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Abstract

In this paper we uniformly approximate the trajectories of the Cox-Ingersoll-Ross (CIR) process. At a
sequence of random times the approximate trajectories will be even exact. In between, the approximation
will be uniformly close to the exact trajectory. From a conceptual point of view the proposed method gives
a better quality of approximation in a path-wise sense than standard, or even exact simulation of the CIR
dynamics at some deterministic time grid.

1 Introduction

The Cox-Ingersoll-Ross (CIR) process X (s) = X, ,(s) is determined by the following stochastic differential
equation (SDE)
dX(s) = k(A — X (s))ds + oV Xdw(s), X(t) =z, s >t >0, (1)

where k, A, o are positive constants, and w is a scalar Brownian motion. Due to [6] this process has become
very popular in financial mathematical applications. The CIR process is used in particular as volatility process
in the Heston model [12]. It is known ([13]) that for x > 0 there exists a unique strong solution Xt,m(s) of (1)
forall s >t > 0. The CIR process X (s) = X; ,(s) is positive in the case 2kA > o and nonnegative in the
case 2k\ < o2. Moreover, in the last case the origin is a reflecting boundary.

As a matter of fact, (1) does not satisfy the global Lipschitz assumption. The difficulties arising in a usual
simulation method, such as the Euler method for example, for (1) are connected with this fact and with the
natural requirement of preserving nonnegative approximations. A lot of approximation methods for the CIR
processes are proposed. For an extensive list of articles on this subject we refer to [3] and [7]. Besides [3] and
[7] we also refer to [1, 2, 10, 11], where a number of discretization schemes for the CIR process can be found.
Further we note that in [20] a weakly convergent fully implicit method is implemented for the Heston model.
Exact simulation of (1) at some deterministic time grid is considered in [5, 8] (see [3] as well).

In [17], we have considered uniform path-wise approximation of X (s) on aninterval [¢,t + 7’| using the Doss-
Sussmann transformation ([22]) which allows for expressing any trajectory of X (s) by the solution of some
ordinary differential equation that depends on the realization of w(s). The approximation X (s) will be uniform
in the sense that the path-wise error will be uniformly bounded, i.e.

sup ‘Y(s) - X(s)‘ < r almost surely, 2
t<s<t+T

where r > 0 is fixed in advance.

Let us consider the uniform pathwise approximation for a Wiener process W (t). First consider simulating T/
on a fixed time grid
to, t1, .., tn =1T.



Although W may be even exactly simulated at the grid points, the usual piecewise linear interpolation

t—1t;
W(t;) +

W) = b=t b
liv1 — i liv1 — i

W(t) W(tit1) ©)
is not uniform in the sense of (2). Put differently, for any (large) positive number A, there is always a positive
probability that
sup  |W(t) — W(t)| > A.
to<t<to+T
Therefore, for path dependent applications for instance, such a standard, even exact, simulation method may
be not desirable and a uniform method preserving (2) may be preferred.

To uniformly approximate W (t), t > to, (where W (t¢) is known) we simulate the points (¢, + 0, W (t,, +
Om) — Wi(tn)), m = 0, 1, 2, ..., by simulating 6,, as being the first-passage (stopping) time of the
Wiener process W (t) — W (t,,), t > t,,, to the boundary of the interval [—r, 7]. So, |W (t) — W (ty,)| < r
for t,, < t < ty, + 0, and, moreover, the random variable W (t,, + 6,,) — W(t,,), which equals to
random variable 7, taking the values —r or +r with probability 1/2, is independent of the stopping time
0. The values W (tg), ..., W (ty), ..., where t,,, is the random time: t,, = to + 6y + ... + 0,,—1 and
W (tm) = W(tm—1) + rm—1, are exactly simulated values of the Wiener process W (t) at random times t,,.
Clearly, the piecewise linear interpolation (3) satisfies

sup |W(s) — W(s)| < 2r almost surely, 4)
s>to

i.e., the uniform path-wise approximation for a Wiener process W (t) is achieved.

In [17], by simulating the first-passage times of the increments of the Wiener process to the boundary of an
interval and solving the ordinary differential equation after using the Doss-Sussmann transformation, we approx-
imately construct a generic trajectory of X (s). Such kind of simulation is more simple than the one proposed in
[5] and moreover has the advantage of uniform nature. Apart from application, uniform simulation of trajectories
of an SDE in the sense of (2) may be considered as an interesting mathematical problem in its own right. Let
us note that the uniform approximation is connected with simulation of space-time bounded diffusions (see [18]
and Ch. 5 of [19]). However, the results of [17] are obtained under the restriction 4k\ > o2. If 4k\ < o2, we
could not extend the results of [17] to this case.

