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So far, it has been assumed that selective excitation of a desired
valley in the Brillouin zone of a hexagonal two-dimensional
material has to rely on using circularly polarized fields. We
theoretically demonstrate a way to control the valley excitation
in hexagonal 2D materials on a few-femtosecond timescale
using a few-cycle, linearly polarized pulse with controlled
carrier–envelope phase. The valley polarization is mapped
onto the strength of the perpendicular harmonic signal of a
weak, linearly polarized pulse, which allows to read this infor-
mation all-optically without destroying the valley state and
without relying on the Berry curvature, making our approach
potentially applicable to inversion-symmetric materials. We
show applicability of this method to hexagonal boron nitride
and MoS2. ©2021Optical Society of America under the terms of the
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Generation of few-cycle laser pulses with controlled electric field
oscillations under the envelope, i.e., controlled carrier–envelope
phase (CEP), catalyzed the development of attosecond physics
and technology, providing tools to control electron dynamics on
a sub-laser-cycle timescale [1,2]. Attosecond technology has now
started to develop its potential in condensed matter, in particu-
lar via high harmonic generation (HHG) [3–8], including 2D
materials [9–11]. The practical possibility of shaping individ-
ual oscillations of an optical laser pulse marks first steps towards
lightwave electronics—the sub-cycle monitoring and steering of
electronic dynamics in solids [12–14], which holds the potential
to increase the speed of information processing from the current
gigahertz to the petahertz rate (petahertz lightwave electronics.)

Almost simultaneously with the advent of CEP-controlled
few-cycle pulses, the isolation of a single layer of graphene signaled
a breakthrough in modern material science and condensed matter
physics [15]. The fascinating electronic properties of graphene,
with carriers following the massless Dirac equation at the two
points of the Brillouin zone K and K′, led to a plethora of new
physical phenomena such as the anomalous integer quantum

Hall effect and topological superconductivity [16]. Similar exotic
properties were found also in graphene’s insulating counterpart,
i.e., hexagonal boron nitride (hBN) and in other 2D materials
such as transition metal dichalcogenides (TMDs). One of the most
promising aspects of these insulating 2D materials is their ability to
support an extra electronic degree of freedom, i.e., the valley pseu-
dospin, which labels the energy-degenerate extrema of the bands
and can serve as an additional information carrier for information
processing [17–19].

In hexagonal monolayers with broken inversion symmetry,
the minimum band gap is located at the K and K′ Dirac points
[Fig. 1(a)], which form energy-degenerate valleys in the land-
scape of the valence and conduction bands [17]. For a model with
one valence and one conduction band, the Bloch electrons carry
equal but opposite orbital magnetic moment m(k) in the neigh-
borhood of the two valleys: m(k)= e

2~�(k)εg (k) [17]. Here,
εg (k)= εc (k)− εv(k) is the difference in energy dispersions
between the two bands, and�(k) is the Berry curvature, which is
normal to the monolayer and opposite in both valleys [Fig. 1(b)].
This leads to valley selection rules: right-circularly polarized pho-
tons couple to K, while left-circularly polarized photons couple to
K′ [17]. Hence, optical excitation with band-gap-resonant circular
drivers generates a valley asymmetry and opens a way to use the val-
ley pseudospin—the core idea of valleytronics. Helicity-induced
valley initialization has been established with resonant circu-
larly polarized drivers [20] and with single-cycle circular drivers
[21]. Ultrafast coherent control of valley selection, i.e., switching
between inducing excitation at K and at K′ on timescales shorter
than valley depolarization, is a major challenge, recently addressed
using resonant, circular pump fields phase-locked to strong tera-
hertz fields [22] and tailored pulses [23]. The wide variety of
materials that can be used and combined for valleytronics demands
non-material-specific methods for ultrafast valley switching, along
with the development of optical measurement schemes of the
valley polarization [18,19].

The valley selection rules suggest that linearly polarized light
couples equally to both valleys, and it is widely accepted that
valley polarization with linearly polarized fields is not possible
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Fig. 1. (a) Energy and (b) Berry curvature of the first conduction
band in hBN. The red dashed lines indicate the FBZ, with the K and K′

valleys at its vertices forming two triangular sub-lattices. (c) Electric field
(top) and vector potential (bottom), in atomic units, of a 30 fs long pulse
carried at λL = 3 µm and with field strength F = 0.3 V/Å. The black
dots indicate the peak of the electric field, which coincide with the zero of
the vector potential. (d) Electron populations (normalized at each k) in
the first conduction band of hBN after the pulse in (c).

