i.e. the formation of a continuum state with orbital
angular momentum � = 1. The sideband feature (labeled as
S18) visible in figure 3(a) between these two ionization chan-
nels is the result of absorption (emission) of an NIR photon
accompanying the absorption of an H17 (H19) photon. In
figure 3(b) the sideband is not visible since there is no tem-
poral overlap between the XUV and NIR pulses. Features at
lower momenta in figures 3(a) and (b) correspond to ioniza-
tion of the helium atom by H13 (20.45 eV) or H15 (23.60 eV)
in combination with one or more NIR photons. Based on
the measured photoelectron momenta of 0.073, 0.232 and
0.275 au (corresponding to photoelectron kinetic energies of
0.073, 0.73 and 1.03 eV, respectively), we assign these fea-
tures to NIR ionization of n = 3, 4, 5 Rydberg states populated
by the XUV pulse, where n is the principal quantum num-
ber of the helium Rydberg state |1sn�〉. The PADs reflect the
angular momentum of the outgoing photoelectrons and, as
such, depend on the number of NIR photons implicated in
the ionization processes. Four-lobed patterns at τ = 360 fs
(figure 3(b)), which include a local maximum in the angu-
lar distribution at 90 degrees with respect to the XUV
+ IR polarization axis, indicate the participation of D-
waves (i.e. photoelectrons with orbital angular momen-
tum � = 2). D-wave photoemission can arise in two-photon
XUV–NIR ionization of helium: owing to the selection rules
for dipole transitions, XUV-only ionization from the ground
state |1s2〉 can only create P-waves, while absorption of an
additional NIR photon creates a superposition of S- and
D-waves.

At zero relative delay τ = 0 (figure 3(a)), the PADs
associated with ionization of n = 4, n = 5 are substantially
different compared to the case of τ = 360 fs: an eight-fold
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Figure 3. Photoelectron momentum distributions for ionization of helium by a two-color XUV–NIR field, for an NIR field strength
FNIR = 0.01 au (3.51 TW cm−2) and an NIR wavelength λNIR = 788 nm. (a) and (b): experimental results (a: τ = 0 fs, b: τ = 360 fs)
normalized to the ionization signal of the ground state by H17 at p � 0.4 au, (c) and (d): TDSE calculations (c: τ = 0 fs, d: τ = 58 fs), see
the text for the reason we choose a different delay than the 360 fs in part (b). (e) and (f ): effective restricted basis model (e: τ = 0 fs, f:
τ = 58 fs). τ is the delay between the maximum of the peaks of the envelopes of the XUV and NIR fields.

pattern appears, with local maxima along the polarization axis
as well as at angles of 45, 90 and 135 degrees with respect to
the polarization axis, suggesting the involvement of G-waves
(� = 4). Continuum states with this angular momentum can be
reached by absorption of one XUV photon and three NIR pho-
tons. Since more complex ionization processes involving up to
three NIR photons are observed at the overlap of the XUV and
NIR pulses, in the following we will mainly focus on this case
(τ = 0 fs).

To investigate the NIR wavelength dependence of the PADs
associated with features n = 4 and n = 5 in the second row of
figure 2, the NIR wavelength is varied betweenλNIR = 785 nm
and 796 nm while keeping the NIR field strength fixed at
FNIR = 0.009 au (3.0 TW cm−2). Note that the NIR wave-
length also determines the XUV photon energies via ωXUV =
qωNIR, where q is the harmonic order. As the NIR wavelength
is red shifted, the ionization features of the Rydberg states
move toward lower momenta as expected. It is also clear that
the NIR wavelength has a strong influence on the relative inten-
sities of different features: at 785 nm the n = 5 feature is the
most intense, while at 795 nm the n = 3 feature becomes the
most prominent one. This is due to the red shift of the H15,
which results in the increase of the excitation probability of
the |1s3p〉 state in comparison to the |1s4p〉 and |1s5p〉 states.
To gain a further insight the angular distributions are analyzed
in term of anisotropy parameters βK [21, 22]. Each feature is
integrated in momentum space in the narrow range around the
n = 4 and n = 5 photoelectron peaks and the resulting angle-
dependent distributions are fitted to the expression [21, 22]

I(θ) =
σ0

4π

[
1 +

∑
K=2,4,6,8

βKPK(cos(θ))

]
(1)

where θ is the angle between the photoelectron emission
direction and the laser polarization axis, σ0 is the total
cross-section, PK are Legendre polynomials and βK are the
anisotropy parameters. The sum in equation (1) is restricted
to a maximum of K = 8, because in the PADs we do not
observe photoelectrons with angular momentum higher than
� = 4. Figure 4 reports the experimentally obtained anisotropy
parameters βK associated with the features n = 4 (figure 4(a))
and n = 5 (figure 4(b)) as a function of the NIR wavelength.
Note that K = 8 terms in equation (1) result purely from G-
waves (i.e. photoelectron continuum states with � = 4). The
other terms contain contributions from all �-waves. Conse-
quently, in order to investigate the relative strength between
the G-waves and other contribution to the PADs, it is suf-
ficient to focus on the NIR wavelength dependence of the
anisotropy parameters β8. While for the Rydberg feature
n = 4 (figure 4(a)) a slight increase of G-wave contribu-
tions is apparent for shorter wavelengths, the corresponding
PADs are mainly dominated by D-wave contributions over
the whole NIR wavelength region probed in the experiment,
as indicated by the small values β8 parameter. On the other
hand, the PADs associated with the feature n = 5 show a
clear wavelength dependence as the β8 anisotropy parameter
increases from � 0.6 (at 796 nm) to 1.0 (at 785 nm) toward
shorter NIR wavelengths.
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Figure 4. Experimental anisotropy parameters βK of the photoelectron angular distributions as a function of the NIR wavelength λNIR (a),
(b) and the NIR field strength FNIR (c) and (d). (a) and (c) correspond to feature n = 4 of the PADs indicated in figure 3 while (b) and (d)
correspond to feature n = 5. In (a) and (b) the NIR field strength is FNIR � 0.009 au (3.0 TW cm−2), while in (c) and (d) the NIR
wavelength is 788 nm. The shaded areas indicate the confidence interval of 2σ as derived from the least squares fits of angular distributions
to equation (1).