Let A > 0 be a small number, z > A, and 7(z) be the first-passage time of the trajectory Xy ,(s) to the
boundary to the band (z — A,z + A). If z < A, we denote by 7(x) the first-passage time of X ,(s) to
the upper bound of [0, 2A). Clearly, for any Markov moment 7 the line segment between the points (7, z) and
(1 + 7(x), Xrz(T + 7(2)) uniformly (with exactness 2A) approximates the trajectory X, ,(s), 7 < s <
T 4 7(z). To simulate 7() we solve a parabolic boundary value problem for the distribution function of 7(x)
by separation of variables. The corresponding Sturm-Liouville problem in the region x > A is regular. The
case 0 < x < A is more complicated. If 2k\/o? > 1 then the point z = 0 is not attainable in contrary
to 2kA/02 < 1 when z = 0 is attainable. These distinctions result in different boundary value problems. In
the next section we construct the distributions needed in terms of solutions of the confluent hypergeometric
equation. There the simulated random values of X ,(7(x)) belong to a fixed space discretization grid 0 =
To <1 < T <---<xp <---.InSection 3, we develop uniform approximation of the CIR process using
the squared Bessel processes. We obtain there the required distributions in terms of Bessel functions. However,
in contrast to Section 2, the simulated values of X ,(7(x)) do not belong to a fixed space discretization grid
anymore, while they are still exact. In comparison with [17] the methods developed here can be applied for
any set of positive parameters k, A, o of the CIR process. Moreover, we here simulate exact values of the CIR
process at random exactly simulated times.



2 Distribution functions for first-passage times of CIR trajectories to bound-
aries of narrow bands

2.1 The main construction

The space domain for the equation (1) is the real semi-axis [0, 00) as Xt »(s) > Oforany s > ¢ >0, = > 0.
Consider a space discretization

O=xp < <a2< - <Tpp < -+, (5)
where we assume for simplicity that ;41 —x; = A, i = 0,1, ....

Let the initial value z for the solution Xp . (s), s > 0, be equal to z,, for some n > 2. We set X* = 2 = x,,.
Let 70 = 0, 71 = 7(X") = 7(xy) be the first-passage time of the trajectory X, yo(s) to the boundary of
the band (2,1, Zn11), i-e., Xg xo (71) is equal either to z,,_1 or to 2,11, and &, 1 < Xo,x0(8) < mpy1
for 0 < s < 71. Then we set X' = X, xo(7!). If the initial value z = X is equal to 21 then X 4, (s) with
probability 1 attains x5 for some time 71 = 7(X°) = 7(z1) which is the first-passage time of the trajectory
Xo,x0(s) to the upper bound of the band [0, z2), i.e., Xq xo(7') is equal to 2, and 0 < X; yo(s) < x2
for 0 < s < 7(x1). We denote X, xo(7!) = Xo, (7(x1)) again by X'. So, for any X" from the set
{21, ..., 7p, ...} we get X! = Xo,x0 (71) belonging to the same set. By the same way one can get X2 =
Xo,x1(7%). Due to autonomy of equation (1), we have X2 = X x1(7%) = X1 x1 (7! +72) = X, xo (7! +
72). Continuing we obtain the sequence X™ = X xm-1(7™) = Xy0, 4 pm-1 xm-1(70 + ... + 77) =
Xoxo(t% + ... + 7™). The points (0, X), (71, X1), ..., (7" + ... + 7™, X™) belong to the trajectory
(s, Xo,x0(s))-

If the initial value x is not equal to x,, we first model X' to be equal to one of nodes and then repeat the
previous construction. If 0 < z = X% < z; + A/2 then X! is equal to X ,(71) where 71 is the first-
passage time of the trajectory Xo . (s) to the upper bound of the band [0, z2), i.e., Xo..(7!) is equal to 2,
and 0 < Xou(s) < z2for0 < s < 7l lfx, —A/2 <2z =X <uaz,+A/2,n=23,..,
then X! = X (') where 7! is the first-passage time of the trajectory Xp . (s) to the boundary of the
band (zy,—1, Tnt1), i-e., Xo.(7!) is equal either to x,,—1 or to Tp41, and z,—1 < Xo(8) < Tpiq for
0<s<Tl.

Suppose the sequence (0, X9), (71, X1), ..., (7% + ... + 7™, X™) is constructed. As an approximation
trajectory Xo,m(s), we introduce the polygonal line which passes through the points of this sequence:

Xi _ Xi—l

Tl

Xoa(s) =X""+ (s— (" +..+77h), (6)

il < SSTO—i-...—l-Ti, 1=1,2,....
Because X' = X (7 + ... + %) = Xo(7° + ... + 7%) and both the trajectory Xp . (s) and the line
segment (6) of the polygonal line connecting the points (70 +... +7¢~1, X*~1) and (7% + ... +7¢, X*) belong
to a band of the width 2A, we have obtained the following proposition.
Proposition 1 Approximation (6) satisfies

sup ‘Yow(s) — Xo,x(s)’ < 2A, (7)

0<s<oco

i.e., this approximation is uniform.



