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NEWTON AND BOULIGAND DERIVATIVES OF THE SCALAR

PLAY AND STOP OPERATOR

Martin Brokate1,2,*

Abstract. We prove that the play and the stop operator possess Newton and Bouligand derivatives,
and exhibit formulas for those derivatives. The remainder estimate is given in a strengthened form,
and a corresponding chain rule is developed. The construction of the Newton derivative ensures that
the mappings involved are measurable.
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1. Introduction

The aim of this paper is to show that the play and the stop operator possess Newton as well as Bouligand
derivatives, and to compute those derivatives. Newton derivatives are needed when one wants to solve equations

F (u) = 0

for nonsmooth operators F by Newton’s method with a better than linear convergence rate. Bouligand deriva-
tives are closely related to Newton derivatives, and can be used to provide sensitivity results as well as optimality
conditions for problems involving nonsmooth operators.

The scalar play operator and its twin, the scalar stop operator, act on functions u : [a, b] → R and yield
functions w = Pr[u; z0] and z = Sr[u; z0] from [a, b] to R. The number z0 plays the role of an initial condition.
Their formal definition, in the spirit of [11, 12], is given below in Section 6; alternatively, they arise as solution
operators of the evolution variational inequality

ẇ(t) · (ζ − z(t)) ≤ 0 , for all ζ ∈ [−r, r], (1.1a)

z(t) ∈ [−r, r] , z(a) = z0 ∈ [−r, r] , (1.1b)

w(t) + z(t) = u(t) . (1.1c)

Keywords and phrases: Rate independence, hysteresis operator, Newton derivative, Bouligand derivative, play, stop, sensitivity,
maximum functional, variational inequality, measurable selector, semismooth, chain rule.
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2 M. BROKATE

The play and the stop operator are rate-independent; in fact, they constitute the simplest nontrivial examples
of rate-independent operators [4, 13, 14, 19] if one disregards relays whose nature is inherently discontinuous.
Due to (1.1c), their mathematical properties are closely related.

A lot is known about the play and the stop. Viewed as operators between function spaces, their typical
regularity is Lipschitz (or less). In particular, they are not differentiable in the classical sense. The question
whether weaker derivatives (e.g., directional derivatives) exist was addressed, to the author’s knowledge, for the
first time in [3] where it was shown that the play and the stop are directionally differentiable from C[a, b] to
Lp(a, b) for p <∞. (This is not to be confused with the existence and form of time derivatives of functions like
t 7→ Pr[u; z0](t), for which there are many results available.)

The results below serve to narrow the gap between differentiability and non-differentiability of rate-
independent operators. Their proofs given here are based on the same idea as used in [3], namely, to locally
represent the play as a composition of operators whose main ingredient is the cumulated maximum.

It is natural to ask whether it is possible to prove weak differentiability of the play and the stop operator
in the framework of the variational formulation (1.1). Indeed, for elliptic variational inequalities, a large body
of literature is available, going back to [15]. In that case, the solution operator is closely linked to the metric
projection onto convex sets whose differentiability properties also have been analyzed for a long time. For
evolution variational inequalities of parabolic type, we refer to the recent contribution [5] and the literature
cited there. For rate independent variational inequalities, corresponding results do not seem to exist, not even
for the ODE case given in (1.1).

Our main results are given in Theorem 7.15 for Newton differentiability and Theorem 8.2 for Bouli-
gand differentiability of the play. They are based on corresponding results for the maximum functional
(Prop. 3.4) and the cumulated maximum operator (Prop. 4.8). The extension to the parametric play is given
in Proposition 9.5.

When attempting to prove Newton differentiability of the play, some issues arise which complicate matters and
are, at least in part, responsible for the length of this paper. First, the construction of the Newton derivative
of the play leads to a set-valued derivative in a natural manner. Its elements L should have the property
that the first order approximations δw = Lδu are measurable functions. Since Newton derivatives are not
obtained as limits, and we are dealing with operators between function spaces, measurability becomes an issue.
Second, with regard to the form of the remainder, we aim at a somewhat stronger result than standard Newton
differentiability, having in mind applications to partial differential equations. Third, we want to treat not only
a single play operator, but also a parametric family of play operators, having in mind problems where play
operators e.g. are distributed continuously over space. Again, the problem of measurability has to be solved.

The proofs of Newton and of Bouligand differentiability are rather similar; for Bouligand derivatives, some of
the problems mentioned above do not even arise. Nevertheless, we have chosen to elaborate the proofs for both
cases to some extent; the details are somewhat cumbersome and should not be placed too much as a burden on
the reader.

2. Notions of derivatives

We collect some established notions of derivatives for mappings

F : U → Y , U ⊂ X ,

where X and Y are normed spaces, and U is an open subset of X. These notions are classical, but the terminology
is not uniform in the literature.

Definition 2.1. (i) The limit, if it exists,

F ′(u;h) := lim
λ↓0

F (u+ λh)− F (u)

λ
, u ∈ U , h ∈ X , (2.1)
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is called the directional derivative of F at u in the direction h. It is an element of Y .
(ii) If the directional derivative satisfies

F ′(u;h) = lim
λ↓0

F (u+ λh+ r(λ))− F (u)

λ
(2.2)

for all functions r : (0, λ0)→ X with r(λ)/λ→ 0 as λ→ 0, it is called the Hadamard derivative of F at u in
the direction h.
(iii) If the directional derivative exists for all h ∈ X and satisfies

lim
h→0

‖F (u+ h)− F (u)− F ′(u;h)‖
‖h‖

= 0 , (2.3)

it is called the Bouligand derivative of F at u in the direction h.
(iv) If the Bouligand derivative has the form F ′(u;h) = Lh for some linear continuous mapping L : X → Y ,
then L is called the Fréchet derivative of F at u and denoted as DF (u).
(v) The mapping F is called directionally (Hadamard, Bouligand, Fréchet, resp.) differentiable at u (in U , resp.),
if the corresponding derivative exists at u (for all u ∈ U , resp.) for all directions h ∈ X.

In the definition above, it is tacitly understood that the limits are taken in the sense “not equal 0”.
We have F ′(u;λh) = λF ′(u;h) if λ ≥ 0. This as well as the following well-known facts are elementary

consequences of the above definitions.

Proposition 2.2. Let F be directionally differentiable and locally Lipschitz continuous at u ∈ U . Then F is
Hadamard differentiable at u. Moreover, if `u is a local Lipschitz constant for F at u,

‖F ′(u;h1)− F ′(u;h2)‖ ≤ `u‖h1 − h2‖ ∀ h1, h2 ∈ X . (2.4)

Consequently, if ` is a global Lipschitz constant for F ,

‖F (u+ h)− F (u)− F ′(u;h)‖ ≤ 2`‖h‖ ∀ h ∈ X . (2.5)

Corollary 2.3. If F is locally Lipschitz, then directional and Hadamard differentiability at u ∈ U are equivalent,
and are implied by Bouligand differentiability at u.

In terms of a remainder function, the definition (2.3) of Bouligand differentiability at u is equivalent to

‖F (u+ h)− F (u)− F ′(u;h)‖ ≤ ρu(‖h‖) · ‖h‖ , (2.6)

where ρu(δ) ↓ 0 for δ ↓ 0. In view of (2.5), we may assume that ρu is globally bounded,

ρu ≤ 2` ∀ u ∈ U , (2.7)

if ` is a global Lipschitz constant for F .
The notion of a Newton derivative is more recent. A mapping G : U → L(X,Y ), the space of all linear and

continuous mappings from X to Y , is called a Newton derivative of F in U , if

lim
h→0

‖F (u+ h)− F (u)−G(u+ h)h‖
‖h‖

= 0 (2.8)

holds for all u ∈ U . It is never unique; for example, modifying G at a single point does not affect the validity of
(2.8) in U .
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It has turned out to be natural to allow Newton derivatives to be set-valued. For set-valued mappings we
write “f : X ⇒ Y ” instead of “f : X → P(Y ) \ ∅”.

Definition 2.4. A mapping G : U ⇒ L(X,Y ) is called a Newton derivative of F in U , if

lim
h→0

sup
L∈G(u+h)

‖F (u+ h)− F (u)− Lh‖
‖h‖

= 0 (2.9)

holds for all u ∈ U . G is called locally bounded if for every u ∈ U the sets {‖L‖ : L ∈ G(v), ‖v − u‖ ≤ δ} are
bounded for some suitable δ = δ(u). G is called globally bounded if these bounds can be chosen independently
from u.

It is well known that if F is continuously Fréchet differentiable in U , then G(u) = {DF (u)} is a single-valued
Newton derivative of F in U .

We write (2.9) in remainder form,

sup
L∈G(u+h)

‖F (u+ h)− F (u)− Lh‖ ≤ ρu(‖h‖) · ‖h‖ , (2.10)

where ρu(δ) ↓ 0 as δ ↓ 0. If ` is a global Lipschitz constant for F and cG is a global bound for the norms ‖L‖ of
the elements L ∈ G(U), we may assume that ρu is globally bounded,

ρu ≤ `+ cG ∀ u ∈ U , (2.11)

as in the case of the Bouligand derivative.
IfG : U ⇒ L(X,Y ) is a Newton derivative of F in U , then so is every G̃ : U ⇒ L(X,Y ) satisfying G̃(u) ⊂ G(u)

for all u ∈ U . In particular, every selector S : U → L(X,Y ) of G, that is, S(u) ∈ G(u) for all u ∈ U , yields a
single-valued Newton derivative of F in U .

We now consider the following situation. The domain of definition U of F can be represented as

U =
⋃
n∈N

Un , (2.12)

where Un ⊂ U are open sets with Un ⊂ Un+1 for all n, and U0 = ∅. We want to obtain a Newton derivative of
F on U from Newton derivatives of F on Un. This can be done in the following setting. Let Vn ⊂ U be open
sets with

V n ⊂ Un ∩ Vn+1 for all n ∈ N,
⋃
n∈N

Vn = U . (2.13)

Proposition 2.5. Let Gn be a Newton derivative of F on Un, n ∈ N, with the remainder ρn,u according to
(2.10). Then in the situation just described above, the definition

G(u) = Gn(u) , if u ∈ V n \ V n−1, (2.14)

yields a Newton derivative G : U ⇒ L(X;Y ) of F on U with the remainder

ρu = max{ρn,u, ρn+1,u} if u ∈ V n \ V n−1. (2.15)
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Proof. By construction,

U =
⋃
n∈N

V n \ V n−1 ,

the union being disjoint. Let u ∈ U , assume that u ∈ V n \ V n−1. We choose δ > 0 such that Bδ(u) = {v :
‖v − u‖ < δ} satisfies, see (2.13),

Bδ(u) ∩ V n−1 = ∅ , Bδ(u) ⊂ Un ∩ Vn+1 .

Let h ∈ X, ‖h‖ < δ, let L ∈ G(u+ h). If u+ h ∈ V n, then u+ h ∈ V n \ V n−1, u+ h ∈ Un and L ∈ Gn(u+ h),
so

‖F (u+ h)− F (u)− Lh‖ ≤ ρn,u(‖h‖)‖h‖ .

If u+ h /∈ V n, then u+ h ∈ V n+1 \ V n ⊂ Un+1 and L ∈ Gn+1(u+ h), so

‖F (u+ h)− F (u)− Lh‖ ≤ ρn+1,u(‖h‖)‖h‖ .

This proves the assertions.

Remark 2.6. If we have Gn(u) ⊂ Gn+1(u) for all n and all u ∈ Un, we may dispense with the sets Vn and
simply define a Newton derivative G of F on U by

G(u) = Gn(u) , if u ∈ Un \ Un−1.

We refer to Remark 7.14 for a discussion of this issue in the context of the play operator.

The following result ([10], Lem. 8.11) shows that Bouligand and Newton derivatives are closely related.

