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Global–in–time solvability of thermodynamically motivated
parabolic systems

Pierre-Étienne Druet

Abstract

In this paper, doubly non linear parabolic systems in divergence form are investigated form the
point of view of their global–in–time weak solvability. The non–linearity under the time derivative
is given by the gradient of a strictly convex, globally Lipschitz continuous potential, multiplied
by a position–dependent weight. This weight admits singular values. The flux under the spatial
divergence is also of monotone gradient type, but it is not restricted to polynomial growth. It is
assumed that the elliptic operator generates some equi–coercivity on the spatial derivatives of
the unknowns. The paper introduces some original techniques to deal with the case of nonlinear
purely Neumann boundary conditions. In this respect, it generalises or complements the results
by Alt and Luckhaus (1983) and Alt (2012). A field of application of the theory are the multi species
diffusion systems driven by entropy.

1 Introduction

Let Ω ⊂ R3 be a bounded domain and T > 0. In QT :=]0, T [×Ω we consider for a vectorial
unknown q : ]0, T [×Ω→ RN (N ∈ N) the following doubly non-linear parabolic system

∂tRk(x, q) + div Jk(t, x, q, ∇q) = fk(t, x, q, ∇q) for k = 1, . . . , N . (1)

The vector fieldsR : Ω×RN → RN , J : QT×RN×RN×3 → RN×3, and f : QT×RN×RN×3 →
RN are assumed given. We denote (t, x, z, D) a generic elements ofQT×RN×RN×3. Accordingly,
R(x, z), J(t, x, z, D) etc. stand for the value of the fields in this point.

In connection with (1), we consider the natural lateral flux condition

ν(x) · Jk(t, x, q, ∇q) = fΓ
k (t, x, q) on ST :=]0, T [×∂Ω . (2)

where ν is the outward pointing unit normal field at ∂Ω, and fΓ : ST × RN → RN is a given vector
field.

The system (1), (2) arises for instance in the modelling mass transfer problems involving several
chemical species: R, J and f are respectively connected to the mass densities, the diffusion fluxes
and the reaction densities. See [DG17] for the derivation of the equations (1) in this case, and for
preliminary remarks.

The parabolicity of the system (1) is assumed or defined in the following sense: If we linearise the
equations in a regular state q∗ (say for instance q∗ ∈ C2(QT ; RN)), the linearisation generates a
uniformly parabolic system (cp. [LSU68], Ch. 7, Par. 8, Def. 7). In order that this type of structure
arises, it is sufficient that:

(a) The vector field q 7→ R(x, q) be strictly monotone on RN for all x ∈ Ω;
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(b) The flux J be given by the gradient of a strictly convex function D 7→ Ψ(t, x, z, D) in the ∇q
variables according to J(t, x, z, D) = −ΨD(t, x, z, D).

The structural properties (a), (b) imply the uniform parabolicity, and they allow to prove the local ex-
istence of classical solutions to the initial value problem for (1), (2) if the data are smooth. However,
formal linearisation in a point q∗ 6∈ L∞(QT ; RN) shows that the system (1) under (a), (b) is doubly
degenerated if:

� The (positive definite) coefficient matrix Rz(x, z) possesses eigenvalues that tend to zero for
|z| → ∞;

� The Hessian ΨD,D(t, x, z, D) associated with the elliptic operator − div ΨD is singular for
|z| → ∞.

This is precisely what happens in the context of the relevant applications.

In this paper we propose a theory of global–in–time weak solutions to (1), (2) based on an energy
identity. In order to cope with the natural flux conditions (2), we derive partly original estimates for the
integrals

´
Ω
q(t, x) dx. But note that we allow only partly for degeneracy: the singularity associated

with the time derivative is considered, but not the singularity in ellipticity.

There is an essential difference between local–in–time existence results of stronger solutions and
the results of this paper: Here, the existence theory essentially relies on the energy identity and the
conservation laws for the original system. This is different from the case of the local–in–time existence,
where everything relies on the mathematical structure and a certain smoothness of the initial data.

The structural conditions. For the non-linearity R, we assume that there are a given function %0 :
Ω→ R0,+ := {x ∈ R : x ≥ 0} and a convex function β ∈ C1(RN) ∩W 1,∞(RN) such that

R(x, z) = %0(x) βz(z) for (x, z) ∈ Ω× RN . (3)

This particular form will allow to obtain a coercivity estimate in the case of pure flux boundary condi-
tions. It arises naturally in the context of mechanically balanced mass transfer systems: see [DG17]
for a derivation of this structure.

We now introduce the structure conditions for the fluxes and the reaction terms (right-hand sides) sug-
gested by a pointwise entropy principle: See [BD15], [Guh14] for the original development, and [DG17]
for the derivation of closure relations in the particular case of diffusion systems. The fields J and f are
derived from convex potentials in order to ensure the non negativity of an entropy production associ-
ated with the fluxes J and the production factor f . In order to include the case of chemical reaction
in the analysis, we need a particular description of the right-hand side f . We introduce parameters
s, sΓ ∈ N ∪ {0} – to be interpreted as the number of active chemical reactions in the bulk and on
the boundary – and vectors A1, . . . , As ∈ RN and AΓ,1, . . . , AΓ,sΓ ∈ RN so that the right-hand f
maps into span{A1, . . . , As} and so that fΓ maps into span{AΓ,1, . . . , AΓ,sΓ}
We denote (t, x, z, D, DR) the generic elements of the compound QT × RN × RN×3 × Rs, and
we consider the following conditions:

(c) There is a non-negative potential potential Φ defined on QT × RN × RN×3 × Rs such that the
mapping (D, DR) 7→ Φ(t, x, z, D, DR) is strictly convex for all (t, x, z) ∈ QT ×RN , and such
that it achieves its global minimum in (D, DR) = 0;
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(d) There is a non-negative potential potential ΦΓ defined on ST ×RN ×RsΓ such that the mapping
DR,Γ 7→ ΦΓ(t, x, z, DR,Γ) is strictly convex for all (t, x, z) ∈ ST × RN and achieves its global
minimum in zero;

and the diffusion fluxes and reaction rates are given by

J ik = −ΦDik
(t, x, q, ∇q, A · q) for i = 1, . . . , N and k = 1, 2, 3 (4)

fi = −
s∑

α=1

ΦDR
α
(t, x, q, ∇q, Aq)Aαi for i = 1, . . . , N (5)

fΓ
i = −

sΓ∑
α=1

ΦΓ
DR,Γ
α

(t, x, q, AΓq)AΓ,α
i for i = 1, . . . , N . (6)

For simplicity, we also introduce abbreviations

rα(t, x, q, ∇q) := −ΦDR
α
(t, x, q, ∇q, Aq) for α = 1, . . . , s (7)

rΓ
α(t, x, q) := −ΦΓ

DΓ,R
α

(t, x, q, AΓq) for α = 1, . . . , sΓ . (8)

Remark 1.1 (Notation). + With ΦDik
, Φzi , ΦDR

α
etc. , we denote the partial derivative of Φ with

respect to the corresponding scalar variable. With ΦD, ΦDR etc. , we denote the gradient of the
functions D 7→ Φ(·, D) on RN×3, DR 7→ Φ(·, DR) on Rs etc.