The observed difference in the NIR wavelength depen-
dence of the PADs for n = 4 and n = 5 features indicate
that the relative strength of the D- and G-wave contributions
in the angle-resolved photoelectron spectrum results from
intermediate Rydberg states resonant with the XUV and NIR
frequencies used in the experiment.

Since the NIR field induces AC Stark shifts on all states,
which results in changes of the resonance positions, we inves-
tigate the intensity dependence of the PADs of features n = 4
and n = 5. In figures 4(c) and (d) we report the NIR field
strength FNIR dependence of the anisotropy parameters βK

at a fixed NIR wavelength of λNIR = 788 nm. For both fea-
tures the β8 parameter grows as the NIR field strength is
increased. This indicates that at higher NIR field strengths
the multi-photon transitions leading to the excitation of these
high-angular momentum states � = 4 become dominant over
the one NIR photon transitions leading to excitation of � = 2
states.

4.2. Numerical results

PADs obtained via numerical solution of the TDSE under
the same conditions as the experimental PADs are shown
in figures 3(c) and (d). Note that in figure 3(d) for numer-
ical stability we choose the relative delay of 58 fs, which
is smaller than the experimental delay of 360 fs. The delay
in the experiment was chosen to ensure there is no over-
lap between the XUV and NIR pulses and avoid possible
contamination by experimental NIR pre-pulses. In the cal-
culations the relative time-delay between the XUV and NIR
pulses, although smaller than in the experiment, is such that
the XUV pulse fully arrives before the NIR pulse as in
figure 3(b). All features observed in the experiment can be
clearly identified in the numerical results. We note that the rela-
tive intensities of the n = 3 and n = 4 Rydberg features are not
reproduced well in the TDSE simulation. This can be attributed

to the model shape of the XUV spectrum used in the sim-
ulation. The spectrum used in the simulation does not per-
fectly reproduce the tail of the experimental spectrum, which
strongly enhances the signal associated to the ionization of
the n = 3 feature (|p| < 0.2 au) compared to the n = 4 and
n = 5 transitions. This is due to the oscillator strength of the
transition from the ground state to the |1s3p〉 state, which is
larger than the ones corresponding to transitions to the |1s4p〉
and |1s5p〉 states. As described above, the TDSE calcula-
tions allow us to track the residual population in the bound
states after the end of both pulses as a function of the rela-
tive time delay τ , the carrier wavelengthλNIR (or, equivalently,
the carrier frequency ωNIR) and the NIR field strength FNIR.
Figure 5(a) shows the residual population in selected Rydberg
states calculated for a range of carrier NIR wavelengths λNIR

(760–820 nm) at a fixed NIR field strength of FNIR = 0.004 au
(0.56 TW cm−2) and for a relative time delay of τ = 0 fs.
Note that the NIR carrier wavelength determines the photon
energies of the high-harmonics peaks in both the experiment
and the TDSE simulations. For each Rydberg state the resid-
ual populations peaks at a certain wavelength, indicating that
a resonant transition is involved. For the |1s3p〉, |1s4p〉 and
|1s5p〉 Rydberg states the residual populations peak respec-
tively at NIR wavelengths of 805, 783 and 773 nm: this is due
to the energy of H15 becoming resonant with the energy of
the respective Rydberg state 15ωNIR = Enp. The wavelength
dependence of the residual populations in the |1snf〉 states
requires a more detailed analysis. Since they are not directly
coupled to the ground state, transitions to the |1snf〉 states
require the absorption of more than one photon. The res-
onance conditions for these high angular momentum states
should be evaluated in terms of a combined XUV and NIR
multi-photon transition. In reference [5], it was suggested
that the |1snf〉 Rydberg states are populated via the |1s2p〉
state by the absorption of H13 and two NIR photons. To test
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Figure 5. (a) and (d): residual population in selected Rydberg states at the end of both pulses for a relative delay τ = 0 fs as a function of
the carrier wavelength λNIR and at a fixed NIR laser field strength FNIR = 0.004 au (0.56 TW cm−2). (b) and (e): residual population in
|1s4f〉 for an XUV pulse containing only H13 (lighter magenta shaded area) or only H15 (darker magenta shaded area). (c) and (f ): residual
population in |1s5f〉 for an XUV pulse containing only H13 (lighter yellow shaded area) or only H15 (darker yellow shaded area). The
dotted magenta and orange lines in (b), (c), (e) and (f ) corresponds to an XUV pulse with all HH. (a)–(c): TDSE results, (d)–(f ): effective
restricted basis model results.

this assumption, we performed TDSE calculations for XUV
pulses containing only H13 or only H15. In figures 5(b) and
(c) we report the residual populations in the Rydberg states
|1s4f〉 and |1s5f〉 for XUV pulses composed of only H15 (dark
shaded areas) or only H13 (lighter shaded areas). The resid-
ual population obtained for XUV pulses containing all four
harmonic orders are also shown for comparison as dashed
lines. According to figures 5(b) and (c), the residual popu-
lations in the |1snf〉 states are reproduced when the XUV
pulse is only composed of H13 and are lower by almost two
orders of magnitude when the XUV pulse is only composed
of H15. Therefore, figure 5 confirms that the population trans-
fer from the ground state to the |1snf〉 states occurs predom-
inantly by means of a multi-photon absorption process where
the absorption of H13 is accompanied by the absorption of
two NIR photons.

