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Brownian motion in attenuated or renormalized inverse-square
Poisson potential

Peter Nelson, Renato Soares dos Santos

ABSTRACT. We consider the parabolic Anderson problem with random potentials having inverse-square
singularities around the points of a standard Poisson point process in Rd, d ≥ 3. The potentials we
consider are obtained via superposition of translations over the points of the Poisson point process of a
kernel K behaving as K(x) ≈ θ|x|−2 near the origin, where θ ∈ (0, (d − 2)2/16]. In order to make
sense of the corresponding path integrals, we require the potential to be either attenuated (meaning that
K is integrable at infinity) or, when d = 3, renormalized, as introduced by Chen and Kulik in [8]. Our
main results include existence and large-time asymptotics of non-negative solutions via Feynman-Kac
representation. In particular, we settle for the renormalized potential in d = 3 the problem with critical
parameter θ = 1/16, left open by Chen and Rosinski in [9].

1. INTRODUCTION AND MAIN RESULTS

Fix d ∈ N and let W = (Wt)t≥0 be a standard Brownian motion in Rd. We denote by Px its law
when started at x, and by Ex the corresponding expectation. Let V : Rd → R be a random potential
function, which we take independent of W . The integral

∫ t
0
V (Ws)ds represents the total potential

energy along the Brownian path up to time t, and is used to define the quenched Gibbs measure

(1)
Qt,x(·) := 1

Zt,x
Ex
[
exp

{∫ t
0
V (Ws)ds

}
1{W ∈ ·}

]
,

where Zt,x := Ex
[
exp

∫ t
0
V (Ws)ds

]
,

describing the behaviour of W under the influence of the random potential.

A main feature in the study of Brownian motion in random potential is the connection to the (continuous)
parabolic Anderson model, i.e., the initial value problem

(2)
∂tu(t, x) = 1

2
∆u(t, x) + V (x)u(t, x), (t, x) ∈ (0,∞)× Rd,

u(0, x) = u0(x), x ∈ Rd,

where ∆ =
∑d

i=1
∂2

∂2xi
denotes the (weak) Laplacian in L2(Rd), and u0 ∈ L2(Rd) is some initial

data. When V is e.g. in the Kato class (cf. [24, page 8, equation (2.4)]), the unique mild solution to (2)
(in the sense of [21, Definition 6.1.1]) is given by the classical Feynman-Kac formula

u(t, x) = Ex
[
u0(Wt) exp

{∫ t

0

V (Ws)ds

}]
.(3)

In particular, u(t, x) = Zt,x in (1) solves (2) with u0 ≡ 1.

In this paper, we are interested in Poisson (or shot noise) potentials, obtained by superposing trans-
lations of a fixed function over the points of a Poisson cloud. To describe them, let ω be a standard
Poisson point process in Rd, i.e., having the Lebesgue measure as its intensity measure. Denote by P
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P. Nelson, R.S. dos Santos 2

the law of ω, and by P = {y ∈ Rd : ω({y}) > 0} its support, which is almost surely discrete. For a
Borel-measurable shape function (or kernel) K : Rd → R, we define the Poisson potential

V (x) = V (x, ω) =
∑
y∈P

K(x− y) =

∫
Rd

K(x− y)ω(dy), x ∈ Rd.

Since the Gibbs measure in (1) favours paths with larger energy functional
∫ t

0
V (Ws)ds, the points of

ω will under it either attract the Brownian particle if K is positive, or repel it if K is negative.

The study of the model of Brownian motion in a random Poisson potential is motivated by various
applications from physics and other fields. Think, e.g., of an electron moving in a crystal with impurities,
cf. [5, 17, 19]. For an overview on the mathematical treatment of the subject and further references, we
refer the reader to the monographs [18, 24]. In [24], essentially two types of potentials are considered:
the soft obstacle potential, where K is assumed to be negative, bounded and compactly supported,
and the hard obstacle potential, where formally K = −∞1C for some compact, nonpolar set C ⊂ Rd,
i.e., the Brownian particle is immediately killed when entering the C-neighbourhood of the Poisson
cloud and moves freely up to the entrance time. The case of K positive, bounded and continuous (and
satisfying a decay property) has been considered in [6, 16]. The works mentioned identify almost-sure
large-time asymptotics for Zt,x in (1).

It is of natural concern to study shape functions that are neither bounded nor have compact support.
Kernels of the form K(x) = |x|−p are physically motivated, e.g. p = d − 2 corresponds to Newton’s
law of gravitation. The inverse-square case p = 2 is of special interest both in mathematics and physics
(c.f. e.g. [2, 1, 11, 14, 15, 23]), and is related to the inverse-cube central force; in this case, K is not in
the Kato class (cf. [24, Example 2.3, page 9]). It turns out however that, when p ≤ d, the corresponding
Poisson potential almost surely explodes, i.e.,

(4)

∫
Rd
|x− y|−pω(dy) =∞ P-a.s. for each x ∈ Rd,

cf. [8, Proposition 2.1]. Indeed, when p ≤ d, the integrability in (4) is obstructed by the slow decay of
the function |x|−p at infinity. To solve this problem, Chen and Kulik have constructed a renormalized
version V of the Poisson potential V , formally written as

(5) V (x) =

∫
Rd
|x− y|−p[ω(dy)− dy], x ∈ Rd.

The mathematical definition of V is as limit in probability of the same expression with integrable ap-
proximating kernels, for which both integrals against dy and ω(dy) are well defined; for details, we refer
the reader to [8, Section 2]. This procedure is natural since, at each step of the approximation, both
V and V give rise to the same quenched Gibbs measure. In [8, Corollary 1.3], it is shown that (5) is
well-defined whenever d/2 < p < d, in particular when p = 2, d = 3.

Even if (5) is well defined, the exponential moment Zt,x in (1) (with V in place of V ) may still be infinite.
Indeed, Theorem 1.5 in [8] states that, for d/2 < p < d and any θ, t > 0,

E0

[
exp

(
θ

∫ t

0

V (Ws)ds

)] {
<∞ P-a.s. if p < 2,

=∞ P-a.s. if p > 2.
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Brownian motion in attenuated or renormalized inverse-square Poisson potential 3

In the critical case p = 2 (and necessarily d = 3), the integrability depends on the value of the
parameter θ: according to [9, Theorem 2.1], for any t > 0,

(6) E0

[
exp

(
θ

∫ t

0

V (Ws)ds

)] {
<∞ P-a.s. if θ < 1

16
,

=∞ P-a.s. if θ > 1
16
.

The boundary case θ = 1
16

is not considered in [9], and is included in our Theorem 1.7 below. The fact
that θ = 1

16
is critical is related to the celebrated Hardy inequality (in d = 3)

(7)
(d− 2)2

8

∫
Rd

g2(x)

|x|2
dx ≤ 1

2
‖∇g‖2

L2(Rd), g ∈ H1(Rd),

where H1(Rd) is the Sobolev space of L2(Rd) functions whose (weak) partial derivatives are also in
L2(Rd), and the constant (d− 2)2/8 is sharp.

Once finiteness of exponential moments is settled, our interest turns to large-time asymptotics. In the
non-critical regime d/2 < p < min(2, d), θ > 0, it is shown in [7, Theorem 2.2] that

(8) lim
t→∞

1

t

(
log log t

log t

) 2
2−p

logE0

[
eθ
∫ t
0 V (Ws)ds

]
= c(d, p, θ) P-a.s.,

where c(d, p, θ) is an explicit deterministic constant depending only on d, p, θ. The case p = 2, d =
3, already considered in [9], turns out to be rather different: after suitable rescaling, the log of the
exponential moment does not converge to a constant, but fluctuates randomly, cf. Theorem 1.10 below.
Here we again extend the investigation to the boundary case θ = 1/16.

Finally, we do not restrict our analysis to the renormalized potential V , but also consider integrable
versions of the inverse-square kernel. For this class of attenuated potentials, cf. Definition 1.1 below,
we show similar results as outlined above in all dimensions d ≥ 3; in fact, our asymptotic results for V
in d = 3 are obtained via comparison to attenuated potentials, cf. Theorem 1.9 below.

1.1. Main results. Let d ≥ 3. We define next the class K of potential kernels we are after, whose
elements have an inverse-square singularity at the origin and are integrable at infinity.

Definition 1.1. We say that a measurable K : Rd \ {0} → R belongs to the class K if and only if

(9) y 7→ sup
x∈B1\{0}

|K(x− y)| ∧ 1 belongs to L1(Rd)

and

(10) lim sup
a↓0

max

{
a2 sup
|x|>a
|K(x)|, sup

|x|≤a

∣∣∣∣K(x)− 1

|x|2

∣∣∣∣
}
<∞.

We call K the class of attenuated inverse-square potential kernels.

Given K ∈ K , we denote the Poisson potential with kernel K by

(11) V (K)(x) :=

∫
Rd

K(x− y)ω(dy), x ∈ Rd \ P .
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By [8, Proposition 2.1], V (K) is a.s. well-defined and finite. Important examples are the truncated kernels
Ka(x) := |x|−2

1{|x|≤a}, a > 0, in which case we abbreviate V (a) := V (Ka).

To state our results for V (K), denote by

(12) hd :=
(d− 2)2

8

as in the form (7) of Hardy’s inequality, and set, for θ ∈ (0, hd/2],

(13) kθ :=

⌊
hd
θ

⌋
≥ 2.

Our first two results show existence of solutions to (2) via Feynman-Kac representation.

Theorem 1.2. For all d ≥ 3, K ∈ K and θ ∈ (0, hd
2

], it holds P-almost surely that

(14) u
(K)
θ (t, x) := Ex

[
exp

(
θ

∫ t

0

V (K)(Ws)ds

)]
<∞ ∀x ∈ Rd \ P , t > 0.

Theorem 1.3. u(K)
θ defined in (14) is a mild solution to (2) with V = θV (K) and u0 ≡ 1.

The converse of Theorem 1.2 is also true, i.e., (14) is infinite when θ > hd/2. A proof can be obtained
along the lines of [9, Theorem 2.1]; we refrain from giving the details.

Our next three results concern large time asymptotics of u(K)
θ (t, 0), starting with tightness.

Theorem 1.4. Let d ≥ 3, K ∈ K and θ ∈ (0, hd
2

]. For any t 7→ g(t) > 0 with g(t)
t→∞−→ ∞,

(15) g(t)t
− kθ+1

kθ−1 logE0

[
exp

(
θ

∫ t

0

V (K)(Ws)ds

)]
t→∞−→ ∞ in probability

and

(16) g(t)−1t
− kθ+1

kθ−1 logE0

[
exp

(
θ

∫ t

0

V (K)(Ws)ds

)]
t→∞−→ 0 in probability.

In other words, the process t
− kθ+1

kθ−1 log u
(K)
θ (t, 0), t > 0 is tight on the open interval (0,∞).

The following two theorems provide almost-sure lim sup and lim inf asymptotics.

Theorem 1.5. Let d ≥ 3, K ∈ K and θ ∈ (0, hd
2

]. For any slowly varying ` : (0,∞)→ (1,∞),

lim sup
t→∞

t
− kθ+1

kθ−1 `(t)
− 2
d(kθ−1) log u

(K)
θ (t, 0) =

{
0 P-a.s. if

∫∞
1

dr
r`(r)

<∞,
∞ P-a.s. if

∫∞
1

dr
r`(r)

=∞.(17)

Theorem 1.6. For any d ≥ 3 and θ ∈ (0, hd
2

], there exist 0 < Cinf < C inf < ∞ such that, for all
K ∈ K ,

lim inf
t→∞

t
− kθ+1

kθ−1 (log log t)
2

d(kθ−1) log u
(K)
θ (t, 0) ∈ [Cinf , C

inf ] P-a.s.(18)
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Brownian motion in attenuated or renormalized inverse-square Poisson potential 5

Theorems 1.4–1.6 imply in particular that there is no rescaling under which log u
(K)
θ (t, 0) converges

almost surely as t → ∞ to a non-trivial deterministic constant. We conjecture that, after rescaling by
t(kθ+1)/(kθ−1), it converges in distribution to a non-degenerate random variable.

Corresponding results also hold for the renormalized potential V when d = 3. We start with the ana-
logues of Theorems 1.2–1.3.

Theorem 1.7. Let d = 3. For each θ ∈ (0, 1/16], it holds P-almost surely that

(19) uθ(x, t) := Ex
[
exp

(
θ

∫ t

0

V (Ws)ds

)]
<∞ ∀x ∈ R3 \ P , t ≥ 0.

Theorem 1.8. uθ defined in (19) is a mild solution to (2) with d = 3, V = θV and u0 ≡ 1.

Our next theorem provides a convenient comparison between potential kernels, allowing us to concen-
trate on the truncated case Ka(x) = |x|−2

1{|x|≤a}.

Theorem 1.9. For any θ ∈ (0, hd/2], any a ∈ (0,∞) and any K ∈ K ,

(20) lim
t→∞

log u
(K)
θ (t, 0)

log u
(a)
θ (t, 0)

= 1 P-almost surely,

where u(a)
θ := u

(Ka)
θ . When d = 3, (20) also holds with uθ in place of u(K)

θ .

Finally, using Theorem 1.9, we can transfer our results for V (K) to V :

Theorem 1.10. Let d = 3 and θ ∈ (0, 1
16

]. The statements of Theorems 1.4, 1.5 and 1.6 also hold

with V , uθ in place of V (K), u(K)
θ .

We discuss next our theorems and provide some heuristics for the scale t(kθ+1)/(kθ−1).