+ For a rectangular matrixB ∈ Rs1×s2 , we multiply a vectorsX ∈ Rs2 from the right, and we de-
note BX ∈ Rs1 the matrix vector multiplication. For Y ∈ Rs1 , the matrix vector multiplication
takes the form Y B = BTY ∈ Rs2 .

Remark 1.2 (Simplification). The condition (d) is not the most general. Instead we could assume only
that:

(d’) There is a potential ΦΓ defined on ST ×RN ×RsΓ , and the mappingDR,Γ 7→ ΦΓ(t, x, z, DR,Γ)
is strictly convex for all (t, x, z) ∈ ST × RN .

In this case, we can introduce

Φ̃Γ(t, x, z, DR,Γ) := ΦΓ(t, x, z, DR,Γ)− ΦΓ
DR,Γ(t, x, z, 0) ·DR,Γ ,

r0(t, x, z) := ΦΓ
DR,Γ(t, x, z, 0) .

We obtain that rΓ
α = −Φ̃Γ

DR,Γ
α

(t, x, q, AΓq) + r0
α(t, x, q), where now the potential Φ̃Γ achieves its

global minimum in zero. The term r0 can easily be handled, and we will neglect it for reasons of
simplicity.

State of the art and brief discussion of the literature. The system (1), (2) arises for instance
in the modelling mass transfer problems involving several chemical species, where R, J and f are
respectively connected to the mass densities, the diffusion fluxes and the reaction densities. For this
type of applications in which the constraints of global mass and momentum conservation have to be
satisfied, it is to note that uniform parabolicity is only to expect if the equations (1) correspond to the
reduction of a diffusion–reaction system for N + 1 species under very strong assumptions on the
mechanics of the system. See [DG17] for details and a rigorous derivation. In the context of mass

DOI 10.20347/WIAS.PREPRINT.2455 Berlin 2017



P.-É. Druet 4

transfer, the vectors A1, . . . , As ∈ RN are related to the stoichiometric vectors characterising the
bulk chemical reactions. The right-hand in the condition (2) has a more complex meaning: It describes
not only the chemical reactions with external species occurring at the boundary, but also adsorption,
desorption and interaction mechanisms with mass that might be stored at the interface. The structure
(2) has been motivated in [DDGG17] following models by [BD15], [Guh14]. The number sΓ ∈ N∪{0}
is the number of such ’interaction mechanisms’ and the vectors AΓ,1, . . . , AΓ,sΓ ∈ RN can in some
extend be interpreted as stoichiometric vectors.

The system (1) is a doubly non-linear parabolic system in divergence form. It cannot be our aim to refer
here the entire litterature on parabolic systems of quasilinear type. We only want to put our work into
the context of investigations directly related. Let us remark that parabolic systems that are diagonal
in the principal part are not addressed in this paper. There, the analysis can rely on the maximum
principle, a tool which is yet missing for fully coupled systems.

For the short–time existence and uniqueness of smooth solutions in the general case, we refer to the
work recent work [Dru17]. Unfortunately, it is not known to the author in which extent the very general
estimates in Hölder classes obtained by the Russian school for linear parabolic systems have been
applied to non linear problems: We quote the Chapter 7, paragraph 8 of [LSU68] and the book [EZ98].
In the case that the driving potential Φ is quadratic in the variable D (which results into a flux J
linear in D), the Lp estimates for strong solutions are available in the context of the theory of maximal
parabolic regularity: see [HMPW17] for the short–time well posedness. For the same case of J linear
in D, it is possible also in the case of non smooth data to prove the short–time existence of a weak
solution with improved regularity: [Ama90], [Ama93] or [HRM16].

For the global existence of weak solutions, there is a branching in the theory.

1 The case of coercive fluxes: The existence of global weak solutions to doubly non-linear
parabolic systems with general monotone non-linearities was proved in [AL83]. This paper
treats the case where the elliptic operator div J generates uniform polynomial control in the
gradient variable ∇q with exponent 1 < r < +∞. The flux J is assumed of the form
J = J̄(R(q), ∇q). The non-linearity R = R(q) is given by the gradient of a convex func-
tion. The right-hand f is allowed to depend only on R(q). The system (1) is considered in
connection with mixed-boundary conditions, with a non-empty Dirichlet part ΓD ⊆ ∂Ω. The
variables q satisfy

q = qΓ given on ]0, T [×ΓD, νk(x) · J̄k(R(q), ∇q) = 0 on ]0, T [×(∂Ω \ ΓD) . (9)

On connected domains, these boundary conditions somewhat simplify the task to obtain uni-
form coercivity estimates, since they now follow directly from the control on the gradient inLr. In
[AL83], the existence is enforced by means of generalising the abstract theory of pseudomono-
tone operators, and original arguments are developed for the compactness in time. In the more
recent paper [Alt12], further generalisations were obtained. Essentially the same remarks re-
main valid.

In the papers [FK95], global and local existence results for weak solutions are derived in the
case of a monotone elliptic part with r−growth (r > 1). The right-hand f is allowed to depend
directly on q, and the optimal growth exponents for the non-linearities are calculated precisely
in dependence of each other. Purely Neumann boundary conditions are considered in [FK95],
but it is necessary to require the super linear growth of R(q) in q to obtain the coercivity es-
timates. In the paper [Kac97], the mixed boundary conditions (9) are again considered. The
paper [Ben13] also ranges into this line of investigations.
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Global–in–time solvability of thermodynamically motivated parabolic systems 5

Concerning the uniqueness of weak solutions, the most general results have been obtained in
[Ott96] for exactly the setting of [AL83].

2 Weak solutions in the case of degenerate ellipticity: All results yet mentioned are based on
strong closure relations for the diffusion flux. Mathematically, this means that the elliptic operator
generates some coercivity independently on |q| (or the limiting behaviour ofR(q) as |q| → ∞).