2.2 Probabilities connected with attainability of boundaries and boundary value problems for
the probabilities

If0 <z < 21+ A/2then X ,(s) with probability 1 attains 5 for some time 7(2) which is the first-passage
time of X ,(s) to the upper bound of the band [0, z2). If x,, — A/2 < z < z, + A/2, n = 2,3, ...,
then Xo (7 (z)), where 7(z) is the first-passage time of the trajectory X »(s) to the boundary of the band
(Tn—1,Tny1), attains either x,_1 or 41 with probability 1. Let p;(z) be the probability P(Xo ,(7(x)) =
Zp—1) and py(z) = P(Xoz(7(x)) = 2n+1). Clearly, p;(z) + pr(z) = 1. Though we need p;(z) and
pr(x) for z, — A/2 < x < x, + A/2 only, we shall consider these functions for z,,—1 < = < Zp4+1. The
probability p;(x) satisfies the one-dimensional Dirichlet problem for elliptic equation ([19], Ch. 6, Sec. 3).

1, 0% dp
“otr = 8
20x6x2+k(>\ )ax 0, (8)
pi(zn-1) =1, pi(wn41) = 0. 9)
From (8)-(9) (in particular, for x,, — A/2 <z < x, + A/2, n =2,3,...)
Zk)\ 2k
Tp41 5 602£d£
n(x) = fg; EPISRTy: (10)
fxnn+1l € 7602 df
Hence
[7 e Tt
pr(@) =1—pi@) = =g (1)
fxn ) 13 ) e o2 df
For simulating 7(z) and X (7 (x)) we need the probabilities
u(t,z) := P(r(x) <t), for0 <z <z +A/2 (12)
and
w(t,x) = P(r(z) <t, Xoo(7(x)) = zp-1), (13)
ur(t,z) = P(r(x) < t, Xoaz(7(x)) = Zpt1),
A A
formn—5§$<xn+5, n=273,

221 Theregionz, —A/2 <z <z, +A/2, n=23,..,

fx, —A/2 <z <z, +A/2, n=2,3,..., we use (13) in the following way. First we simulate X¢ ,(7(x))
according to probabilities (10)-(11). If we get X ,(7(x)) = x,—1 then for simulating 7(x) we use the condi-
tional probability

P(r(z) < t| Xou(r(z)) = zp_1) = u]’)ﬁ;;)
and if Xo ,(7(x)) = Tp41, we use
Pr(2) < t] Xoulr(o)) = psr) = “2025)



The functions (¢, x) and u,(t, ) satisfy the equation

ou 1 5, 8%u ou

The function u; (¢, x) satisfies the initial condition
w(0,2) =0,

and the boundary conditions
w(t,xn—1) =1, w(t,zp41) = 0.

The function u,.(t, x) satisfies the initial condition
ur(0,2) =0,

and the boundary conditions
ur(t,2p—1) = 0, up(t,xp41) = 1.

To get homogeneous boundary conditions for the problem (14)-(16) we introduce

Tntl1 — X
v =u - —————
Tp4+1 — Tp—1
and for the problem (14), (17)-(18)
T — Tp-1
Vp = Up —

Tn+l — Tn-1 '
The function v; satisfies the equation (for the corresponding n = 2, 3, ...)

32}1 1 2 8211[ 81}[ 1

=-—o0r-—+kA—2) 5 ———|,t >0, 2p_1 < T < Tpt1,

ot 2 0z2

Ox Tn4+1 — Tn—1
with the initial condition

Int1 — T
Ul(()’ 1‘) = -

Tn+1 — Tn—1

and the homogeneous boundary conditions
vl(thn—l) = 07 Ul(ta xn+1) =0.

The function v, satisfies the equation (for the correspondingn = 2, 3, ...)

o, 1 45 0%, Ovy 1
= —o°x k(A —x +— ], t>0, 21 < < Tpit,
ot 20 Ox? + & )l 0r  Tpt1— :En_l] n-l ol
with the initial condition
T — Tp-1
’UT(O7x) = -

Tp4+1 — Tp—1
and the homogeneous boundary conditions of the form (23).

, >0, zp-1 < < Tpg1, n=23,...