The NIR field induces AC Stark shifts on all states, result-
ing in changes of the resonance positions and the strengths of
the transitions. To investigate the role of AC Stark shifts in the
two-color dynamics, the residual populations of the Rydberg
states are studied as a function of the NIR intensity. This is
done by fixing the NIR wavelength at λNIR = 788 nm—where
both the |1snp〉 and |1snf〉 states are efficiently populated in the
presence of the NIR field as shown in figure 5(a)—and vary-
ing the intensity of the NIR field from zero up to 4 TW cm−2,
for a relative delay of τ = 0 fs. Figure 6(a) shows the residual
population in the same states as in figure 5(a) as a function
of the NIR field strength FNIR. At low NIR field strengths

below 0.002 au (0.14 TW cm−2), the residual population at
the end of the pulses is limited to the states that are opti-
cally coupled to the ground state via the absorption of one
XUV photon, i.e. the |1snp〉 states. Since in the one-photon
regime the ionization rate of the bound states scales quadrat-
ically with the NIR field strength, the residual populations
of the |1snp〉 states in figure 6(a) fall off quadratically with
the field strength FNIR up to approximately FNIR = 0.005 au
(8.8 TW cm−2). As the NIR field strength is increased, a
qualitative change of the residual populations in the Ryd-
berg states occurs. The residual populations in the |1s4f〉 and
|1s5f〉 states becomes larger than in the |1s5p〉 and |1s4p〉
states for field strengths higher than FNIR = 0.005 au (0.88
TW cm−2) and FNIR = 0.007 au (1.72 TW cm−2), respectively.
This change in the dominant Rydberg character is reflected
in the experimental data of figures 4(c) and (d), where we
observe that G-waves dominate over D-waves only above an
NIR field strength of �0.01 au (�3.51 TW cm−2), which
is in agreement with the previous literature [5–8]. Above
FNIR = 0.01 au, the residual populations of all Rydberg states
drop significantly as the NIR pulse increasingly depopulates
the Rydberg states by ionization.

5. Effective restricted basis model

In order to obtain more qualitative insight into the dynam-
ics of two-color XUV–NIR ionization of helium, an effec-
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Figure 6. Residual populations in selected Rydberg states at the end
of both pulses, for a relative delay of τ = 0 fs and as a function of
the NIR field strength, at a fixed NIR wavelength λNIR = 788 nm.
(a): TDSE results. (b): effective restricted basis model results.

tive restricted basis model is constructed. The model is built
by expanding the wavefunction |Ψ(t)〉 in terms of a restricted
basis which includes the bound states and the continua of
the helium atom that can be populated by one XUV pho-
ton and up to three NIR photons, i.e. including states with
orbital angular momenta up to �max = 4. The experimental
and numerical PADs show features associated with Rydberg
states with angular momentum � = 1 and � = 3 and a prin-
cipal quantum number of n � 5. Therefore, we restrict the
expansion of the wavefunction |Ψ(t)〉 in terms of the |1snp〉
and |1snf〉 states to n � 5. The PADs do not show any fea-
tures associated with |1sns〉 and |1snd〉 states, but these states
serve as off-resonant intermediates. Therefore we expand the
wavefunction on these series without any restriction on the
principal quantum number. Hence, the following ansatz for
the wavefunction is introduced:

|Ψ(t)〉 = c1s2 (t)|1s2〉+
∞∑

n=2

cns(t)|1sns〉+
5∑

n=2

cnp(t)|1snp〉

+

∞∑
n=3

cnd(t)|1snd〉+
∑

n=4,5

cnf(t)|1snf〉

+
∑

�=s,p,d,f,g

∫ ∞

0
dε�cε�(t)|1sε�〉 (2)

where the system is initially in the ground state, i.e.
〈1s2|Ψ(−∞)〉 = 1. cn�(t) and cε�(t) are the time-dependent
amplitudes of the bound states and the continua, respectively.
For shortness of notation we indicate the amplitudes of the
bound states only by the quantum numbers of the excited
electron cn�(t) and continuum states with energy ε by cε�(t),
assuming that the second electron always occupies the 1s shell.

Figure 7. Schematic depiction of the two-color photoionization of
helium atoms, showing the relevant states and transitions in the
effective restricted basis model. The inset on top of the figure shows
the 3D representation of the spherical harmonics corresponding to
the photoelectron partial waves |YL0| for each continuum channel.

This wavefunction is inserted in the TDSE i∂t|Ψ(t)〉 =
H(t)|Ψ(t)〉, where the time-dependent Hamiltonian in the
length gauge is given by Ĥ(t) = Ĥ0 − d̂ · E(t, τ ). Here Ĥ0

describes the field-free atom, d̂ is the dipole operator and
E(t, τ ) is the two-color field, with relative delay τ between
the XUV and NIR pulses. The XUV and NIR pulses, are
assumed to have Gaussian envelopes with full-width at half-
maximum (FWHM) of 5 fs and 50 fs and, like in the numerical
TDSE simulations of section 3, the XUV pulse is composed
of a sum of equally intense (3.5 × 1010 W cm−2) harmon-
ics qωNIR with q = 13, 15, 17, 19. Both pulses are linearly-
polarized and their polarizations are taken to be parallel. The
transitions considered in the model are restricted by the dipole
selection rules for linearly polarized light Δ� = ±1, Δm = 0.
For the XUV field we consider couplings of the ground state
|1s2〉 to the |1snp〉 series by H13 and H15 as well as to
the |1sεp〉 continuum by H17 and H19. In figure 7 we depict
the relevant states and transitions considered in the effective
model.

It is possible to use simple considerations in order to
exclude some of the NIR-induced transitions from the model.
Due to the relatively weak NIR intensity used in the exper-
iment, multi-photon NIR-only transitions from the ground
state and the AC Stark effect of the ground state are ignored.
Hence the NIR field influences only the Rydberg states and
the continua. Moreover, we exclude NIR-induced continuum-
continuum transitions in our treatment due to the small prob-
ability of an electron absorbing an NIR photon when far
away from the ion core.

At the intermediate intensities considered in this work the
NIR field induces substantial AC Stark shifts on both the Ryd-
berg and continuum states. AC Stark shifts of Rydberg states
in helium were investigated most recently in reference [23].
Following reference [23], we model the AC Stark shift as a
ponderomotive shift Up(t) = |FNIR(t)|2/4ω2

NIR, except for the

8



J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 164003 N Mayer et al

|1s2p〉 states. The AC Stark shift of the |1s2p〉 state is known to
have a complex NIR intensity dependence [23]. We extract its
intensity-dependent AC Stark shift from the numerical results
of reference [23].