In some of these cases it is possible to obtain the global existence of weak solutions thanks to
the boundedness by entropy method (see [J1̈5], [CDJ18] or [J1̈7] for a general introduction).

This method has been developed in the context of cross diffusion systems, but it in the end
relies on the analysis of a doubly non-linear parabolic system of the form (1) with a linear
closure relation for the fluxes of the form J = −M(R(q))∇q. In this case, the variables R(q)
stand for some volume fractions that have to be positive, and the eigenvalues of the matrix M
are allowed to degenerate as Ri(q) tends to zero for some i. This corresponds exactly to the
Maxwell–Stefan situation.

Beside the boundedness by entropy method, it is also possible to study the local–in–time well–
posedness of the problem (1) in classes of weak solutions that embed into L∞(Q; RN). For
appropriate initial data and sufficiently short an existence time, the degeneracy in ellipticity
does not occur. For an investigation in spaces of maximal parabolic regularity, the reader might
consult [HRM16]. Up to now, this approach has been developed for linear closure relations of
the type J = −M(q)∇q.

In this paper, we formulate and prove the existence result for the interesting case that the natural flux
conditions (2) are considered on the entire lateral surface ]0, T [×∂Ω. This case is not covered by
the analysis in [AL83], [Alt12] where the elliptic part is always assumed to exhibit some coercivity.
Moreover, we will consider the case that the mapping q 7→ R(x, q) is bounded, so that the coercivity
on q is not a direct consequence of the energy identity. This occurs if the function β occurring in (3) is
globally Lipschitz continuous.

Moreover we will consider a general diffusion potential and not restrict to the case of polynomial
growth.

There are cases in which global weak solutions exhibit more regularity – also if the system if not
diagonal, so that techniques valid for equations would not apply. We will call a strong solution to the
equations (1), (2) a weak solution so that the weak time derivative of R and second spatial derivatives
of q exist, so that the equations are solved also point wise. The main case is that of a closure relation
for the fluxes which is thermodynamically consistent in the sense of Wolfgang Dreyer: J = −ΦD(D),
with a potential depending on the driving force only (see [DG17] for the definition). In this case it is
possible to ’square’ the operator and to derive higher–order estimates. To find a general approach to
the higher regularity is beyond the scope of the paper. We will here restrict to the case of a quadratic
growth of Φ.

Structure of the paper. In the next section we formulate our results and the precise structural con-
ditions on which they rely. In the section 3, we recall some basic concepts of convex analysis that
we need in order to derive an estimate on the spatial averages of the solutions. The section 4.1 is
devoted to the proof of the main a priori estimates, that we then use in the section 4 to construct
a convergent Galerkin approximation. In the section 5, we prove the higher regularity in the case of
thermodynamically consistent quadratic closure relations.
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2 Results

Our structural assumptions are mainly the one guaranteeing the uniform parabolicity in smooth points
(a) and (b). These are consequences of the thermodynamically motivated assumptions (c), (d). In
order to obtain global existence results for weak solutions, we need to formulate additional growth
conditions on the potentials.

2.1 The growth conditions

Structural conditions for the dual energy potential β. We assume that the non-linearity R pos-
sesses the natural structure resulting from the reduction of mechanically balanced diffusion–reaction
systems (See [DG17], (3)). In this case, the non-linearity R is associated with a non-linear constraint
on the chemical potentials (also called entropy variables) associated with one-homogeneous free en-
ergy function.

Given a function %0 : Ω → R0,+, and a strictly convex function β : RN → R, we define for x ∈ Ω
and z ∈ RN

R`(x, z) := %0(x) βz`(z) for ` = 1, . . . , N . (10)

The assumptions on the function β are the following:

β ∈ C1(RN) ∩W 1,∞(RN) , (11)

z 7→ β(z) is closed and strictly convex in RN . (12)

Due to the convexity of β and the non negativity of %0, the mapping z 7→ R(x, z) is strictly monotone.

Growth conditions for the bulk potential. We denote Φ the potential driving the diffusion and
production mechanisms in the bulk. For this potential, the minimal assumptions are the following:

Φ ∈ L∞(QT × RN ; C1(RN×3 × Rs)) (13)

(D, DR) 7→ Φ(x, z, D, DR) convex for all (t, x, z) ∈ QT × RN (14)

Moreover, we require some uniform coercivity conditions that reflect a strongly thermodynamic closure
relation for the fluxes. We define a convex function

Φ0(D, DR) := sup
(t,x,z)∈QT×RN

Φ(t, x, z, D, DR) . (15)

Obviously, Φ0(D, DR) ≥ Φ(t, x, z, D, DR). Therefore, Φ0 is non-negative, and we moreover see
that under the condition (c), it achieves a global minimum in zero.

We assume that the function Φ0 is finite and coercive on RN×3 × Rs, and that there is a constant
0 < c0 on RN such that

c0 Φ0(D, DR) ≤Φ(x, z, D, DR) (16)

for all (t, x, z, D, DR) ∈ QT × RN × RN×3 × Rs .

Moreover, we assume that there are constants K1, K0 > 0 such that

Φ0(−D, −DR) ≤ K0 Φ0(D, DR) +K1 , (17)

for all (D, DR) ∈ RN × Rs.

We introduce an abbreviation for the fluxes J(t, x, z, D) := −ΦD(t, x, z, D, Az), and the densi-
ties r(t, x, z, D) := −ΦDR(t, x, z, D, Az).
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Growth conditions for the boundary potential. We denote ΦΓ the potential driving the production
mechanisms on ST :

ΦΓ ∈ L∞(ST × RN ; C1(RsΓ)) (18)

DΓ,R 7→ ΦΓ(t, x, z, DΓ,R) convex for all (t, x, z) ∈ ST × RN (19)

The convex function

ΦΓ,0(DΓ,R) := sup
(t,x,z)∈ST×RN

ΦΓ(t, x, z, DΓ,R) . (20)

is assumed finite and coercive on RsΓ . Moreover, it is assumed that there is a constant 0 < cΓ
0 on RN

such that

cΓ
0 ΦΓ,0(DΓ,R) ≤ ΦΓ(x, z, DΓ,R) for all (t, x, z, DΓ,R) ∈ ST × RN × RsΓ . (21)

We assume that there is KΓ
1 , K

Γ
0 > 0 such that

ΦΓ,0(−DΓ,R) ≤ KΓ
0 ΦΓ,0(DΓ,R) +KΓ

1 for all DΓ,R ∈ RsΓ . (22)

We denote rΓ(t, x, z) := −ΦΓ
DΓ,R(t, x, z, AΓz).