1.2. Discussion and heuristics. As already mentioned, our main contribution in Theorems 1.7, 1.8
and 1.10 is the boundary case θ = 1/16, left open in [9]. The proof of (19) given in [9] for 0 < θ < 1

16

cannot be extended to the case θ = 1
16

, as it is based on the following strategy. Decompose the
Brownian path according to which of the cubes Qn = (−Rn, Rn)3 has been exited until time t, where
(Rn)n∈N is some properly chosen increasing sequence; i.e., setting τ0 = 0, τn = inf{s ≥ 0: Ws /∈
Qn}, write

E0

[
exp

(
θ

∫ t

0

V (Ws)ds

)]
=
∞∑
n=1

E0

[
exp

(
θ

∫ t

0

V (Ws)ds

)
1{τn−1≤t<τn}

]

≤
∞∑
n=1

P [τn−1 ≤ t]1/p E0

[
exp

(
qθ

∫ t

0

V (Ws)ds

)
1{t<τn}

]1/q

by Hölder’s inequality, where p, q > 0, p−1 + q−1 = 1. The last expectation cannot be controlled if
qθ > 1/16, and thus θ < 1/16 is required to use this argument. In order to overcome this, we develop
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P. Nelson, R.S. dos Santos 6

for our proof a more careful decomposition of Brownian paths according to their excursions to and from
certain islands whose principal eigenvalues are large, cf. Section 3 below.

We provide next some heuristics for the scale t(kθ+1)/(kθ−1) appearing in Theorem 1.4. The main point
is that the logarithmic order of u(K)

θ (t, 0) in (14) is the same when restricting the expectation to Brownian
paths that reach by time s < t a region D ⊂ Rd containing precisely kθ + 1 Poisson points, and
afterwards stay there until time t. Spectral methods show that the reward for staying in D for time
t − s is approximately e(t−s)λmax , where λmax is the principal Dirichlet eigenvalue of 1

2
∆ + V (K) in

D. Asymptotics for this eigenvalue may be estimated with the help of multipolar Hardy inequalities as
in [4] (see also Section 2.4 below), yielding that its order roughly equals diam(D)−2. Now, if R is the
distance of D to the origin, Poisson statistics dictate that it may be chosen with diam(D) ≈ R−1/kθ ,
but not much smaller. On the other hand, the probabilistic cost for Brownian motion to reach D by time
s is roughly e−R

2/s. The total contribution is thus about exp{(t − s)R2/kθ − R2/s}; optimizing the

exponent over s and R, we obtain R = tkθ/(kθ+1) and log u
(K)
θ (t, 0) ≈ t(kθ+1)/(kθ−1).

1.3. Outline and notation. The rest of the paper is organized as follows. After introducing some no-
tation, we develop in Section 2 upper and lower spectral bounds on the Feynman-Kac functional (3)
in the setting of deterministic point clouds. The upper bounds are extended in Section 3 using a path
decomposition technique. Section 4 presents some elementary geometric properties of the standard
Poisson point process. The proofs of the main theorems are completed in Section 5.

Notation and terminology. We write Br(x) = {y ∈ Rd : |x − y| < r} for the open ball with radius
r ∈ (0,∞) around x ∈ Rd with respect to the Euclidean norm | · |; when x = 0 we abbreviate
Br := Br(0). For D ⊂ Rd, we write Br(D) = {x ∈ Rd : ∃y ∈ D, |x − y| < r} for the r-
neighbourhood of D. We denote by |D| the volume of a Borel measurable subset D ⊂ Rd, and by
τD := inf{t ≥ 0: Wt ∈ D} the entrance time of Brownian motion in D. A subset D ⊂ Rd is called
a domain if it is open and connected. For a real-valued function f , a positive function g and a 6= 0,
we write f(x) ∼ ag(x) as x → ∞ to denote that limx→∞ f(x)/g(x) = a; when a = 0, we write
f = o(g) instead, or equivalently |f | � g or g � |f |. We write f = O(g) as x→∞ if there exists a
constant C ∈ (0,∞) such that f(x) ≤ Cg(x) for all large enough x. We write log+ x := log(x∨ e),
x ∈ R.

2. DETERMINISTIC SPECTRAL BOUNDS

In this section, we consider Brownian motion in Rd, d ≥ 3, moving among a deterministic point cloud.
Our goal is to obtain lower and upper spectral bounds inL1 andL∞ for relevant Feynman-Kac formulae.
First we collect some basic tools from the theory of Schrödinger operators (Section 2.1), which are
then applied to derive upper bounds on both time-dependent and stopped Feynman-Kac functionals
(Section 2.2). After that, we obtain a lower bound for the time-dependent functional (Section 2.3), and
conclude the section with a multipolar Hardy inequality (Section 2.4).

Define the family of non-empty, locally finite subsets of Rd

(21) Y = {Y ⊂ Rd : Y 6= ∅, #K ∩ Y <∞ ∀ compact K ⊂ Rd},

DOI 10.20347/WIAS.PREPRINT.2482 Berlin 2018
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as well as the family of non-empty, finite subsets

(22) Yf = {Y ∈ Y : #Y <∞}.
Note that the support P = {x ∈ Rd : ω({x}) = 1} of the Poisson point process ω belongs almost
surely to Y . For Y ∈ Y and a ∈ (0,∞] satisfying either Y ∈ Yf or a <∞, let

(23) V
(a)
Y (x) =

∑
y∈Y

1{|x−y|≤a}

|x− y|2
, x ∈ Rd \ Y .

When a < ∞, V (a)
P = V (Ka) as in (11) with Ka(x) = |x|−2

1{|x|≤a}. For Y ∈ Yf, we write VY =

V
(∞)
Y .

2.1. Preliminaries on Schrödinger operators and the Feynman-Kac formula. The content of this
section is classical and has been treated by many authors. Our major references here are the books
[12] by Engel and Nagel and [10] by Chung and Zhao.

Let D ⊂ Rd be an open subset. By H1
0 (D) we denote the Sobolev space on D with zero-boundary

condition, i.e. the closure of the space C∞c (D) of smooth, compactly supported functions on D with
respect to the Sobolev norm ‖f‖H1(D) =

∑
1≤i≤d ‖∂if‖L2(D), where “∂i” denotes differentiation with

respect to the i-th coordinate. For a potential q ∈ L1
loc(D), we define

λmax(D, q) := sup
g∈H1

0 (D), ‖g‖L2(D)=1

{∫
D

q(x)g(x)2dx− 1

2

∫
D

|∇g(x)|2dx

}
∈ R ∪ {+∞}.(24)

Note that λmax(D, q) ≥ 0 if q ≥ 0; more generally, the following monotonicity property holds.

Remark 2.1. Let D1 ⊂ D2 ⊂ Rd be open and q1 ∈ L1
loc(D1), q2 ∈ L1

loc(D2) with q1 ≤ q2 on D1.
Then

(25) λmax(D1, q1) ≤ λmax(D2, q2).

When q has some regularity (e.g. when it is in the Kato class), λmax(D, q) is the supremum of the
spectrum of the Schrödinger operator Hq = ∆ + q in L2(D) with zero Dirichlet boundary conditions,
where ∆ is the weak Laplacian whose domain is dense in H1

0 (D). This holds in particular when

(26) q ∈ L∞(D),

in which case λmax(D, q) < ∞ andHq is a closed self-adjoint operator generating a strongly contin-
uous semigroup (Tt)t≥0 = (etHq)t≥0 on L2(D) (see e.g. [10, Proposition 3.29]). We will assume (26)
in the remainder of this subsection.

An important fact about λmax is that it controls the growth of Tt via the inequality

(27) ‖Ttf‖L2(D) ≤ ‖f‖L2(D) exp{tλmax(D, q)} ∀ t ≥ 0,

cf. e.g. [10, Equation (30), Section 8.3]. From this we get the basic but crucial bound for the resolvent
of the operatorHq (cf. e.g. [12, Theorem II.1.10]): for γ > λmax(D, q),

(28) ‖(Hq − γ)−1‖L2(D)→L2(D) ≤
1

γ − λmax(D, q)
.

DOI 10.20347/WIAS.PREPRINT.2482 Berlin 2018
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The semigroup (Tt)t≥0 can be used to solve the initial boundary value problem

∂tu(t, x) =
∆

2
u(t, x) + q(x)u(t, x), (t, x) ∈ [0,∞)×D(29)

u(t, x) = 0, (t, x) ∈ [0,∞)× ∂D(30)

u(0, x) = u0(x), x ∈ D(31)

with initial data u0 ∈ L2(D), as follows. We want to consider solutions to (29)-(31) in the mild sense
(cf. [21, Definition 6.1.1]), i.e., we demand that

(32)

∫ t

0

∫
D

pt−s(x− y)|q(y)u(s, y)|dyds <∞ ∀x ∈ D, t > 0

and

(33) u(t, x) = u0(x) +

∫ t

0

∫
D

pt−s(x− y)q(y)u(s, y)dyds ∀x ∈ D, t > 0,

where pt(x) is the Gaussian density

(34) pt(x) := (2πt)−d/2 exp{−|x|2/(2t)},
i.e., the transition density of Brownian motion at time t started from 0.

The next proposition characterizes the mild solutions to (29)–(31), connecting Schrödinger semigroups
and Brownian motion via the celebrated Feynman-Kac representation:

Proposition 2.2 (Feynman-Kac formula). Under (26), the unique mild solution to (29)-(31) is given by

u(t, x) = Ttu0(x) = Ex
[
u0(Wt) exp

(∫ t

0

q(Ws)ds

)
1{τDc>t}

]
.(35)

Proof. Follows from e.g. [12, Proposition II.6.4]) and [10, Theorems 3.17 and 3.27]. �

Additionally to the time-dependent Feynman-Kac formula (35), we will use a stopped Feynman-Kac
formula as follows. Consider the time-independent Schrödinger equation

(36)

∆

2
u(x) + q(x)u(x) = γu(x), x ∈ D,

u(x) = f(x), x ∈ ∂D,
with f : ∂D → R continuous and γ ∈ R. A function u ∈ L1

loc(D) is called a weak solution to (36) if

(37)

∫
D

u(x)∆φ(x)dx = −2

∫
D

(q(x)− γ)u(x)φ(x)dx

for all φ ∈ C∞c (D), and u is continuous on D with u = f on ∂D. Recall that D is called regular if
Px(τDc = 0) = 1 for all x ∈ ∂D. The next result follows from [10, Theorems 4.7 and 4.19].

Proposition 2.3. Assume (26). If D is a bounded regular domain and γ > λmax(D, q), then

u(x) := Ex
[
exp

(∫ τDc

0

(q(Ws)− γ)ds

)
f(WτDc )

]
(38)
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is the unique weak solution to the boundary value problem (36).

2.2. Upper bounds. Let D ⊂ Rd be a bounded regular domain. Recall hd = (d − 2)2/8. Fix
θ ∈ (0, hd], Y ∈ Yf with Y ⊂ D and putM := #Y . We give next an L1 upper bound for the stopped
Feynman-Kac functional in (38) with potentials of the form (23). We note that λmax(Rd, θVY) <∞ by

the multipolar Hardy inequality formulated in [4, Theorem 1]; by Remark 2.1, also λmax(D, θV
(a)
Y ) <∞

for any a > 0.

Lemma 2.4. There exists a constant c = c(d) ∈ (0,∞) not depending on D, θ or Y such that, for

any open bounded D′ ⊂ Rd, any a ∈ (0,∞] and any γ > λmax(D, θV
(a)
Y ),

(39)

∫
D′

Ex
[
e
∫ τDc
0 (θV

(a)
Y (Ws)−γ)ds

]
dx ≤ |D′|+ c

√
|D||D′ ∩D|γ + (M2 + θ) dist(Dc,Y)−2

γ − λmax(D, θV
(a)
Y )

.

Proof. Fix D′ ⊂ Rd open and bounded, a > 0 and γ > λmax(D, θV
(a)
Y ). Note that, since the

integrand in the left-hand side of (39) equals 1 when x ∈ Dc, we may and will assume that D′ ⊂ D.

Form ∈ N, let Fm = min(V
(a)
Y ,m). By Proposition 2.3, um(x) = Ex

[
exp

∫ τDc

0
(θFm(Ws)− γ)ds

]
is the unique weak solution to the boundary value problem(

∆

2
+ θFm − γ

)
u(x) = 0, x ∈ D

u(x) = 1, x ∈ ∂D.
(40)

Abbreviate δ := dist(Dc,Y), take g : R → [0, 1] smooth with g(r) = 0 for r ≤ 1/2 and g(r) = 1
for r ≥ 1, and put φ(x) :=

∏
y∈Y g(|x− y|/δ). We may check that φ ∈ C2(Rd), 0 ≤ φ ≤ 1 on D,

φ ≡ 1 on Dc, and there exists a constant c = c(d) ∈ (1,∞), not depending on D, θ or Y , such that
|∆φ| ≤ 2cM2δ−2 and φVY ≤ cδ−2 uniformly on Rd. Moreover, vm := um − φ solves(

∆

2
+ θFm − γ

)
vm(x) = −

(
∆

2
+ θFm − γ

)
φ(x), x ∈ D,

vm(x) = 0, x ∈ ∂D,
(41)

i.e., vm = −R(m)
γ

(
∆
2

+ θFm − γ
)
φ whereR(m)

γ is the resolvent of 1
2
∆ + θFm at γ. Hence

‖vm‖L1(D′) =

〈∣∣∣∣−R(m)
γ

(
∆

2
+ θFm − γ

)
φ

∣∣∣∣ ,1D′〉
L2(D)

≤
√
|D′|

∥∥R(m)
γ

∥∥
L2(D)→L2(D)

∥∥∥∥(∆

2
+ θFm − γ

)
φ

∥∥∥∥
L2(D)

≤
√
|D′|γ + c(M2 + θ)δ−2

γ − λmax(D, θFm)

√
|D|(42)
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by the bound (28) on the resolvent and the pointwise bounds on φ,∆φ and VYφ. Noting now that, since
Fm ≤ V

(a)
Y , λmax(D, θFm) ≤ λmax(D, θV

(a)
Y ) by Remark 2.1, we obtain

(43) ‖um‖L1(D′) ≤ ‖vm‖L1(D′) + ‖φ‖L1(D′) ≤ c
√
|D′||D| γ + (M2 + θ)δ−2

γ − λmax(D, θV
(a)
Y )

+ |D′|.

Now (39) follows by monotone convergence since Fm ↑ V (a)
Y as m→∞. �

From the L1-bound above we derive two pointwise estimates that will be useful in Section 3.