The insertion of the ansatz (2) in the TDSE leads to a
system of coupled differential equations for the bound cn�(t)
and continuum cε�(t) amplitudes. Note that in the ansatz (2)
the expansion of the wavefunction |Ψ(t)〉 on the |1sns〉 and
|1snd〉 states involves two infinite sums (since there is no
restriction on the principal quantum number n); this in prin-
ciple would lead to an infinite number of coupled equations,
which would make the model numerically untreatable. In
order to avoid treating the two Rydberg series explicitly, it is
possible to use an adiabatic elimination procedure [24–26].
The procedure is based on the fact that the NIR-induced tran-
sitions leading to excitation of |1sns〉 and |1snd〉 Rydberg
states are off-resonant (i.e. the energy separation between
the Rydberg states of these and the neighboring series are
much larger/smaller than one NIR photon). Consequently,
their amplitudes (cns(t) and cnd(t)) oscillate quickly compared
to the ones of the neighboring Rydberg series (cnp(t) and
cnf(t)); in this procedure the approximation ċns/d(t) � 0 is
then made and the resulting adiabatic expression for the dis-
crete amplitudes is substituted in the remaining coupled dif-
ferential equations. The explicit treatment of the amplitudes
for the continuum states cε�(t) would also make the model
computationally expensive, due to the appearance of integrals
over the photoelectron energy ε in the system of coupled
equations. By taking the approximation of a flat contin-
uum, i.e. a slow dependence of the dipole matrix elements
between bound and continuum states 〈1sn�|d̂|1sε�′〉 on the
photoelectron energy ε, it is possible to remove the contin-
uum amplitudes from the coupled equations as well [24–26].
We refer the reader to appendix A for a more detailed
description of the adiabatic elimination procedure for the
off-resonant and continua states.

By applying the adiabatic elimination of the off-resonant
and continuum states and using the rotating wave approxima-
tion (RWA), a system of coupled differential equations for the
amplitudes of the ground state |1s2〉 and the |1snf〉 and |1snp〉
Rydberg states is obtained. Denoting the vector of amplitudes
as c(t) = {c1s2 (t), c2p(t), c3p(t), c4p(t), c5p(t), c4f(t), c5f(t)}, the
system of differential equations may be cast in a matrix form:

iċ(t) = Heff(t)c(t) (3)

Heff(t) = H0 + Up(t) + Γ(t) +Ω(t) + V(t) (4)

here H0 is a diagonal matrix of the field-free energies of
the discrete states, which are taken from the NIST database
of atomic energy levels [27]. Up(t) is a Stark shift matrix,
which we model as explained previously; Ω(t) accounts for
the one-photon dipole coupling of the ground state to the
|1snp〉 series; Γ(t) is a complex-valued matrix which appears
in the adiabatic elimination procedure (see appendix A),
which accounts for one-photon coupling of the Rydberg states
to the continua, as well as two-photon couplings of the Ryd-
berg states to each other via V-type and Λ-type transitions;
finally, V(t) takes into account the coupling of the |1s2p〉

state to the |1snp〉 and |1snf〉 states via absorption of two
NIR photons. The matrix elements of the matrices mentioned
above are given by

Ω1 j(t) = 〈1s2|d̂| j〉FXUV(t) (5)

Ω j1(t) = (Ω1 j(t))∗ (6)

Γii(t) = − i
2
Γi(t) = − i

2

∑
�

Γi�(t) (7)

Γi� = π|〈i|d̂|1sε�〉|2|FNIR(t)|2 (8)

Γi j(t) = − (qi j + i)
2

∑
�

√
Γi�(t)Γ j�(t) (9)

qi j =
2|FNIR(t)|2∑

�

√
Γi�(t)Γ j�(t)

[∑
k

dikdk j

Ek − En + ωNIR
+

−
∑

l

P
∫

dε�
diε�dε� j

ε� − Ei − ωNIR

]
(10)

V2p,n�(t) =
|FNIR(t, τ )|2

4
ei2ωNIR(t−τ )

∑
i

〈1sn�|d̂|i〉〈i|d̂|1s2p〉
E2p − Ei + ωNIR

(11)

Vn�,2p(t) = V∗
2p,n�(t) (12)

here we used the short notation dik = 〈i|d̂|k〉 and diε� =

〈i|d̂|1sε�〉 for the dipole matrix elements. The formal expres-
sion for the matrix element V2p,n�(t) is obtained by second-
order perturbation theory. As explained in more detail in
appendix B, we manually adjust the strength of the matrix ele-
ments of V(t) in order to reproduce the intensity-dependent
behavior of the residual populations obtained by numer-
ical solution of the TDSE in figure 6(a). The strength
of the matrix elements is reported in table B1 of appendix B.
The diagonal elements of the matrix Γ(t) are the decay
rates of the bound states toward the continua while the off-
diagonal elements correspond to the two NIR-photon coupling
of two Rydberg states with Δ� = ±2 via the continuum and
via off-resonant bound states reachable by the selection rules
for linearly polarized light. The parameter qij is the Fano
parameter [26, 28], which governs the ratio between the
transition strength of the two-photon coupling via the off-
resonant bound states (V-type transition) and the continuum
states (Λ-type transition). The Fano parameters are adjusted
according to the matrix elements of the matrix V(t) (see
appendix B for more detail) and are reported in table B1 of
appendix B. All remaining dipole matrix elements are cal-
culated using the central potential model for helium as in
[28, 29]. In this approach, the excited state wavefunction
is taken as hydrogen-like with effective quantum numbers
n, � aimed at reproducing the field-free energy of the Ryd-
berg state. This allows for analytical evaluation of all dipole
matrix elements. As shown in appendix C, the central poten-
tial method is in excellent agreement with the existing lit-
erature [30, 31] for the range of bound and continua states
considered in this paper.
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After the adiabatic elimination of continua, the amplitudes
cε�(t) are no longer directly determined. After numerical inte-
gration of the differential equations (3), they can be calcu-
lated by inserting the resulting discrete amplitudes cn�(t) in the
formal solution for the continuum equations in the RWA

cε�(t) =
i
2

∫ t

t0

dt′
∑
n,�′

cn�′(t
′)eiφ(t′)e−i(ωε�−ωn�′−ωNIR)t

× FNIR(t)〈1sε�|d̂|1sn�′〉 (13)

where ωε� and ωn�′ are the kinetic energy of the electron
in the continuum and the energy of the Rydberg state,s
respectively. This expression takes into account the time-
dependent ponderomotive shift of the continua due to the