2.2 Definition of the weak solution

Energy identity. The function β is strictly convex by assumption. We denoteH its convex conjugate
in RN . For all R ∈ dom H , one has

H(R) := sup
z∈RN
{z ·R− β(z)} .

Due to convex duality H(βz(z)) + β(z) = βz(z) · z, yielding

R`(x, z) z` = %0(x) (H
(
βz(z)

)
+ β(z)) . (23)

If we multiply in (1) with qk, sum up over k = 1, . . . , N and then integrate over Ω, we easily deduce
by means of (2) the identityˆ

Ω

∂tR(x, q) · q +

ˆ
Ω

{ΦD(t, x, q, ∇q, Aq) : ∇q + ΦDR(t, x, q, ∇q, Aq) · Aq}

+

ˆ
∂Ω

ΦΓ
DR,Γ(t, x, q, AΓq) · AΓq = 0 . (24)

We note that

∂tR(x, q) · q = ∂t(R(x, q) · q − %0(x) β(q))

= %0(x) ∂tH(βz(q)) .

Therefore, integration of (24) over the interval [0, t′] yieldsˆ
Ω

%0(x)H(βz(q(t
′, x)))

+

ˆ t′

0

ˆ
Ω

{ΦD(t, x, q, ∇q, Aq) : ∇q + ΦDR(t, x, q, ∇q, Aq) · Aq}

+

ˆ t′

0

ˆ
∂Ω

ΦΓ
DR,Γ(t, x, q, AΓq) · AΓq =

ˆ
Ω

%0(x)H(βz(q
0(x))) . (25)
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Making use of convex duality again

ΦD(t, x, q, ∇q, Aq) : ∇q + ΦDR(t, x, q, ∇q, Aq) · Aq
= Φ(t, x, q)(∇q, Aq) + (Φ(t, x, q))∗(∇Φ(x, q, ∇q, Aq))
= Φ(t, x, q, ∇q, Aq) + (Φ(t, x, q))∗(−J, −r) .

Similarly

ΦΓ
DR,Γ(t, x, q, AΓq) · AΓq = ΦΓ(t, x, q, AΓq) + (ΦΓ(t, x, q))∗(−rΓ) .

We call the identity
ˆ

Ω

%0(x)H(βz(q(t
′, x))) +

ˆ
Qt′

{Φ(x, q, ∇q, Aq) + (Φ(t, x, q))∗(−J, −r)}

+

ˆ
St′

{ΦΓ(t, x, q, AΓq) + (ΦΓ(t, x, q))∗(−rΓ)} =

ˆ
Ω

%0(x)H(βz(q
0(x))) . (26)

the energy identity (at t′). For (t, x, z) ∈ QT×RN , the function (Φ(t, x, z))∗ is the convex conjugate
in RN×3 × Rs of the function (D, DR) 7→ Φ(t, x, z, (D, DR)).

Definition of a weak solution. A distributional solution of the problem (1), (2) is defined as an
element q of a vectorial Orlicz class. Define

[q]W̃ 1,0

Φ0,ΦΓ,0 (Q;RN )

:=

ˆ
QT

{Φ0(∇q, Aq) + (Φ0)∗(−J(t, x, q, ∇q), −r(t, x, q, ∇q))}

+

ˆ
ST

{Φ0,Γ(AΓq) + (ΦΓ,0)∗(−rΓ(t, x, q))} (27)

W̃ 1,0
Φ0,ΦΓ,0(Q; RN) :=

{
q ∈ W 1,0

1 (Q; RN) : [q]W̃ 1,0

Φ0,ΦΓ,0 (Q;RN ) < +∞
}
. (28)

If q satisfies the identity (26) for almost all times, if [q]W̃ 1,0

Φ0,ΦΓ,0 (Q;RN ) < +∞ and if

−
ˆ
Q

R(x, q) · φt −
ˆ
Q

J(t, x, q, ∇q) · ∇φ−
ˆ
Q

r(t, x, q, ∇q) · Aφ

−
ˆ
S

rΓ(t, x, q) · AΓφ =

ˆ
Ω

R(x, q0) · φ(0) ∀ φ ∈ C1
c ([0, T [; C1(Ω; RN)) , (29)

then we call q a weak solution for (1), (2). Since the potential Φ0 does not satisfy the symmetry
condition Φ(X) = Φ(−X) for its domain of definition, the Orlicz class generated by Φ0 is not a

vectorial Orlicz space. We consider W̃ 1,0
Φ0,ΦΓ,0 as a subset (a subclass) of the parabolic Sobolev space

W 1,0
1 (Q; RN) = {q ∈ L1(Q; RN) : ∇u ∈ L1(Q; RN×3)}

2.3 Existence of weak solutions.

Our main theorem is the following:
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Global–in–time solvability of thermodynamically motivated parabolic systems 9

Theorem 2.1. Let Ω be a bounded domain of class C0,1. Assume that R satisfies (11), (12). Assume
that the diffusion potential Φ satisfies the conditions (13), (14), (16) and (17) and that the boundary
potential ΦΓ correspondingly satisfies (18), (19), (21) and (22)

Let q0 : Ω→ RN and %0 : Ω→ R0,+ be measurable, bounded and such that
´

Ω
%0(x) dx > 0. As-

sume that the integral
´

Ω
%0(x)H(βz(q

0(x))) is finite and that the point R0 :=
ffl

Ω
%0(x) βz(q

0(x))
belongs to the image of βz.

Assume that one of the following conditions is valid:

1 %0(x) > 0 for almost all x ∈ Ω;

2 The function Φ can be expressed via

Φ(t, x, z, D, DR) = Ψ(t, x, R(x, z), D, DR) for all (t, x, z, D, DR) ,

where Ψ(t, x) is of class C(RN ; C1(RN×3 × Rs)) for almost all (t, x) ∈ QT .

Then the problem (1), (2) possesses a weak solution q of class W̃ 1,0
Φ0,ΦΓ,0(Q; RN).

2.4 Existence of strong solutions.

For a non-linear closure relation which is thermodynamically consistent in the sense of Wolfgang
Dreyer (Definition of this concept in [DG17]), it is possible to introduce global strong solutions. In this
case, the potential Φ is a function of the driving forces only (Φ = Φ(D, DR). In other words Φ = Φ0).
A strong solution is here defined as a weak solution such that the weak time derivative ∂tR(x, q) and
the weak second spatial derivatives qx,x exist almost everywhere in QT . Moreover, the gradient qx
exists in the sense of traces on the lateral surface ST for such solutions. Then, the equations (1), (2)
are valid pointwise almost everywhere in QT resp. on ST with respect to the standard measures.