Proposition 2.7. Let F : U → Y possess the single-valued Newton derivative DNF : U → L(X,Y ). Then F
is Bouligand differentiable at u ∈ U if and only if the limit limλ↓0D

NF (u+ λh)h exists uniformly w.r.t. h ∈ X
with ‖h‖ = 1. In this case,

F ′(u;h) = lim
λ↓0

DNF (u+ λh)h . (2.16)

3. The maximum functional

We consider ϕ : C[a, b]→ R,

ϕ(u) = max
s∈[a,b]

u(s) . (3.1)

The functional ϕ is convex, positively 1-homogeneous and globally Lipschitz continuous with Lipschitz con-
stant 1, w.r.t. the maximum norm on C[a, b]. By convex analysis, it is directionally (and thus, Hadamard)
differentiable. An explicit formula for the directional derivative is given by (see e.g. [6] for a direct proof)

ϕ′(u;h) = max
s∈M(u)

h(s) , (3.2)

where

M(u) = {τ ∈ [a, b], u(τ) = ϕ(u)} (3.3)
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is the set where u attains its maximum.
Let us denote the dual of C[a, b] by C[a, b]∗; it consists of all signed regular Borel measures on [a, b]. The

subdifferential of ϕ is defined as usual as the set-valued mapping ∂ϕ : C[a, b] ⇒ C[a, b]∗ given by

∂ϕ(u) = {µ : µ ∈ C[a, b]∗, ϕ(v)− ϕ(u) ≥ 〈µ, v − u〉 for all v ∈ C[a, b]} . (3.4)

It is not difficult to check that

∂ϕ(u) = {µ : µ ∈ C[a, b]∗, supp(µ) ⊂M(u), µ ≥ 0, ‖µ‖ = 1} . (3.5)

In particular, if u has a unique maximum at r ∈ [a, b], that is, M(u) = {r}, then ∂ϕ(u) = {δr}, where δr denotes
the Dirac delta at r.

A side remark (we will not use this): the directional derivative is linked to the subdifferential by the “max
formula” (see [1], Thm. 17.19, for the Hilbert space case)

ϕ′(u;h) = max
µ∈∂ϕ(u)

〈µ, h〉 .

The subdifferential is a natural candidate for a Newton derivative of a convex functional. However, the subdif-
ferential of ϕ : C[a, b]→ R is not a Newton derivative of ϕ, and ϕ is not Bouligand differentiable. The following
example shows that this is true even if we restrict ϕ to W 1,1(a, b).

Here and in the sequel we use the norm

‖u‖W 1,p = |u(a)|+ ‖u′‖p = |u(a)|+
(∫ b

a

|u′(s)|p ds
)1/p

, 1 ≤ p <∞ .

Example 3.1. Consider u : [0, 1] → R defined by u(s) = 1 − s. We have ϕ(u) = 1 and M(u) = {0}. Define
hλ : [0, 1]→ R for λ > 0 by

hλ(s) =

{
2s , s ≤ λ ,
2λ , s > λ .

(3.6)

Then the function u+ hλ attains its maximum at s = λ, and

‖hλ‖1,1 = 2λ , ϕ(u+ hλ) = 1 + λ , ϕ′(u;hλ) = max
s∈M(u)

hλ(s) = hλ(0) = 0 .

Consequently, ‖hλ‖1,1 → 0 but

|ϕ(u+ hλ)− ϕ(u)− ϕ′(u;hλ)|
‖hλ‖1,1

=
λ

2λ
=

1

2
. (3.7)

Thus, ϕ is not Bouligand differentiable at u on X = W 1,1(0, 1). Moreover, setting Φ = (∂ϕ)|X we obtain

M(u+ hλ) = {λ} , Φ(u+ hλ) = {δλ} , Φ(u+ hλ)hλ = hλ(λ) = 2λ ,

so

|ϕ(u+ hλ)− ϕ(u)− Φ(u+ hλ)hλ|
‖hλ‖1,1

=
λ

2λ
=

1

2
. (3.8)
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Thus, Φ is not a Newton derivative of ϕ onW 1,1(0, 1). As ‖hλ‖∞ = ‖hλ‖1,1 (or due to the embeddingW 1,1 → C),
the same is true on C[0, 1].

We will show that Φ is a Newton derivative of ϕ on C0,α[a, b] for every α > 0, endowed with the norm

‖u‖C0,α = |u(a)|+ |u|C0,α , |u|C0,α = sup
t,s∈[a,b]
s 6=t

|u(t)− u(s)|
|t− s|α

. (3.9)

We set Bε = (−ε, ε).

Lemma 3.2. The mapping M : C[a, b] ⇒ [a, b] is upper semicontinuous, that is, for every u ∈ C[a, b] and every
ε > 0 there exists δ > 0 such that for every h ∈ C[a, b]

‖h‖∞ < δ ⇒ M(u+ h) ⊂M(u) +Bε . (3.10)

Proof. By contradiction. Assume that u ∈ C[a, b] and ε > 0 are such that for all n ∈ N there exist hn ∈
C[a, b] with ‖hn‖∞ < 1

n and M(u+ hn) 6⊂M(u) +Bε. Let tn ∈M(u+ hn) with d(tn,M(u)) ≥ ε. Passing to a
subsequence we get tn → t ∈ [a, b], t /∈M(u). On the other hand, u(tn) + hn(tn) = ϕ(u+ hn). Letting n→∞
yields u(t) = ϕ(u), so t ∈M(u), a contradiction.

For a function f : I → R, I being an interval, we denote its oscillation on I by

osc
I

(f) = sup{|f(t)− f(s)| : t, s ∈ I} , (3.11)

and its modulus of continuity by

ωI(f ; ε) = sup{|f(t)− f(s)| : t, s ∈ I , |t− s| ≤ ε} . (3.12)

When I = [a, b], we simply write osc(f) and ω(f ; ε).

Lemma 3.3. Let u, h ∈ C[a, b], µ ∈ ∂ϕ(u+ h). Then

ϕ′(u;h) ≤ ϕ(u+ h)− ϕ(u) ≤ 〈µ, h〉 . (3.13)

Let moreover be ε > 0 such that

M(u+ h) ⊂M(u) +Bε . (3.14)

Then we have

〈µ, h〉 − ϕ′(u;h) ≤ sup
|s−r|≤ε

|h(r)− h(s)| = ω(h; ε) . (3.15)

Proof. The first inequality in (3.13) holds since ϕ is convex; as ϕ(u)−ϕ(u+ h) ≥ 〈µ,−h〉, the second inequality
follows. Now assume that (3.14) holds. Recalling (3.5), given r ∈ supp(µ) ⊂ M(u + h) we find an sr ∈ M(u)
with |r − sr| < ε, so

h(r)− ϕ′(u;h) = h(r)− max
s∈M(u)

h(s) ≤ h(r)− h(sr) ≤ ω(h; ε) .

Integrating both sides of this inequality over r ∈ [a, b] with respect to µ yields (3.15).
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For the modulus of continuity, we have

ω(h; ε) ≤ |h|C0,αεα , ω(h; ε) ≤ ‖h′‖Lpε1−1/p . (3.16)

Proposition 3.4. Let X = C0,α[a, b] or X = W 1,p(a, b), with 0 < α ≤ 1 resp. 1 < p ≤ ∞. Then the set-valued
mapping Φ = (∂ϕ)|X given in (3.5) is a globally bounded Newton derivative of the maximum functional ϕ on
X. In particular, for every u ∈ X there exists a nondecreasing and bounded ρu : R+ → R+ such that ρu(δ)→ 0
as δ → 0, ρu is bounded independently from u, and

|ϕ(u+ h)− ϕ(u)− Lh| ≤

{
ρu(‖h‖∞)|h|C0,α

ρu(‖h‖∞)‖h′‖Lp
(3.17)

respectively, for every h ∈ X and every L ∈ Φ(u+ h).
Moreover, ϕ is Bouligand differentiable on X, and for every u ∈ X

|ϕ(u+ h)− ϕ(u)− ϕ′(u;h)| ≤

{
ρu(‖h‖∞))|h|C0,α

ρu(‖h‖∞)‖h′‖Lp
(3.18)

respectively, for every h ∈ X.

Proof. We consider the case X = C0,α[a, b]. Let u ∈ X be given, let

εu(δ) = inf{ε : M(u+Bδ) ⊂M(u) +Bε}

for δ > 0. Then εu is increasing. As M is upper semicontinous by Lemma 3.2, we have 0 < εu(δ)→ 0 as δ → 0,
According to (3.13) and (3.15), for h ∈ X and L = µ ∈ Φ(u+ h) we get

|ϕ(u+ h)− ϕ(u)− Lh| ≤ ω(h; εu(‖h‖∞) ≤ εu(‖h‖∞)α · |h|C0,α .

Setting ρu(δ) = (εu(δ))α, (3.17) follows for the Hölder case. Since ‖L‖C→R = 1, we have ‖L‖C0,α→R ≤ cα and

|ϕ(u+ h)− ϕ(u)− Lh| ≤ 2‖h‖∞ ≤ 2cα‖h‖∞ ,

where cα denotes the norm of the embedding C0,α → C. Thus, cα is a global bound for Φ, and 2cα furnishes a
global bound for ρu.

The proof for the case X = W 1,p(a, b) is analogous. (One might also refer to Morrey’s embedding theorem
which implies that W 1,p(a, b) is continuously embedded into C0,α[a, b] for α ≤ 1− 1/p.)

Note that the estimates (3.17) and (3.18) are slightly stronger than required for Newton and Bouligand
differentiability (the factor ρu(‖h‖X) instead of ρu(‖h‖∞), as well as the norms instead of the seminorms, would
suffice). This strenghtening is motivated by applications to partial differential equations.

4. The cumulated maximum

We define the cumulated maximum of a function u ∈ C[a, b] as

ϕt(u) = max
s∈[a,t]

u(s) , t ∈ [a, b] . (4.1)
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Setting

(Fu)(t) = ϕt(u) (4.2)

we obtain an operator

F : C[a, b]→ C[a, b] . (4.3)

The function Fu is nondecreasing for every u ∈ C[a, b]. Since

|ϕt(u)− ϕt(v)| ≤ max
s∈[a,t]

|u(s)− v(s)| , for all u, v ∈ C[a, b],

we have

‖Fu− Fv‖∞,t ≤ ‖u− v‖∞,t , for all u, v ∈ C[a, b], t ∈ [a, b]. (4.4)

Here and in the following we use the notation

‖u‖∞,t = sup
s≤t
|u(s)| . (4.5)

For any fixed t ∈ [a, b], the directional derivative of ϕt : C[a, b]→ R given in (3.2) yields that, for all u, h ∈ C[a, b],

FPD(u;h)(t) := lim
λ↓0

(F (u+ λh))(t)− (Fu)(t)

λ
= ϕ′t(u;h) = max

s∈M(u,t)
h(s) , (4.6)

where

M(u, t) = {τ : τ ∈ [a, t], u(τ) = ϕt(u)} (4.7)

is the set where u attains its maximum on [a, t]. As in [3], we call pointwise directional derivative of F the
function FPD(u;h) : [a, b]→ R obtained in this manner.

Example 4.3 in [3] shows that the function FPD(u;h) : [a, b] → R does not need to be continuous even
though u and h are; so F : C[a, b]→ C[a, b] is not directionally differentiable. When this happens, the difference
quotients

F (u+ λh)− Fu
λ

do not converge uniformly to FPD(u;h). They do, on the other hand, converge in Lr(a, b) for every r <∞, as
they are uniformly bounded by ‖h‖∞. As a consequence, F : C[a, b]→ Lr(a, b) is Hadamard differentiable ([3]).
In order to obtain Bouligand or Newton differentiability, as in the case of the maximum functional one has to
strengthen the norm in the domain space. Indeed, the functions from Example 3.1 can be used to show that F
is not Bouligand differentiable on C[a, b].

Bouligand differentiability of the cumulated maximum. Let again X stand for C0,α[a, b] with 0 <
α ≤ 1, or for W 1,p(a, b) with 1 < p ≤ ∞. We want to prove that F : X → Lq(a, b) is Bouligand differentiable
for 1 ≤ q <∞ with the improved remainder estimate as in Proposition 3.4. For this, we have to show that

ρFu (δ) := sup
‖h‖∞≤δ

‖F (u+ h)− F (u)− F ′(u;h)‖Lq
‖h‖X

→ 0 as δ → 0. (4.8)
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Proposition 4.1. The cumulated maximum F : X → Lq(a, b) is Bouligand differentiable for every q <∞, and
F ′ = FPD. Moreover,

‖F (u+ h)− F (u)− F ′(u;h)‖Lq ≤ ρFu (‖h‖∞) · ‖h‖X , (4.9)

and ρFu (δ)→ 0 as δ → 0. In addition, ρFu is bounded uniformly in u.