NIR field via φ(t′)=
∫ t′

t0
dτUp(τ ), where, as before, Up(t) =

|FNIR(t)|2/4ω2
NIR. The energy-resolved photoelectron distribu-

tions are given by the sum over all angular momenta of the
squared amplitudes of the continua at large detection times
Pε =

∑
� |cε�(t →+∞)|2. The PADs can be found by express-

ing the outgoing photoelectron wavefunction in partial waves
corresponding to the different continua [32]:

f (ε, θ) =

∣∣∣∣∣
∑
�

c∗ε�(∞)i�e−iδε�

√
2�+ 1

4π
P�(cos θ)

∣∣∣∣∣
2

(14)

where θ is the angle between the momentum of the photoelec-
tron and the laser polarization axis, δε� = arg[Γ(1 + �− i/k)]
(where Γ is the Gamma function) is the Coulomb phase shift
of the �th partial wave with momentum k =

√
2ε and P� is

the Legendre polynomial of order �. In order to facilitate the
comparison with the PADs obtained in the experiment and the
TDSE calculations, we produce PADs resolved in the momen-
tum of the photoelectron f(k, θ) = (dε/dk)f(ε, θ) in figures 3(e)
and (f).

6. Discussion

The photoelectron angular distributions obtained from the
effective restricted basis model for an NIR field intensity of
3.51 TW cm−2 and a carrier wavelength λNIR = 788 nm are
compared to the experimental and TDSE results in figures 3(e)
and (f) for a relative delay of τ = 0 fs and τ = 58 fs,
respectively, where, like in the TDSE calculations, the pos-
itive time-delay is chosen such that the XUV pulse fully
arrives before the NIR pulse. The PADs clearly reproduce
the features observed in the experimental and numerical
results. The residual populations in the Rydberg states
|cn�(∞)|2 for a relative XUV–NIR time delay τ = 0 fs are
shown in figure 5(d) as a function of the carrier wavelength
λNIR for a fixed field strength FNIR = 0.004 au. They repro-
duce the TDSE results in figure 5(a) qualitatively and quan-
titatively, which confirms that the model is able to capture
the essential transitions that are responsible for the com-
bined XUV–NIR ionization. Small deviations are observed
at longer NIR wavelengths above λNIR = 800 nm. TDSE cal-
culations (not reported here) show that in this region other
Rydberg states such as the |1s5s〉 state are also populated,

which were removed in the model by the adiabatic elimina-
tion procedure. This indicates that the assumption for the adi-
abatic elimination, i.e. the off-resonant nature of transitions
toward the |1s5s〉 state, breaks down at these longer wave-
lengths. In figures 5(e) and (f), we report the residual pop-
ulation in the |1snf〉 states for an XUV pulse composed of
harmonic H13 (light shaded areas) or H15 (darker shaded
area) only. In the case of an XUV pulse consisting of H13,
the residual populations for the |1snf〉 states are much larger,
confirming that these states are populated via the |1s2p〉
state. While in both cases the restricted basis model over-
estimates the contributions from V-type and Λ−type tran-
sitions to the residual populations in the |1snf〉 states for
H15, the deviations are larger for the |1s4f〉 state. This might
be a result of the adjustment of the strength of the two-
photon couplings in the model, which aimed at reproducing the
intensity dependence of the residual populations at the fixed
wavelength λNIR = 788 nm.

Figure 6(b) shows the residual populations resulting from
the model as a function of the field strength FNIR for a car-
rier wavelength of λNIR = 788 nm and for a relative delay
of τ = 0 fs. The main features observed in the TDSE results
are reproduced, although small deviations persist especially
at higher field strengths. Similar to the TDSE results, the
residual population in the |1snf〉 states becomes larger than
the population in the |1s5p〉 state at a field strength of ca.
FNIR = 0.005 au (0.9 TW cm−2); this indicates that, above
this NIR field strength, the pathway leading to the |1snf〉 states
via the |1s2p〉 state dominates over the one-photon excitation
of the |1snp〉 states by H15. At even larger field strengths
FNIR > 0.01 au (3.51 TW cm−2) the model predicts larger
residual populations in the Rydberg states compared to the
TDSE results. This is expected, as at these larger field strengths
the Keldysh parameter γ = ω

√
2Eb/FNIR (where Eb is the

binding energy) approaches unity for the Rydberg states, indi-
cating that the NIR field cannot be treated perturbatively. As a
consequence, the model underestimates the ionization rate of
the Rydberg states.

By using the model, we can explain why the appearance
of G-waves occurs predominantly during the overlap between
the XUV and NIR pulses. In figure 8, we report the time-
dependent populations |cn�(t)|2 of the Rydberg states for the
case of a relative delay between the XUV and NIR pulses
of τ = 0 fs (figure 8(a)) and τ = 58 fs (figure 8(b)) for an
NIR field with a field strength of FNIR = 0.01 au and a wave-
length λNIR = 788 nm. The populations in the |1snp〉 states
display fast oscillations during the XUV pulse, where each
of the oscillations correspond to one of the attosecond pulses
composing the XUV attosecond pulse train. The amplitude of
the oscillations depends on two factors: the absorption cross-
section of the |1snp〉 Rydberg states (which scales with respect
to the principal quantum number of the bound state as n−3)
and the detuning between the harmonic frequencies and the
energy of the Rydberg states in the presence of the NIR field.
The n−3 dependence of the absorption cross-section of the
|1snp〉 Rydberg states results in a smaller population trans-
fer to the higher lying states with respect to the lower lying
ones. The effect of the relative detuning of the harmonic fre-
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Figure 8. (a) and (b): time-dependent Rydberg states populations |cnl(t)|2 obtained from the effective restricted basis model for a fixed NIR
field strength FNIR = 0.01 au (3.51 TW cm−2) and a wavelength of λNIR = 788 nm. (a): the relative delay between the XUV and NIR pulses
is τ = 0 fs, (b): the relative delay between the XUV and NIR pulses is τ = 58 fs. The light shaded red area represents the NIR envelope
scaled for visibility. The insets in (a) and (b) show the energy-integrated, angle-resolved photoelectron signal associated with ionization of
n = 5 Rydberg states, where the black arrows indicate the polarization vector of the laser fields.

quencies to the Rydberg state energies may be instead appre-
ciated by looking at the relative amplitude of the oscillations
of each |1snp〉 state in figure 8(a): the population in the |1s4p〉
state displays an almost smooth time-dependence due to its
energy being almost resonant with H15, while the population
of the other |1snp〉 states varies sharply at each oscillation
around t = 0 fs.