Theorem 2.2. Assumptions of Theorem 2.1. Moreover, assume that Ω is a bounded domain of class
C1,1. Assume that the function β belongs to C2(RN). Assume that q0 ∈ W 1,1(Ω; RN) is such that´

Ω
Φ(∇q0, Aq0) +

´
Γ

ΦΓ(AΓq0) < +∞. Assume that the potentials Φ, ΦΓ are twice continuously
differentiable over their domain and that Φ satisfies the reinforced assumptions

1 There is λ0 > 0 such that

D2Φ(X)

(
D
DR

)
·
(

D
DR

)
≥ λ0 |D|2 for all X, (D, DR) ∈ RN×3 × Rs .

2 There is a constant λ1 ∈ R+ such that

|ΦD,DR |∞ + |ΦD,D|∞ ≤ λ1 .

3 There is γ > 1 such that for all J ∈ RN×3 and r ∈ Rs

Φ∗(−J, −r) ≥ c0 |r|γ − c1 .

Then the problem (1),(2) possesses a strong solution such that ∂tR(x, q) belongs to L2(Q; RN))
and the second derivatives qxk,x` (k, ` = 1, 2, 3) belong to Lp(Q; RN) with p = min{2, γ}.
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3 Some properties of the dual energy function

Assume that β satisfies (11), (12). For R ∈ RN we define

H(R) = sup
z∈RN
{R · z − β(z)} .

Then z 7→ H(z) is a closed, proper convex function (Theorem 12.2 of [Roc70]). The domain of this
function, denoted domH , is defined as the subset in RN where it is finite. Due to [Roc70], Th. 13.4,
the dimension of domH is N . Applying the Theorem 26.3 of [Roc70], we see that z 7→ H(z) is an
essentially smooth convex function of class C1(ri domH). (Note that the relative interior ri domH
is nothing else but its interior.) In this context, essentially smooth means that |HR(Rn) · b| → +∞ for
every sequence {Rn} that approaches a (relative) boundary pointR of domH and for every direction
b pointing into the convex set domH (see the Definition on page 251 in [Roc70]). In fact we can be
more precise and state that for any such sequence {Rn} and directions b

lim inf
n→∞

b ·HR(Rn) = +∞ . (30)

Lemma 3.1. The set domH is bounded and convex. We have the identities:

ri domH = {R ∈ RN : R = βz(z), z ∈ RN}
∂ domH = {R ∈ RN : R = lim

n→∞
βz(z

n), |zn| → +∞}

Proof. Since z 7→ β(z) is strictly convex on RN , the function z 7→ R · z−β(z) is strictly concave on
RN . Thus, a necessary and sufficient condition to have a global maximum in RN is that R = βz(z

0)
for a z0 ∈ RN . Thus,

Image βz := {R ∈ RN : R = βz(z0), z0 ∈ RN} ⊆ domH .

For R = βz(z0) ∈ Image βz arbitrary

H(R) = max
z∈RN
{R · z − β(z)} = βz(z0) · z0 − β(z0) .

Since z 7→ β(z) is of class C1(RN), it follows that Image βz ⊆ ri domH .

Consider next R ∈ RN \ Image βz. We remark obviously that

Image βz = {R ∈ RN : R = lim
n→∞

βz(z
n), |zn| → +∞} .

Thus, R ∈ RN \ Image βz means that there is ε > 0 such that for all z, we have |R − βz(z)| ≥ ε.
For obvious reasons, we can solve for n ∈ N, the equation ξn+βz(n ξn) = R, and see that |ξn| ≥ ε.
Thus

H(R) ≥ (R− βz(n ξn)) · n ξn − β(0)

= n |R− βz(n ξn)|2 − β(0) ≥ n ε2 − β(0) .

Thus, H(R) = +∞, and this establishes that domH ⊆ Image βz. With the help of the inclusions

Image βz ⊆ ri domH, ri domH ⊆ Image βz ,

it clearly follows that

∂ domH = {R ∈ RN : R = lim
n→∞

βz(z
n), |zn| → +∞}
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Lemma 3.2. Define a subset of RN+1 via C0 := {ξ ∈ RN : ξ · (R, 1) ≤ 0 for all R ∈ domH}.
Then, there is a constant c > 0 such that dist(R, ∂ domH) ≤ c supξ∈C0, |ξ|=1(R, 1) · ξ.

Proof. Theorem 13.1 of [Roc70] shows that R ∈ ∂ domH if and only if there is q ∈ RN , q 6= 0 such
that R · q = δ(q), where δ is the support function of domH . Thus R ∈ ∂ domH if and only if there
is ξ ∈ {(X ′, XN+1) ∈ RN × R : XN+1 = −δ(X ′)} such that (R, 1) · ξ = 0.

On the other hand, ξ ∈ RN+1 belongs to ∂C0 if and only if (R, 1) · ξ = 0 for one R ∈ domH .

4 Existence of weak solutions in the case of non smooth data

In this section we prove the Theorem 2.1. In the weak setting, we require some equi-coercivity for the
diffusion potential Φ (see (16)) in the D variable.

The system is a doubly non-linear parabolic system with no degeneracy in ellipticity. The most general
results on weak solvability are to find in [AL83], [Alt12] for the case that the elliptic operator satisfies
some coercivity on a complete Sobolev norm.

4.1 The a priori estimates

The ’energy’ estimate. Recall the energy identity (26). Thus, since we assume (16)

ˆ
Ω

%0(x) (H(βz(q
0(t)))−H0) +

ˆ T

0

ˆ
Ω

{c0 Φ0(∇q, Aq) + (Φ0)∗(−J, −r)}

+

ˆ
ST

{c0 ΦΓ,0(AΓq) + (ΦΓ,0)∗(−rΓ)} ≤
ˆ

Ω

%0 (H(βz(q
0)) +H0) . (31)

Here, H0 := infRN H .

The mean–value estimate. Since we employ flux boundary conditions on ∂Ω, the control on the
mean values

´
Ω
q(t, x) dx does not follow from the control on the spatial gradient. We exploit here a

method a little less general, but far more simple than the ideas first developed in [DDGG17] to prove
the following Lemma.