Proof. Assume that (4.8) does not hold. Then there exists ε > 0 and a sequence {hn} in X with ‖hn‖∞ → 0
and

ε‖hn‖X ≤ ‖F (u+ hn)− F (u)− FPD(u;hn)‖Lq =

(∫ b

a

dn(t)q dt

)1/q

, (4.10)

where

dn(t) = |ϕt(u+ hn)− ϕt(u)− ϕ′t(u;hn)| .

Setting ρn = dn/‖hn‖X we have ρn(t)→ 0 pointwise, because ϕt : X → R is Bouligand differentiable for every t
by Proposition 3.4, with the remainder estimate (3.18). Since moreover {ρn} is uniformly bounded, by dominated
convergence ‖ρn‖Lq → 0 which contradicts (4.10). Therefore F is Bouligand differentiable and F ′ = FPD. The
global bound on ρFu follows from the estimate ‖F (u + h) − F (u) − F ′(u;h)‖∞ ≤ 2‖h‖∞ combined with the
embedding constants.

Newton differentiability of the cumulated maximum. A Newton derivative of the cumulated maximum
is constructed from the Newton derivative of the maximum functional given in the previous section. Its elements
L will have the form (Lh)(t) = 〈µt, h〉, where µt belongs to the Newton derivative Φt of ϕt. In order that Lh
becomes a measurable function, the measures µt are constructed from measurable selectors of the family {Φt}.

We first analyze the mapping M : C[a, b]× [a, b] ⇒ [a, b]

M(u, t) = {τ : τ ∈ [a, t], u(τ) = ϕt(u)} . (4.11)

The sets M(u, t) are compact nonempty subsets of [a, b], and M(u, a) = {a}.

Lemma 4.2. The set-valued mapping M is upper semicontinuous and measurable.

Proof. To prove that M is upper semicontinuous according to Definition 10.1, let A ⊂ [a, b] be closed, and let
(un, tn) be a sequence in M−1(A) with un → u ∈ C[a, b] and tn → t ∈ [a, b]. In order to show that (u, t) ∈
M−1(A), let τn ∈ A such that τn ∈ M(un, tn), thus un(τn) = ϕtn(un). Passing to a subsequence we have
τn → τ ∈ A since A is closed. Moreover, τ ≤ t, un(τn)→ u(τ) and

ϕtn(un) = (ϕtn(un)− ϕtn(u)) + ϕtn(u)→ ϕt(u)

by (4.4) and since t 7→ ϕt(u) is continuous. Therefore u(τ) = ϕt(u) and τ ∈ M(u, t). Thus M is upper
semicontinuous. It now follows from Proposition 6.2.3 in [16] that M is measurable.

The set-valued mapping M possesses a dense sequence of measurable selectors.

Proposition 4.3. There exists a sequence {fn} of measurable selectors of M such that

M(u, t) = {fn(u, t) : n ∈ N} , for all u ∈ C[a, b], t ∈ [a, b] . (4.12)

In particular maxM(u, t) = supn fn(u, t) and minM(u, t) = infn fn(u, t) are measurable selectors of M .
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Proof. This is a consequence of Theorem 6.3.18 in [16], as [a, b] is a complete separable metric space.

We consider the mapping Φ : C[a, b]× [a, b] ⇒ C[a, b]∗,

Φ(u, t) = {ν ∈ C[a, b]∗ : supp(ν) ⊂M(u, t), ν ≥ 0, ‖ν‖ = 1} . (4.13)

The following facts are well known. The closed unit ball K in C[a, b]∗, endowed with the weak star topology,
is compact (hence complete), metrizable and separable. The sets Φ(u, t) are nonempty convex and weak star
compact subsets of K (note that for ν ≥ 0 we have ‖ν‖ = 〈ν, 1〉). Moreover,

Φ(u, a) = {δa} , (4.14)

M(u+ c, t) = M(u, t) , Φ(u+ c, t) = Φ(u, t) for all c ∈ R, (4.15)

(Φ(u, t))(c) = {c} for all c ∈ R. (4.16)

Lemma 4.4. Let {un}, {tn}, {νn} be sequences in C[a, b], [a, b] and C[a, b]∗ respectively, with un → u, tn → t

and νn
∗
⇀ ν, let supp(νn) ⊂M(un, tn) for all n ∈ N. Then supp(ν) ⊂M(u, t).

Proof. Let f ∈ C∞0 (R \M(u, t)). We have to show that 〈ν, f〉 = 0. Let

ε = inf{|s− τ | : s ∈ supp(f), τ ∈M(u, t)} .

We have ε > 0 because the sets supp(f) and M(u, t) are disjoint and compact. Since M is upper semicontin-
uous by Proposition 4.2, we may choose N ∈ N such that M(un, tn) ⊂ M(u, t) + Bε/2 holds for all n ≥ N .
Then supp(f) ∩M(un, tn) = ∅ and thus 〈νn, f〉 = 0 for all n ≥ N . Passing to the limit n → ∞ we arrive at
〈ν, f〉 = 0.

Proposition 4.5. The mapping Φ : C[a, b] × [a, b] ⇒ C[a, b]∗ defined in (4.13) is upper semicontinuous, thus
measurable.

Proof. Let A ⊂ C[a, b]∗ be weak star closed. We have to show that Φ−1(A) is closed. To this end, let {(un, tn)}
be a sequence in Φ−1(A) with un → u in C[a, b] and tn → t in [a, b]. Let νn ∈ Φ(un, tn), so νn ∈ A as well as

νn ≥ 0, ‖νn‖ = 1 and supp(νn) ⊂M(un, tn) for all n ∈ N. For some subsequence, we have νnk
∗
⇀ ν with ν ≥ 0,

‖ν‖ = 1 and ν ∈ A. By Lemma 4.4, supp(ν) ⊂M(u, t). Thus, (u, t) ∈ Φ−1(A) and the proof is complete.

Proposition 4.6. There exists a sequence {µn} of measurable selectors of Φ such that

Φ(u, t) = {µn(u, t) : n ∈ N} , for all u ∈ C[a, b], t ∈ [a, b] , (4.17)

the closure being taken w.r.t. the weak star topology.

Proof. This follows from Theorem 6.3.18 in [16], as the unit ball in C[a, b]∗ is a complete separable metrizable
space w.r.t. the weak star topology.

Lemma 4.7. Let µ be a measurable selector of Φ. Then

(Lh)(t) = 〈µ(u, t), h〉

defines an element L ∈ L(C[a, b];L∞(a, b)) with ‖L‖ = 1 and

‖Lh‖∞,t ≤ ‖h‖∞,t . (4.18)
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Proof. For every u, h ∈ C[a, b], the mapping t 7→ 〈µ(u, t), h〉 is measurable and satisfies |〈µ(u, s), h〉| ≤ ‖h‖∞,t
for all s ≤ t, since µ(u, s) has support in [a, s]. Thus, L is well-defined, ‖L‖ ≤ 1 and (4.18) holds. As µ ≥ 0 and
L(1) = 1, we have ‖L‖ = 1.

Let X again denote any one of the spaces C0,α[a, b] for 0 < α ≤ 1 or W 1,p(a, b) for 1 < p ≤ ∞.

Proposition 4.8. Let SΦ be the set of all measurable selectors of Φ, let q ∈ [1,∞). The set-valued mapping
G : X ⇒ L(X,Lq(a, b)),

G(u) = {L : (Lh)(t) = 〈µ(u, t), h〉, µ ∈ SΦ} (4.19)

defines a Newton derivative of the cumulated maximum F : X → Lq(a, b) with

‖F (u+ h)− F (u)− Lh‖Lq ≤ ρGu (‖h‖∞) · ‖h‖X , (4.20)

for all L ∈ G(u + h). Here, ρGu : R+ → R+ is an increasing function with ρGu (δ) → 0 as δ → 0, bounded
independently from u.

Proof. Fix u ∈ X. For h ∈ X we define

d(h, t) = sup
µt∈Φ(u+h,t)

|ϕt(u+ h)− ϕt(u)− 〈µt, h〉| .

Let {µk} be a sequence of measurable selectors of Φ according to Proposition 4.6, set

dk(h, t) = |ϕt(u+ h)− ϕt(u)− 〈µk(u+ h, t), h〉|

Then d(h, t) = supk dk(h, t) by (4.17), and therefore the mapping t 7→ d(h, t) is measurable. Moreover,

sup
L∈G(u+h)

‖F (u+ h)− F (u)− Lh‖Lq =

(∫ b

a

d(h, t)q dt

)1/q

=: dG(h) .

The remainder of the proof is analogous to that of Proposition 4.1. We define

ρGu (δ) = sup
‖h‖∞≤δ

dG(h)

‖h‖X
. (4.21)

Assume that limδ→0 ρ
G
u (δ) = 0 does not hold. Then there exist ε > 0 and a sequence {hn} in X with ‖hn‖∞ → 0

and

ε‖hn‖X ≤

(∫ b

a

d(hn, t)
q dt

)1/q

. (4.22)

Since Φ(·, t) is a Newton derivative of ϕt, we have ρn(t) = d(hn, t)/‖hn‖X → 0 pointwise in t as n → ∞.
Moreover, ρn is uniformly bounded. Applying dominated convergence, we arrive at a contradiction to (4.22).
The global boundedness of ρGu follows from the estimate ‖F (u+ h)− F (u)− Lh‖∞ ≤ 2‖h‖∞.

Proposition 4.10 below shows that the set SΦ is large enough to approximate the whole range of Φ.
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Lemma 4.9. Let f : C[a, b]× [a, b]→ [a, b] be a measurable selector of M . Then

µ(u, t) = δf(u,t) (4.23)

defines a measurable selector µ : C[a, b]× [a, b]→ C[a, b]∗ of Φ.

Proof. For each v ∈ C[a, b], the mapping s 7→ v(s) = 〈δs, v〉 is continuous from [a, b] to R. Thus, the mapping
s 7→ δs is weak star continuous from [a, b] to C[a, b]∗, and consequently (4.24) defines a measurable mapping.

Proposition 4.10. Let {fn} be a sequence of measurable selectors of M such that

M(u, t) = {fn(u, t) : n ∈ N} , for all u ∈ C[a, b], t ∈ [a, b] . (4.24)

Taking all rational convex combinations of the mappings (u, t) 7→ δfn(u,t) we obtain a sequence {µn} of
measurable selectors of Φ such that

Φ(u, t) = {µn(u, t) : n ∈ N} , for all u ∈ C[a, b], t ∈ [a, b] , (4.25)

the closure being taken w.r.t. the weak star topology.

Proof. Let u ∈ C[a, b] and t ∈ [a, b] be given. The set D = {fn(u, t) : n ∈ N} is a countable dense subset of
M(u, t). The set of all convex combinations with rational coefficients of elements of the set {δτ : τ ∈ D} then is
dense in Φ(u, t) w.r.t. the weak star topology.

5. The chain rule

In the following sections we will see that the play operator can be represented as a finite composition of
cumulated maxima and positive part mappings. The Newton differentiability of these mappings will imply
Newton differentiability of the play, by virtue of the chain rule. It is a standard result that the chain rule is
valid for Newton derivatives, see Proposition A.1 in [7] for the single-valued and Proposition 3.8 in [18] for the
set-valued case.

As a result of investigating the maximum and the cumulated maximum, we have seen above that these
operators satisfy a slightly stronger version of Newton and Bouligand differentiability. For the cumulated max-
imum F : X → Y with X = W 1,p(a, b) or C0,α[a, b] and Y = Lr(a, b), we have constructed a Newton derivative
G : X ⇒ L(X;Y ) with a remainder estimate

sup
L∈G(u+h)

‖F (u+ h)− F (u)− Lh‖Y ≤ ρu(‖h‖X̃) · ‖h‖X , (5.1)

where X̃ = C[a, b], endowed with the maximum norm. The purpose of this section is to extend the chain rule
to this situation, for Newton as well as for Bouligand derivatives.

We consider the following setting.