(14)

(21)

(22)

By separation of variables we get 7 (¢) X (x) as elementary independent solutions to the homogeneous equa-

tion corresponding to (21) satisfying (23), where

T'(t) + pT(t) =0, ie, T(t) = Toe ", u >0,

(26)



and

1
50293/1”’ + kN —2)X 4+ pX =0 27)
with the homogeneous boundary conditions
X(xnfl) = X(J;nJrl) = 0. (28)
Introduce
25\ )
p(z) == exp(—;x) cx 0% q(z) = %p(x), Tpo1 < T < Tpg1, N =2,3,...
Then (27) can be expressed in the self-adjoint form
(p(2)X") + pg(x)X =0, X(zp—1) = X(xpt1) = 0. (29)

On the intervals (zy,—1, Tnt1), 7 = 2,3, ..., we have p(z) > 0, ¢(x) > 0, i.e., the Sturm-Liouville problem
(29) is regular. Therefore all the eigenvalues 1, j = 1,2, ..., of problem (29) (hence (27)-(28)) are positive.
Let X;, j = 1,2,..., be the corresponding eigenfunctions which are orthogonal w.r.t. the scalar product

)= [ " w)g(w)aly)dy.

n—1

It is well known that the solution of the problem (21)-(23) is equal to

Tpt1
utto) = [ Glag Da©)u(0. € (@0)
t Tn+1 1
+/0 / ' G(%fat—S)Q(f)[—k()\—f)m]déd& (31)
where the Green function
Gl .0) = Y e B e - [ g aeyae 2)
j=1 HXJH Tn—1

The function v,.(, x) is found analogously.

The eigenvalues 11 and eigenfunctions X; can be found in terms of the solutions of the confluent hypergeo-
metric equation (the Kummer equation). Indeed, the general solution of the linear equation (27) is given by the
formula

X (z) = C19(b, ¢;¢) + Ca¥ (b, ¢; C), (33)
where C; and (' are arbitrary constants,
po ZRA L m o ZRAL 2K
I

and @ (b, ¢; ¢), ¥ (b, ¢; ¢) are the known linear independent solutions of the confluent hypergeometric equation

Cyte + (e =Qye —by =0 (34)

(see [4], Sec. 6.2). The problem (24)-(25) is solved analogously.



222 Theregion0 <z < x1 + A/2

If0 <z < z1+ A/2then X ,(7(z)) = x2 with probability 1 and for simulating 7(z) we use the probability
(12). Here we do not give a method for computing the probability (¢, z) in (12) in the spirit of Section 2.2.1.
As an alternative, such a method will be presented in the next section in the context of another, computation-
ally more tractable approach. On the other hand, from a practical point of view, one could apply the following
approximate result derived in [17],

u(t,x) ~1—2¢7 (QA)*'Y i J—2'y (W_Qv’m\/%) %

exp |— t

, 0<xz <2A,

m=1

where T_2 m, m = 1,2, ... are the positive zeros of J_o,.

From a theoretical point of view the developed approach can be applied for uniform approximation of the solu-
tions of a lot of other SDEs. However as a rule we shall not get a sufficiently constructive method for the proba-
bilities w; (¢, z) and w,(t, x) in such a way. Here we find them in terms of solutions of the Kummer equation. In
the next section we develop uniform approximation of the CIR process using the squared Bessel process.

3 Using squared Bessel processes

Due to [9], the solution X (s) = X ,(s) of (1) has the representation

0_2

_ —k(s—t) e
X(s)=¢e Y <4l<:

(eF(s=t) — 1)> , s>t (35)

where Y'(s) = Y;.(s) denotes a squared Bessel process with dimension § = 4k\/o? starting at =, i.e.,
Y (s) satisfies the equation

dY (s) = dds + 2/ Y (s)dw(s), Y(t) = X(t) = =, (36)

see also [21].

3.1 Method

Due to autonomy of (1) and (35), one can startat ¢t = 0. Let = > A. Let § = 0(x) be the first-passage time of
the trajectory Y{ (1) to the boundary of the band (z — A,z + A), i.e., Yy »(6(x)) is equal either z — A or
r+Aandz — A <Yy, (V) <z+Afor0 <9 <0(x). Ifx <A, we denote by §(z) the first-passage
time of the trajectory Y »(s) to the upper bound [0, 2A), i.e., Yy »(0(x)) = 2A and 0 < Yp . (s) < 2A for
0<s<6(z).

Due to (35) the solution X »(s) of (1) is equal to

2
XO,:E(S) = e_kSYb@ <Zk(€ks - 1)) , s> 0. (37)
Let us introduce
) 1 4k
T(z) = % In(1+ ﬁﬂ(a:)) (38)



For0 < s < 7(x) we have a2 eks — 1) < 6(x). Hence for these s we have
1k

0_2

A<y, (&
TTa=n, <4k

(eFs — 1)) <z+A, x> A, (39)
0% ks
Y0,z <%(e - 1)> <2A; x < A
Therefore

(2 —A)e™™ < Xou(s) < (z+A)e ™ 2> A 0<s<7(2), (40)
0< Xou(s) S28e™™, 2 <A, 0< s < 7(a).