Lemma 4.1. Let q ∈ W̃ 1,0
Φ0,ΦΓ,0(QT ; RN). Let %0 : Ω → R+ be measurable, bounded and such

that
´

Ω
%0(x) dx > 0. Assume that C0 :=

´
Ω
%0(x)H(βz(q

0(x))) dx < +∞, and that the point
R0 :=

ffl
Ω
%0(x) βz(q

0(x)) dx belongs to the interior of domH . In this case, we denote M0 :=
dist(R0, ∂ domH) > 0.

If q satisfies the equations (1), (2), there is a constantC(Ω, M0, C0) and a superlinear, non decreas-
ing function ψ ∈ C([0,+∞[) such that

ˆ T

0

ψ(‖q(t)‖L1(Ω;RN )) dt

≤ C

(
T + ‖∇q‖L2,1(Q;RN×3) +

ˆ
Q

Φ0(∇q, Aq) +

ˆ
S

ΦΓ,0(AΓq)

)
.
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Proof. We integrate the equations (1) over Qt, which results for t ∈]0, T [ arbitrary in 
Ω

R`(x, q(t)) =

 
Ω

R(x, q0) (32)

+
s∑

α=1

ˆ t

0

r̄α(u) duAα` + cΩ

sΓ∑
α=1

ˆ t

0

r̄Γ
α(u) duAΓ,α

` .

Here we introduced r̄α(t) =
ffl

Ω
r̄α, r̄Γ

α(t) :=
ffl

Γ
rΓ
α(t), and cΩ := |Γ|

|Ω| .

Define the convex cone C generated in RN+1 by the domain of H

C := {λ (R, 1) ∈ RN+1 : R ∈ domH, λ ≥ 0} .

For (t, x) ∈ Q, we further define ρ(t, x) := %0(x) (βz(q(t, x)), 1). Then, ρ is obviously a mapping
from Q into C. For t ∈ [0, T ], we define

ρ̄(t) =

 
Ω

ρ(t, x) dx ∈ C ,

where the latter inclusion follows from the convexity of C. Further, we define the subgraph of −β via

sub(−β) := {(X ′, XN+1) ∈ RN × R : XN+1 ≤ −β(X ′)} .

which is obviously a convex set. For (t, x) ∈ Q we define µ(t, x) := (q(t, x), −β(q(t, x))). Then,
µ is a mapping into the hyper surface

∂ sub(−β) := {(X ′, XN+1) ∈ RN × R : XN+1 = −β(X ′)} .

Let dν be the positive measure %0(x) dx. The convexity of the set sub(−β) again guaranties that

µ̄ν(t) :=

 
Ω

µ(t, x) dν(x)

is a mapping for [0, T ] into sub(−β). Now, it is simple to compute that

ρ(t, x) · µ(t, x) = %0(x) (βz(q(t, x)) · q(t, x)− β(q(t, x))) = %0(x)H(βz(q(t, x))) .

Thus
ffl

Ω
ρ(t, x) · µ(t, x) =

ffl
Ω
%0(x)H(βz(q(t, x))).

Owing to the Poincaré inequality, there is a constant cp depending on the measure ν and on Ω such
that for all t ∈]0, T [ ˆ

Ω

|µ(t, x)− µ̄ν(t)| dx ≤ cp

ˆ
Ω

|∇µ(t, x)| dx .

By the definition of µˆ
Ω

|µ(t, x)− µ̄ν(t)| dx ≤ cp (1 + ‖βz‖L∞(RN )) ‖∇q(t)‖L1(Ω) =: d0(t) .

Expressing now
ffl

Ω
ρ(t, x) · µ(t, x) = ρ̄(t) · µ̄ν(t) +

ffl
Ω
ρ(t, x) · (µ(t, x) − µ̄ν(t)), we obtain the

bound ∣∣∣∣ρ̄(t) · µ̄ν(t)−
 

Ω

%0(x)H(βz(q(t, x)))

∣∣∣∣ ≤ ‖ρ‖L∞(Q) d0(t)

≤ ‖%0‖L∞(Ω) (1 + ‖βz‖L∞(RN )) d0(t) . (33)
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Let eN+1 be the last standard basis vector in RN+1. Next, we show that the point

Λ(t) := µ̄ν(t)− 1ffl
Ω
%0(x) dx

 
Ω

%0(x)H(βz(q(t, x))) eN+1

belongs for all t ∈]0, T [ to the polar cone C0 of C defined via

C0 := {Y ∈ RN+1 : Y ·X ≤ 0 for all X ∈ C} .

Indeed, we must show that for all X of the form X = λ (R, 1) with λ ≥ 0 and R ∈ domH that

0 ≥ Λ(t) ·X

= λ

(
q̄ν(t) ·N R−

 
Ω

β(q(t, x)) dν(x)− 1ffl
Ω
%0(x) dx

 
Ω

%0(x)H(βz(q(t, x)))

)
.

Here, q̄ν(t) =
ffl

Ω
q(t, x) dν(x). Obviously

 
Ω

β(q(t, x)) dν(x) +
1ffl

Ω
%0(x) dx

 
Ω

%0(x)H(βz(q(t, x))))

=

 
Ω

{β(q(t, x)) +H(βz(q(t, x)))} dν(x) =

 
Ω

sup
R∈domH

q(t, x) ·Rdν(x) .

Thus, Λ(t) ∈ C0 for all t. Thanks to the inequality (33), and the fact that ρ̄(t) ∈ C, it follows that

−ρ̄(t) · Λ(t) =

∣∣∣∣ρ̄(t) · µ̄ν(t)−
 

Ω

%0(x)H(βz(q(t, x)))

∣∣∣∣ ≤ c d0(t) .

For such t ∈ [0, T ] such that |µ̄ν(t)| > 0, we now divide this inequality by |µ̄ν(t)|, and introduce
η(t) := Λ(t)/|µ̄ν(t)|. Note that η(t) ∈ C0 by the definition of a cone. Moreover, since we know from
the energy inequality that

ffl
Ω
%0(x)H(βz(q(t, x))) ≤ C0, we can show that

|η(t)| ≥ 1−
∣∣ffl

Ω
%0(x)H(βz(q(t, x)))

∣∣
|µ̄ν(t)|

≥ 1

2
for all t : |µ̄ν(t)| > 2C0 .

We now have obtained

−ρ̄(t) · η(t) ≤ c
d0(t)

|µ̄ν(t)|
for all t : |µ̄ν(t)| > 2C0 . (34)

We next introduce ρ̄0 :=
ffl

Ω
%0(x) (βz(q

0(x)), 1) dx. On the footing of the identity (32), we verify the
identity

ρ̄(t) = ρ̄0 +
s∑

α=1

ˆ t

0

r̄α (Aα, 0) +
sΓ∑
α=1

ˆ t

0

r̄Γ
α (AΓ,α, 0) .