Assumption 5.1.
(i) X,Y, Z are normed spaces, U ⊂ X and V ⊂ Y are open. F1 : U → Y and F2 : V → Z with F1(U) ⊂ V are
locally Lipschitz.
(ii) X̃ and Ỹ are normed spaces with continuous embeddings X ⊂ X̃ and Y ⊂ Ỹ .
(iii) G1 : U ⇒ L(X;Y ) and G2 : V ⇒ L(Y ;Z) satisfy, for every u ∈ U and v ∈ V ,

sup
L1∈G1(u+h)

‖F1(u+ h)− F1(u)− L1h‖Y ≤ ρ1,u(‖h‖X̃) · ‖h‖X (5.2)
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for every h ∈ X with u+ h ∈ U ,

sup
L2∈G2(v+k)

‖F2(v + k)− F2(v)− L2k‖Z ≤ ρ2,v(‖k‖Ỹ ) · ‖k‖Y (5.3)

for every k ∈ Y with v + k ∈ V , with functions ρ1,u, ρ2,v : R+ → R+ satisfying ρ1,u(δ) ↓ 0 and ρ2,v(δ) ↓ 0 for
δ ↓ 0.
(iv) F1 : (U, ‖ · ‖X̃)→ (V, ‖ · ‖Ỹ ) is continuous.
(v) G2 is locally bounded on (V, ‖ · ‖Y ).

Since ρ1,u(‖h‖X̃) ≤ ρ1,u(c‖h‖X) for some constant c, part (iii) of the assumption implies that G1 and G2 are
Newton derivatives for F1 in U and F2 in V , respectively. Note also that the assumption “G2 locally bounded”
already implies that F2 is locally Lipschitz.

In the special case X̃ = X and Ỹ = Y , (5.2) and (5.3) reduce to the standard remainder form (2.10), and
part (iv) of the assumption is implied by part (i); the following result then reduces to the standard chain rule
for Newton derivatives.

Proposition 5.2 (Refined Chain Rule, Newton Derivative).
Let Assumption 5.1 hold. Then

G : U ⇒ L(X;Z)

G(u) = {L2 ◦ L1 : L1 ∈ G1(u), L2 ∈ G2(F1(u))}
(5.4)

is a Newton derivative of F = F2 ◦ F1 in U which satisfies, for every u ∈ U ,

sup
L∈G(u+h)

‖F (u+ h)− F (u)− Lh‖Z ≤ ρu(‖h‖X̃) · ‖h‖X (5.5)

for every h ∈ X with u+ h ∈ U , where ρu : R+ → R+ is a function with ρu(δ) ↓ 0 for δ ↓ 0.

Proof. Let u ∈ U , h ∈ X with u+ h ∈ U , set k = F1(u+ h)−F1(u). Let L1 ∈ G1(u+ h), L2 ∈ G2(F1(u+ h)) =
G2(F1(u) + k). By the triangle inequality,

‖(F2 ◦ F1)(u+ h)− (F2 ◦ F1)(u)− (L2 ◦ L1)h‖Z
≤ ‖F2(F1(u) + k)− F2(F1(u))− L2k‖Z + ‖L2(k − L1h)‖Z

(5.6)

Since G2 is locally bounded, there exists a C > 0 such that for sufficiently small ‖h‖X we have ‖L2‖ ≤ C for
all L2 ∈ G2(F1(u+ h)). Consequently, for all such h and L2, and for all L1 ∈ G1(u+ h) we have by (5.2)

‖L2(k − L1h)‖Z ≤ C‖F1(u+ h)− F1(u)− L1h‖Y ≤ Cρ1,u(‖h‖X̃) · ‖h‖X . (5.7)

Moreover, by (5.3)

‖F2(F1(u) + k)− F2(F1(u))− L2k‖Z ≤ ρ2,F1(u)(‖k‖Ỹ ) · ‖k‖Y . (5.8)

Since F1 is locally Lipschitz, ‖k‖Y ≤ C1‖h‖X for small enough ‖h‖X .
Now let us define ρ̃u : R+ → R+ by

ρ̃u(λ) = sup{‖F1(u+ h)− F1(u)‖Ỹ : ‖h‖X̃ ≤ λ} . (5.9)
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By part (iv) of Assumption 5.1, ρ̃u(λ)→ 0 as λ→ 0. Putting together the estimates obtained so far, we get

‖(F2 ◦ F1)(u+ h)− (F2 ◦ F1)(u)− (L2 ◦ L1)h‖Z
≤
(
C1ρ2,F1(u)(ρ̃u(‖h‖X̃)) + Cρ1,u(‖h‖X̃)

)
· ‖h‖X

(5.10)

independent from the choice of L1 and L2, as long as ‖h‖X is sufficiently small. Setting

ρu(λ) = C1ρ2,F1(u)(ρ̃u(λ)) + Cρ1,u(λ)

we have ρu(λ)→ 0 as λ→ 0. Thus, it follows from (5.10) that (5.5) holds.

In order to obtain the refined chain rule for Bouligand derivatives, we replace Assumption 5.1(iii) by

F1 and F2 are Bouligand differentiable in U and V , respectively. For every u ∈ U , v ∈ V we have

‖F1(u+ h)− F1(u)− F ′1(u;h)‖Y ≤ ρ1,u(‖h‖X̃) · ‖h‖X
‖F2(v + k)− F2(v)− F ′2(v; k)‖Z ≤ ρ2,v(‖k‖Ỹ ) · ‖k‖Y (5.11)

for every h ∈ X with u+ h ∈ U and every k ∈ Y with v + k ∈ V .

Lemma 5.3. If F1 and F2 are Hadamard differentiable at u resp. F1(u), then F2 ◦F1 is Hadamard differentiable
at u, and the chain rule

(F2 ◦ F1)′(u;h) = F ′2(F1(u);F ′1(u;h)) (5.12)

holds for all h ∈ X.

Proof. See e.g. [2], Proposition 2.47.

Proposition 5.4 (Refined Chain Rule, Bouligand Derivative).
Let (i)–(iv) of Assumption 5.1 hold, with (iii) replaced by (5.11). Then F = F2 ◦ F1 is Bouligand differentiable
in U , and

F ′(u;h) = F ′2(F1(u);F ′1(u;h)) . (5.13)

Moreover, for every u ∈ U and h ∈ X with u+ h ∈ U

‖F (u+ h)− F (u)− F ′2(F1(u);F ′1(u;h))‖Z ≤ ρu(‖h‖X̃)‖h‖X (5.14)

for some ρu : R+ → R+ with ρu(δ) ↓ 0 as δ ↓ 0.

Proof. By Lemma 5.3, F is Hadamard differentiable and the chain rule holds. It remains to show (5.14) for the
remainder. Let u ∈ U , h ∈ X with u+ h ∈ U , set k = F1(u+ h)− F (u). We have

F2(F1(u+ h))− F2(F1(u))− F ′2(F1(u);F ′1(u;h))

=
(
F2(F1(u) + k)− F2(F1(u))− F ′2(F1(u); k))

)
(5.15)

+
(
F ′2(F1(u); k))− F ′2(F1(u);F ′1(u;h))

)
.

Let Ci be local Lipschitz constants for Fi. The inequality

C2‖k − F ′1(u;h))‖X ≤ C2ρ1,u(‖h‖X̃)‖h‖X
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yields an estimate for the second term on the right side of (5.15); the first term is estimated by

ρ2,F1(u)(‖k‖Ỹ ) · ‖k‖Y .

Since ‖k‖Y ≤ C1‖h‖X , we argue as in the proof of Proposition 5.2 and obtain, with ρ̃u defined as in (5.9),

‖(F2 ◦ F1)(u+ h)− (F2 ◦ F1)(u)− F ′2(F1(u);F ′1(u;h))‖Z
≤
(
C1ρ2,F1(u)(ρ̃u(‖h‖X̃)) + C2ρ1,u(‖h‖X̃)

)
· ‖h‖X .

From this, the claim readily follows.

6. The scalar play and stop operators

The original construction of the play and the stop operators in [11, 12] is based on piecewise monotone input
functions. A continuous function u : [a, b] → R is called piecewise monotone, if the restriction of u to each
interval [ti, ti+1] of a suitably chosen partition ∆ = {ti}, a = t0 < t1 < · · · < tN = b, called a monotonicity
partition of u, is either nondecreasing or nonincreasing. By Cpm[a, b] we denote the space of all such functions.

For arbitrary r ≥ 0, the play operator Pr and the stop operator Sr are constructed as follows. (For more
details, we refer to Sect. 2.3 of [4].) Given a function u ∈ Cpm[a, b] and an initial value z0 ∈ R, we define functions
w, z : [a, b]→ R successively on the intervals [ti, ti+1], 0 ≤ i < N , of a monotonicity partition ∆ of u by

z(a) = πr(z0) := max{−r,min{r, z0}} , w(a) = u(a)− z(a) , (6.1)

and

w(t) = max{u(t)− r , min{u(t) + r, w(ti)}} ,
z(t) = u(t)− w(t) ,

ti < t ≤ ti+1 . (6.2)

In this manner, we obtain operators

w = Pr[u; z0] , z = Sr[u; z0] , Pr,Sr : Cpm[a, b]× R→ Cpm[a, b] .

By construction,

u = w + z = Pr[u; z0] + Sr[u; z0] . (6.3)

The play operator satisfies

‖Pr[u; z0]− Pr[v; y0]‖ ≤ max{‖u− v‖ , |z0 − y0|} (6.4)

for all u, v ∈ Cpm[a, b] and all z0, y0 ∈ R. Therefore, Pr and Sr can be uniquely extended to Lipschitz continuous
operators

Pr,Sr : C[a, b]× R→ C[a, b]

which satisfy (6.4) for all u, v ∈ C[a, b] and all z0, y0 ∈ R.
In [3], Hadamard derivatives of Pr and of Sr have been obtained. We recall some of the terminology used

there, as it is also relevant for the present paper.
Let (u, z0) ∈ C[a, b]× R be given, let w = Pr[u; z0], z = Sr[u; z0] with r > 0. (For r = 0, Pr[u; z0] = u.) The

trajectories {(u(t), w(t)) : t ∈ [a, b]} lie within the subset A = {|u − w| ≤ r} of the plane R2 bounded by the
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straight lines u− w = ±r. They consist of parts which belong to the interior, the right or the left boundary of
A. Correspondingly, the time interval [a, b] decomposes into the three disjoint sets

I0 = {t ∈ [a, b] : |u(t)− w(t)| = |z(t)| < r} ,
I∂+ = {t ∈ [a, b] : u(t)− w(t) = z(t) = r} ,
I∂− = {t ∈ [a, b] : u(t)− w(t) = z(t) = −r} .

The set I0 is an open subset of [a, b], the sets I∂± are compact. As I∂+ and I∂− are disjoint,

δI := min{|τ − σ| : τ ∈ I∂+ , σ ∈ I∂−} > 0 . (6.5)

Because of this, there exists a finite partition ∆(u, z0) = {tk} of [a, b] such that on each partition interval
Ik = [tk−1, tk] we have z(t) > −r for all t ∈ Ik or z(t) < r for all t ∈ Ik, or both. In the former case, Ik is called
a plus interval; on Ik the trajectory stays away from the left boundary of A, and Ik ⊂ I0 ∪ I∂+. In the latter
case, Ik is called a minus interval; the trajectory stays away from the right boundary of A, and Ik ⊂ I0 ∪ I∂−.
Note that if Ik ⊂ I0, then Ik is a plus as well as a minus interval.

It has been proved in [3], Lemma 5.1, that on such intervals the play operator behaves like a cumulated
maximum resp. minimum. More precisely, on a plus interval Ik,

w(t) = Pr[u; z0](t) = max{w(tk−1) , max
s∈[tk−1,t]

(u(s)− r)} (6.6)

holds, no matter whether u is monotone on Ik or not. On a minus interval,

w(t) = Pr[u; z0](t) = min{w(tk−1) , min
s∈[tk−1,t]

(u(s) + r)} . (6.7)

In particular, w(t) = w(tk−1) if Ik ⊂ I0.
Due to (6.5) and the continuity of Pr, in this manner the play and the stop operator can locally be represented

by a finite composition of operators arising from the cumulated maximum resp. minimum. The following result
has been proved in [3], Lemma 5.2.