Let us introduce the interpolation

Yo,x(s) =ge P4 <X07I(T(x))ek7(x) - x) e_ks, 0<s<7(x). (41)
T

For z > /A we then have by (40),

S

7()

(x — A)e ™ < ge Ae ™ <X .(s) < we™™ + %Aefks < (z+A)e ™,
7(
and by using (40) again,
| X0.2(5) — Xoa(s)| < 2Ae™". (42)

For z < A we have by (40)

0<ae ks — 2 _gehs < Xoz(s) <aze ™™ + 2 (2A — z)e ™™ < 2Ae7H
T(z) ’ 7(z)
yielding (42) for z < A also.
Denote X := 2 and set
1 4k
0°=0,00 =0(X?), 7 =0, 7' = - In(1 + —0%), (43)
o

where Yj xo (1) = X0+ Aif XO > Aand Y xo(6') = 2Aif X < A, and construct the interpolation
@ forr¥ <s<7h

Then we set

1 4k
02 =9(Xh), r? = 2+ §02), (44)

X2 = X07X1(7'2) = X717X1(T1 +T2) = XO,XO(Tl +7’2) = e_kTZYb’X1(92),

where Yy x1(60%) = X' £ Aif X' > Aand Yj x1(6?) = 2Aif X' < A, and construct the interpolation
@) for !t < s < 72



Continuing we obtain the sequence

1 4k
o= o007, 5 = Lagt + 2, w
k o
XM = Xo xm-1(7") = X0y jpmt xm-1 (70 4. +77) =

XO’Xo(TO +..+7") = e_kTmYO’mel(Hm), m=1,2,...

and a piecewise interpolated trajectory

) _ (40 i—1 o . i
YO,{E(S) — <Xz—1 + s (7_ +""+7_ ) (Xzelm- _Xz—1)> efk(sf(70+...+‘r 1))’ (46)

7—7,

T0+...+Ti71§8§7'0+...+7'i, 1=1,2,....

The points (0, X9), (71, XY, ..., (7' 4+ ... + 7™, X™), ... belong to the trajectory (s,X0,z(s)) . Unlike to
modeling in Section 2, the difference between X ™! and X is not a multiple of A here because of presence
of the random factor e %7 . Also, the X" generally do not jump over a pre-fixed grid like in Section 2. Now,
obviously, for the present method we have the following proposition analogue to Proposition 1.

Proposition 2 Approximation (46) is uniform and satisfies

sup | Xo.4(s) — Xoz(s)| < 2A.

0<s<oco

3.2 Simulating ¢(z) and Y . (6(z))

In Section 2 we have developed a method of simulating the first-passage time 7(x) of the solution X ,,(s) of
(1). Here we develop analogous methods for simulating 6(x) and Yp ,,(6(z)) and then use algorithm (43)-(46)
for uniform approximation of solutions of (1). Due to simplicity of (36) in comparison with (1), such an approach
is more effective than the direct one.

3.2.1 Theregionz > A

The time 6(y) is the first-passage time of the solution Y{ ,,(s) of (36) to the boundary of the band (x — A,z +
A), z—A <y < z+A. Let pi(y) be the probability P(Yy ,(6(y)) = x—A) and p,(y) = P(Yo4,(0(y)) =
z+A), x—A <y <z+A.Clearly, p;(y)+pr(y) = 1. The probability p;(y) satisfies the one-dimensional
Dirichlet problem for elliptic equation ([19], Ch. 6, Sec. 3).

Opi, 4k Opt

2y— =0,z—-A A 47

p(z—A) =1, pi(x + A) =0. (48)
The solution p;(y) of problem (47)-(48) is equal to

—2kX —
72+1 72+1
y o2 " —(z+A) o 2k
( ) 7é 17

—2k)\ —2k)X 9 2
ply) =3 @870 T—@rayer 7
In X 2k _
—A 2
ln—§+A’ o



Hence the probability

I—igx +1_($+A)%’2"*+1 oA
—2kA\ —2kA ) 2 7é ]-7
=2kA 4 +17 o
pi(z) = P(Yo2(0(2)) =2 —A) = ¢ (@=8) o (@A) o2 (49)
In ﬁ? o2 I
and pr(z) =1 — pi(z).
For simulating () and Yj . (6(z)) we need the probabilities
u(t,y) = P(0(y) <t), s =A<y <z +A, (50)
and
w(t,y) = P(0(y) <t You(0(y)) =2 —A), (51)

ur(t,y) = P (0(y) < t,Yo,(0(y) =z +A),
forx —A<y<z+A.