Lemma 2.5. Fix x ∈ D\Y and set εx = 1
2
dist(x,Y). Assume that 0 < a < εx and γ >

λmax(D, θV
(a)
Y ), and let c = c(d) be the constant from Lemma 2.4. Then

(44) Ex
[
exp

∫ τDc

0

(θV
(a)
Y (Ws)− γ)ds

]
≤ 2 + c

√
|D|
|Bεx|

γ + (M2 + θ)dist(Dc,Y)−2

γ − λmax(D, θV
(a)
Y )

.

Moreover, for all t ∈ (0,∞),
(45)

Ex
[
1{τDc>t} exp

∫ t

0

(θV
(a)
Y (Ws)− γ)ds

]
≤ 2 +

√
|D|
|Bεx|

(
1 + c

γ + (M2 + θ)dist(Dc,Y)−2

γ − λmax(D, θV
(a)
Y )

)
.

Proof. Fix 0 < r < εx and abbreviate I ts := exp
∫ t
s
(θV

(a)
Y (Wu) − γ)du. We begin with the proof of

(44). Since V (a)
Y ≡ 0 on Bεx(x), using the strong Markov property we may write

(46) Ex [IτDc

0 ] ≤ 1 + Ex
[
1{τBr(x)c<τDc}I

τDc

τBr(x)c

]
≤ 1 + Ex

[
EWτ∂Br(x)

[IτDc

0 ]
]
.

Since Wτ∂Br(x)
is uniformly distributed on the sphere ∂Br(x),

(47) Ex [IτDc

0 ] ≤ 1 +
1

σdrd−1

∫
∂Br(x)

Ez [IτDc

0 ]σ(dz),

where σ denotes surface measure on ∂Br(x) and σd is the area of the d-dimensional unit sphere.
Multiplying both sides of (47) by σdrd−1 and integrating over r between 0 and εx leads to

(48) |Bεx| (Ex [IτDc

0 ]− 1) ≤
∫
Bεx (x)

Ez [IτDc

0 ] dz.

Now apply the L1-bound from Lemma 2.4 to the right-hand side with D′ = Bεx(x), which gives

(49)

∫
Bεx (x)

Ez [IτDc

0 ] dz ≤ |Bεx|

{
1 + c

√
|D|
|Bεx|

(
γ + (M2 + θ)dist(Dc,Y)−2

γ − λmax(D, θV
(a)
Y )

)}
.

This yields (44), and we continue with the proof of (45). Again, by the strong Markov property and since
V

(a)
Y ≡ 0 on Bεx(x),

Ex
[
I t01{τDc>t}

]
≤ 1 + Ex

[
e−γτ∂Br(x)1{τ∂Br(x)<t}EWτ∂Br(x)

[
I t−s0 1{τDc>t−s}

]
s=τ∂Br(x)

]
.(50)
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Split the event {τDc > t− s} according to whether τDc > t or not to write, using γ ≥ 0, V (a)
Y ≥ 0,

I t−s0 1{τDc>t−s} = esγe
∫ t−s
0 θV

(a)
Y (Ws)ds−tγ

1{τDc>t−s} ≤ esγ
{
I t01{τDc>t} + IτDc

0

}
.(51)

Substituting this back into (50), we obtain

Ex
[
I t01{τDc>t}

]
≤ 1 +

1

σdrd−1

∫
∂Br(x)

Ez
[
I t01{τDc>t} + IτDc

0

]
σ(dz),(52)

and the same calculation as between (47)–(48) gives

|Bεx|
(
Ex
[
I t01{τDc>t}

]
− 1
)
≤
∫
Bεx (x)

Ez
[
I t01{τDc>t}

]
dz +

∫
Bεx (x)

Ez [IτDc

0 ] dz.(53)

To bound the first integral in (53), write (T
(m)
t )m∈N for the Schrödinger semigroup associated with the

potential (V
(a)
Y (Ws) ∧m) as discussed after (24), i.e., given by (35). Note that, for all m ∈ N,

∫
Bεx (x)

Ez
[
e
∫ t
0 (θ(V

(a)
Y (Ws)∧m)−γ)ds

1{τDc>t}

]
dz = e−tγ〈1Bεx (x), T

(m)
t 1D〉L2(D)

≤ e−tγ‖1Bεx (x)‖L2(D)‖T (m)
t ‖L2(D)→L2(D)‖1D‖L2(D)

≤ e−tγ
√
|Bεx||D| etλmax(D,θV

(a)
Y ∧m) ≤

√
|Bεx||D|,

(54)

where we used the Cauchy-Schwarz inequality and λmax(D, θV
(a)
Y ∧m) ≤ λmax(D, θV

(a)
Y ) < γ by

Remark 2.1. Letting m → ∞, we obtain by monotone convergence the same inequality with m = ∞
in the left-hand side, which together with (53) and (49) finishes the proof of (45). �

2.3. Lower bound. We derive here an L1 lower bound (cf. Lemma 2.8 below) on the Feynman-Kac
functional in (35) with q = VY , Y ∈ Yf. Recall hd = (d− 2)2/8. Define the truncated potential

(55) Ṽ (x) :=

{
1, if |x| ≤ 1

|x|−2, else.

Lemma 2.6. For any ε > 0, there exists Kε ∈ [1,∞) such that, for all K ≥ Kε,

(56) sup
g∈H1

0 (BK),‖g‖L2(BK )=1

(hd + ε)

∫
BK

g2(x)Ṽ (x)dx− 1

2
‖∇g‖2

L2(BK) > 0.

Proof. Taking, for n ∈ N,

(57) g̃n(x) :=


1 when |x| ≤ 1,
|x|−(d−2)/2 when 1 < |x| ≤ n,
n−d/2(2n− |x|) when n < |x| ≤ 2n,
0 when |x| > 2n,
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it follows that, for all K > 2n, g̃n ∈ H1
0 (BK) and

(58) (hd + ε)

∫
BK

g̃2
n(x)Ṽ (x)dx

1
2

∫
BK
|∇g̃n(x)|2dx

≥
(

1 +
8ε

(d− 2)2

)(
1− c

log n

)
for some constant c ∈ (0,∞). Letting gn := g̃n/‖g̃n‖L2(BK), we obtain

(hd + ε)

∫
BK

g2
n(x)Ṽ (x)dx− 1

2
‖∇gn‖2

L2(BK) ≥
2ε

(d− 2)2
‖∇gn‖2

L2(BK) > 0(59)

for n large and K > 2n. �

Let Y ∈ Yf with M = #Y ≥ 2 and fix θ ∈ ( (d−2)2

8M
, (d−2)2

8
]. We define

(60) δ? = δ?(d,M, θ) :=
1

4

(
1− hd

θM

)
.

Lemma 2.7. If |y| ≤ δ? for all y ∈ Y , then

(61) θVY(x) ≥ (hd + 2θMδ?) Ṽ (x) ∀x ∈ Rd \ Y .

Proof. Follows from a simple computation using |x− y|2 ≤ |x|2 + 2|x||y|+ |y|2. �

The following is the key lemma to obtain a lower bound on the total mass.

Lemma 2.8. There exist constants K > 1 and c1, c2 > 0 depending on d,M, θ such that, for any
a ∈ (0,∞) and any x ∈ Rd \ Y such that Y ⊂ Ba(x),

(62)

∫
BKa(x)

Ez
[
e
∫ t
0 θVY (Ws)ds

1{τBKa(x)c > t}
]

dz ≥ c1a
dec2ta

−2 ∀ t ≥ 0.

Proof. By translation invariance, we may suppose that x = 0 and Y ⊂ Ba. Set b = δ?/a, K =
K?/δ?, where K? is given by Lemma 2.6 with ε := 2θMδ?, and write

(63)

∫
BKa

Ez
[
e
∫ t
0 θVY (Ws)ds

1{τBc
Ka
> t}

]
dz = b−d

∫
BK?

Ez/b
[
e
∫ t
0 θVY (Ws)ds

1{τBc
Ka
> t}

]
dz.

By Brownian scaling, the integrand in the right-hand side of (63) equals

(64) Ez
[
e
∫ t
0 θVY (b−1Wb2s)ds

1{τBc
K?
> b2t}

]
= Ez

[
e
∫ b2t
0 θVbY (Ws)ds

1{τBc
K?
> b2t}

]
where bY := {by : y ∈ Y}. Since |y| ≤ δ? for all y ∈ bY , (64) is at least

(65) Ez

[
exp

{∫ b2t

0

(hd + ε) Ṽ (Ws)ds

}
1{τBc

K?
> b2t}

]
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by Lemma 2.6. Now using a Fourier expansion as in [16, Equation (2.33)], we obtain

(66)

∫
BK?

Ez

[
exp

{∫ b2t

0

(hd + ε) Ṽ (Ws)ds

}
1{τBc

K?
> b2t}

]
dz ≥ eb

2t λ̃max‖e1‖2
L1(BK? )

where λ̃max := λmax(BK? , (hd + ε)Ṽ ) is the principal Dirichlet eigenvalue of 1
2
∆ + (hd + ε)Ṽ in

BK? , and e1 is the corresponding eigenfunction normalized so that ‖e1‖L2(BK? ) = 1. Now (62) follows

with c1 = δ−d? ‖e1‖2
L1(BK? ) and c2 = δ2

?λ̃max, which is strictly positive by Lemma 2.6. �

2.4. Multipolar Hardy inequality. We provide in this section upper bounds for λmax(Rd, q) in (24)
with q = θVY , Y ∈ Yf and θ ∈ (0, hd] (recall hd = (d − 2)2/8), which will be useful to control (44)
and (45).

When #Y = 1, Hardy’s inequality (7) states that

(67) λmax(Rd, θVY) = 0 if 0 ≤ θ ≤ hd,

which clearly extends to #Y ≥ 2 in the sense that, with M = #Y ,

(68) λmax(Rd, θVY) = 0 if 0 ≤ θ ≤ hd
M
.

More general bounds, known as multipolar Hardy inequalities, are considered for example in [4]. The
next proposition is obtained by combining results and methods from [4], and offers in some cases an
improvement of Theorem 1 therein.

Proposition 2.9. Fix Y ∈ Yf. Assume that M := #Y ≥ 2 and θ ∈
(
hd
M
, hd

(M−1)

]
. Let

(69) Γ := inf {r > 0: Br(Y) is connected} .
Then

(70) λmax(Rd, θVY) ≤ M(π2 + 3θ)

2Γ2
.

Proof. Fix r ∈ (0,Γ) and choose Ŷ ⊂ Y such that Ŷ 6= ∅, N := #Ŷ ≤ bM/2c,

(71) Br(Ŷ) is connected and Br(Ŷ) ∩Br(Y \ Ŷ) = ∅,

i.e., Br(Ŷ) is a connected component of Br(Y) containing at most half of the points of Y . Define a
partition of unity (cf. definition after Theorem 1 in [4]) with 2 terms as follows. Set

(72) J(t) :=

 0, t ∈ [0, 1/2],
− cos(πt), t ∈ [1/2, 1],
1, t ≥ 1,

put J1(x) :=
∏

y∈Ŷ J(|x− y|/r) and J2(x) := [1− J1(x)2]1/2. By Lemma 2 in [4],

(73) Q[u] :=

∫
Rd

{
θVY(x)u(x)2 − |∇u(x)|2

}
dx =

2∑
i=1

Q[Jiu] +

∫
Rd
u(x)2

2∑
i=1

|∇Ji(x)|2dx
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for all u ∈ H1(Rd). Note that, by (71) and the definition of J1, J2,

(74) VY(x)J2(x)2 ≤ VŶ(x)J2(x)2 +
M −N
r2

∀ x ∈ Rd \ Ŷ

while, for all x /∈ Ỹ := Y \ Ŷ ,

VY(x)J1(x)2 =

VỸ(x) +
∑
y∈Ŷ

1{|x−y|≥r/2}

|x− y|2

 J1(x)2

≤ VỸ(x)J1(x)2 +
N

r2
sup
t≥1/2

J(t)2

t2
≤ VỸ(x)J1(x)2 +

2N

r2
,(75)

where for the last step we used supt≥1/2 J(t)2/t2 = supt∈[1/2,1] cos(πt)2/t2 < 2 (see the proof of
Lemma 3 in [4]). Applying (67)–(68), we obtain

(76)
2∑
i=1

Q[Jiu] ≤ θ
M +N

r2
‖u‖2

L2(Rd) ∀ u ∈ H
1(Rd).

Next we claim that

(77)
2∑
i=1

|∇Ji(x)|2 ≤ N
π2

r2
∀ x ∈ Rd.

Indeed, we may restrict to x ∈ Br(Ŷ ), in which case we note that

(78)
2∑
i=1

|∇Ji(x)|2 =
|∇J1(x)|2

1− J1(x)2
≤ π2

r2
sup

η∈[0,π/2)N
F (η),

where, for η = (η1, . . . , ηN) ∈ [0, π/2)N ,

(79) F (η) :=

(
1−

N∏
i=1

sin(ηi)
2

)−1( N∑
i=1

cos(ηi)
∏
j 6=i

sin(ηj)

)2

.

Let us show that supη∈[0,π/2)N F (η) ≤ N . First note that, if mini ηi = 0, then F (η) ≤ 1 < N , and
thus we may restrict to η ∈ (0, π/2)N . In the latter set, F = f/g where

(80) f(η) :=

(
N∑
i=1

cot(ηi)

)2

, g(η) :=
N∏
i=1

csc(ηi)
2 − 1.

Using csc(ηi)
2 = 1 + cot(ηi)

2 and expanding the product in the definition of g, we obtain g(η) ≥∑N
i=1 cot(ηi)

2. On the other hand, by the Cauchy-Schwarz inequality, f(η) ≤ N
∑N

i=1 cot(ηi)
2 ≤

Ng(η), finishing the proof of (77). As a consequence,

(81)

∫
Rd
u(x)2

2∑
i=1

|∇Ji(x)|2dx ≤ bM/2cπ2

r2
‖u‖2

L2(Rd) ∀ u ∈ H
1(Rd).