In figure 8(a) at the end of the NIR pulse the popula-
tion is largely in the |1snf〉 states while the |1snp〉 states
are almost completely depleted. For the n = 3, 4, 5 members
of the |1snp〉 Rydberg series the depletion is largely due
to one-photon ionization toward the |1sεs〉 and |1sεd〉 con-
tinua. The time-dependent behavior of the |1s2p〉 state at
τ = 0 fs requires a more detailed analysis. Since the H13
is off-resonant with respect to the |1s2〉 − |1s2p〉 transition,
the population in the |1s2p〉 state is present only transiently
during the XUV pulse. Therefore, a limited time window is
available for the NIR field to transfer the transient |1s2p〉 pop-
ulation to the high-lying |1snf〉 states via the absorption of
two NIR photons. In figure 8(a), two-photon Rabi oscillations
with a period of � 14 fs between the |1s2p〉 (blue line) and
|1snf〉 (magenta and orange lines) populations can be observed
on the falling edge of the NIR field. Similar Rabi oscilla-
tions between these states were also observed in the literature
[23, 33]. When the two pulses are not overlapping in time,
the excitation of |1snf〉 states and the subsequent one-photon
ionization toward the |1sεg〉 continuum is much less effi-
cient. In figure 8(b) we show the time-dependent populations
during the NIR pulse for τ = 58 fs. Prior to the onset of
the NIR pulse the XUV pulse induces substantial population
in all |1snp〉 states (notice that the population of the |1s3p〉
and |1s4p〉 states even goes offscale in figure 8(b)). On the
rising edge of the NIR pulse, one-photon processes domi-
nate and a large drop of population in the |1snp〉 states is
observed due to ionization toward the S- and D-continua.
Around the peak of the NIR pulse the two-photon coupling
between |1snp〉 and |1snf〉 states becomes appreciable. In the
insets of figure 8, we show the photoelectron angular distribu-
tions associated with the ionization of n = 5 Rydberg states,
obtained by integrating the PADs within an interval of 0.30 eV
around the photoelectron peak corresponding to one-photon
ionization of n = 5 Rydberg states; the switching between

G- and D-wave is evident as the NIR–XUV delay is varied
between τ = 0 fs and τ = 58 fs.

To complete the analysis we investigated the effect of
the XUV pulse chirp on the resulting PADs. We introduced
positive and negative chirp leading to approximately twice
longer XUV pulses as compared to the unchirped pulses
used in the main calculations. The chirp of the XUV pulse
does not change the photoelectron distributions apprecia-
bly, apart from small variations of the relative intensities of
Rydberg-mediated ionization channels due to the redistribu-
tion of the XUV pulse intensity under the envelope of the
NIR probe pulse.

Let us now turn to the question of why the off-resonant
pathway to the |1snf〉 states via the |1s2p〉 state (accompa-
nied by the absorption of an H13 photon) dominates over
other pathways coupling the |1s4p〉 and |1s5p〉 states (pro-
duced by the absorption of an H15 photon) to the |1snf〉 states
by Λ−type transitions and V-type transitions involving the
same number of NIR and XUV photons (see figure 7). For
the explanation, it is sufficient to invoke the Fano propensity
rules [34]. The propensity rules state that absorption (emis-
sion) of a photon tends to increase (decrease) the orbital
angular momentum �. That is, in absorption (emission) the
dipole matrix element 〈1sn�|d̂|1sn′�′〉 is larger (smaller) when
�′ = �+ 1 (�′ = � − 1). These propensity rules in atomic
transitions are valid for bound–bound transitions as well as
for bound–continuum and continuum–continuum transitions
[34, 35]. The Λ− and V-type transitions violate the propen-
sity rules and, therefore, the associated transition probabili-
ties are strongly suppressed with respect to the H13 + 2ω
pathway. To show this quantitatively, we report in table 1 the
radial parts of the dipole matrix elements calculated using
the effective hydrogen-like helium potential mentioned above
and described in detail in appendix C for the Λ− and V-
type pathways involving the |1s4p〉 and |1s5p〉 states and the
2p + 2ωIR pathway from the |1s2p〉 to the |1snf〉 states via
the |1s3d〉 state. The second, third and fourth columns of
table 1 show the absolute value of the radial dipole matrix
elements between the initial state and the |1s3d〉 state, between
the |1s3d〉 state and the |1s4f〉 state and between the |1s3d〉
state and the |1s5f〉 state, respectively. The last two columns
of table 1 correspond to the products of the matrix ele-
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Table 1. Absolute values of the radial part of the dipole matrix element (in atomic units) of the pathways coupling the
|1snp〉 and |1snf〉 states, as obtained in the effective restricted basis model. The Λ and V symbols indicate, respectively, the
pathways via the continuum |1sεd〉 and via the |1s3d〉 state (see figure 7). For the calculation of the bound-continuum matrix
elements, we have used an NIR wavelength λNIR = 788 nm.

Pathways rD = |〈1snp|r|1s3d/εd〉| r4f = |〈1s3d/εd|r|1s4f〉| r5f = |〈1s3d/εd|r|1s5f〉| rD · r4f rD · r5f

2p + 2ωIR 4.82 10.22 3.32 49.30 16.00
4p(Λ) 4.23 0.21 0.26 0.89 1.10
5p (Λ) 3.77 0.21 0.26 0.79 0.98
4p(V) 1.20 10.22 3.32 12.26 4.31
5p(V) 0.45 10.22 3.32 4.60 1.50

ments of each dipole transition for the V-, Λ- and 2p +
2ωNIR transitions and are a good indicator for the relative
strength of the different pathways. The matrix element for the
2p + 2ωNIR pathway is at least four times stronger than that
of all other pathways. Moreover, recent work [23] has clearly
shown that the AC Stark shift of the |1s2p〉 state due to the
NIR field—for intensities similar to the ones used here—tends
to lower the energy of the Rydberg state, shifting it toward
resonance with H13. The transition probability is therefore
enhanced also by the AC Stark shift of the |1s2p〉 state, which
is included in the present model.