Proposition 6.1. For every (u, z0) ∈ C[a, b]× R there exists a partition ∆(u, z0) = {tk}0≤k≤N of [a, b] and a
δ > 0 such that every partition interval [tk−1, tk] of ∆ is a plus interval for all (v, y0) ∈ Uδ ×R, or it is a minus
interval for all (v, y0) ∈ Uδ × R. Here,

Uδ := {(v, y0) : ‖v − u‖∞ < δ, |y0 − z0| < δ, v ∈ C[a, b], y0 ∈ R} (6.8)

is the δ-neighbourhood of (u, z0) w.r.t the maximum norm.

As a consequence, invoking the chain rule for Hadamard derivatives, it has been proved in [3] that Pr and
Sr are Hadamard differentiable on C[a, b]× R, if Lq(a, b) with q <∞ is chosen as the range space.

7. Newton derivative of the play and the stop

We want to use the approach outlined in the previous section in order to obtain a Newton derivative of Pr,
based on the Newton derivative of the cumulated maximum.

We want to construct the Newton derivative such that its dependence upon (u, z0) becomes measurable in
a suitable manner; for this, the local representation of the play obtained from Proposition 6.1 seems to be
of very limited value. Instead, we employ properties of the set-valued mappings involved when constructing
above the Newton derivative of the cumulated maximum. To this purpose, we turn around the approach of
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Proposition 6.1. Instead of finding a suitable partition ∆ for a given (u, z0), for a given partition ∆ we consider
sets of (u, z0) for which the play can be “decomposed” by ∆.

Throughout the following, the space X stands for C0,α[a, b] or W 1,p(a, b).
Let ∆ = {tk} be a partition of [a, b], a = t0 < · · · < tN = b for some N ∈ N. We set

Ik = [tk−1, tk] , |∆| = max
1≤k≤N

|Ik| = max
1≤k≤N

(tk − tk−1) .

We define

C∆ = {u : u ∈ C[a, b], osc
Ik

(u) < r for all k} ,

X∆ = X ∩ C∆ ,

Z∆ = C∆ × R = {(u, z0) : u ∈ C∆, z0 ∈ R} .

(7.1)

The sets C∆, X∆ and Z∆ are open subsets of C[a, b], X and C[a, b]× R, respectively.

The dynamics on an interval for small input oscillation.
It turns out below in Proposition 7.5 that an interval I ⊂ [a, b] is a plus or a minus interval for the play if

the oscillation of u on I is less than r.
Let I = [t∗, t

∗] ⊂ [a, b], u ∈ C(I). We denote the cumulated maximum of u on I and the sets where it is
attained by

(F Iu)(t) = max
s∈I,s≤t

u(s) , t ∈ I ,

M I(u, t) = {s : s ∈ I, s ≤ t, u(s) = (F Iu)(t)} .
(7.2)

As above, F I : C(I)→ C(I), F Iu is nondecreasing and F I(u+ c) = F I(u) + c if c is a constant. Moreover,

osc
I

(F Iu) = (F Iu)(t∗)− (F Iu)(t∗) ≤ osc
I

(u) , (7.3)

0 ≤ F Iu− u ≤ osc
I
u on I, (7.4)

and consequently

osc
I

(F Iu− u) ≤ osc
I
u . (7.5)

The cumulated minimum of u on I can be written as

min
s∈I,s≤t

u(s) = −(F I(−u))(t) , t ∈ I . (7.6)

The corresponding sets of minima are given by M I(−u, t).
For u ∈ C(I), p ∈ R and r > 0 we define the functions (here and in the following, the max and the min are

taken pointwise in t)

w+ = max{p, F I(u− r)} , z+ = u− w+ ,

w− = min{p,−F I(−u− r)} , z− = u− w− .
(7.7)

This corresponds to the operations in (6.6) and (6.7). We have w+, w−, z+, z− ∈ C(I). Obviously w− ≤ w+,
z+ ≤ z−.
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Since p ≤ w+ = u− z+ and p ≥ w− = u− z−, we have

z+ ≤ u− p ≤ z− . (7.8)

Lemma 7.1. Let u ∈ C(I), p ∈ R, r > 0.
(i) We have z+ ≤ r on I. If z+(t) = r for some t ∈ I, then u(t) = (F Iu)(t) ≥ p+ r.
(ii) We have z− ≥ −r on I. If z−(t) = −r for some t ∈ I, then u(t) = −(F I(−u))(t) ≤ p− r.

Proof. To obtain (i), we use the estimate

z+ = u− w+ = u−max{p, F I(u− r)} ≤ u− F I(u− r) ≤ r .

If z+(t) = r, equality holds everywhere, so F I(u− r)(t) ≥ p and u(t) = (F Iu)(t). The proof of (ii) is analogous.

We consider inputs in C(I) whose oscillation is smaller than r. We define

ZI = {(u, p) : u ∈ C(I), p ∈ R, osc
I
u < r}

ZI+ = {(u, p) : u ∈ C(I), p ∈ R, osc
I
u < r, z+ > −r on I}

ZI− = {(u, p) : u ∈ C(I), p ∈ R, osc
I
u < r, z− < r on I.}

(7.9)

The sets ZI+ and ZI− are open subsets of ZI in C(I)× R; we will see that they are related to plus and minus
intervals for the play.

Lemma 7.2.
(i) If (u, p) ∈ ZI− then F I(u− r − p) < 0 and w+ = p on I.
(ii) If (u, p) ∈ ZI+ then F I(−u− r + p) < 0 and w− = p on I.
(iii) If (u, p) ∈ ZI− ∩ ZI+ then w+ = w− = p and z+ = z− = u− p on I.

Proof. If (u, p) ∈ ZI− then u− p− r ≤ z− − r < 0 by (7.8), so F I(u− r)− p < 0, so w+ = p. If (u, p) ∈ ZI+ then
−u+ p− r ≤ −z+ − r < 0 by (7.8), so F I(−u− r) + p < 0, so w− = p.

Lemma 7.3. Let u ∈ C(I), oscI(u) < r, p ∈ R. Then

min{u− p, 0} ≤ z+ ≤ z− ≤ max{u− p, 0} . (7.10)

Proof. We have

−z+ = w+ − u = max{p− u, F I(u)− r − u} ≤ max{p− u, 0} ,

since F Iu− u ≤ oscI u < r by (7.4). Analogously,

−z− = w− − u = min{p− u,−F I(−u− r)− u} ≥ min{p− u, 0} ,

since F I(−u)− (−u) ≤ oscI(−u) < r by (7.4).

Lemma 7.4. We have ZI = ZI+ ∪ ZI−.

Proof. Let (u, p) ∈ ZI , assume that (u, p) /∈ ZI+. Then z+(t) ≤ −r for some t ∈ I. By (7.10), u(t)− p ≤ −r. As
oscI(u) < r, we have u− p ≤ 0 on I. By (7.10), z− ≤ 0 on I, so (u, p) ∈ ZI−.
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We define P I+ : ZI+ → C(I) and P I− : ZI− → C(I) by

P I+(u, p) = p+ max{0, F I(u− r − p)} ,
P I−(u, p) = p−max{0, F I(−u− r + p)} .

(7.11)

Therefore, in view of (7.7),

u− P I+(u, p) = u− w+ = z+ > −r on I ⇔ (u, p) ∈ ZI+, (7.12)

u− P I−(u, p) = u− w− = z− < r on I ⇔ (u, p) ∈ ZI− . (7.13)

On ZI+ ∩ ZI− both expressions simplify to P I±(u, p) = p by Lemma 7.2. Therefore,

P I(u, p) = P I±(u, p) , if (u, p) ∈ ZI± (7.14)

yields a well-defined Lipschitz continuous mapping P I : ZI → C(I).
The next result states that for u ∈ C∆ the intervals Ik yield a decomposition of the play operator. This is

the analogue of Proposition 6.1.

Proposition 7.5. Let u ∈ C∆ and z0 ∈ R, set p = Pr[u; z0](tk−1), k ≥ 1. Then

w(t) = Pr[u; z0](t) = P Ik(u, p)(t) , for all t ∈ Ik. (7.15)

Moreover,

Ik is a plus interval ⇔ (u, p) ∈ ZIk+ ,

Ik is a minus interval ⇔ (u, p) ∈ ZIk− .
(7.16)

Proof. For u ∈ C∆ and z0 ∈ R, we set w = Pr[u; z0], z = u−w, and denote by w+ etc. the functions defined in
(7.7) with I = Ik.

Let Ik be a plus interval. Thus, on Ik we have u − w = z > −r and, by (6.6), w = P Ik+ (u, p) = w+, so

−r < u− w+ = z+. This shows that (7.15) holds and that (u, p) ∈ ZIk+ .
To prove the converse, we first assume that u is piecewise monotone on Ik. Let tk−1 = τ0 < · · · < τN = tk be

a monotonicity partition for u on Ik. It follows from (6.2) that

w(t) ≤ max{u(t)− r , w(τj−1)} , t ∈ [τj−1, τj ] .

By induction, w ≤ max{F Ik(u− r), p} = w+ on Ik. Therefore, z = u−w ≥ u−w+ = z+ > −r as (u, p) ∈ ZIk+ ,
so Ik is a plus interval. If u is not piecewise monotone, let {un} be a sequence in C[a, b] with un = u on [0, tk−1],
un piecewise monotone on Ik and un → u uniformly. Since zn,+ → z+ uniformly, for n large enough we have

(un, p) ∈ ZIk+ . By what we have just proved, zn ≥ zn,+ > −r on Ik. As zn → z uniformly, we have z > −r on
Ik, so Ik is a plus interval.

By the above, we have shown the first equivalence in (7.16) and that (7.15) holds in this case. With an
analogous proof one obtains the second equivalence and that (7.15) holds in that case, too. Since ZIk = ZIk+ ∪Z

Ik
−

by Lemma 7.4, all pairs (u, z0) ∈ C∆ × R are covered and the proof is complete.
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A Newton derivative on an interval of small input oscillation. We want to obtain a Newton derivative
for P I : ZI ∩ (X × R)→ Lq(I), where I = [t∗, t

∗] ⊂ [a, b]. The mapping P I+ decomposes into

P I+(u, p) = p+ Fpp(F̃
I(u, p)) . (7.17)

Here, F̃ I : ZI ∩ (X × R)→ C(I) is defined as

F̃ I(u, p) = F I(u− p− r) , (7.18)

and Fpp denotes the positive part mapping

(Fppu)(t) = max{0, u(t)} . (7.19)

We first analyze the mapping F̃ I . We expect to obtain a Newton derivative G̃I of F̃ I if we choose elements
L ∈ G̃I(u, p) of the form

(L(h, η))(t) = 〈µI(u, t) , h− η〉 = 〈µI(u, t) , h〉 − η , (7.20)

where µI(u, t) are probability measures arising from the Newton derivative of the cumulated maximum on I.
More precisely, let ΦI be the mapping defined in (4.13) with [a, b] and M replaced with I and M I from (7.2),
that is,

ΦI(u, t) = {ν ∈ C(I)∗ : supp(ν) ⊂M I(u, t), ν ≥ 0, ‖ν‖ = 1} . (7.21)

Let SIΦ be the set of all measurable selectors of ΦI . We also consider mappings µ̃ : ZI × I → (C(I)× R)∗ and
the set

S̃IΦ = {µ̃ : µ̃(u, p, t) = µI(u, t) ◦ π1 − π2, µ
I ∈ SIΦ} , (7.22)

where π1 : C(I) × R → C(I) and π2 : C(I) × R → R denote the projections π1(h, η) = h and π2(h, η) = η.
(Actually, the elements of S̃IΦ do not depend on p.) This enables us to rewrite (7.20) in the form

(L(h, η))(t) = 〈µ̃(u, p, t) , (h, η)〉 (7.23)

with µ̃ ∈ S̃IΦ.

Proposition 7.6. The elements of S̃IΦ are measurable functions µ̃ : ZI × I → (C(I)×R)∗. For F̃ I : ZI ∩ (X ×
R)→ Lq̃(I) with q̃ <∞, a Newton derivative G̃I is given by

G̃I : ZI ∩ (X × R) ⇒ L(X × R, Lq̃(I))

G̃I(u, p) = {L : L has the form (7.20) with µI ∈ SIΦ}
= {L : L has the form (7.23) with µ̃ ∈ S̃IΦ} .