Collecting now (73), (76), (81) and letting r ↑ Γ, we conclude (70). �
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3. PATH EXPANSIONS

In this section, we provide an upper bound for the contribution to the Feynman-Kac formula of Brownian
paths that leave a large ball. This is achieved by means of a path expansion technique that splits the
Brownian path in excursions between neighbourhoods of the Poisson points, cf. Section 3.1 below.

Recall hd = (d−2)2/8 and fix Y ∈ Yf (cf. (22)). Given r > 0, we denote by C (r)
Y the set of connected

components of Br(Y). For a ∈ (0, r), θ ∈ (0, hd] and C ∈ C (r)
Y , let

(82) NC := #Y ∩ C, λC := λmax(C, θV (a)
Y ) = λmax(C, θV (a)

Y∩C) ≥ 0,

where V (a)
Y is as in (23) and λmax(D, V ) as in (24). Note that λC <∞ by [4, Theorem 1]. Define

(83) N
(r)
Y := max

C∈C
(r)
Y

NC, Λ
(θ,a,r)
Y := max

C∈C
(r)
Y

λC.

The following is the main result of this section.

Theorem 3.1. There exist constantsK ∈ [1,∞) and c, c∗ ∈ (0,∞) such that the following holds. Let

Y ∈ Yf, θ ∈ (0, hd], a > 0 and r > 4a. For γ > Λ
(θ,a,r)
Y , let

L = L(Y , θ, a, r, γ) := K
(
N

(r)
Y

)5/2 (r
a

)d
2

(
1 +

γ + (1 + θ)r−2

γ − Λ
(θ,a,r)
Y

)
,

% = %(Y , θ, a, r, γ) := L exp {−ac∗
√
γ} .

(84)

Assume that % ≤ 1/2. Then

(85) sup
z∈Br(Y)c

sup
t≥0

Ez
[
exp

∫ t

0

{θV (a)
Y (Ws)− γ}ds

]
≤ 1

1− %
≤ 2.

Moreover, for all R ≥ 8rN
(r)
Y and all t > 0,

(86) sup
z∈Br(Y)c

Ez
[
1{τBc

R
(z)≤t} exp

∫ t

0

{θV (a)
Y (Ws)− γ}ds

]
≤ 2KL

{
R

r
e−

cR2

t + %
R

4rN
(r)
Y

}
.

3.1. Proof of Theorem 3.1. We start with auxiliary results that will be needed in the following, and that
will allow us to identify the constants in Theorem 3.1. The first lemma concerns standard bounds for
Brownian motion.

Lemma 3.2. There exist K∗ = K∗(d) ∈ [1,∞) and c∗ = c∗(d) ∈ (0,∞) such that

(87) P0

(
sup

0≤s≤t
|Ws| > R

)
≤ K∗e

− c∗R
2

t for all t, R > 0,

and

(88) E0

[
e−uτBc

a

]
≤ K∗ e−c∗a

√
u for all a, u > 0.

Proof. Follows from union bounds and standard estimates for one-dimensional Brownian motion, e.g.
Remark 2.22 and Exercise 2.18 in [20]. �
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The next lemma is a consequence of the pointwise bounds in Lemma 2.5.

Lemma 3.3. There exists a constant K1 ∈ [1,∞) such that, for all Y ∈ Yf, θ ∈ (0, hd], a ∈ (0,∞),

r > 2a, C ∈ C (r)
Y , γ > λC and x ∈ C \B2a(Y),

(89) Ex
[
exp

∫ τCc

0

(
θV

(a)
Y (Ws)− γ

)
ds

]
≤ K1N

5/2
C

(r
a

)d
2

(
1 +

γ + (1 + θ)r−2

γ − λC

)
and

(90) sup
t≥0

Ex
[

e
∫ t
0

(
θV

(a)
Y (Ws)−γ

)
ds
1{τCc>t}

]
≤ K1N

5/2
C

(r
a

)d
2

(
1 +

γ + (1 + θ)r−2

γ − λC

)
.

Proof. By [10, Proposition 1.22], each C ∈ C (r)
Y is a bounded regular domain. Noting that V (a)

Y (x) =

V
(a)
Y∩C(x) for x ∈ C \ Y , apply Lemma 2.5 with D = C and use |C| ≤ |B1|NCrd, NC ≥ 1. �

Corollary 3.4. For any Y ∈ Yf, θ ∈ (0, hd], a ∈ (0,∞), r > 4a, C ∈ C (r)
Y , γ > λC and

x ∈ C ∩Br−a(Y) \B3a(Y),
(91)

Ex
[
exp

∫ τCc

0

(
θV

(a)
Y (Ws)− γ

)
ds

]
≤ K∗K1N

5/2
C

(r
a

)d
2

e−c∗a
√
γ

(
1 +

γ + (1 + θ)r−2

γ − λC

)
where K∗, c∗ are as in Lemma 3.2 and K1 as in Lemma 3.3.

Proof. Use the strong Markov property at the exit time of Ba(x) and apply Lemma 3.3 and (88). �

With these results in place, we may identify the constants K, c in Theorem 3.1 as

(92) K := 2(K∗)
2K1, c :=

c∗
16
,

where K∗, c∗ are as in Lemma 3.2 and K1 as in Lemma 3.3.

Fix now Y ∈ Yf, θ ∈ (0, hd], a > 0, r > 4a and γ > Λ
(θ,a,r)
Y . In the following, we fix K, c as in (92)

and let L, % be defined by (84).

The core of the proof of Theorem 3.1 is a decomposition of the Brownian path according to its ex-
cursions to and from neighbourhoods of Y , which are marked by the following stopping times. Let
τ̌0 = τ̂0 := 0 and, recursively for n ≥ 0,

τ̌n+1 :=

{
∞ if τ̂n =∞,
inf
{
t > τ̂n : Wt ∈ B3a(Y)

}
otherwise,

τ̂n+1 =

{
∞ if τ̌n+1 =∞,
inf {t > τ̌n+1 : Wt /∈ Br(Y)} otherwise.

(93)

For t ≥ 0, define

(94) Et := inf{n ≥ 0: τ̌n+1 > t}.
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In the following we will abbreviate, for 0 ≤ s1 ≤ s2 ≤ ∞,

(95) Is2s1 := exp

{∫ s2

s1

(
θV

(a)
Y (Ws)− γ

)
ds

}
.

Lemma 3.5. For all n ∈ N0,

sup
x/∈Br(Y)

sup
t≥0

Ex
[
I t01{Et=n}

]
≤ %n.(96)

Proof. We will prove (96) by induction in n. The case n = 0 is simple since then V (a)
Y (Ws) = 0 for

all 0 ≤ s ≤ t. To treat the case n = 1, fix x /∈ Br(Y) and t > 0. There are two cases: either

τ̌1 ≤ t < τ̂1, or τ̂1 ≤ t < τ̌2. Let Č1 ∈ C (r)
Y such that Wτ̌1 ∈ Č1. Using the Markov property,

γ > Λ
(θ,a,r)
Y and Lemma 3.3, we may bound, Px-a.s. on the event {τ̌1 ≤ t},

Ex
[
I tτ̌11{τ̌1≤t<τ̂1}

∣∣ τ̌1, (Ws)s≤τ̌1
]

= EWτ̌1

[
I t−s0 1{τCc>t−s}

]
s=τ̌1,C=Č1

≤ L/(2K2
∗) ≤ L/(2K∗)(97)

and, using that V (a)
Y (Ws) = 0 for all s ∈ [τ̂1, t] when τ̂1 ≤ t < τ̌2 and Corollary 3.4,

Ex
[
I tτ̌11{τ̂1≤t<τ̌2}

∣∣ τ̌1, (Ws)s≤τ̌1
]
≤ Ex

[
I τ̂1τ̌1
∣∣ τ̌1, (Ws)s≤τ̌1

]
= EWτ̌1

[IτCc

0 ]C=Č1
≤ %/(2K∗) < L/(2K∗).(98)

Since r > 4a and x /∈ Br(Y), τ̌1 ≥ τBc
a(x) and thus

(99) Ex
[
I τ̌10 1{τ̌1≤t}

]
≤ E0

[
e−γτBc

a

]
≤ K∗e

−c∗a
√
γ

by Lemma 3.2. This together with (97)–(98) gives

Ex
[
I t01{Et=1}

]
= Ex

[
I τ̌10 1{τ̌1≤t}Ex

[
I tτ̌11{Et=1}

∣∣ τ̌1, (Ws)s≤τ̌1
]]

≤ Le−c∗a
√
γ = %(100)

by (84), concluding the case n = 1. Suppose now by induction that (96) has been shown for some
n ≥ 1. If Et = n+ 1, then τ̂1 ≤ t and we can write

Ex
[
I t01{Et=n+1}

]
= Ex

[
I τ̂10 1{τ̂1≤t}EWτ̂1

[
I t−s0 1{Et−s=n}

]
s=τ̂1

]
≤ %nEx

[
I τ̂1τ̌11{τ̂1≤t}

]
≤ %n+1/(2K∗)(101)

by the induction hypothesis, (98) and (84). This concludes the proof. �

The next result is the key lemma for the proof of Theorem 3.1.

Lemma 3.6. For each z ∈ Rd, R > 0 and n ∈ N0,

∀x /∈ Br(Y), t ≥ 0 :

Ex
[
I t01{Et=n,τBc

R
(z)≤t}

]
≤ 2L%(n−1)+ Px

(
sup0≤s≤t |Ws − z| > R− 2N

(r)
Y nr

)
.

(102)
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Proof. Fix z ∈ Rd and R > 0. We will again prove (102) by induction in n. The case n = 0 follows
since then V (a)

Y (Ws) = 0 for all 0 ≤ s ≤ t. Define the events

(103) Enu :=

{
sup

0≤s≤u
|Ws − z| ≥ R− 2nrN

(r)
Y

}
, n ∈ N0, u ≥ 0.

For the case n = 1, fix x /∈ Br(Y) and t > 0. Consider first the case τBc
R(z) ≤ τ̂1. We claim

that, on this event, E1
τ̌1

occurs. Indeed, if τBc
R(z) ≤ τ̌1 this is clear, and if τ̌1 < τBc

R(z) ≤ τ̂1 then

|Wτ̌1 − z| > R− 2rNY as the diameter of any component C ∈ C (r)
Y is bounded by 2rN

(r)
Y . Thus

Ex
[
I t01{τBc

R
(z)≤τ̂1,Et=1}

]
≤ Ex

[
1E1

τ̌1
∩{τ̌1≤t}Ex

[
I tτ̌11{Et=1}

∣∣ τ̌1, (Ws)s≤τ̌1
]]

≤ LPx
(
E1
t

)
(104)

by (97)–(98) above. If t ≥ τBc
R(z) > τ̂1, then τ̂1 < t < τ̌2, and thus

(105) Ex
[
I t01{τ̂1<τBc

R
(z)≤t,Et=1}

]
≤ Ex

[
I τ̂10 1{τ̂1≤t}PWτ̂1

(
E (0)
t−s

)
s=τ̂1

]
.

Note now that, since τ̌1 ≤ τ̂1 and |Wτ̂1 −Wτ̌1| ≤ 2rNY ,

(106) PWτ̂1

(
E0
t−s
)
s=τ̂1
≤ PWτ̌1

(
E1
t−s
)
s=τ̌1

and thus (105) is at most

Ex
[
1{τ̌1≤t}PWτ̌1

(
E1
t−s
)
s=τ̌1

EWτ̌1
[IτCc

0 ]C=Č1

]
≤ %

2
Px
(
E1
t

)
< LPx

(
E1
t

)
(107)

by Corollary 3.4 and (84). Collecting (104)–(107), we conclude the case n = 1.

Assume now by induction that (102) holds for some n ≥ 1. There are two possible cases: either
τBc

R(z) ≤ τ̂1 or not. In the first case, we conclude as before that E1
τ̌1

occurs. Then we may write

Ex
[
I t01{Et=n+1,τBc

R
(z)≤τ̂1}

]
≤ Ex

[
I τ̂10 1E1

τ̌1
∩{τ̂1≤t}EWτ̂1

[
I t−s0 1{Et−s=n}

]
s=τ̂1

]
≤ %nEx

[
1E1

τ̌1
∩{τ̌1≤t}EWτ̌1

[IτCc

0 ]C=Č1

]
≤ %n

%

2
Px
(
E1
t

)
< L%n Px

(
E1
t

)
(108)

by Lemma 3.5, Corollary 3.4 and (84). Consider now the case τ̂1 < τBc
R(z) and write

Ex
[
I t01{Et=n+1,τ̂1<τBc

R
(z)≤t}

]
= Ex

[
I τ̂10 1{τ̂1≤t}EWτ̂1

[
I t−s0 1{Et−s=n,τBc

R
(z)≤t−s}

]
s=τ̂1

]
≤ 2L%n−1Ex

[
I τ̂10 1{τ̂1≤t}PWτ̂1

(
Ent−s

)
s=τ̂1

]
(109)

by the induction hypothesis. Reasoning as for (106), we get PWτ̂1

(
Ent−s

)
s=τ̂1

≤ PWτ̌1

(
En+1
t−s
)
s=τ̌1

,
and hence (109) is at most

2L%n−1Ex
[
1{τ̌1≤t}PWτ̌1

(
En+1
t−s
)
s=τ̌1

Eτ̌1 [IτCc

0 ]C=Č1

]
≤ 2L%n−1(%/2)Px

(
En+1
t

)
(110)

by Corollary 3.4. Combining (108) and (110) we conclude the induction step. �
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We are now ready to finish the:

Proof of Theorem 3.1. Item (85) follows from Lemma 3.5. To show (86), fix z ∈ Br(Y)c and write

Ez
[
I t01{τBc

R
(z)≤t}

]
=
∞∑
n=0

Ez
[
I t01{τBc

R
(z)≤t,Et=n}

]
≤ 2L

∞∑
n=0

%(n−1)+P0

(
sup

0≤s≤t
|Ws| ≥ R− 2N

(r)
Y nr

)
(111)

by Lemma 3.6 and the translation invariance of Brownian motion. Split the sum in (111) according to
whether 4N

(r)
Y (n− 1)r > R or not to obtain

1

2L
Ez
[
I t01{τBc

R
(z)≤t}

]
≤ 2%

R

4rN
(r)
Y +

(
R

4rN
(r)
Y

+ 2

)
P0

(
sup

0≤s≤t
|Ws| ≥ 1

4
R

)
≤ K

{
%

R
4rNY +

R

r
e−

cR2

t

}
(112)

using % ≤ 1/2, R ≥ 8rN
(r)
Y , Lemma 3.2 and (92). This concludes the proof. �

4. SMALL DISTANCES IN POISSON CLOUDS

We collect some elementary facts concerning the probability to find Poisson points close to each other.
With the help of Proposition 2.9, this will allow us to control in Section 5.1 the growth of the maximal
principal eigenvalue Λ

(θ,a,r)
Y appearing in Theorem 3.1 with Y = P ∩BR.