We use (51) in the following way. First we simulate Yp ,(6(z)) according to probabilities ¢;() and ¢, (x). If we
get Yy »(0(x)) = = — A then for simulating 6(x) we use the conditional probability

L ot x)
P(f(z) <t]Yo.(0(x)) = A) = (@) (52)
and if Yy »(0(z)) = v + A, we use
PO(x) < t| You(0(x) =+ A) = “p(zaf;) (53)

The functions w; (¢, y) and u,(t, y) are the solutions of the first boundary value problem of parabolic type ([19],

Ch. 5, Sec. 3)

ou O%u  4kXOu
— =2y—+—F—=0,t>0,z— A A. 54
ot y6y2+02 2y , >0, 2 <y<z+ (54)

The function w;(t, y) satisfies the initial condition

u(0,y) = 0, (55)

and the boundary conditions
w(t,x —A) =1, y(t,x + A) = 0. (56)

To get homogeneous boundary conditions for problem (54)-(56) we introduce

T+ A—y
t = uy(t _—. 57
Ul(??/) ul(vy) N (57)
The function v;(t, y) satisfies the equation
9] v, 4kX O 1
U 9,2l U 20,50, s - A<y<atA, (58)

o Wap t2ly, Taa

10



with the initial condition

T+A—y
0,y) = ———+— 59
v1(0,y) A (59)
and the homogeneous boundary conditions
v(t,z —A) =0, vy(t,z + A) = 0. (60)

Analogous equations can be written out for u, (¢, y).

In connection with the problem (58)-(60), we use the method of separation of variables to the homogeneous

equation
ov 5 0%v  4kX Ov

—— _ _— = 0
ot~ Yoz ooy
with the homogeneous boundary conditions
v(t,x —A) =0, v(t,z+A) =0. (61)
For elementary independent solutions 7 (t))(y) we so have
T _ 2y oy = const
T Yy = ’
and for Y (y) we then get the corresponding Sturm-Liouville problem
20Y" +0Y +pY =0, (62)
V(@—-A)=0,YV(x+A)=0, (63)
along with
T (t) = Toe M.

It can be straightforwardly checked that elementary solutions of (62) are given in terms of Bessel functions by

Vi(y) =y J 2, (J%) , Voly) =y oy (\/%) (64)

) 1 kX 1 ¢

(cf. [17]). If 27 is not an integer, )1 and ) are independent. If 2+ is an integer, i.e. when

2k

these solutions are dependent however. In this case we may take as second independent solution

Wa(y) = y"Ya, (\/ 2uy) : (67)

where Y5, is a Bessel function of the second kind. Note that for (66) we have that o2 < 2k, i.e. the boundary
0 is not attainable. We omit the analysis connected with (66) since it is similar to the derivations below.

Due to the boundary condition (61), the eigenvalues of the problem (62) follow by requiring that the system

qhw w@+AD+@Lﬁ(¢ﬂGIZU=o

C1Jay ( 2u(x — A)) + CoJ_oy ( 2u(x — A)) =0

11



has a non-trivial solution. Thus we must have
Jory ( 2u(x + A)) J_9y ( 2u(x — A))
—Jay ( 2u(x — A)) J_9y <\/2u(x + A)) =0
Let us denote the solutions with 0 < p; < pe < - - -, and the respective eigenfunctions by
Vi(y) = J-2y ( 2p(x + A)) Y T2y (V/2159)
— Jay < 8pj(x + A)) Y T2y (V/2159) -

We note that the equation (62) can be written in the selfadjoint form

(@)Y + pay)Y =0, ply) =y°/2, q(y) = %

i.e. eigenfunctions corresponding to different eigenvalues are orthogonal w.r.t. the scalar product

y6/2—1’

T+A
(fr9) = / F@W)g(v)a(y)dy.

—A

Thus the Green function of the considered problem is given by

o Yi)Yi(n)
112

o0

Gly,nt) =) e

j=1

z+A
= [ e,

9

and the solution to (58) is equal to
T+A
ulty) = [ Glyn ala(0mdy
o

A
t rx+A 4k 1
+/0 /w_A G(y,n,t — S)Q(ﬁ)[—?ﬁ]dﬁd&

Example 3 Let us illustrate the method for 2k\/c? = 1/2. Hence v = 1/4. We then have
Tple) =\ sinz, Tap(z) =)=
z) =4/ —sinz, J_1/5(2) =/ —cosz
1/2 . 1/2 .

sin ( 2u(x + A)) cos ( 2u(x — A))
—sin ( 2u(x — A)) cos ( 2u(x + A)) =0, hence
sin <\/2,u(a: +A) = 2u(z - A)) =0, ie

jm <\/2(x+A)—|—\/2(x—A))
Hi= AA

and then (68) implies,

12

(68)

(71)



Thus, as eigenfunctions for (69) we may take

Y y)zsin(m—m)

while

z+A
= [ e st (V€ - gl - &) ) ae

B A
VIt A+ - A

The solution is then found by (70) and (71).

3.2.2 Theregionx < A

Let us recall that the scale density s(y) and the speed density m(y) of the process (36) determined via the

relation
11 d(l d> 6d+ d?
) dy \s@) dy) ~ 'dy TV ag

where the r.h.s. is the generator of the process (36) (see for example, [14], Ch. 4, and [15], Ch. 6). We thus
obtain straightforwardly,

1
s(y) = 0976/2 and m(y) = Eywzfl for arbitrary C' > 0.