7. Conclusions

In this work we have systematically studied the time-resolved
NIR-assisted XUV photoionization of atomic helium at mod-
erate NIR intensities up to several TW cm−2 for a range of
NIR wavelengths. We have employed velocity map imag-
ing spectroscopy to record the NIR wavelength and intensity
dependence of the angle- and energy-resolved momen-
tum distribution of the photoelectrons created in two color
XUV–NIR photoionization for different time delays between
the XUV and NIR pulses. The results show a dependence
of the PADs on the relative delay between the XUV and
NIR pulses; at large delays when the XUV comes first, one-
photon ionization of the |1s3p〉, |1s4p〉 and |1s5p〉 Rydberg
states mainly contributes to the photoelectron spectra and
D-waves are observed in the PADs. At zero delay when
the two pulses are overlapping in time, the angular distri-
butions change dramatically and point to the population of
the |1s4f〉 and |1s5f〉 states and their one-photon ionization
toward the |1sεg〉 continuum. The G-wave contributions to
the PADs are enhanced for shorter NIR wavelengths and
higher NIR intensities. The experimental results are com-
plemented by solution of the TDSE in the SAE approxima-
tion. The TDSE simulations allow tracking of the residual
population in the Rydberg states of helium at the end of
both pulses, an observable which is not directly accessible
in the experiment. Simulations with an XUV pulse consist-
ing of only H13 or H15 show the central role that the off-
resonant |1s2p〉 state plays in the photoionization dynamics,
as its transient population can be transferred via the absorp-
tion of two NIR photons to the higher-lying |1snf〉 states, pro-
vided the two pulses are substantially overlapping. In order
to get further confirmation and an intuitive explanation of
the 2p + 2ωNIR pathway as the dominant transition lead-
ing to the appearance of G-waves in the PADs, we have

constructed an effective restricted basis model. In this model
we expand the wavefunction over a reduced basis set of bound
and continuum states, employ the adiabatic elimination of the
continuum and solve the TDSE with laser parameters similar
to the ones used in the experiment and the TDSE simula-
tions. We confirm the numerical and experimental observa-
tions by analyzing the time-dependent populations in the Ryd-
berg states, hence providing a full analysis of the two-color
dynamics. The results of the effective model, built on the
experimental and numerical TDSE results, indicate that in
the regime of intermediate NIR intensities at which many
time-resolved attosecond experiments are carried out, one-
and multi-photon transitions can have comparable strength
depending on the resonant conditions and angular momentum
transfer. The observables obtained from the experiment and
the TDSE simulations depend thus on several factors, which
can enhance or suppress the multi-photon nature of the pro-
cesses involved and make the interpretation of the results a
difficult task. In these cases the construction of a relevant effec-
tive restricted basis model based on the considerations pre-
sented here makes it possible to explain the complex dynamics
underlying an attosecond experiment.
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Appendix A. Adiabatic elimination of the continua
and off-resonant discrete states

In order to obtain the system of coupled differential
equations (3), we start from the Hamiltonian H(t) defined in
the text and the following ansatz:

|Ψ(t)〉 = c1s2 (t)|1s2〉+
∑
n,�

cn�(t)e
−iωn�t|1sn�〉

+
∑
�

∫ ∞

Ip

dε�cε�(t)e
−iε�t|1sε�〉 (A.1)
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where cn�(t), cε�(t) are the time-dependent amplitudes of the
bound and continuum states, ωn� are the field-free energies
of the Rydberg states (in atomic units) and ε� is the contin-
uum energy. The sum over the bound states principal quan-
tum number is taken over n = �+ 1, . . . ,∞ and we restrict
the orbital angular momentum � to the maximum value of
� = 4, i.e. we consider the bound states up to the |1sng〉 series
and continua states up to |1sεg〉. The initial condition is that
the system is in the ground state |Ψ(−∞)〉 = |1s2〉. In the
above ansatz, we have set the energy of the ground state as the
zero energy, i.e. ω1s2 = 0. The upper limit of the continuum
energy is set at +∞, since for the photon frequencies hereby
considered resonances such as doubly excited states lie well
above the energies that are reached in the experiment. Insert-
ing the ansatz in the TDSE leads to a system of coupled
integro-differential equations for the discrete and continuum
amplitudes. In order to simplify the description, we make
use of the adiabatic elimination of the continua as described
in [24–26]; the latter consists in formally integrating the
equations for the continua and substituting the resulting
expressions into the equations for the discrete states. Mak-
ing use of the rotating wave approximation together with the
assumption that the continuum is flat, that is the bound-free
dipole matrix element 〈1sn�|d̂|1sε�′〉 is a slow function of the
continuum energy ε�′ = ωn� + ωNIR in the range spanned by
the bandwidth of the laser field with frequency ωNIR, it is pos-
sible to define an effective decay rate and AC Stark shift of the
bound state due to the coupling to the continuum:

Γiε�(t) = π|〈i|d̂|1sε�〉|2|FNIR(t)|2 (A.2)

Siε�(t) = P
∫ +∞

Ip

|〈i|d̂|1sε�〉|2|FNIR(t)|2dε�
ε� − ωi − ωNIR

(A.3)

where P indicates the Cauchy principal value of the inte-
gral and ωi is the field-free energy of the Rydberg state
in atomic units. In the numerical simulations, we approxi-
mate the Stark shift Si(t) by the ponderomotive shift Up(t) =
|FNIR(t)|2/4ω2

NIR for all Rydberg states except for the |1s2p〉
state for which we extract the field dependence of the Stark
shift from [23]. Note that the adiabatic elimination of the
continua also leads to off-diagonal elements describing
the coupling of the Rydberg states via the common con-
tinua (equation (9) in the main text). For the off-resonant
bound states, we proceed analogously by noticing that when
the detuning between two bound states Δij = Ei − Ej +
ωNIR is substantially larger than the bound–bound dipole
matrix element 〈i|d̂| j〉, one can approximate ċi(t) � 0. This
results in the adiabatic expression for the ci(t) amplitude
which may then be substituted in the remaining differential
equations. The resulting system of equations is the one in
equations (3)–(12) of the main text.