Lemma 4.1. For any measurable D ⊂ Rd, any r ∈ (0,∞) and any k ∈ N0,

(113) P

(
∃ distinct y0, . . . , yk ∈ P : y0 ∈ D, max

1≤i≤k
|yi − yi−1| ≤ r

)
≤ |D| |Br|k

(k + 1)!
.

Moreover,

(114) P

(
sup
x∈D

ω(Br(x)) ≥ k + 1

)
≤ |Br(D)| |B2r|k

(k + 1)!
.

Proof. We start with (113). We may assume that |D| <∞. First note that, if y0 ∈ D and |yi−yi−1| <
r for 1 ≤ i ≤ k, then {y0, . . . , yk} ⊂ Dk := Bkr(D). Let (Xi)i≥0 be i.i.d. random vectors, each
uniformly distributed in Dk. Note that, for any fixed N ∈ N, Dk ∩P has under its conditional law given
that ω(Dk) = N the same distribution as {X1, . . . , XN}. For N ≥ k + 1, estimate with a union
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bound

P

(
∃ distinct j0, . . . , jk ∈ {1, . . . , N} : Xj0 ∈ D, max

1≤i≤k
|Xji −Xji−1

| ≤ r

)
≤
(

N

k + 1

)
P

(
X0 ∈ D, max

1≤i≤k
|Xi −Xi−1| ≤ r

)
=

(
N

k + 1

)
1

|Dk|k+1

∫
D

dx0

∫
Br(x0)

dx1 · · ·
∫
Br(xk−1)

dxk =

(
N

k + 1

)
|D||Br|k

|Dk|k+1
.(115)

Since |P ∩Dk| has distribution Poisson(|Dk|), splitting the left-hand side of (113) according to whether
|P ∩Dk| = N ≥ k + 1 and using (115), we get the bound

(116)
∞∑

N=k+1

(
N

k + 1

)
|D||Br|k

|Dk|k+1

|Dk|N

N !
e−|Dk| = |D| |Br|k

(k + 1)!

as advertised. Now (114) follows from (113) with D, r substituted by Br(D), 2r. �

Next we provide a lower bound on the probability to have close Poisson points.

Lemma 4.2. For all measurable D ⊂ Rd, all k ∈ N0 and all r ∈ (0,∞),

(117) P (∃x ∈ D : ω(Br(x)) = k + 1) ≥ 1− exp

{
−|D| r

kde−|Br|

2d(k + 1)!

}
Proof. Note that there exists a finite F ⊂ D such that Br(x) ∩ Br(y) = ∅ for all distinct x, y ∈ F
and #F ≥ d|D|/|B2r|e, which can be proved e.g. by induction on d|D|/|B2r|e. Then the family
ω (Br(x)), x ∈ F , is i.i.d., and we may estimate

P (∀x ∈ D : ω (Br(x)) 6= k + 1) ≤ (1−P (ω (Br) = k + 1))#F

≤ exp

{
−|D|P (ω (Br) = k + 1)

|B2r|

}
,

where we also used 1− x ≤ e−x. Since ω(Br) has distribution Poisson(|Br|), (117) follows. �

We now apply the bounds in Lemmas 4.1–4.2 to derive several asymptotic results. As a first conse-
quence of Lemma 4.1, we can show that, for fixed a > 0, the maximal number of Poisson points in
a-neighbourhoods of points in BR grows at most logarithmically in R:

Corollary 4.3. For any a ∈ (0,∞),

(118) lim
R→∞

(logR)−1 sup
x∈BR

ω(Ba(x)) = 0 P-a.s.

Proof. Fix a ∈ (0,∞) and K > 1. By (114), there exists a constant c ∈ (0,∞) such that

P

(
sup

x∈BKn
ω(Ba(x)) ≥ n

)
≤ c

(Ka)n

n!
.
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Since this is summable in n, the Borel-Cantelli lemma yields supx∈BKn ω(Ba(x)) ≤ n a.s. eventually.
For R ∈ (1,∞), take nR ∈ N such that KnR−1 < R ≤ KnR . Then limR→∞ nR =∞ and

lim sup
R→∞

(logR)−1 sup
x∈BR

ω(Ba(x)) ≤ lim
R→∞

nR
logR

= (logK)−1 P-a.s.,

and we complete the proof letting K →∞. �

Next we show that the number of points in neighborhoods with radii decreasing sufficiently fast to 0 are
bounded by a constant. Recall the notation P = {x ∈ Rd : ω({x}) = 1} for the support of ω.

Lemma 4.4. Fix k ∈ N and a function g : (0,∞)→ (0,∞). Let R(t), r(t) ∈ (0,∞) satisfy

(119) R(t)→∞, r(t)→ 0 and R(t)r(t)k ∼ g(t)−
1
d as t→∞.

Assume that R(t) is eventually non-decreasing, r(t) is eventually non-increasing and
∞∑
n=1

g(2n)−1 <∞.

Then, for N (r)
Y as in (83) and PR = P ∩BR,

(120) lim sup
t→∞

sup
|x|≤R(t)

ω(Br(t)(x)) ≤ k and lim sup
t→∞

N
(r(t))
PR(t)

≤ k P-a.s.

Proof. Applying (114) and our assumptions we get, for some constant c > 0 and all n large enough,

P

(
sup

x∈BR(2n+1)

ω
(
Br(2n)(x)

)
≥ k + 1

)
≤ cg(2n)−1.(121)

Now the Borel-Cantelli lemma implies that supx∈BR(2n+1)
ω(Br(2n)(x)) ≤ k almost surely for all large

enough n, and the first inequality in (120) follows by interpolation and monotonicity. To see that the
second inequality follows from the first, note that, for any R, r > 0,

{∃ C ∈ C (r)
PR : NC ≥ k + 1} ⊂ {∃x ∈ BR : ω(B2kr(x)) ≥ k + 1}. �

The following corollary is immediate from (117).

Corollary 4.5. Fix n ∈ N and let R(t), r(t) ∈ (0,∞) satisfy r(t)→ 0, R(t)r(t)k →∞ as t→∞.
Then

(122) lim
t→∞

P
(
∃x ∈ BR(t) : ω

(
Br(t)(x)

)
= k + 1

)
= 1.

The next lemma is needed for the results on the lim sup-asymptotic.

Lemma 4.6. Fix k ∈ N. Let R(t), r(t), g(t) ∈ (0,∞) satisfy (119) and
∑

n≥1 g(2n)−1 =∞. Then

(123) lim sup
t→∞

sup
|x|≤R(t)

ω(Br(t)(x)) ≥ k + 1 P-a.s.
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Proof. Let An := BR(2n)−r(2n) \ BR(2n−1)+r(2n), n ∈ N. Using (117), our assumptions on R(t), r(t)
and 1− e−x ∼ x as x→ 0, we find a constant c > 0 such that∑

n∈N

P

(
sup
x∈An

ω(Br(2n)(x)) ≥ k + 1

)
≥ c

∞∑
n=1

g(2n)−1 =∞.

Noting that supx∈An ω(Br(βn)(x)), n ∈ N, are independent random variables, the second Borel-
Cantelli lemma yields the result. �

In the remaining lemmata we investigate the lim inf behaviour.

Lemma 4.7. Fix k ∈ N. Let R(t), r(t) ∈ (0,∞) satisfy R(t)→∞, r(t)→ 0 as t→∞ and

(124) c := lim inf
t→∞

(R(t)r(t)k)d

log log t
> 2d(k+1)!

|B1| .

Then

(125) lim inf
t→∞

sup
x∈BR(t)

ω
(
Br(t)(x)

)
≥ k + 1 P-a.s.

Proof. Fix ε > 0 such that c− ε > (1 + ε)2d(k + 1)!/|B1|. By (117) and our assumptions on R, r,

P

(
sup

x∈BR(en)

ω
(
Br(en)(x)

)
≤ k

)
≤ exp

{
− |B1|

2d(k + 1)!
(c− ε) log n

}
≤ n−(1+ε)

for all n large enough. Now (125) follows by the Borel-Cantelli lemma. �

We state next an improvement of (114). For D ⊂ Rd and r > 0, we denote by

(126) ϑr(D) := min
{
n ∈ N : ∃ z1, . . . , zn ∈ Rd, D ⊂ ∪ni=1(zi + [0, r]d)

}
the minimum number of boxes of side-length r needed to cover D.

Lemma 4.8. For any k,m ∈ N, any measurable D1, . . . , Dm ⊂ Rd, and any r1, . . . , rm ∈ (0,∞),

(127) P

(
sup

1≤i≤m
sup
x∈Di

ω(Bri(x)) ≤ k

)
≥

m∏
i=1

(
1− (2ri)

d|B2ri |k

(k + 1)!

)ϑri (D)

.

Proof. We first note that supx∈Di ω(Bri(x)), 1 ≤ i ≤ m, is a family of associated random variables
(cf. [22, Proposition 4], see also [13, Theorem 5.1]), i.e.,

(128) P

(
sup

1≤i≤m
sup
x∈Di

ω(Bri(x)) ≤ k

)
≥

m∏
i=1

P

(
sup
x∈Di

ω(Bri(x)) ≤ k

)
.

Consider the case m = 1, and write D = D1, r = r1. Then, with z1, . . . , zm̂ ∈ Rd as in (126),
(129)

P

(
sup
x∈D

ω(Br(x)) ≤ k

)
≥ P

(
ϑr(D)
sup
i=1

sup
x∈zi+[0,r]d

ω(Br(x)) ≤ k

)
≥
(

1− (2r)d
|B2r|k

(k + 1)!

)ϑr(D)

by (128) and (114). Now (127) follows from (128)–(129). �
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The following lemma uses ideas from [9, Lemma 5.2].

Lemma 4.9. Let k ≥ 2 and R(t), r(t) > 0 satisfy

(130) R(t) ∼ t
k
k−1 (log log t)−

1
d(k−1) , r(t) ∼ t−

1
k−1 (log log t)

1
d(k−1) as t→∞.

Let bn > 0, n ∈ N, such that

(131)
∞∑
n=1

(2n−1bkn)d <
(k + 1)!

(2d|B1|)k+1
.

Let ρ > 0 and z(t) := bρ log log tc. Then

(132) lim inf
t→∞

z(t)
sup
n=1

sup
x∈B2n−1R(t)

ω
(
Bbnr(t)(x)

)
≤ k P-a.s.

Proof. We may assume that ρ > 1. Abbreviate `(t) := log log t. Take t0 ∈ (1,∞) large enough such
that `(t0) > 1, and define a growing sequence (tj)j∈N0 recursively by

(133) tj = tj−1 exp{ρ`(tj−1)}, j ∈ N.
For j ∈ N and n ∈ N, set

Aj,n := B2n−1R(tj) \BR(tj−1), Xj :=
z(tj)
sup
n=1

sup
x∈B2n−1R(tj)

ω(Bbnr(tj)(x)),

X̂j :=
z(tj)
sup
n=1

sup
x∈Aj,n

ω(Bbnr(tj)(x)), X̌j := sup
x∈BR(tj−1)

ω(Bb1r(tj)(x)).

Note that Xj = max(X̌j, X̂j). Thus it will be sufficient to show that P-a.s. both

(134) lim sup
j→∞

X̌j ≤ k and lim inf
j→∞

X̂j ≤ k.

To obtain the first inequality, note that by (114) there exists a constant c ∈ (0,∞) such that

P
(
X̌j ≥ k + 1

)
≤ c

(
R(tj−1)r(tj)

k
)d ≤ 2ce−

k
k−1
{dρ`(tj−1)−log `(tj−1)} ≤ 2ce−

dkρ(1−εj)

k−1
`(tj−1)

(135)

for all large enough j, where we used `(tj) ≤ 2`(tj−1), and εj → 0 as j →∞. To conclude with the
Borel-Cantelli lemma, note that (135) is summable in j since, for any α > 1,

∞ >

∫ ∞
t0

1

t
e−α`(t)dt =

∞∑
j=0

∫ tj+1

tj

1

t
e−α`(t)dt ≥

∞∑
j=0

log(tj+1/tj)e−α`(tj+1) >

∞∑
j=0

e−α`(tj+1).

Consider now the second inequality in (134). By (127), for all j ∈ N,

logP
(
X̂j ≤ k

)
≥ logP (Xj ≤ k)

≥
z(tj)∑
n=1

ϑbnr(tj)
(
B2n−1R(tj)

)
log

(
1−

(2bnr(tj))
d|B2bnr(tj)|k

(k + 1)!

)
.
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Using (130), log(1− x) ∼ −x as x→ 0 and ϑr(BR) ∼ |BR|/rd as r ↓ 0, R ↑ ∞, we obtain

logP
(
X̂j ≤ k

)
≥ −(1 + εj)

(2d|B1|)k+1

(k + 1)!
`(tj)

∞∑
n=1

(2n−1bkn)d > −(1− δ)`(tj)

for large j by (131), where εj → 0 as j →∞ and δ ∈ (0, 1). Since, for some c ∈ (0,∞),

∞ =

∫ ∞
t0

1

t
e−`(t)dt ≤

∞∑
j=0

ρ`(tj)e−`(tj) ≤ c

∞∑
j=0

e−(1−δ)`(tj),

we deduce
∑∞

j=0 P(X̂j ≤ k) = ∞. Note now that, since R(tj+1) � 2z(tj)R(tj) as j → ∞,

there exists a j0 ∈ N such that both (X̂2j)j≥j0 and (X̂2j+1)j≥j0 are families of independent random
variables, allowing us to conclude the proof with an application of the second Borel-Cantelli lemma. �

5. PROOF OF THE MAIN THEOREMS

Throughout this section, we fix d ≥ 3 arbitrary in general, but d = 3 whenever we treat the renor-
malized potential V . We also fix θ ∈ (0, hd

2
] and set k = kθ = bhd

θ
c, where hd = (d − 2)2/8

.