(7.24)

The elements L of G̃I(u, p) satisfy

‖L(h, η)‖∞,t ≤ ‖h‖∞,t + |η| (7.25)
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for all h ∈ C(I), η ∈ R, t ∈ I. Moreover, the remainder estimate

sup
L∈G̃I(u+p,h+η)

‖F̃ I(u+ h, p+ η)− F̃ I(u, p)− L(h, η)‖Lq̃(I)

≤ ρ(u,p)(‖h‖∞ + |η|)‖(h, η)‖X×R
(7.26)

holds. The remainder term ρ(u,p) satisfies ρ(u,p)(δ) ↓ 0 as δ ↓ 0 and is uniformly bounded in (u, p).

Proof. The elements of S̃IΦ are measurable as compositions of measurable functions. As F I has a Newton
derivative given by Proposition 4.8 and F̃ I(u, p) = F I(u − p − r), setting X̃ = Ỹ = C(I) and Z = Lq̃(I) we
check that the assumptions of the refined chain rule, Proposition 5.2, are satisfied. Therefore, G̃I is a Newton
derivative of F̃ I and (7.26) holds. (7.25) is a consequence of (7.20) and (4.18). Since F̃ is globally Lipschitz
w.r.t. the maximum norm, together with (7.25) the final assertion follows.

Since ΦI(v, t∗) = {δt∗} for all v, by (7.22) we have for all µ̃ ∈ S̃IΦ

〈µ̃(u, p, t∗), (h, η)〉 = h(t∗)− η (7.27)

for all (u, p) ∈ ZI and all (h, η) ∈ C(I)× I.
For functions u : I → R, we consider the positive part mapping Fpp defined by

(Fppu)(t) = max{0, u(t)} , (7.28)

which maps Lq(I) as well as C(I) into itself. Let H : R ⇒ R be the set-valued Heaviside function

H(x) =


0 , x < 0 ,

[0, 1] , x = 0 ,

1 , x > 0 .

(7.29)

The mapping H is usc. By

SH = {λH : λH selector of H, λH(0) ∈ Q} (7.30)

we define a countable family of measurable selectors of H whose values are dense in the range of H. We then
define

Gpp : Lq̃(I) ⇒ L(Lq̃(I), Lq(I))

Gpp(u) = {L : L(h) = (λH ◦ u) · h, λH ∈ SH} .
(7.31)

Lemma 7.7. The mapping Gpp is a Newton derivative of Fpp : Lq̃(I)→ Lq(I) for 1 ≤ q < q̃ ≤ ∞.

Proof. This is a well-known result, see Proposition 3.49 in [18] or Example 8.14 in [10].

We have now all ingredients to define a Newton derivative GI+ of P I+. The elements of GI+(u, p) involve the

composition of elements of G̃I(u, p), given in (7.24), and of elements of Gpp(F̃
I(u, p)). Indeed, LI+ ∈ GI+(u, p)

is expected to have the form

LI+(h, η)(t) = η + λH(F̃ I(u, p)(t)) · 〈µI(u, t), h− η〉 (7.32)
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with functions λH ∈ SH and measures µI ∈ SIΦ. Again, we want to write this as

LI+(h, η)(t) = 〈ν̃(u, p, t) , (h, η)〉 (7.33)

with ν̃ : ZI × I → (C(I)× R)∗. This we achieve by setting

S̃Ipp = {λ̃ : λ̃(u, p, t) = λH(F̃ I(u, p)(t)), λH ∈ SH} (7.34)

and

SI+ = {ν̃ : ν̃(u, p, t) = π2 + λ̃(u, p, t)µ̃(u, p, t), µ̃ ∈ S̃IΦ, λ̃ ∈ S̃Ipp} , (7.35)

where again π2 : C(I)× R→ R denotes the projection on the second component, π2(h, η) = η.

Proposition 7.8. The set SI+ given in (7.35) consists of measurable functions ν̃ : ZI × I → (C(I)× R)∗. The
mapping

GI+ : ZI+ ∩ (X × R) ⇒ L(X × R, Lq(I))

GI+(u, p) = {LI+ : LI+ given by (7.32) with λH ∈ SH , µI ∈ SIΦ}
= {LI+ : LI+ given by (7.33) with ν̃ ∈ SI+}

(7.36)

is a Newton derivative of P I+ : ZI+ ∩ (X × R)→ Lq(I) for every q <∞. The elements LI+ of GI+(u, p) satisfy,
for all (u, p) ∈ ZI+ ∩ (X × R),

‖LI+(h, η)‖∞,t ≤ max{‖h‖∞,t, |η|} (7.37)

for all h ∈ C(I), η ∈ R. Moreover, for all such (u, p) the remainder estimate

sup
LI+∈GI+(u+h,p+η)

‖P I+(u+ h, p+ η)− P I+(u, p)− LI+(h, η)‖Lq(I)

≤ ρ(u,p)(‖h‖∞ + |η|)‖(h, η)‖X×R
(7.38)

holds for all h ∈ X with u+ h ∈ ZI+ and all η ∈ R. The remainder term ρ(u,p) satisfies ρ(u,p)(δ) ↓ 0 as δ ↓ 0 and
is uniformly bounded in (u, p).

Proof. The elements of SI+ are measurable as compositions, sums and products of measurable functions.
Due to Proposition 7.6 and Lemma 7.7, the assumptions of the refined chain rule, Proposition 5.2, are satisfied

with X̃ = C(I), Y = Ỹ = Lq̃(I) for some∞ > q̃ > q, Z = Lq(I). This proves (7.38). The estimate (7.37) follows
from (7.32) and (4.18), as λH takes values in [0, 1] and, setting λt = λH(F̃ I(u, p)(t)),

LI+(h, η)(t) = (1− λt)η + λt〈µI(u, t), h〉 .

Since P I+ is global Lipschitz continuous w.r.t. the maximum norm, the final assertion, too, follows in view of
(7.37).

We also need a variant of the preceding proposition. For I = [t∗, t
∗] we define

P I+,∗ : ZI+ → R , P I+,∗(u, p) = P I+(u, p)(t∗) . (7.39)
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According to (7.32), setting

LI+,∗(h, y) = LI+(h, y)(t∗) , LI+ ∈ GI+(u, p) , (7.40)

yields a well-defined element LI+,∗ ∈ (C(I)× R)∗.

Proposition 7.9. The mapping

GI+,∗ : ZI+ ∩ (X × R) ⇒ (X × R)∗

GI+,∗(u, p) = {LI+,∗ : LI+,∗ given by (7.40)}
(7.41)

is a Newton derivative of P I+,∗ : ZI+ ∩ (X × R) → R. The elements LI+,∗ of GI+,∗(u, p) satisfy, for all (u, p) ∈
ZI+ ∩ (X × R),

|LI+,∗(h, η)| ≤ max{‖h‖∞,t∗ , |η|} (7.42)

for all h ∈ C(I), η ∈ R. Moreover, for all such (u, p) the remainder estimate

sup
LI+,∗∈GI+,∗(u+h,p+η)

|P I+,∗(u+ h, p+ η)− P I+,∗(u, p)− LI+,∗(h, η)|

≤ ρ(u,p)(‖h‖∞ + |η|)‖(h, η)‖X×R
(7.43)

holds for all h ∈ X with u+ h ∈ ZI+ and all η ∈ R. The remainder term ρ(u,p) satisfies ρ(u,p)(δ) ↓ 0 as δ ↓ 0 and
is uniformly bounded in (u, p).

Proof. We proceed in a manner analogous to the proof of Proposition 7.8. We apply Proposition 5.2 to the
decomposition

P I+,∗(u, p) = p+ max{0,max
I

(u− p− r)}

The Newton derivative of the inner maximum satisfies the refined remainder estimate given in Proposition 3.4.
The outer maximum is just the positive part mapping on R.

A Newton derivative GI− of the mapping

P I−(u, p) = p− Fpp(F̃ I(−u,−p)) (7.44)

is obtained with analogous computations. Its elements LI− ∈ GI−(u, p) have the form

LI−(h, η)(t) = η − λH(F̃ I(−u,−p)(t)) · 〈µI(−u, t),−h+ η〉 (7.45)

with functions λH ∈ SH and measures µI ∈ SIΦ. The associated set SI− of measurable mappings ν̃ : ZI × I →
(C(I)× R)∗ is given by

SI− = {ν̃ : ν̃(u, p, t) = π2 + λ̃(−u,−p, t)µ̃(−u,−p, t), µ̃ ∈ S̃IΦ, λ̃ ∈ S̃Ipp} . (7.46)

The analogue of Proposition 7.9 also holds on minus intervals.
We combine GI± and ΨI

± into mappings GI and ΨI . Indeed, on ZI+ ∩ ZI−, we have F̃ I(u, p) < 0 and

F̃ I(−u,−p) < 0 by Lemma 7.2. Consequently, the argument of λH in the representations (7.32) and (7.45)
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is negative, therefore LI±(h, η)(t) = η on I. As the sets ZI± are open subsets of ZI , from Proposition 7.8 and the
corresponding result for P I− we get the following result.

Proposition 7.10. The set

SI = {ν : ν(u, p, t) = ν̃±(u, p, t) with ν̃± ∈ SI±, (u, p, t) ∈ ZI± × I} (7.47)

consists of measurable mappings ν : ZI × I → (C(I)×R)∗. The mapping GI : ZI ∩ (X ×R) ⇒ L(X ×R, Lq(I))
given by GI = GI± on ZI± ∩ (X × R) is well-defined and is a Newton derivative of P I : ZI ∩ (X × R)→ Lq(I).
The estimates (7.37) and (7.38) hold with GI , P I , ZI and LI in place of GI+, P

I
+, Z

I
+ and LI+, respectively. The

remainder term ρ(u,p) satisfies ρ(u,p)(δ) ↓ 0 as δ ↓ 0 and is uniformly bounded in (u, p).

The initial value. According to (6.1), the initial value of the play is given by

w0(u, z0) = u(a)− πr(z0) = u(a)−max{−r,min{r, z0}} . (7.48)

It is well known that the mapping R : R ⇒ R,

R(x) =


0 , |x| > r ,

[0, 1] , |x| = r ,

1 , |x| < r

(7.49)

is a Newton derivative of πr and that R is usc. Then

SR = {λ0 : λ0 selector of R, λ0(±r) ∈ Q} (7.50)

defines a countable family of measurable selectors of R.

Lemma 7.11. A Newton derivative of w0 : C[a, b]× R→ R is given by

G0 : C[a, b]× R ⇒ (C[a, b]× R)∗ ,

G0(u, z0) = {L : L(h, y) = h(a)− λ0(z0)y , λ0 ∈ SR} .
(7.51)

We have

|L(h, y)| ≤ ‖h‖∞ + |y| (7.52)

for all L ∈ G0(u, z0) and all (u, z0) ∈ C[a, b]× R.

Proof. Let L ∈ G0(u, z0). Then for all (h, y) ∈ C[a, b]× R we have

|w0(u+ h, z0 + y)− w0(u, z0)− L(h, y)| =|(πr(z0 + y)− πr(z0)− λ0(z0)y)|
≤ ρ(|y|)|y| (7.53)

with some ρ(δ) ↓ 0 as δ ↓ 0, since R is a Newton derivative of πr.

A Newton derivative on a partition for small input oscillations.
Let ∆ = {tk}0≤k≤N be a partition of [a, b]. According to Proposition 7.5, on the set Z∆ of small input

oscillations, see (7.1), the play can be written as a composition of the mappings P Ik which belong to the partition
intervals Ik = [tk−1, tk]. Consequently, we obtain a Newton derivative of the play on Z∆ as a composition of
the Newton derivatives of P Ik as follows.
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We define w∆
k : Z∆ → R and P∆

k : Z∆ → C(Ik), setting w∆
0 = w0 from (7.48), and for k ≥ 1

w∆
k (u, z0) = P Ik(u,w∆

k−1(u, z0))(tk) ,

P∆
k (u, z0)(t) = P Ik(u,w∆

k−1(u, z0))(t) , t ∈ Ik .
(7.54)

Using Lemma 7.5 successively we see that P∆
k (u, z0) = Pr[u; z0] on Ik.

Denoting by π1 the projection π1 : C[a, b]× R→ C(Ik), π1(u, z0) = u|Ik, we define the sets S∆
0 = SR,

S∆
k = {µ∆

k : µ∆
k (u, z0, t) = ν(u, p, t) ◦ (π1, µ

∆
k−1(u, z0, tk−1)),

ν ∈ SIk , p = w∆
k−1(u, z0), µ∆

k−1 ∈ S∆
k−1} , k ≥ 1 .