Case I: /2 = 2kA/o? > 1. In this case we have for any 7 > 0,

S(0,7] := /OT s(y)dy = oo, (72)

N(O,r]::/m dn/ s(y)dy < . (73)
0 n

As a consequence of (72), for the process Y in (36) the boundary O is unattainable if it starts somewhere in
Y (0) > 0. Therefore, the state space of Y is considered to be (0, o) in this case. For details see for example
[15].

13



Case ll: §/2 = 2k\/o? < 1. In this case we have for any 7 > 0,

2(0,7] == /SOhm(hdh<oo

N(0,r] :—/0 m(n dn/ s(y)dy < o0. (76)
U

As a consequence of (74) and (75), the point O is a regular boundary point of Y in (36) (Karlin and Taylor
(1981)). That is, 0 is attainable for Y from any starting point Y’ (0) > 0, and the process starts afresh after
reaching O (strong Markov property), and reaches any positive level in finite time due to (76). Since no atomic
speed mass at the boundary is imposed, the boundary 0 is reflecting.

Let O(y) be the first-passage time of the solution Y ,,(s) to (36) of the level 2A, 0 < y < 2A, and let

q(t,y) :== P(0(y) > t). (77)

Though we need ¢(¢,y) for 0 < y < A only, we shall consider boundary value problems for ¢ with 0 < y <
2A.

Proposition 4 (Case ) If 2k\/0? > 1, the probability q in (77) satisfies and is uniquely determined as a
bounded solution of the following mixed initial-boundary value problem,

&q 99 g
2yﬁ+58y a5 0 <y <2A, (78)
q(0,y) =1, (79)
q(t,2A) =0, ¢(t,0) is bounded. (80)

Proof. A bounded solution ¢ (with bounded 0gq/dy) in the considered case can be constructed by separation
of variables (see Proposition 6). Due to the boundedness of g, we may take the Laplace transform

(o)
qla,y) = / e~ q(t,y)dt, (81)
0
and then take the Laplace transform of (78)-(80) w.r.t. £, yielding the system
0’7 07 N
2 W + (58 O[Q(aa y) - ]-7 (82)
q(a,2A) =0, q(a,0) is bounded. (83)
Then by setting ¢ =: (1 — q) /o we obtain,
82q~ oq ~
0 2+58y—0zq, (84)
qd(a,2A) =1, q(«,0) is bounded. (85)

14



Since the boundary 0 is not attainable in this case, we may apply the 1t6 formula to
Q(5.Y(5)) == e™*q(a, Y (5)),

where Y (s) = Y () is the solution of (36). By using (84) we then get
dQ = e, (0, Y (5)) 2/Y (s)du(s),
and so we have
—ab(y) ~ ~ 6w —as ~
OG0 Y W) ~ T = [ 2T (0. Y () duls).
By now taking expectations and taking into account (85) it follows that
G(ovy) =E [e™W)].

We thus have

dlavy) =E[e0)] = - [T cetap(oy) = 0 6)
0
=1- a/ P(0(y) > t)e *dt, (87)
0

whence 0

dlag) = [ POW) = e, )
0
and so

q(t,y) = P(0(y) > 1) (89)

by uniqueness of the Laplace transform. m

Proposition 5 (Case Il) Let 2k\/ o < 1.If q(t,y) is a bounded solution of the mixed initial-boundary value
problem consisting of (78)-(80), and the additional boundary condition

t
lim Qy( vy) — lim Qy(t; y)ka:)\/U2

ylo  s(y) y40

=0 wuniformlyin(0 < t < oo, (90)

then (77) holds, and so in particular the solution of (78)-(80), and (90), is unique. The existence of q(t,y) follows
by construction using the method of separation of variables, see Proposition 6.

Proof. Let (¢, y) be a solution as stated. Due to the boundedness of ¢ the Laplace transform (81) exists as
above, and by taking the Laplace transform of (78)-(80), and (90), w.r.t. ¢ we obtain the system consisting of
(82)-(83) and, additionally,
Z]\y<0£, y) SN
m ——— = lim g, (c,
vl s(y)  wlo v(ev)y

Now by setting ¢ =: (1 — q) /c we obtain the system consisting of (84)-(85), supplemented with

lim Qy(av y)
yi0  s(y)

2kX/0® _ ).

= lim g, (a, y)y**" = 0.
y40
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The results in [14], Sec. 4.5, 4.6, (see also [16]) then imply that

g(o,y) =E [6_“9(9)} ,
and finally we obtain

q(t,y) = P(0(y) = 1)
analogue to (86)-(89). m

Remarkably, by the next proposition, (77) can be represented by one and the same expression for both Case |
and Case Il.