The section is organized as follows. In Sections 5.1–5.2 below, we provide some preparatory results
concerning respectively bounds for principal eigenvalues and estimates of the error introduced when
substituting either V (K) or V by a truncated potential V (a). Section 5.3 contains the proofs of Theo-
rems 1.7 and 1.2 as well as of the upper bounds for Theorems 1.4, 1.5 and 1.6. Corresponding lower
bounds are proved first in the special case of truncated potentials in Section 5.4. The proofs of Theo-
rem 1.9 is given in Section Section 5.5, as well as the completion of the proofs of Theorems 1.4, 1.5,
1.6 and 1.10. Finally, Theorems 1.8 and 1.3 are proved in Section 5.6.

5.1. Bounds for principal eigenvalues. In order to make use of the upper bound given in Theo-
rem 3.1, we study the almost-sure asymptotics as R →∞ of Λ

(θ,a,r)
Y defined in (83) with Y = PR =

P ∩BR. To this end, we will combine the multipolar Hardy inequality from Section 2.4 and the Poisso-
nian asymptotics stated in Section 4.

Fix 0 < a < r <∞ and recall (82)–(83). For s > 0, write

{Λ(θ,a,r)
PR > s} ⊂ {Λ(θ,a,r)

PR > s,N
(r)
PR ≤ k + 1} ∪ {N (r)

PR ≥ k + 2}.(136)

The second event in (136) can be controlled by

{N (r)
PR ≥ k + 2} ⊂

{
∃x ∈ BR : ω

(
B(k+1)r(x)

)
≥ k + 2

}
.

To control the first event in (136), write, for C ∈ C (r)
PR ,

Γ(C) := inf {s > 0: Bs(PR ∩ C) is connected}
and set

(137) cmp := (k + 1)
π2 + 3θ

2
.
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Note that λC = 0 for each C ∈ C (r)
PR withNC ≤ k due to the Hardy inequality (cf. (68)) and Remark 2.1.

Then, by the multipolar Hardy inequality (70),

{Λ(θ,a,r)
PR > s,N

(r)
PR ≤ k + 1} ⊂ {∃C ∈ C (r)

PR : λC > s, NC = k + 1}

⊂
{
∃C ∈ C (r)

PR : Γ(C)2 < cmp/s, NC = k + 1
}

⊂
{
∃ distinct y1, . . . , yk+1 ∈ PR : ∪k+1

i=1 B(cmp/s)1/2(yi) is connected
}

⊂
{
∃x ∈ BR : ω

(
B2k(cmp/s)1/2(x)

)
≥ k + 1

}
.

Combining these results, we get

{Λ(θ,a,r)
PR > s} ⊂

{
sup
x∈BR

ω
(
B2k(cmp/s)1/2(x)

)
≥ k + 1

}
∪
{

sup
x∈BR

ω
(
B(k+1)r(x)

)
≥ k + 2

}
.

(138)

With this inclusion at hand, we derive next several consequences of the results from Section 4.

Lemma 5.1. Let 0 < a < r < R < ∞ and θ ∈ (0, hd
2

]. There exists a constant c ∈ (0,∞)
depending only on θ and d such that, for all s > cR−2,

(139) P
(

Λ
(θ,a,r)
PR > s

)
≤ cRd

(
s−

d
2
k + rd(k+1)

)
.

Proof. We can assume c ≥ 4k2cmp. Using (138), (114) and 2k(cmp/s)
1/2 < R, we get

P
(

Λ
(θ,a,r)
PR > s

)
≤ P

(
sup
x∈BR

ω
(
B2k(cmp/s)1/2(x)

)
≥ k + 1

)
+ P

(
sup
x∈BR

ω
(
B(k+1)r(x)

)
≥ k + 2

)
≤ |B1|(2R)d

(
|B1|(4k(cmp/s)

1/2)d
)k

(k + 1)!
+ |B1|(2(k + 1)R)d

(
|B1|(2(k + 1)r)d

)k+1

(k + 2)!
.

This shows (139). �

Lemma 5.2. Fix α > (k + 1)−1 and let R(t)→∞, g(t)→∞ as t→∞. For any c1, c2 ∈ (0,∞),

(140) lim
t→∞

ΛR(t)

g(t)R(t)2/k
= 0 in probability, where ΛR := Λ

(θ,c1R−α,c2R−α)
PR .

If moreover
∑∞

n=1 g(2n)−dk/2 <∞, R is regularly varying with positive index, and g is either eventu-
ally non-decreasing or slowly varying, then (140) holds almost surely.

Proof. (140) follows directly from (139). For the second statement, note that, for n ∈ N, (138) yields

{ΛR(t) > n−1g(t)R(t)2/k}
⊂ { sup

|x|≤R(t)

ω(Br(t)(x)) ≥ k + 1} ∪ { sup
|x|≤R(t)

ω(Bc2(k+1)R(t)−α(x)) ≥ k + 2},
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where r(t) = 2k
√
cmpng(t)−1/2R(t)−1/k. By [3, Theorem 1.5.3], we may assume thatR(t) and r(t)

are eventually monotone. By (120), lim supt→∞ ΛR(t)/(g(t)R(t)2/k) ≤ 1/n almost surely, and to
conclude we let n ↑ ∞. �

The following lemma will be used in the proof of Theorem 1.6.

Lemma 5.3. Let R(t) as in (130) and α > (k+ 1)−1. For n ≥ 1, let an(t) := (2n−1R(t))−α and, for
A > 0,

Λt,n := Λ
(θ,an(t),5an(t))
P2n−1R(t)+1

, Θt,n(A) := Λt,n − A1{n≥2}4
n−1t

2
k−1 (log log t)−

2
d(k−1) .

Let ρ > 0 and z(t) := bρ log log tc. For any A > 0, there exists a C = C(A, k, d) ∈ (0,∞) such
that

(141) lim inf
t→∞

t−
2

k−1 (log log t)
2

d(k−1)
z(t)

max
n=1

Θt,n(A) ≤ C P-almost surely.

Proof. Fix A, ρ > 0. Let χk := (k + 1)!/(|B2|k+1) as in (131) and cmp as in (137), and pick

(142) C > (4A) ∨

(
(4k
√
cmp)k

√
Aχ

1/d
k

)2/(k−1)

.

Define bn > 0, n ∈ N by setting

b1 = 2k(cmp/C)1/2 and bn = 2k(cmp/C)1/2
(
1 + (A/C)4n−1

)−1
2 , n ≥ 2.

Let us verify that bn satisfies (131). Indeed, setting n0 := blog4(C/A)c ≥ 1, we may write

(2k(cmp/C)1/2)−kd
∞∑
n=1

(
2n−1bkn

)d ≤ n0+1∑
n=1

2(n−1)d + (C/A)kd/2
∞∑

n=n0+2

2−(k−1)d(n−1)

≤ 2n0d+1 + 2 (C/A)kd/2 2−(k−1)dn0 ≤ 2kd(C/A)d/2

= (2k(cmp/C)1/2)−kd
(
(4k
√
cmp)kA−1/2C−(k−1)/2

)d
< (2k(cmp/C)1/2)−kdχk

by our choice of C . This shows (131). Let now r(t) := t−
1

k−1 (log log t)
1

d(k−1) and use (138) to write{
z(t)

max
n=1

Θt,n(A) ≤ Ct
2

k−1 (log log t)−
2

d(k−1)

}
=

z(t)⋂
n=1

{
Λt,n ≤ r(t)−2(2k

√
cmp)2b−2

n

}
⊃

z(t)⋂
n=1

{ sup
|x|≤2n−1R(t)+1

ω(Bbnr(t)(x)) ≤ k} ∩ { sup
|x|≤2n−1R(t)+1

ω(B5(1+k)an(t)(x)) ≤ k + 1}
)

⊃
{

z(t)
max
n=1

sup
|x|≤2n−1(R(t)+1)

ω(Bbnr(t)(x)) ≤ k
}
∩
{

sup
|x|≤2z(t)(R(t)+1)

ω(B5(1+k)a0(t)(x)) ≤ k + 1
}
.

The first event on the right-hand side above occurs a.s. infinitely often by (132), and the second event
occurs eventually by (120). This yields (141). �
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5.2. Truncation of Poisson potentials. In this section, we control the error that occurs when replacing
either an attenuated potential V (K) as in (11) or the renormalized potential V by a truncated potential
V (a) = V (Ka), where Ka(x) = |x|−2

1{|x|≤a}. We first state an auxiliary result.

Lemma 5.4. Let R 7→ K(R) ∈ L1(Rd) ∩ L∞(Rd) satisfy

(143) C := lim sup
R→∞

‖K(R)‖L∞(Rd) <∞ and lim sup
R→∞

∫
Rd

sup
|x|≤1

|K(R)(x− y)|dy <∞.

Then

(144) lim sup
R→∞

log logR

logR
max
|x|≤R

|V (K(R))(x)| ≤ dC P-a.s.

Proof. Using (143) and [8, Proposition 2.7], one can follow the proof of [16, Lemma 2.6]. �

Our comparison lemma reads as follows.

Lemma 5.5. Let d ≥ 3, K ∈ K and a ∈ (0,∞). Then, P-almost surely for all bounded D ⊂ Rd,

(145) sup
x∈D\P

|V (K)(x)− V (a)(x)| <∞.

Moreover, for any R 7→ aR > 0 such that lim supR→∞ aR <∞,

(146) lim
R→∞

a2
R

logR
sup

|x|≤R : x/∈P

∣∣V (K)(x)− V (aR)(x)
∣∣ = 0 P-a.s.

When d = 3, (145)–(146) hold with V in place of V (K).

Proof. Note that, for all x ∈ Rd \ P and all a > 0,∣∣V (K)(x)− V (a)(x)
∣∣ ≤ ω(Ba(x)) sup

|z|≤a

∣∣∣∣K(z)− 1

|z|2

∣∣∣∣+ a−2

∫
a2|K(x− y)|1{|x−y|>a}ω(dy),

proving (145). With a = aR as in the statement, (146) follows by (10), Corollary 4.3 and Lemma 5.4.

Consider now d = 3. Fix a > 0 and let α : R+ → [0, 1] be a smooth truncation function with
α(λ) = 1 on [0, 1], α(λ) = 0 for λ ≥ 3 and−1 ≤ α′(λ) ≤ 0. Decompose V = V 1 + V 2 by setting
(147)

V 1(x) :=

∫
R3

1− α(a−1|x− y|)
|x− y|2

[ω(dy)− dy], V 2(x) :=

∫
R3

α(a−1|x− y|)
|x− y|2

[ω(dy)− dy].

Note that V 1 exactly matches V a,ε in [9, Eq. (3.5)] with ε = 1. Thus, by [9, Eq. (3.6)],

(148) sup
x∈D

V 1(x) <∞ P-a.s.

for any bounded D ⊂ R3 while, by Lemma 3.3 in the same reference,

(149) lim
R→∞

(logR)−1 sup
|x|≤R

|V 1(x)| = 0 P-a.s.

DOI 10.20347/WIAS.PREPRINT.2482 Berlin 2018



P. Nelson, R.S. dos Santos 28

Furthermore, since the integrand in the definition of V 2 is in L1(R3), we may separate the integration
in terms of ω(dy) and dy using [8, Proposition 2.5], i.e.,

(150) V 2(x) =

∫
R3

α(a−1|x− y|)
|x− y|2

ω(dy)−
∫
R3

α(a−1|x− y|)
|x− y|2

dy.

The second integral above is a finite constant independent of x. For the first integral, we get∫
R3

α(a−1|x− y|)
|x− y|2

ω(dy) = V (b)(x) +

∫
R3

α(a−1|x− y|)
|x− y|2

1{|x−y|≥b}ω(dy)(151)

for any b ∈ (0, a]. Now note that, since α(λ) = 0 for λ ≥ 3,

(152) sup
x∈D

∫
R3

α(a−1|x− y|)
|x− y|2

1{|x−y|≥b}ω(dy) ≤ b−2 sup
x∈D

ω(B3a(x)) <∞ P-a.s.

Combining (148) and (150)–(152) with b = a, we obtain (145) with V in place of V (K). To obtain (146),
take a > lim supR→∞ aR, b = aR, D = BR and apply additionally (149) and Corollary 4.3. �

5.3. The upper bounds. We introduce next some notation and a key result that will be used in the
following proofs of the upper bounds. Fix α ∈ ( 1

k+1
, 1
k
) and recall (83). Throughout the section, we will

use the notation

(153) ΛR(x) := Λ
(θ,R−α,5R−α)
P∩BR+1(x) , R > 0, x ∈ Rd.

The reason to use the radius R + 1 above is that V (a)(z) = V
(a)
P∩BR+1

(z) for all a ∈ (0, 1] and
z ∈ BR(x).

In the proofs below, we will work with certain radii sequences Rn(t) ∈ [1,∞), n ∈ N, t > 0, which
we keep arbitrary for now. According to the choice of Rn(t), we introduce

an(t) = Rn(t)−α, rn(t) = 5an(t), R0(t) = 8(k + 1)r1(t),(154)

as well as the hitting times

(155) τ̂n(x) = τ̂n(t, x) := τBc
Rn(t)

(x) = inf{s ≥ 0: Ws /∈ BRn(t)(x)}, n ∈ N0, x ∈ Rd.