[17–19,22]. Recent work has pointed out that the use of
single-cycle pulses can lead to asymmetric electron momentum
distributions in the neighboring of the K and K′ points of graphene
and gapped-graphene systems [24,25]. Here, we demonstrate
that intense, few-cycle, linearly polarized pulses can drive the elec-
tron population between valleys, inducing a high degree of valley
polarization. The mechanism for inducing valley polarization is
non-material-specific, independent of the Berry curvature, and can
be controlled on a sub-cycle timescale by the CEP of the few-cycle
driver. This valley polarization can be read all-optically from the
high harmonic spectrum of a probe field, without destroying the
valley state.

We first consider hBN described by two bands [16], but the
concept and physics are general. At the end, we apply it to MoS2

described by 22 bands, and in Supplement 1, we consider hBN
with eight bands. Our numerical method is described in [9,26].
Briefly, we first obtain the band structure and the transition dipoles
from first principles, using density functional theory. For hBN, we
use an Heyd–Scuseria–Ernzerhof (HSE06) functional and a 12
× 12× 4 k-grid, which gives a band gap of 6 eV, which compares
well with the experimentally measured value [27]. For MoS2, we
use a Perdew–Burke-Ernzerhof (PBE) functional and an 8× 8× 2
k-grid, which gives a minimum band gap of 1.6 eV, in reasonable
agreement to that reported [20]. We then transform the Bloch basis
into a basis of maximally localized Wannier functions using the
Wannier90 code [28], projecting onto the pz orbitals of boron and
nitride for hBN (two bands) and onto the d orbitals of molybde-
num and p orbitals of sulfur for MoS2, including spin (22 bands).
The ground state density matrix is constructed as a mixed state
with no coherence between the states, where the valence bands
are fully occupied. Using the density matrix equations, the initial
state is propagated under the influence of the electric field in the
length gauge. Our single-active electron approach does not con-
sider exciton formation. Even if excitonic effects are known to be
strong in monolayers in the resonant regime, under low-frequency,
strong fields, they are expected to be weak, in the same way as in

Fig. 2. (a) Electric field (top) and vector potential (bottom) in a linearly
polarized single-cycle pulse, λ= 3 µm, peak field 1.1 V/Å. The black dots
indicate the times when the electric field peaks and electron injection
occurs mostly, corresponding to a non-zero vector potential amplitude
Ainj.

L . (b) Conduction band electron populations (normalized at each k)
after the 0K-polarized pulse in (a). Arrows indicate the streaking, from
the minimum band gap crystal momenta k0 to k= k0 − Ainj.

L .

atomic physics the influence of Rydberg states leads to small cor-
rections to the widely used strong-field approximation [29–31].
Many-body effects, as well as macroscopic propagation effects, are
included in a phenomenological dephasing time T2 [32]. Due to
the longer timescale, population relaxation during the short pulse
is neglected.

Figures 1(a) and 1(b) show the band structure and the Berry cur-
vature of two-band hBN in the first conduction band, illustrating
the energy minima and the opposite Berry curvatures at the K and
K′ valleys. Consider first the effect of a 30 fs, 3 µm linearly polar-
ized pulse with modest field strength of F = 0.3 V/A [Fig. 1(c)].
After the pulse, we extract the k-resolved electron populations in
the first Brillouin zone (FBZ) of the conduction band, shown in
Fig. 1(d). This observable can be extracted with angle-resolved
photo-emission spectroscopy (ARPES). As expected, there is no
valley polarization: linearly polarized fields, formed by equal super-
position of right and left circular drivers, couple equally to both
valleys.

Consider now few-cycle pulses, starting with the single-cycle
pulse in Fig. 2(a), which allows us to illustrate the relevant physics
in the most transparent manner. We shall turn to more realistic
pulses in Fig. 3. Figure 2(b) shows results of our simulations for
λ= 3 µm and peak electric field of E = 1.1 V/Å, corresponding
to a fluence of F = 0.13 J/cm2 for the∼8 fs duration pulse. To our
knowledge, there is no experimental study of the damage threshold
of monolayer hBN; however, that of graphene was reported to be
F = 0.2 J/cm2 [33]. In contrast to the long-pulse regime, Fig. 2(b)
shows strong valley polarization.