Proposition 6 For both Case | and Case II, the probability q(t,y) in (77) satisfies,

>, Jozy (7L2%m %) 2
t,y) = 2y (2A) 77 exp | -2yl 0<y<2A,  (91)
q(t,y) = 297 (24) mzl”—%m AP e A y

where with -y as in (65), J_o, is the Bessel function of the first kind with parameter —2, and T_g- y,, M =
1,2, ... is the increasing sequence of positive zeros of J_o-,.

Proof. We apply the method of separation of variables. Let us seek for elementary solutions 7 (t) ) (y) satisfying
(78), hence
20V"T +0Y'T =YT".

We so may set
z B 2yyl/ +6y/
T y

=: —u = const.

and get the system
T(t) = Toe ", 29" + 6V +uY = 0. (92)

We recall that elementary independent solutions of (62) are given in terms of Bessel functions cf. (64)-(67).

i) In Case I, where 2k\/c?> 1, hence v < 0, the only feasible elementary solutions are 7 (¢))(y) where )V
is of type

Vi(y) =y J -2y (\/Q,uy) = entire function of y not vanishing at y = 0. (93)

Indeed, if 27 is not an integer we have in particular that 2+ < 0, and then the second independent solution is
of type

Va(y) =y Joy <\/2uy) = 3?7 X entire function of y not vanishing at y = 0, (94)

which is unbounded for y | 0. On the other hand, if 2y = 0, —1, —2, ..., the second independent solution is of

type
Na(y) = y'Ya, (v 2uy)

(see (67)), which is also unbounded for 3 | 0.

i) In Case Il, where 2k\/0? < 1, we have that v > 0 and in particular that 2+ is not an integer. Then both
solutions (93) and (94) are bounded for y | 0. However, the solution (94), which is by (65) of type

1—-2k)\/0?

Y X entire function of 4 not vanishing at y = 0,
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yields an elementary solution 7 (¢))(y) that clearly violates the boundary condition (90), while (90) is obviously
satisfied for elementary solutions 7 (¢) ) (y) with ) of type (93).

As a result, for both Case | and Case ll, solutions of type (93) are feasible only. That is, we consider

V() = V() =y T2, (V20y) - (%5)
In view of boundary condition (80) we next require for both cases ), (2A) = 0, leading to the eigenvalues
_: Tr%Q*y,m
Hm : N

and the elementary solutions 7 (¢) V- m (y) with

y'y,m(y) = yyjf?y (\/ 2,umy) = y’YJfQ'y <7T2’y,m\/ ZyA> ) (96)

m = 1, 2, ... Now, as solution candidate for (77), we consider the Fourier-Bessel series

2
T_2y,m

gty) = Bme B Wy m(y), 0<y <24, (97)
m=1

by (92). The initial condition (79) then yields

1= Budym(y):
m=1

from which the coefficients (ﬂm)m:1 9. Mmay be solved straightforwardly by a well known orthogonality relation
for Bessel functions as in Appendix C of [17]. Let us recall it for completeness: The well-known relation

! o
kK’
/ZJ27(7T—2%1€Z)J27(7—27,k:’2)d22 9 J32~/+1(7T—2%k)
0

straightforwardly implies that

2A

) yy,m(y)y'y,m’ (y)y727dy = 2A5m,m’ J227+1(7T—2%m)'

Further we have that

2A 2A Yy
y’y,m(y)y_%dy = / 3/_7=L27 <7T2'y,m\/ 2A> dy
0 0

1
= 2(2A)_7+1/ 2_27—"_1(]727 (T—2y,mz) dz
0

_ J_ _
=2(20) 77 = iw 2ym),
—<7,m

and so we get
2 (2A)77

/Bm:

17



from which with (96) and (97) expression (91) follows.

Finally, since the series (91) convergence point-wise and uniformly on any compact subset of R~ x (0, 2A) it
is straightforward to check that (91) is a solution of the mixed initial-boundary value problem of Proposition 4 in
Case |, and of the mixed initial-boundary value problem of Proposition 5 in Case Il. In particular, (91) represents
(77) in both cases. m

Remark 7 It should be noted that in [17] the boundary condition (90), necessary for the case

2k

— <1, (98)
o

i.e. Case Il in the present setting, was not considered there in fact. As such the related proof there was incom-

plete. However, the above analysis shows that in both Case | and Case Il only solutions of type (95) are feasible.

Therefore, the results regarding (77) in [17] go through for (98) also.

Example 8 The case 2k\/0? = 1/2. In this case (a subcase of Case Il), v = 1/4 in (91) and thus (91)
simplifies to

o J_1/2 (7T—1/2 m %) m’
t,y) = 2914 (2A)" V4 ’ exp | — —L2my
q(t,y) =2y " (24) mzzzl T_1/2mJ172(T-1/2,m) 1A

- % i (2_7713?_11005 ((2m - 1)7T\/87A> exp [—Wt

m=1

0<y<2A.

Y
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