Thus, inserting the latter into (34)

−ρ̄0 · η(t) ≤ c
d0(t)

|µ̄ν(t)|
+

[ˆ t

0

r̄α (Aα, 0) + cΩ r̄
Γ
α(t) (AΓ,α, 0)

]
· η(t)

= c
d0(t)

|µ̄ν(t)|
+

1

|µ̄ν(t)|

[ˆ t

0

r̄αA
α + cΩ

ˆ t

0

r̄Γ
α A

Γ,α

]
· q̄ν(t) .
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Due to the a priori bounds, |
´ t

0
r̄α| + |

´ t
0
r̄Γ
α| ≤ C0, and moreover to the bound |Aq̄ν(t)| ≤

‖%0‖L∞(Ω)ffl
Ω %0(x) dx

|Aq̄(t)|, it follows that

−ρ̄0 · η(t) ≤ c̃ 1
|µ̄ν(t)| (d0(t) + |Aq̄(t)|+ |AΓq̄(t)|) .

Thus, for all t such that |µ̄(t)| ≥ 2C0

inf
ξ∈C0, |ξ|≥1

2

|ρ̄0 · ξ| ≤ c̃
d0(t) + |Aq̄(t)|+ |AΓq̄(t)|

|µ̄ν(t)|
.

The characterisation of Lemma 3.2 yields

dist(ρ̄0, ∂C) ≤ c
d0(t) + |Aq̄(t)|+ |AΓq̄(t)|

|µ̄ν(t)|
.

and finally

dist

( 
Ω

R(x, q0(x)), ∂ domH

)
≤ c

d0(t) + |Aq̄(t)|+ |AΓq̄(t)|
|µ̄ν(t)|

.

We now see that the set where |µ̄ν(t)| > M−1
0 c (d0(t) + |Aq̄(t)| + |AΓq̄(t)|) and |µ̄ν(t)| > 2C0

has measure zero. Thus

|µ̄ν(t)| ≤ max{2C0, M
−1
0 c (d0(t) + |Aq̄(t)|+ |AΓq̄(t)|)} .

We know from the energy estimate that d0 is bounded in L2(0, T ). Moreover, defining

φ(s) := inf
|D|+|DR|≥s

Φ0(D, DR), φΓ(s) := inf
|DΓ,R|≥s

ΦΓ,0(DR)

we easily show that
´ T

0
{φ(‖Aq(s)‖L1(Ω))+φ

Γ(‖AΓq(s)‖L1(Γ))} ds ≤ C0 for q satisfying the energy
identity. Thus, for

ψ(s) := max{2C0, min{s2, φ(s), φΓ(s)}} ,

we see that
´ T

0
ψ(|µ̄ν(t)|) dt is bounded by the claimed quantity. Thus, since

‖q(t)‖L1(Ω;RN ) ≤ cp (‖∇q(t)‖L1(Ω;RN×3) + |q̄ν(t)|) ,

The claim follows.

4.2 The existence procedure

The section is devoted to the proof of Theorem 2.1.

For n ∈ N, we choose ψ1, ψ2, . . . , ψn ∈ W 1,∞(Ω; RN) such that
⋃∞
n=1 span {ψ1, ψ2, . . . , ψn}

is a dense subset of W 1,2(Ω; RN).

We look for approximate solutions qn ∈ C1([0, T ]; span{ψ1, ψ2, . . . , ψn}) of the form

qn(t, x) =
n∑
k=1

a
(n)
k (t)ψk(x) .
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We impose as an additional condition on the chosen approximation that ψ ≡ ei ∈ span{ψ1, . . . , ψn}
for all considered n ∈ N and i = 1, . . . , N .

The approximate problem is a system of n non-linear equations given by

ˆ
Ω

(Rz(x, q
n) + 1

n
Id) ∂tq

n · ψk −
ˆ

Ω

J(t, x, qn, ∇qn) · ∇ψk (35)

−
ˆ

Ω

f(t, x, qn, ∇qn) · Aψk −
ˆ
∂Ω

fΓ(t, x, qn) · AΓψk = 0

qn(0) =
n∑
k=1

a0
k ψk (36)

Here, the numbers a0
1, a

0
2, . . . are chosen such that

∑n
k=1 a

0
k ψk → q0 strongly in L1(Ω; RN).

The equations (36) form a non-linear system of n ordinary differential equations, that we re express in
the form

An(a(n)) ∂ta
(n) = F (a(n)), a(n)(0) = (a0

1, . . . , a
0
n) (37)

Ank,`(a
(n)) :=

ˆ
Ω

N∑
i,j=1

(Ri,zj(x, q
n) + 1

n
δi,j)ψ

`
j ψ

k
i

Fk(a
(n)) :=

ˆ
Ω

{J(t, x, qn, ∇qn) · ∇ψk + f(t, x, qn, ∇qn) · Aψk} (38)
ˆ
∂Ω

fΓ(t, x, qn) · AΓψk .

Note that the matrix An is strictly positive and invertible. Therefore we directly obtain the global solv-
ability of the approximate system.

For t ∈ [0, T [, we can multiply the equations (36) with a(n)
k (t), sum over k = 1, . . . , n, and we obtain

the identity

ˆ
Ω

[∂tR(x, qn) · qn + 1
2n
|qn|2]−

ˆ
Ω

J(t, x, qn, ∇qn) · ∇qn

+

ˆ
Ω

f(x, qn, ∇qn) · Aqn +

ˆ
∂Ω

fΓ(t, x, qn) · AΓqn = 0

Thus, for all t ∈ [0, T [ (cp. the Paragraph on the energy estimate)

ˆ
Ω

[%0H(βz(q
n)) + 1

2n
|qn(t)|2]−

ˆ t

0

ˆ
Ω

{J(t, x, qn, ∇qn) · ∇qn

+

ˆ t

0

ˆ
Ω

f(t, x, qn, ∇qn) · Aqn +

ˆ
St

fΓ(t, x, qn) · AΓqn

=

ˆ
Ω

[%0 (H(βz(q
0,n)) + 1

2n
|qn(0)|2] . (39)

We obtain that

1√
n
‖qn‖L∞,2(QT ) ≤ C0, [qn]W̃ 1,0

Φ0,Φ0,Γ (Q;RN ) ≤ C0 .
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For i = 1, . . . , N , the choice ψ ≡ ei ∈ span{ψ1, . . . , ψn} as testfunction in (36) yields

∂t

ˆ
Ω

(Ri(x, q
n) + 1

n
qni ) =

s∑
α=1

ˆ
Ω

rn,α(t)Aαi +
sΓ∑
α=1

ˆ
∂Ω

rΓ
n,α(t)AΓ,α

i for i = 1, . . . , N .