To understand this result, we note that the carrier frequency
of the pulse is well below the bandgap of the material. In this
regime, electrons are injected into the conduction band near
the instantaneous maxima t0 of the electric field, marked with
black dots in Fig. 2(a). Also, the injection occurs near the min-
ima of the bandgap, hence initiating the population in the K and
K′ valleys. There is no preference between the two valleys dur-
ing the injection. Charge injection is followed by light-driven
acceleration of electrons and holes inside the bands. The crystal
momentum becomes k(t)= k(t0)+ AL(t)− AL(t0), where
AL(t) is the laser vector potential, and the crystal momentum at
the moment of injection k(t0) is K or K′. After the end of the pulse
AL(t)= 0, and hence, the populations should be located around
k1(t→∞)=K− AL(t0) and k2(t→∞)=K′ − AL(t0).

In long pulses, the maxima of the electric field coincide
with the zeroes of the vector potential and AL(t0)= 0, yielding
k1(t→∞)=K and k2(t→∞)=K′ with equal population,

https://doi.org/10.6084/m9.figshare.13584767
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Fig. 3. (a), (b) Electric field (top) and vector potential (bottom) with
λ= 3 µm, peak field 1.5 V/Å, for CEP of (a) 0o and (b) 90o. (c) CEP con-
trol of the valley asymmetry defined by Eq. (1) for two dephasing times
T2 = 10 fs (blue) and 2 fs (red). (d), (e) HHG spectrum of a probe field
that comes after the pulses in (a) and (b), respectively, showing the parallel
(blue) and perpendicular (red) components to the probe polarization axis.
(f ) Intensity (blue) and phase (red) of second harmonic of the probe with
respect to the CEP of the few-cycle pulse.

as seen in Fig. 1. In few-cycle pulses, however, the vector poten-
tial does not necessarily vanish at the peaks of the electric field.
In fact, the two field peaks in Fig. 2(a) correspond to the same,
non-zero, value of the vector potential . In our simple picture, final
electron populations should cluster around k1 =K− AL(t0) and
k2 =K′ − AL(t0) [black circles in Fig. 2(b)] for the field oriented
along 0K. If AL(t0)=K−0, then k1 =0 and k2 =K, leading
to a high degree of valley polarization, as seen in Fig. 2(b). Due to
the symmetry of the lattice, the valley polarization will remain zero
when the field is polarized along 0M.

Results for more practical few-cycle pulses are shown in Fig. 3.
Figs. 3(a) and 3(b) show two pulses for the two different CEP val-
ues, CEP= 0◦ (a) and CEP= 90◦ (b). The pulses are carried at a
central wavelength λ= 3 µm, with the peak field of E = 1.5 V/Å,
corresponding to F = 0.24 J/cm2. Though the chosen fluence is
slightly higher than the damage threshold of graphene, we expect
hBN, a wide-gap semiconductor, to have a higher threshold. This
is supported by the small (8%) electron population excited by
the field into the conduction band (Supplement 1). Calculations
for weaker field strengths and different pulse envelopes are given
in Supplement 1 and do not change the main results. When
CEP= 0◦, the electric field has a single dominant peak and the
vector potential is zero at this peak, which leads to no valley polari-
zation. As the CEP is varied, the value of the vector potential at the
field peaks changes, controlling the valley polarization. Figure 3(c)
shows CEP control of the valley Hall conductivity (VHC) at the
end of the few-cycle pulse t = t f , defined as

σxy(t = t f )=−
e
~

∑
n

∫
BZ

dk

(2π)3
fn(k, t = t f )�n(k), (1)

where fn(k, t) and �n are the time-dependent k-resolved popu-
lation and field-free Berry curvature of band n, respectively. For
equal valley population, σxy is zero since�n(k)=−�n(−k), and
grows with increasing valley polarization. For systems with inver-
sion and time-reversal symmetry, where�(k) is zero, σxy vanishes
regardless of the valley polarization. For methods that rely on the
optical valley selection rule, a zero Berry curvature automatically
implies no valley polarization. This is not the case in our approach.
Since the mechanism by which we induce valley polarization does
not depend on �(k), it is possible to measure a zero VHC while

having strong valley polarization, e.g., in inversion-symmetric
materials.

While the overall dynamics in few-cycle pulses is more complex
than in the single-cycle pulse, Fig. 2(a), due to the interference
of multiple injection events and multiple Bragg scatterings, sub-
stantial VHC can be achieved and controlled by varying the CEP.
The blue curve in Fig. 3(c) shows results for a dephasing time of
T2 = 2 fs, well below the period of the field, while the orange curve
is obtained for T2 = 10 fs, corresponding to the field period. Both
situations show clear valley control. For the field parameters cho-
sen, valley polarization maximizes for CEP= 90◦, as in Fig. 2, and
vanishes for CEP= 0◦, when the vector potential at the peak of the
field is equal to zero, as expected from the above analysis. The VHC
reaches a value of σxy = 0.052 a.u., which can be compared to
that obtained with a circularly polarized resonant field that excites
roughly the same population, which we find to be σxy = 0.13 a.u.
To maximize the contrast in Fig. 2(c), AL(t0) has to be on the order
of the K−K′ separation.