(7.55)

The elements of Sk∆ are measurable functions µ∆
k : Z∆ × Ik → (C[a, b]× R)∗.

We define W∆
0 = G0 and inductively for k ≥ 1

W∆
k : Z∆ ⇒ (C[a, b]× R)∗ ,

W∆
k (u, z0) = {Lwk : Lwk = µ∆

k (u, z0, tk) with µ∆
k ∈ S∆

k } .
(7.56)

The elements Lwk ∈W∆
k (u, z0) satisfy

Lwk (h, y) = LIk(h, Lwk−1(h, y))(tk) ,

LIk ∈ GIk(u,wk−1(u, z0)) , Lwk−1 ∈W∆
k−1(u, z0) .

(7.57)

We define G∆
0 = G0 and inductively for k ≥ 1

G∆
k : Z∆ ⇒ L(C[a, b]× R, L∞(Ik)) ,

G∆
k (u, z0) = {L∆

k : L∆
k satisfies (7.59) for some µ∆

k ∈ S∆
k } ,

(7.58)

L∆
k (h, y)(t) = 〈µ∆

k (u, z0, t) , (h, y)〉 . (7.59)

The mappings L∆
k satisfy

L∆
k (h, y)(t) = LIk(h, Lwk−1(h, y))(t) ,

LIk ∈ GIk(u,wk−1(u, z0)) , Lwk−1 ∈W∆
k−1(u, z0) .

(7.60)

Proposition 7.12. Let 0 ≤ k ≤ N , 1 ≤ q <∞.
(i) The sets Sk∆ consist of measurable functions µ∆

k : Z∆ × Ik → (C[a, b]× R)∗.
(ii) The mapping W∆

k : Z∆ ∩ (X ×R) ⇒ (C[a, b]×R)∗ is a Newton derivative of w∆
k : Z∆ ∩ (X ×R)→ R. The

elements Lwk of W∆
k satisfy the estimate

|Lwk (h, y)| ≤ ‖h‖∞,tk + |y| (7.61)

for all h ∈ C[a, b] and y ∈ R, uniformly in (u, z0). Moreover, for all such (u, z0) the remainder estimate

sup
Lwk ∈W

∆
k (u+h,z0+y)

|w∆
k (u+ h, z0 + y)− w∆

k (u, z0)− Lwk (h, y)|

≤ ρ(u,z0)(‖h‖∞ + |y|)‖(h, y)‖X×R
(7.62)
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holds for all h ∈ X with u+ h ∈ ZI+ and all y ∈ R. The remainder term ρ(u,z0) satisfies ρ(u,z0)(δ) ↓ 0 as δ ↓ 0
and is uniformly bounded in (u, z0).
(iii) The mapping G∆

k : Z∆ ∩ (X × R) ⇒ L(X × R, Lq(Ik)) is a Newton derivative of P∆
k . The elements L∆

k of
G∆
k (u, z0) satisfy the estimate

‖L∆
k (h, y)‖∞,t ≤ ‖h‖∞,t + |y| (7.63)

for all h ∈ C[a, b] and y ∈ R, uniformly in (u, z0). Moreover, for all such (u, z0) the remainder estimate

sup
Lwk ∈W

∆
k (u+h,z0+y)

|P∆
k (u+ h, z0 + y)− P∆

k (u, z0)− L∆
k (h, y)|

≤ ρ(u,z0)(‖h‖∞ + |y|)‖(h, y)‖X×R
(7.64)

holds for all h ∈ X with u+ h ∈ ZI+ and all y ∈ R. The remainder term ρ(u,z0) satisfies ρ(u,z0)(δ) ↓ 0 as δ ↓ 0
and is uniformly bounded in (u, z0).

Proof. We proceed by induction over k. The case k = 0 is treated in Lemma 7.11. Now assume the result is
proved for k − 1.
(i) This follows immediately from the definition of S∆

k .
(ii) We apply Proposition 5.2 to the decomposition

(u, z0) 7→ (u,w∆
k−1(u, z0)) 7→ w∆

k (u, z0)

given by the first equation in (7.54). Its assumptions are satisfied by the induction hypothesis and by
Proposition 7.9. (7.61) follows from the estimate

|Lwk (h, y)| ≤ ‖LIk(h, Lwk−1(h, y))‖∞,tk ≤ max{‖h‖∞,tk , ‖h‖∞,tk + |y|}
= ‖h‖∞,tk + |y| .

(iii) This follows as in (ii), using Proposition 7.10 instead of Proposition 7.9, as well as the estimate

‖L∆
k (h, y)‖∞,t = ‖LIk(h, Lwk−1(h, y))‖∞,t ≤ max{‖h‖∞,t, ‖h‖∞,t + |y|}

= ‖h‖∞,t + |y| .

From the Newton derivatives G∆
k of P∆

k we now obtain a Newton derivative G∆ of the play on Z∆ ∩ (X ×R).
We define the set S∆ consisting of mappings µ∆ : Z∆ × [a, b]→ (C[a, b]× R)∗ by

S∆ = {µ∆ : µ∆ = µ∆
1 on Z∆ × [t0, t1],

µ∆ = µ∆
k on Z∆ × (tk−1, tk] for k > 1, µ∆

k ∈ S∆
k } .

(7.65)

We define

G∆ : Z∆ ⇒ L(C[a, b]× R, L∞(a, b)) ,

G∆(u, z0) = {L∆ : L∆(h, y)(t) = 〈µ∆(u, z0, t), (h, y)〉
on [a, b] for some µ∆ ∈ S∆} .

(7.66)
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Proposition 7.13. Let 1 ≤ q <∞.
The mapping G∆ : Z∆ ∩ (X ×R) ⇒ L(X ×R, Lq(a, b)) is a Newton derivative of the play Pr : Z∆ ∩ (X ×R)→
Lq(a, b). The elements L∆ of G∆(u, z0) satisfy the estimate

‖L∆(h, y)‖∞,t ≤ ‖h‖∞,t + |y| (7.67)

for all h ∈ C[a, b] and y ∈ R, uniformly in (u, z0). Moreover, for all such (u, z0) the remainder estimate

sup
L∆∈G∆(u+h,z0+y)

‖Pr[u+ h; z0 + y]− Pr[u; z0]− L∆(h, y)‖Lq(a,b)

≤ ρ(u,z0)(‖h‖∞ + |y|)‖(h, y)‖X×R
(7.68)

holds for all h ∈ X with u+ h ∈ ZI+ and all y ∈ R, where ρ(u,z0)(δ) ↓ 0 as δ ↓ 0 and ρ(u,z0) is uniformly bounded
in (u, z0).

Proof. Let (u, z0) ∈ Z∆ ∩ (X ×R), (h, y) ∈ X ×R with ‖h‖X small enough, and L∆ ∈ G∆(u+ h, z0 + y). Since
Pr[u; z0] = P∆

k (u, z0) and Pr[u+ h; z0 + y] = P∆
k (u+ h, z0 + y) on Ik, we have in view of the definition of S∆,

S∆
k and G∆

k

‖Pr[u+ h; z0 + y]− Pr[u; z0]− L∆(h, y)‖qLq(a,b)

=

N∑
k=1

‖P∆
k (u+ h, z0 + y)− P∆

k (u, z0)− L∆
k (h, y)‖qLq(Ik)

for some L∆
k ∈ G∆

k (u+ h, z0 + y). As G∆
k is a Newton derivative of P∆

k by Proposition 7.12, (7.63) holds for L∆
k ,

and (7.64) holds for the remainder, the claim follows.

A Newton derivative of the play on the whole space X × R.
Let {∆n} be a sequence of partitions of [a, b] such that |∆n| → 0 as n→∞ and that ∆n+1 is obtained from

∆n by adding a single point t /∈ ∆n, starting from ∆1 = {a, b}. We have

Z∆n ⊂ Z∆n+1 , C[a, b]× R =
⋃
n∈N

Z∆n (7.69)

and consequently

X × R =
⋃
n∈N

(Z∆n ∩ (X × R)) =
⋃
n∈N

(X∆n × R) . (7.70)

We construct a Newton derivative GPr of the play Pr on X × R from the Newton derivatives G∆n obtained in
Proposition 7.13.

Remark 7.14. According to Remark 2.6, if G∆n(u, z0) ⊂ G∆n+1(u, z0) would hold on the domain Z∆n of G∆n ,
we might simply set GPr = G∆n on Z∆n \ Z∆n−1 . This leads to the following problem. Let I = [t∗, t

∗] be the
interval of ∆n which is partitioned into I = I ′ ∪ I ′′ in ∆n+1. If the inclusion holds, all functions µ∆n |I ′ and
µ∆n |I ′′ with µ∆n ∈ S∆n must be representable as µ∆n+1 |I ′ and µ∆n+1 |I ′′ for some µ∆n+1 ∈ S∆n+1 . While this
is true on I ′, it is a nontrivial question whether it is true on I ′′: the construction of S∆n |I ′′ directly refers
to S∆n |[0, t∗], the construction of S∆n+1 |I ′′ indirectly refers to S∆n+1 |[0, t∗] = S∆n |[0, t∗] via the detour over
S∆n+1 |I ′; thus, the relations between the maximum sets M I , M I′ and M I′′ play a role. The author does not
know the answer but conjectures that it is “no” for certain pairs (u, z0).
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In order to utilize Proposition 2.5, we set

U = X × R , Un = X∆n × R .

Let 0 < r1 < r2 < . . . be an increasing sequence of positive numbers with rn < r for all n. Let {In,k} be the
partition intervals of ∆n. We define

Vn = {(u, z0) : u ∈ X, z0 ∈ R, osc
In,k

u < rn for all k} . (7.71)

Since rn < rn+1 < r, we have V n ⊂ Un ∩ Vn+1. Moreover, by (7.70)⋃
n

Vn = X × R = U , because |∆n| → 0 as n→∞.

Thus, all assumptions of Proposition 2.5 are satisfied.
We finally arrive at the main result.

Theorem 7.15. Let 1 ≤ q <∞.
The mapping GPr : X × R ⇒ L(X × R, Lq(a, b)) defined by

GPr (u, z0) = G∆n(u, z0) if (u, z0) ∈ V n \ V n−1 , (7.72)

is a Newton derivative of the play Pr : X × R→ Lq(a, b) with the remainder estimate

sup
LPr∈GPr (u+h,z0+y)

‖Pr[u+ h; z0 + y]− Pr[u; z0]− LPr (h, y)‖Lq(a,b)

≤ ρ(u,z0)(‖h‖∞ + |y|)‖(h, y)‖X×R
(7.73)

where ρ(u,z0)(δ) ↓ 0 as δ ↓ 0. The elements LPr of GPr (u, z0) satisfy the estimate

‖LPr (h, y)‖∞,t ≤ ‖h‖∞,t + |y| (7.74)

for all h ∈ X and y ∈ R, uniformly in (u, z0). They have the form

LPr (h, y)(t) = 〈µPr (u, z0, t), (h, y)〉 , t ∈ (a, b) , (7.75)

with

µPr (u, z0, t) = µ∆n(u, z0, t) if (u, z0) ∈ V n \ V n−1 , µ∆n ∈ S∆n . (7.76)

The functions µPr : C[a, b]× R× [a, b]→ (C[a, b]× R)∗ are measurable.

Proof. This follows from Proposition 2.5 and Proposition 7.13 when we choose

ρu,z0 = max{ρn,u,z0 , ρn+1,u,z0} if (u, z0) ∈ V n \ V n−1

with the remainder terms ρn,u,z0 belonging to G∆n .

Since the stop operator is related to the play operator by the formula Sr[u; z0] = u− Pr[u; z0], it also has a
Newton derivative.
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Corollary 7.16. The stop operator

Sr : X × R→ Lq(a, b) , 1 ≤ q <∞ , (7.77)

has a Newton derivative given by

GSr (u, z0) = π1 −GPr (u, z0) (7.78)

with elements

LSr (h, y) = h− LPr (h, y) . (7.79)

Here, GPr and LPr have the form and properties described in Theorem 7.15, and π1 denotes the projection
π1(h, y) = h.