Fix K ∈ K and define the error terms
(156)
Sn(t, x) := sup

z∈BRn(t)(x)

|V (K)(z)− V (an(t))(z)|, Sn(t, x) := sup
z∈BRn(t)(x)

|V (z)− V (an(t))(z)|.

Recall (83) and define, for x ∈ Rd \ P and t > 0,
(157)

ζt(x) := inf
{
n ∈ N : x /∈ Brn(t)(P), N

(rn(t))
P∩BRn(t)+1(x) ≤ k + 1 and Rn−1(t) ≥ 8rn(t)(k + 1)

}
.

The next lemma provides conditions on Rn(t) guaranteeing the finiteness of ζt(x).

Lemma 5.6. Let Rn(t) ≥ 1, n ∈ N, t > 0 satisfy

(158) ∀t2 > t1 > 0: lim
n→∞

Rn(t1) =∞ and lim inf
n→∞

inf
t,s∈[t1,t2]

Rn(t)

Rn(s)
> 0.
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Then, P-almost surely for all x ∈ Rd \ P , ξt(x) <∞ for all t > 0, and there exists a t0(x) ∈ (0,∞)
such that ξt(x) = 1 for all t ≥ t0(x).

Proof. If (158) holds, then, for any K, ε > 0,

lim
n→∞

sup
ε≤t≤ε−1

rn(t) = 0, lim
n→∞

inf
ε≤t≤ε−1

Rn−1(t) =∞

and
lim sup
n→∞

sup
|x|≤K

sup
ε≤t≤ε−1

N
(rn(t))
P∩B2Rn(t)(x) ≤ k

almost surely by (120) (with R(t) = t). Similar estimates hold when n = 1, t→∞. �

Remark 5.7. When x = 0, we will omit it in the notation of the objects above, i.e., we will write ΛR, τ̂n,
Sn(t), ζt, instead of ΛR(0), τ̂n(0), Sn(t, 0), ζt(0), etc.

We are now ready to state the key estimate of the section.

Lemma 5.8. There exist deterministic constants χ ∈ [1,∞) and c1, c2 ∈ (0,∞) such that the follow-
ing holds P-almost surely for all x ∈ Rd \ P and all t > 0. Let Rn(t) ≥ 1, n ∈ N satisfy (158), and
let

(159) γn(t, x) ≥ max
{

2ΛRn(t)(x), χRn(t)2α
}
, n ∈ N.

Then, for all K ∈ K and all 0 ≤ A1 < A2 ≤ ∞,

Ex
[
e
∫ t
0 θV

(K)(Ws)ds
1{τBc

A1
(x)≤t<τBc

A2
(x)}

]
≤ Ex

[
e
∫ t
0 θV

(K)(Ws)ds
1{τBc

A1
(x)≤t<τ̂ζt(x)−1}

]
(160)

+
∑

n≥ζt(x) :
A1<Rn(t)<A2

c1e
tθSn(t,x)+tγn(t,x)+log+(

√
tRn(t)α)−c2Rn−1(t) min

{
t−1Rn−1(t),

√
γn(t)

}
.

When d = 3, the same bound also holds with V , Sn(t, x) in place of V (K), Sn(t, x).

Proof. Splitting according to whether t ≥ τζt(x)−1(x) or not and, if so, according to which n ≥ ζt(x)
satisfies τ̂n−1(x) ≤ t < τ̂n(x), we may decompose

Ex
[
e
∫ t
0 θV

(K)(Ws)ds
1{τBc

A1
(x)≤t<τBc

A2
(x)}

]
≤ Ex

[
e
∫ t
0 θV

(K)(Ws)ds
1{τBc

A1
(x)≤t<τ̂ζt(x)−1(x)}

]
+

∑
n≥ζt(x) :

A1<Rn(t)<A2

Ex
[
exp

(∫ t

0

θV (K)(Ws)ds

)
1{τ̂n−1(x)≤t<τ̂n(x)}

]
.(161)

Set Yn(t, x) := P ∩ BRn(t)+1(x) and note that, if t < τ̂n(x), then V (an(t))(Ws) = V
(an(t))
Yn(t,x) (Ws) for

all s ∈ [0, t]. Recalling (156), we see that the series in (161) is bounded by
(162)

∞∑
n≥ζt(x) : A1<Rn(t)<A2

exp (θtSn(t, x))Ex
[
exp

(∫ t

0

θV
(an(t))
Yn(t,x) (Ws)ds

)
1{τBc

Rn−1(t)
(x) ≤ t}

]
.
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We wish to apply the bound (86) to the terms of (162), with parameters chosen as follows:

Y = Yn(t, x), R = Rn−1(t), a = an(t), r = rn(t), γ = γn(t).

It is straightforward to verify that we may (deterministically) choose χ ∈ [1,∞) large enough such
that, with this choice of parameters, whenever γn(t) satisfies (159) and n ≥ ζt(x), the function L =
L(Yn(t, x), θ, an(t), rn(t), γn(t)) in (84) is uniformly bounded by a deterministic constant, and

(163) c∗an(t)
√
γn(t) > 2 log(2L) (in particular, % < 1/2).

Moreover, when n ≥ ζt(x), x /∈ Brn(t)(Yn(t, x)) andRn−1(t) ≥ 8rn(t)N
(rn(t))
Yn(t,x). We may thus apply

(86) to the expectations in (162), obtaining, for some deterministic constants c1, c2 ∈ (0,∞),

Ex
[
e
∫ t
0 θV

(an(t))
Yn(t,x)

(Ws)−γn(t)ds
1{τBc

Rn−1(t)
(x) ≤ t}

]
≤ c1

{√
tRn(t)αe−

c2Rn−1(t)2

t + e−c2
√
γn(t)Rn−1(t)

}
,

where we used supx>0 xe−x
2/b ≤

√
b/2 for any b > 0. Together with the bound (162), this shows

(160). The proof for V is identical. �

5.3.1. Proof of Theorems 1.7 and 1.2.

Proof. We start with Theorem 1.2. Fix K ∈ K . It will be sufficient to show that, for each y ∈ Rd and
each ε ∈ (0, 1), P-almost surely for all x ∈ B1(y) \ P and all t ∈ [ε, ε−1], u(K)

θ (t, x) < ∞. By the
homogeneity of ω, it is enough to consider y = 0. To this end, we will apply Lemma 5.8 with

(164) Rn(t) = 1 ∨ (2n−1t)
k+1
k−1 , γn(t, x) = max

{
2ΛRn(t)(x), χR2/k

n

}
,

and A1 = 0, A2 = ∞. Note that Rn(t) satisfies (158) and, by (154) and the choice of α, (159) is
satisfied for all x ∈ B1.

Let us first show that, a.s. for all x ∈ B1 \ P and all t ∈ [ε, ε−1], the first term in the right-hand side of
(160) is finite. Let εx := 1

2
dist(x,P) and fix âx ∈ (0, εx). Recall Lemma 5.6, (156) and write

Ex
[
exp

{∫ t

0

θV (K)(Ws)ds

}
1{t < τ̂ζt−1(x)}

]

≤ exp

θt sup
z∈BRζt−1(t)(x)

∣∣V (K)(z)− V (âx)(z)
∣∣Ex

[
e
∫ t
0 θV

(âx)
Yt(x)

(Ws)ds
1{t<τ̂ζt−1(x)}

]
,

whereYt(x) := P∩BRζt−1(t)+âx(x) and we used that, if t < τ̂ζt−1(x), then V (a)(Ws) = V
(a)
Yt(x)(Ws)

for 0 ≤ s ≤ t. Since P ∈ Y a.s., the multipolar Hardy inequality in [4][Theorem 1] implies that
P
(
∀R > 0: λmax(Rd, θVPR) <∞

)
= 1, and the conclusion follows from (145) and (45).

Consider now the series in (160). The term for n = 1 is bounded by

(165) c1 exp{θtS1(t, x) + tγ1(t, x) + log+(
√
tR1(t)α)}.
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Using γn(t, x) > Rn(t)2/k, we bound the terms for n ≥ 2 by

c3 exp
{
θtSn(t, x) + tγn(t, x)− c4(2nt)

k+1
k−1

}
(166)

for some constants c3, c4 > 0. We now claim that the supremum over (x, t) ∈ B1 × [ε, ε−1] of both
(165) and the sum over n ≥ 2 of (166) is finite; indeed, by (146),

sup
(x,t)∈B1×[ε,ε−1]

Sn(t, x) ≤ sup
|z|≤Rn(ε−1)+1,

t∈[ε,ε−1]

∣∣V (K)(z)− V (an(t))(z)
∣∣ = o(Rn(ε−1)2α logRn(ε−1))

as n→∞ and, by Lemma 5.2 (applied with R(t) = t), for any β > 1/k,

sup
|x|≤1,t∈[ε,ε−1]

γn(t, x) ≤ max
{
χRn(ε−1)2/k, 2Λ

(θ,an(ε),rn(ε))
P2Rn(ε−1)

}
= o(Rn(ε−1)2β) P-a.s.

This finishes the proof of Theorem 1.2. The proof of Theorem 1.7 is completely analogous. �

Remark 5.9. It follows from our proof that the statement of Theorem 1.7 is also true with V (K), V
replaced by |V (K)|, |V |, since e.g. ||V (K)(x)| −V (a)(x)| ≤ |V (K)(x)−V (a)(x)| for any a ∈ (0,∞).

Lemma 5.8 and the estimates in the proof above also allow us to show the following.

Lemma 5.10. For any K ∈ K and any γ ∈ (0,∞) such that γ(k − 1) > 2/d,

(167) lim
t→∞

E0

[
exp

{∫ t

0

V (K)(Ws)ds

}
1

{
sup

0≤s≤t
|Ws| ≥ (log t)γt

k
k−1

}]
= 0 P-a.s.

When d = 3, the same holds with V in place of V (K).

Proof. Take Rn(t), γn(t) = γn(t, 0) as in (164). Using the bound (166) for the n-th term of the series
in (160), we bound the expectation in (167) by

(168) c3

∞∑
n=nt+1

exp
{
tθSn(t) + tγn(t)− c4(2nt)

k+1
k−1

}
, where nt :=

⌊
γ(k − 1) log2 log t

k

⌋
.

Let β ∈ (0, 1) with 2/d < kβ < γ(k − 1). Then g(t) := (log t)β satisfies the conditions of
Lemma 5.2, implying that γn(t) = o(g(2n−1t)Rn(t)2/k). Using additionally the almost sure bound
Sn(t) = o(Rn(t)2α logRn(t)) given by Lemma 5.5, we may check that, when t is large enough, the
exponents of the summands in (168) are smaller than −c3(2nt)(k+1)/(k−1) for some constant c3 > 0,
from which (167) follows. The statement for V is obtained analogously, considering Sn(t). �

5.3.2. Upper bound in Theorem 1.4.

Proof of (16). Let Rn(t), γn(t) = γn(t, 0) as in (164). Recall (157) and that, by Lemma 5.6, ζt = 1
a.s. for all large enough t. Using Lemma 5.8, Lemma 5.10 and the estimates (165)–(166) for the terms
of the series in (160), we see that it is enough to show that, as t→∞,

(169) logE0

[
exp

(
θ

∫ t

0

V (K)(Ws)ds

)
1{t<τ̂0}

]
= O(t) P-a.s.,
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g(t)−1t−
2

k−1 {θS1(t) + γ1(t)} → 0 in probability,(170)

and that, for any ρ > 0,

g(t)−1t−
k+1
k−1 max

2≤n≤bρ log log tc

{
tθSn(t) + tγn(t)− c4(2nt)

k+1
k−1

}
→ 0 in probability.(171)

We start with (169). When t is large, R0(t) < 1. Let ε0 := 1
2
dist(0,P) and set â0 := 1

2
(ε0 ∧ 1). Note

that, when t < τBc
1
, V (â0)(Ws) = V

(â0)
P2

(Ws) for 0 ≤ s ≤ t. Moreover, λmax(B2, θV
(â0)
P2

) < ∞ and
dist(Bc

2,P1) > 0. Applying Lemma 5.5 and (45), we find (random) constants C1, C2 ∈ (0,∞) such
that, a.s. for all large enough t, the expectation in (169) is at most

eθt supx∈B2|V (K)(x)−V (â0)(x)|E0

[
exp

{∫ t

0

θV
(â0)
P2

(Ws)ds

}
1{t<τBc

2
}

]
≤ C1eC2t.

Thus (169) follows, and we move to (170)–(171). Note first that, by (146),

(172) lim
t→∞

max
1≤n≤bρ log log tc

t−
2

k−1Sn(t) = 0 P-a.s.,

and (170) follows by Lemma 5.2. To control the remaining term in (171), fix ε > 0 and estimate with a
union bound

P

(
max
n≥1

tγn(t)− c4(2nt)
k+1
k−1

g(t)t
k+1
k−1

> ε

)
≤

∞∑
n=1

P
(
γn(t) > t

2
k−1

(
εg(t) + c4(2n)

k+1
k−1

))
.(173)

Now note that, since g(t) → ∞, when t is large enough, it is impossible to have γn(t) = χRn(t)2/k

if γn(t) satisfies the inequality in (173); thus in this case γn(t) = 2ΛRn(t). Applying (139), we obtain
deterministic constants c5, c6 ∈ (0,∞) such that (173) is at most

c5

∞∑
n=1

Rn(t)d
{
t−

dk
k−1

(
εg(t) + c4(2n)

k+1
k−1

)− dk
2

+Rn(t)−αd(k+1)
}

≤ c5

∞∑
n=1

(
(2n)

2
k−1

εg(t) + c4(2n)1+ 2
k−1

) dk
2

+ c6

∞∑
n=1

(2nt)
− dk
k−1

(α(k+1)−1) t→∞−→ 0

since α > (k + 1)−1. Together with (172), this shows (171), completing the proof of (16). �

5.3.3. Upper bound in Theorem 1.5. Before we proceed to the proof, we recall that, when ` is slowly
varying, `(λr) ∼ `(r) as r → ∞ uniformly over λ in compact subsets (cf. [3, Theorem 1.2.1]). It is
then straightforward to translate the integrability condition in (17) into a summability condition, namely,∫ ∞

1

dt

t`(t)
<∞ if and only if

∞∑
n=0

`(2n)−1 <∞.(174)

Proof of the upper bound in (17). Fix t 7→ `(t) slowly varying with
∫∞

1
dr
r`(r)

<∞, and set

(175) Rn(t) := (2n−1t)
k
k−1 `(2n−1t)

1
d(k−1) , γn(t) := max

(
2ΛRn(t), Rn(t)

2
k `(2n−1t)

2
dk

)
.