We now show how the induced valley polarization can be mea-
sured all-optically using high harmonic emission. Such emission
can be triggered by either the driving few-cycle pulse itself or by
a delayed probe pulse. When the dephasing time is shorter than
the period of the pulse, the helicity of the harmonics of the driving
few-cycle pulse reflects the valley polarization, influenced by the
Berry curvature (see Supplement 1). However, this approach is not
applicable for dephasing times longer than the field period. Using
a delayed probe field strong enough to generate a perpendicular
anomalous current offers an alternative solution, mapping the
valley polarization onto the helicity of the low-energy harmonics
of the field [23]. However, such a strong probe destroys the valley
state. Furthermore, both reading mechanisms above require a non-
zero Berry curvature, so they are not suited for inversion-symmetric
materials.

The valley polarization generated by the strong, few-cycle pulse
breaks the symmetry along the 0K direction. The strength of this
symmetry breaking is directly proportional to the valley polariza-
tion and can be probed by the even harmonics of a weak probe field
[11,34,35], coming after the few-cycle driver. The gapped hexago-
nal monolayer in its ground state has mirror symmetry along the
0M direction [Figs. 1(a) and 1(b)]. In the absence of laser-induced
symmetry breaking, i.e., valley polarization, a laser polarized along
0M will not show even harmonics perpendicular to laser polariza-
tion [11]. If valley asymmetry is present, even harmonics will show
along the perpendicular direction (0K). To separate the harmonics
of the probe from those of the driver, we use a central frequency
four times smaller than that of the fundamental.

Figures 3(d) and 3(e) show the four lowest harmonic orders
of a weak probe field (E = 0.1 V/Å), polarized along 0M, for
CEP= 0◦ (d) and CEP= 90◦ (e). The former is the case of no
valley polarization, and therefore, no even harmonics are present.
The latter corresponds to maximum valley polarization, and
perpendicularly polarized even harmonics appear. To quantify
these results, we compute the strength of the second harmonic as
a function of CEP [blue line in (f )]. The oscillation of the even
harmonic intensity reproduces remarkably well that of the valley
polarization, apart from the sign change. To distinguish between
valley polarization at K and K′, we must access the harmonic phase.
The red line in (f ) shows the phase of the second harmonic at the
central energy, which changes by π between valley polarization at
K (CEP= 90◦) and K′ (CEP= 270◦).

https://doi.org/10.6084/m9.figshare.13584767
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Fig. 4. (a) Band structure of MoS2, including 14 valence bands (blue)
and eight conduction bands (orange). (b)–(d) Sum of electron popu-
lations (normalized to each k) in all of the conduction bands after the
interaction with a single-cycle pulse with CEP= 0◦, 90o, and 270o,
respectively (see text for details). White dashed line at 0M helps visualize
the K−K′ asymmetry.

Sub-cycle valley selection via single-cycle pulses is expected to
work also in TMDs, even if more bands contribute. To test this,
we performed simulations in MoS2, including 22 bands [Fig. 4(a)].
We used a pulse with E = 0.32 V/Å and λ= 8 µm, below the
damage threshold [11]. Figures 4(b)–4(d) show the sum of the
electron momentum distributions in all of the conduction bands
(40% of the excited population resides in the two lowest bands),
for CEP= 0◦, 90o, and 270o. Due to the many band crossings, it is
hard to accurately compute the VHC. However, it is clear that the
K−K′ asymmetry in the electron momentum distributions can be
controlled by the CEP.

In conclusion, we have demonstrated that few-cycle linearly
polarized pulses can induce a high degree of valley polarization.
The mechanism to induce such polarization does not rely on the
optical selection rules, and therefore can be in principle used in
inversion symmetric materials, such as TMD bilayers or graphene,
opening a new way for implementing ultrafast valleytronic devices.
This method should be possible to realize with the existing ultra-
fast laser technology [1,2,14]. Our approach takes advantage of
the sub-cycle control of the electron motion by controlling the
oscillations of the electric field under the envelope, and allows for
full control of the valley initialization step on a few-femtosecond
timescale. The VHC can be measured from the high harmonic
emission spectrum.
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