8. Bouligand derivative of the play and the stop

We intend to prove that the play and the stop operator are Bouligand differentiable from X × R to Lq,
1 ≤ q <∞. It suffices to show that Pr,Sr : X∆ → Lq(a, b) are Bouligand differentiable for arbitrary partitions
∆, as the sets X∆ ⊂ X × R are open and their union covers X × R.

In the previous section we explained how, on X∆, the play can be represented as a finite composition of the
positive part Fpp, the cumulated maximum F I and continuous linear mappings. By virtue of the chain rule, it
therefore suffices to show that Fpp and F I are Bouligand differentiable, and that the function spaces involved
in the composition are fitting.

The positive part mapping β : R→ R, β(x) = max{x, 0} has the directional (in fact, Bouligand) derivative

β′(x; y) =

{
0 , x < 0 or x = 0 , y ≤ 0 ,

y , x > 0 or x = 0 , y > 0 .
(8.1)

Lemma 8.1. Let I ⊂ [a, b] be a closed interval, 1 ≤ q < q̃ ≤ ∞. The mapping Fpp : Lq̃(I)→ Lq(I), Fpp(u) =
max{u, 0}, is Bouligand differentiable, and

F ′pp(u;h)(t) = β′(u(t);h(t)) . (8.2)

Proof. See Examples 8.12 and 8.14 in [10].

It has already be proved in Proposition 4.1 that the cumulated maximum F I : X → Lq̃(I) is Bouligand
differentiable for every q̃ <∞, and that

(F I)′(u;h)(t) = max
s∈MI(u,t)

h(s) . (8.3)

By the chain rule, the mapping P I+ : ZI ∩ (X × R)→ Lq(I),

P I+(u, p) = p+ Fpp(F
I(u− p− r))

has the Bouligand derivative

(P I+)′((u, p); (h, η))(t) = η + β′( max
s∈I,s≤t

(u(s)− r − p); max
s∈MI(u,t)

(h(s)− η)) . (8.4)
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An analogous formula holds for the Bouligand derivative of P I−. Applying the chain rule to (7.54), we obtain
the Bouligand derivative of the play recursively as

(w∆
k )′((u, z0); (h, y)) = (P Ik )′((u,wk−1(u, z0)); (h, (w∆

k−1)′((u, z0); (h, y))))(tk) ,

P ′r[[u; z0]; [h; y]](t) = (P Ik )′((u,wk−1(u, z0)); (h, (w∆
k−1)′((u, z0); (h, y))))(t) .

(8.5)

We also obtain the refined remainder estimate.

Theorem 8.2. The Bouligand derivative of the play operator Pr given in (8.5) satisfies, for all (u, z0) ∈ X ×R,
the remainder estimate

‖Pr[u+ h; z0 + y]− Pr[u; z0]− P ′r[[u; z0]; [h; y]]‖Lq(a,b)
≤ ρu,z0(‖h‖∞ + |y|)‖(h, y)‖X×R

(8.6)

for all h ∈ X, y ∈ R. Here, ρ(u,z0)(δ) ↓ 0 as δ ↓ 0 and ρ(u,z0) is uniformly bounded in (u, z0).

Proof. The proof is analogous to that for the Newton derivative, using Proposition 5.4 instead of Proposition 5.2.

9. The parametric play operator

Instead of a single play operator acting on a function u = u(t), we now want to consider a family of play
operators acting on a function u = u(x, t), where x plays the role of a parameter. This has been developed in
[19] in order to solve boundary value problems for partial differential equations with hysteresis. Here, we are
concerned with parametrizing the Newton derivative of the play.

For a given measurable space Ω (that is, a set Ω equipped with a sigma algebra), we want to define the
parametric play operator PΩ

r by

PΩ
r [u; z0](x, t) = Pr[u(x, ·); z0(x)](t) (9.1)

for functions u : Ω× [a, b]→ R, z0 : Ω→ R. The parametric play operator thus represents a parametric family
of play operators.

For a given metric space X, equipped with the Borel sigma algebra, let M(Ω;X) denote the space of all
measurable functions from Ω to X.

Lemma 9.1. Formula (9.1) defines an operator

PΩ
r :M(Ω;C[a, b])×M(Ω;R)→M(Ω;C[a, b]) . (9.2)

Proof. The assignment x 7→ (u(x, ·), z0(x)) 7→ Pr[u(x, ·), z0(x)] defines a mapping Ω → C[a, b] × R → C[a, b]
which is measurable since Pr is continuous.

We define the parametric cumulated maximum (that is, the parametric family of cumulated maxima)
FΩ for functions u : Ω→ C[a, b] by

(FΩu)(x) = F (u(x, ·)) , x ∈ Ω . (9.3)

Lemma 9.2. We have

FΩ :M(Ω;C[a, b])→M(Ω;C[a, b]) ,

FΩ : Lp(Ω;C[a, b])→ Lp(Ω;C[a, b]) , 1 ≤ p ≤ ∞ .
(9.4)
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Proof. If u : Ω→ C[a, b] is measurable, the composition x 7→ u(x, ·) 7→ F (u(x, ·)) defines a measurable mapping
since F : C[a, b] → C[a, b] is continuous. As ‖(FΩu)(x)‖∞ ≤ ‖u(x, ·)‖∞ and because u(x, ·) = v(x, ·) a.e. in x
implies that FΩu = FΩv a.e. in x, the second assertion in (9.4) follows.

The corresponding set-valued mappings MΩ and ΦΩ are given by

MΩ(u, t, x) = M(u(x, ·), t) , ΦΩ(u, t, x) = Φ(u(x, ·), t) . (9.5)

For any given function u : Ω→ C[a, b], these formulas define set-valued mappings

(x, t) 7→M(u(x, ·), t) = MΩ(u, t, x) , Ω× [a, b] ⇒ [a, b] ,

(x, t) 7→ Φ(u(x, ·), t) = ΦΩ(u, t, x) , Ω× [a, b] ⇒ C[a, b]∗ .
(9.6)

Lemma 9.3. Let u ∈M(Ω;C[a, b]). Then the mappings defined in (9.6) are measurable.

Proof. The mappings arise as compositions

(x, t) 7→ (u(x, ·), t) 7→M(u(x, ·), t) , Ω× [a, b]→ C[a, b]× [a, b] ⇒ [a, b] ,

(x, t) 7→ (u(x, ·), t) 7→ Φ(u(x, ·), t) , Ω× [a, b]→ C[a, b]× [a, b] ⇒ C[a, b]∗ .

Due to Propositions 4.2 and 4.5, the assertion follows.

In Proposition 4.8, a Newton derivative G of the cumulated maximum F has been constructed from measur-
able selectors µ of Φ. Any such µ ∈ SΦ defines an element of G(u(x, ·)). More precisely, given u ∈M(Ω;C[a, b])
and x ∈ Ω we set

[(LΩ(x))v](t) = 〈µ(u(x, ·), t), v〉 , v ∈ C[a, b] . (9.7)

Proposition 9.4. Let µ be a measurable selector of Φ, let u ∈M(Ω;C[a, b]). Then (9.7) defines a mapping

LΩ : Ω→ L(C[a, b];L∞(a, b)) (9.8)

with the property

LΩ(x) ∈ G(u(x, ·)) for all x ∈ Ω. (9.9)

Let moreover h ∈M(Ω;C[a, b]). Then

(x, t) 7→ [(LΩ(x))h(x, ·)](t) = 〈µ(u(x, ·), t), h(x, ·)〉 (9.10)

defines a measurable function from Ω× [a, b] to R.

Proof. Proposition 4.8 yields (9.8) and (9.9). The composition (x, t) 7→ (u(x, ·), t) 7→ µ(u(x, ·), t) defines a mea-
surable mapping from Ω × [a, b] to C[a, b]∗, since µ : C[a, b] × [a, b] → C[a, b]∗ is measurable. As the mapping
x 7→ h(x, ·) is measurable and the mapping (ν, v) 7→ 〈ν, v〉 is continuous, (9.10) defines a measurable function.

We define

GΩ :M(Ω;C[a, b]) ⇒ Map(Ω;L(C[a, b];L∞(a, b)))

GΩ(u) = {LΩ : LΩ satisfies (9.7) and (9.8) for some µ ∈ SΦ} ,
(9.11)
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a parametric family of Newton derivatives of the parametric family of cumulated maxima FΩ. It is not a Newton
derivative of FΩ. (Here, Map(A;B) stands for the set of all mappings from a set A to a set B.)

For the parametric play PΩ
r we proceed in the same manner. According to Theorem 7.15, the Newton

derivative GPr of Pr constructed there has, when evaluated at (u, z0), elements of the form

LPr (h, y)(t) = 〈µPr (u, z0, t), (h, y)〉 , t ∈ (a, b) , (9.12)

for some µPr as given in (7.76). We define

LΩ
r : Ω→ L(C[a, b]× R;L∞(a, b))

[(LΩ
r (x))(v, y0)](t) = 〈µPr (u(x, ·), z0(x), t), (v, y0)〉

(9.13)

for (v, y0) ∈ C[a, b]× R.

Proposition 9.5. Let µPr be as given in (7.76), let u ∈ M(Ω;C[a, b]) and z0 ∈ M(Ω;R). Then LΩ
r as given

in (9.13) satisfies

LΩ
r (x) ∈ GPr (u(x, ·), z0(x)) for all x ∈ Ω. (9.14)

Let moreover h ∈M(Ω;C[a, b]), y ∈M(Ω;R). Then

(x, t) 7→ [(LΩ
r (x))(h(x, ·), y(x)](t) = 〈µPr (u(x, ·), z0(x), t), (h(x, ·), y(x))〉 (9.15)

defines a measurable function from Ω× [a, b] to R.

Proof. Analogous to that of Proposition 9.4.

We may define GΩ
r (u, z0) as the set of all such mappings LΩ

r and view GΩ
r as a parametric Newton derivative

of the parametric play PΩ
r .

10. Appendix: Set-valued mappings

In this section, we recall some basic terminology from set-valued analysis, given e.g. in [16].
Let Ψ : X ⇒ Y . We generally assume that Ψ(u) 6= ∅ for every u ∈ X.

Definition 10.1. Let X,Y be Hausdorff topological spaces, let Ψ : X ⇒ Y . We say that Ψ is upper
semicontinuous (or usc for short), if

Ψ−1(A) := {u : u ∈ X, Ψ(u) ∩A 6= ∅} (10.1)

is closed for every closed subset A of Y . We say that Ψ is measurable if Ψ−1(V ) is measurable for all open
V ⊂ Y . A mapping ψ : X → Y is called a measurable selector of Ψ if ψ is measurable and ψ(u) ∈ Ψ(u) for
every u ∈ X.

Lemma 10.2. Let X,Y be Hausdorff topological spaces. A mapping Ψ : X ⇒ Y is usc if and only if for every
u ∈ X and every open set V with Ψ(u) ⊂ V ⊂ Y there exists an open set U ⊂ X with u ∈ U and Ψ(U) ⊂ V .

Proof. See Proposition 6.1.3 in [16].

Obviously, a single-valued mapping is continuous in the usual sense if and only if it is usc in the sense above.
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Kunisch and Gerd Wachsmuth for valuable discussions.



34 M. BROKATE

References
[1] H. Bauschke and P. Combettes, Convex analysis and monotone operator theory in Hilbert spaces. Springer, Berlin (2011).
[2] J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer, New York (2000).

[3] M. Brokate and P. Krejci, Weak Differentiability of Scalar Hysteresis Operators. Discrete Contin. Dyn. Syst. 35 (2015)
2405–2421.

[4] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer, New York (1996).

[5] C. Christof, Sensitivity analysis and optimal control of obstacle-type evolution variational inequalities. SIAM J. Control Opt.
57 (2019) 192–218.

[6] I.V. Girsanov, Lectures on Mathematical Theory of Extremum Problems. Springer, Berlin (1972).
[7] M. Hintermüller and K. Kunisch, PDE-constrained optimization subject to pointwise constraints on the control, the state, and

its derivatives. SIAM J. Opt. 20 (2009) 1133–1156.
[8] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Opt.

13 (2003) 865–888.
[9] S. Hu and N.S. Papageorgiu, Handbook of multivalued analysis, volume I: Theory. Kluwer, South Holland (1997).

[10] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM Series Advances in
Design and Control. SIAM, Philadelphia, (2008).
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