Appendix B. Matrix elements of V(t) and Fano
parameters qij

The time-dependent matrix Heff(t) describing the system of
coupled differential equations (3) was briefly described in the

Table B1. Parameters for the coupled differential equations (3).

V2p,5f 60 au
V2p,4f 30 au
V2p,5p 6 au
V2p,4p 3 au
q̃4p,4f 1.97
q̃5p,5f 3.94
q̃4p,5f 2.78
q̃5p,4f 2.78

main part of this article. In this appendix we describe the
adjustment of the matrix elements of the matrix V(t) men-
tioned in the main text as well as the Fano parameters qij

appearing in the expression for the matrix elements of the
matrix Γ(t). The expression for the matrix elements of V(t) is
given in second-order perturbation theory and rotating wave-
approximation by

V2p,n�(t) =
|FNIR(t, τ )|2

4
ei2ωNIR(t−τ )

∑
i

〈1sn�|d̂|i〉〈i|d̂|1s2p〉
E2p − Ei + ωNIR

(A.4)

Vn�,2p(t) = V∗
2p,n�(t) (A.5)

where the index i runs over the members of the |1sns〉 and
|1snd〉 series for transitions to |1snp〉 final states and |1snd〉
series for transitions to |1snf〉 final states. In the above expres-
sions τ is the relative delay between XUV and NIR. Due to
the poor convergence of the sum

∑
i resulting from pertur-

bation theory, we take these matrix elements as fit param-
eters in our calculations, with the aim of reproducing the
contribution of G-waves in the experiment and TDSE calcu-
lations of section 4. We vary the strength between the V2p,4f

and V2p,5f matrix elements while keeping the ratio of the
matrix elements toward final |1snf〉 and |1snp〉 states fixed
at V2p,nf/V2p,np = 10. The order of magnitude roughly repro-
duces the ratio between matrix elements from the |1s3d〉 state
toward final |1snp〉 and |1snf〉 states (see the second and third
columns of table 1). We find optimal agreement for V2p5f =
60 au and V2p4f = 30 au. The matrix elements are reported
in table B1.

The parameter qij (equation (10) in the main text) is the
Fano parameter [26, 28], which gives the ratio between the
transition strength of the two-photon coupling via the off-
resonant bound states (V-type transition) and the continuum
states (Λ-type transition). From the above two-photon cou-
pling matrix elements V2p,n� between the |1s2p〉 and upper
lying |1snf〉 and |1snp〉 states for n = 4, 5, we estimate the
V-type couplings between |1snp〉 and |1snf〉 states by restrict-
ing the sum in equation (18) to the |1s3d〉 state, since all
other |1snd〉 members of the Rydberg series are far away from
resonance with the considered transitions

〈1snp|d̂|1s3d〉〈1s3d|d̂|1snf〉
Enp − E3d − ωNIR

�
√

V2p,npV2p,nf

〈1s2p|d̂|1s3d〉
, (A.6)
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Figure C1. Comparison of the effective potential model with literature. (a): bound state wavefunctions for |1s2s〉 and |1s3s〉 Rydberg states
(dots: reference [31], dashed lines: model potential); (b): continuum wavefunctions for |1sεp〉 for a range of energies E = k2/2 (dots:
reference [31], dashed lines: model potential); (c): partial ionization cross sections for |1s2p〉 and |1s3p〉 states toward |1sεs〉 and |1sεd〉
continua for photoelectron energies up to 2 eV (solid lines: reference [30], dots: model potential); (d) same as in (c) but for photoelectron
energies between 2 eV and 8 eV; in the inset we enlarge the figure between 0 and 0.5 Mb to better display the cross section toward the
|1sεs〉 final continuum state.

resulting in the Fano parameters given in table B1, where

q̃i j = qi j

∑
�

√
Γi�(t)Γ j�(t)

2|FNIR(t)|2 . (A.7)

Appendix C. Effective potential for He

We follow the approach described in [28, 29] and assume a
central potential model, where the excited electron wavefunc-
tion is taken as a hydrogen-like wavefunction. The effective
quantum numbers in the model potential are different than the
ones obtained in the typical quantum defect theory (QDT) as,
in our case, the radial quantum number is forced to have inte-
ger values while the orbital angular momentum can assume
non-integer values. We refer the reader to the literature for fur-
ther details on the adopted model [29]. For the relevant states
in He considered in this article, the quantum defects quickly
become small for increasing principal quantum number n and
orbital angular number �. We take the field-free energies En�

for the Rydberg states and the ionization potential Ip from
the NIST database and find the effective principal, orbital and
radial quantum number from the expressions

n∗ =

√
1

2|En� − Ip|
(A.8)

nr = n − �− 1 = n∗ − �∗ − 1 (A.9)

�∗ = n∗ − nr − 1. (A.10)

The hydrogenic wavefunctions describing the Rydberg and
continua states are then defined by the effective quantum
numbers. When considering the radial part of the dipole
matrix element for bound-bound and bound-free transitions,
this approach allows one to find an analytical expressions
in terms of the Appell hypergeometric function F2 [28].
To test the quality of the approximation by the effec-
tive wavefunctions, we compare them with the literature in
figure C1: the agreement is excellent. As mentioned before,
since the quantum defects decrease for increasing n and
�, we expect an even better agreement for the |1snf〉 and
|1sε�〉 states with � = 0, 2, 4. Furthermore, we find excellent
agreement with the partial photoionization cross-sections for
the |1s2p〉 and |1s3p〉 states toward the |1sεs〉 and |1sεd〉
continua found in literature [31] and the transition strength
for bound–bound transitions between the first few Rydberg
states of the |1sns〉 and |1snp〉 series when these effective
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wavefunctions are used to calculate the dipole matrix elements
[36, 37].
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