When t is large, Rn(t) ≥ 1, ζt = 1 and (159) holds with x = 0, so we may apply Lemma 5.8.
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Note that (169) still holds as R0(t) is given by (154), and thus the first term in the right-hand side of
(160) is controlled. For the term with n = 1, note that, by Lemma 5.2 (with g(t) = `(t)

2
dk ), (174) and

(146), (170) holds almost surely with g(t) = `(t)
2

d(k−1) . It is thus enough to show that, P-a.s.,

(176) lim sup
t→∞

∑
n≥2

e
θtSn(t)+tγn(t)+log(tRn(t)α)−c2Rn−1(t) min

{
Rn−1(t)

t
,
√
γn(t)

}
<∞.

To this end, use the slow variation of ` to find a constant c > 0 such that, for t large enough,

(177) Rn−1(t) min

{
Rn−1(t)

t
,
√
γn(t)

}
≥ c2n−1t(2n−1t)

2
k−1 `(2n−1t)

2
d(k−1) , n ≥ 2.

Applying Lemma 5.2 (with t substituted by 2n−1t), we obtain c′ ∈ (0,∞) such that

tγn(t) ≤ tc′Rn(t)
2
k `(2n−1t)

2
dk = c′t(2n−1t)

2
k−1 `(2n−1t)

2
d(k−1) , n ≥ 2.

Noting that, by (146), the remaining terms are of lower order, we can choose n0 = n0(c, c′) sufficiently
large so that, for any n ≥ n0, the n-th term in the series in (176) is bounded by the exponential of

−c3t(2
n−1t)

2
k−1 `(2n−1t)

2
d(k−1) for some constant c3 > 0, showing (176). This finishes the proof. �

5.3.4. Upper bound in Theorem 1.6.

Proof. Let A := c2 ∧ 1 with c2 as in Lemma 5.8, and set

Rn(t) := 2n−1t
k
k−1 (log log t)−

1
d(k−1) , γn(t) := max

{
2ΛRn(t),

A2

4
t−2Rn−1(t)2

}
.

Applying Lemma 5.8, Lemma 5.10, Lemma 5.5 and (169), we see that we only need to find a constant
C inf ∈ (0,∞) such that, for all ρ > 0,

(178) lim inf
t→∞

max
1≤n≤bρ log log tc

γn(t)− A1{n≥2}t
−1Rn−1(t) min

{
t−1Rn−1(t),

√
γn(t)

}
(log log t)−

2
d(k−1) t

2
k−1

≤ C inf .

Abbreviate st := t
2

k−1 (log log t)−
2

d(k−1) . Since t−1Rn−1(t) = 2n−2√st, Lemma 5.3 provides C ∈
(1,∞) and a subsequence tj → ∞ as j → ∞ such that, for all j ∈ N and all 1 ≤ n ≤
bρ log log tjc,
(179)

γn(tj) ≤
A2

4
1{n≥2}t

−2
j Rn−1(tj)

2 + Cstj and
√
γn(tj) ≤

A

2
1{n≥2}t

−1
j Rn−1(tj) +

√
Cstj ,

where we used the subadditivity of x 7→
√
x. The second inequality implies

γn(tj)− A1{n≥2}t
−1
j Rn−1(tj)

√
γn(tj) =

√
γn(tj)

(√
γn(tj)− A1{n≥2}t

−1
j Rn−1(t)

)
≤
√
γn(tj)

√
stj

(√
C − A

8
1{n≥2}2

n

)
≤ stj

(
A

8
2dlog2(8

√
C/A)e +

√
C

)√
C ≤ 3Cstj .

This together with A ≤ 1 and the first inequality in (179) implies (178) with C inf = 3C . �
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5.4. The lower bounds. In this section, we will prove the lower bounds in Theorems 1.4, 1.5 and 1.6
for the truncated potentials V (a) = V (Ka) where Ka(x) = |x|−2

1{|x|≤a}. The proof of the theorems
will be finished in Section 5.5 after the proof of Theorem 1.9. The following lemma will be used in all the
proofs of this section:

Lemma 5.11. There exists c ∈ (0, 1] such that the following holds P-almost surely. Fix a ∈ (0,∞)
and let R(t), r(t) satisfy e−t � r(t) � 1 � R(t) as t → ∞, and R(t)r(t) ≤

√
ct for all t large

enough. Define

(180) At :=
{
∃x ∈ BR(t) : ω

(
Br(t)(x)

)
= k + 1

}
.

Then, for all large enough t, onAt,

(181) logE0

[
exp

(
θ

∫ t

0

V (a)(Ws)ds

)]
≥ ct

r(t)2
− 2
√
c
R(t)

r(t)
−O(t).

Proof. On At, we pick xt ∈ BR(t) such that ω
(
Br(t)(xt)

)
= k + 1 and set Yt := P ∩ Br(t)(xt).

Clearly V (a) ≥ V
(a)
Yt , and VYt − V

(a)
Yt ≤ #Yta−2 = (k + 1)a−2 =: c0. Thus

logE0

[
exp

(
θ

∫ t

0

V (a)(Ws)ds

)]
≥ −θc0t+ logE0

[
exp

(
θ

∫ t

0

VYt(Ws)ds

)]
.(182)

Let now K, c1, c2 as in Lemma 2.8, and set c := c2 ∧ 1. Write, for 0 ≤ t0 ≤ t,

E0

[
e
∫ t
0 θVYt (Ws)ds

]
≥ E0

[
e
∫ t
t0
θVYt (Ws)ds

1{Ws∈BKr(t)(xt) ∀s∈[t0,t]}

]
.(183)

Denote by p(0, y, t) = (2πt)−d/2e−|y|
2/(2t) the probability density of Brownian motion at time t started

at 0. Applying the Markov property, we see that (183) equals∫
BKr(t)(xt)

p(0, y, t0)Ey
[

eθ
∫ t−t0
0 VYt (Ws)ds

1{τBc
Kr(t)

(xt)
>t−t0}

]
dy

≥ (2πt)−
d
2 e−

R(t)2

t0

∫
BKr(t)(xt)

Ey
[

e
∫ t−t0
0 θVYt (Ws)ds

1{τBc
Kr(t)

(xt)
>t−t0}

]
dy,(184)

where we used |y|2 ≤ (|xt|+Kr(t))2 ≤ 2R(t)2 for large t. The integral above can be identified with
the integral in (62) with a = r(t), x = xt, implying that (184) is at least

(185) c1(2πt)−
d
2 r(t)d exp

{
−R(t)2

t0
+ c2(t− t0)r(t)−2

}
.

Maximizing the exponent over t0 ∈ (0, t) we obtain t0 = R(t)r(t)/
√
c2 ≤ t, which yields

logE0

[
eθ
∫ t
0 VYt (Ws)ds

]
≥ −2

√
c2
R(t)

r(t)
+

c2t

r(t)2
+ log

(
c1(2πt)−

d
2 r(t)d

)
.(186)

Now (181) follows from (182), (186) and our assumptions on R(t), r(t). �

With Lemma 5.11 at hand, we are ready to complete the proofs of Theorems 1.4, 1.5 and 1.6 in the
special case of the truncated kernels K = Ka.
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Lemma 5.12. For any a ∈ (0,∞), (15) holds with K(x) = Ka(x) = |x|−2
1{|x|≤a}.

Proof. We may assume that g(t) = to(1) as t→∞. Take c as in Lemma 5.11, let A > 0 and

R(t) = 1
4

√
Ag(t)−1t

k
k−1 , r(t) = 1

2

√
cA−1g(t)t−

1
k−1 .

Lemma 5.11 implies that, on the eventAt defined in (180),

g(t)t−
k+1
k−1 logE0

[
exp

(
θ

∫ t

0

V (a)(Ws)ds

)]
≥ A− o(1).

Since limt→∞P(At) = 1 by Corollary 4.5 and A is arbitrary, we conclude (15). �

Lemma 5.13. For any a ∈ (0,∞), the lower bound in (17) holds with K(x) = Ka(x) = |x|−2
1{|x|≤a}.

Proof. Let `(t) ≥ 1 be slowly varying with
∫∞

1
dr
r`(r)

=∞. Fix A > 0 and set

R(t) := 1
4

√
At

k
k−1 `(t)

1
d(k−1) , r(t) := 1

2

√
cAt−

1
k−1 `(t)−

1
d(k−1)

with c as in Lemma 5.11. OnAt,

`(t)−
2

d(k−1) t−
k+1
k−1 logE0

[
exp

(
θ

∫ t

0

V (a)(Ws)ds

)]
≥ A− o(1).

We note that, since R(t), r(t) are regularly varying with non-zero exponents, we may assume that
they are eventually monotone (cf. [3, Theorem 1.5.3]). Now Lemma 4.4, Lemma 4.6 and (174) provide
a sequence tj →∞ as j →∞ such thatAtj occurs, and we conclude taking A ↑ ∞. �

Lemma 5.14. For any a ∈ (0,∞), the lower bound in (18) holds with K(x) = Ka(x) = |x|−2
1{|x|≤a}.

Proof. Let c as in Lemma 5.11 and pick µ, ν > 0 satisfying

(187) µν <
√
c and (µνk)d >

2d(k + 1)!

|B1|
.

Set R(t) := µt
k
k−1 (log log t)−

1
d(k−1) and r(t) := νt−

1
k−1 (log log t)

1
d(k−1) . By Lemma 5.11, onAt,

(log log t)
2

d(k−1) t
k+1
k−1 logE0

[
eθ
∫ t
0 V

(a)(Ws)ds
]
≥ c

ν2
− 2
√
c
µ

ν
− o(1).

On the other hand, Lemmas 4.4 and 4.7 give tj → ∞ as j → ∞ such that Atj occurs, and thus we
may take Cinf as the maximum of cν−2 − 2

√
cµ/ν over µ, ν > 0 satisfying (187), which turns out to

be

Cinf :=
c

k
k−1 (k − 1)

(k + 1)
k+1
k−1

(
|B1|

2d(k + 1)!

) 2
d(k−1)

. �
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5.5. Proof of Theorems 1.9, 1.4, 1.5, 1.6 and 1.10.

Proof of Theorem 1.9. Define I(K)
t := exp

∫ t
0
θV (K)(Ws)ds and I(a)

t := exp
∫ t

0
θV (a)(Ws)ds. Let

R(t) := (log t)γtk/(k+1) with γ as in (167), and put St := supx∈BR(t)\P |V
(K)(x)− V (a)(x)|. Then

logE0

[
I

(a)
t 1{τBc

R(t)
≥t}

]
− θtSt ≤ logE0

[
I

(K)
t 1{τBc

R(t)
≥t}

]
≤ logE0

[
I

(a)
t 1{τBc

R(t)
≥t}

]
+ θtSt.

Now, by Lemma 5.14 and (146) with aR ≡ a, tSt/ logE0

[
I

(a)
t

]
tends to 0 almost surely. To obtain

(20), note that, by Lemma 5.10, E0

[
I

(a)
t 1{τBc

R(t)
≥ t}

]
∼ E0

[
I

(a)
t

]
, and the same can be concluded

for I(K)
t by taking into account the first inequality above. The proof for V is identical. �

As anticipated, this allows us to finally give the:

Proof of Theorems 1.4, 1.5 and 1.6. Since the upper bounds were proved in Section 5.3, the theorems
now follow from Theorem 1.9 and Lemmas 5.12–5.14. �

Proof of Theorem 1.10. Follows from Theorems 1.9, 1.7, 1.2, 1.4, 1.5 and 1.6. �

5.6. Proof of Theorems 1.8 and 1.3.

Proof. We follow [8, Proposition 1.6]. We start with Theorem 1.3. Fix K ∈ K . Let N ∈ N and

FN := |θV (K)| ∧N ∈ L∞(Rd). By Proposition 2.2, vN(t, x) := Ex
[
exp(

∫ t
0
FN(Ws)ds)

]
satisfies

(188) vN(t, x) = 1 +

∫ t

0

∫
Rd
pt−s(y − x)FN(y)vN(s, y)dyds, (t, x) ∈ (0,∞)× Rd \ P

with pt(x) as in (34). Letting N ↑ ∞ and applying the monotone convergence theorem, we see that

(188) still holds true withFN and vN replaced by |θV (K)| and v(K)
θ (t, x) := Ex[exp

∫ t
0
θ|V (K)|(Ws)ds],

both sides being finite almost surely by Theorem 1.2 and Remark 5.9. In particular,

(189)

∫ t

0

∫
Rd
pt−s(y − x)|V (K)|(y)v

(K)
θ (s, y)dyds <∞, (t, x) ∈ (0,∞)× Rd \ P .

Noting that t 7→ e±
∫ t
0 θV

(K)(Ws)ds are absolutely continuous, the fundamental theorem of calculus gives

exp

(∫ t

0

θV (K)(Ws)ds

)
= 1 +

∫ t

0

θV (K)(Ws) exp

(∫ t

s

θV (K)(Ws)du

)
ds,
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which we use to write, for all (t, x) ∈ (0,∞)× Rd \ P

u
(K)
θ (t, x) = 1 +

∫ t

0

Ex
[
θV (K)(Ws)e

∫ t
s θV

(K)(Wu)du
]

ds

= 1 +

∫ t

0

Ex
[
θV (K)(Ws)u

(K)
θ (t− s, y)

]
ds

= 1 +

∫ t

0

∫
Rd
pt−s(y − x)θV (K)(y)u

(K)
θ (s, y)dyds,

where we used Fubini’s theorem (which is justified by (189)), the Markov property of W , and time
reversal. This completes the proof of Theorem 1.3. The proof of Theorem 1.8 is identical. �
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