For i = 1, . . . , N , it therefore follows for all t ∈]0, T [ thatˆ
Ω

Ri(x, q
n(t))−

ˆ
Ω

(Ri(x, q
0,n) + 1

n
(q0,n
i − qni (t)))

=
s∑

α=1

(ˆ
Qt

rn,α

)
Aαi +

sΓ∑
α=1

(ˆ
St

rΓ
n,α

)
AΓ,α
i .

We define R0,n(t) :=
ffl

Ω
(Ri(x, q

0,n) + 1
n

(q0,n
i − qni (t))).

Next we make use of the bound

1
n
‖qn(t)‖L1(Ω;RN ) ≤ ( 1

n
‖qn(t)‖2

L2(Ω;RN ))
1/2 1√

n
λ3(Ω)1/2 ≤ C0 n

−1
2 ,

and we define R0 :=
ffl

Ω
R(x, q0), to see that

|R0,n(t)−R0| ≤ c

ˆ
Ω

%0 |βz(x, q0,n)− βzq0|+ C0 n
−1

2 =: cn .

By appropriate choice of the sequence q0,n, it is possible to assume that cn → 0. Thus, there is
M0 > 0 and n0 ∈ N such that for all t ∈ [0, T ]

dist(R0,n, ∂ domH) ≥M0 > 0 .

We apply the Lemma 4.1 on mean–value control, and this yields
´ T

0
ψ(‖qn(t)‖L1(Ω;RN )) dt ≤ C0.

Making use of the Sobolev embedding W 1,1 ↪→ L
3
2 , this implies that qn satisfies a uniform bound

‖qn‖
LψL

3
2 (QT ;RN )

. We can next extract weakly convergence subsequences:

qn → q weakly in L1(Q; RN)

∇qn → ∇q weakly in L1(Q; RN×3)

Jn → J weakly in L1(Q; RN×3)

R(x, qn)→ R̄ weakly in L2(Q; RN)

Moreover

rn → r weakly in L1(Q; Rs)

rΓ,n → rΓ weakly in L1(S; RsΓ) .

In order to show the compactness of the solution vector we resort to a typical inequality. Let ν ∈
M+(Ω) be a positive measure which is absolutely continuous with respect to λ3. For all δ > 0, there
are C(δ) > 0 and m(δ) ∈ N such that

‖βz(u1)− βz(u2)‖L1(Ω;RN , dν) ≤δ
∑
i=1,2

‖u1‖W 1,1(Ω;RN )

+ C(δ)

m(δ)∑
j=1

∣∣∣∣ˆ
Ω

ψj · (βz(u1)− βz(u2)) dν

∣∣∣∣
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for all ui ∈ W 1,1(Ω; RN). If we now choose dµ = %0(x) dx, u1 = qn(t) and u2 = qn+p(t), then
integration over [0, T ] yields

‖%0 (βz(q
n)− βz(qn+p))‖L1(Q;RN ) ≤ C0 δ

+ C(δ)

m(δ)∑
j=1

ˆ T

0

∣∣∣∣ˆ
Ω

ψj · %0 (βz(q
n)− βz(qn+p))

∣∣∣∣ .
It is readily shown that Rz(x, q

n) is a Cauchy sequence in L1(Q; RN), which yields the strong
convergence. Since Rz is strictly positive definite on the support of %0, the pointwise convergence of
qn follows at least for a subsequence in almost all (t, x) such that %0(x) > 0. This shows that the
weak limits satisfy R̄ = R(x, q).

Now we can pass to the limit in the differential equations, and we see that for all testfunctions φ ∈
C1
c (Q; RN)

−
ˆ
Q

R(x, q) · ∂tφ−
ˆ
Q

J · ∇φ−
ˆ
S

sΓ∑
α=1

rΓ
α A

Γ,αφ =

ˆ
Q

s∑
α=1

rαA
αφ . (40)

Here there is a little bit of technical work done just here after the proof to show for almost all t ∈ [0, T ]
the validity of the energy identityˆ

Ω

[H(R(x, q))−H(R0)] =

ˆ
Qt

{J · ∇q + r · Aq}+

ˆ
St

rΓ · AΓq . (41)

We recall (39), and it follows for almost all t that

lim sup
n→∞

(
−
ˆ
Qt

{J(t, x, qn, ∇qn) · ∇qn + r(t, x, qn, ∇qn) · Aqn}

−
ˆ
St

rΓ(t, x, qn) · AΓqn
)

= −
ˆ
Qt

{J · ∇q + r · Aq} −
ˆ
St

rΓ · AΓq .

This is sufficient to show that

lim sup
n→∞

−
ˆ
Qt

(J(t, x, qn, ∇qn, Aqn)− J(t, x, qn, ∇q, Aqn)) · ∇(qn − q) ≤ 0 .

If the set {x ∈ Ω : %0(x) = 0} has not measure zero, we use the additional hypothesis that the
dependence z 7→ J(·, z) is actually a dependence z 7→ ΨD(·, R(x, z)) to show that

lim
n→∞

J(t, x, qn, ∇q, Aqn) = lim
n→∞

J(t, x, q, ∇q, Aqn)

.

Thus, ∇qn → ∇q pointwise almost everywhere, and strongly in L1(Q; RN×3). It follows that J =
J(t, x, q,∇q), r = r(t, x, q,∇q). Finally, we obtain the strong convergence of qn on ST , the identity
rΓ = rΓ(t, x, q), and the proof of Theorem 2.1 is finished.

The technical statement. We give the proof that (40) implies (41). At first, it is standard to show that
for φ ∈ C1

c (Ω; RN), the function t 7→
´

Ω
R(x, q(t, x)) · φ(x) dx is weakly differentiable, and that

d

dt

ˆ
Ω

R(x, q(t)) · φ =

ˆ
Ω

{J(t) · ∇φ+ f(t) · φ}+

ˆ
∂Ω

fΓ(t) · φ .
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Therefore, for all t1 < t2ˆ
Ω

R(x, q(t2))−R(x, q(t1))

t2 − t1
· φ+

ˆ
Ω

{ t2

t1

−J(t) dt · ∇φ+

 t2

t1

−r(t) dt · Aφ
}

+

ˆ
Γ

 t2

t1

−rΓ(t) dt · AΓφ = 0 . (42)

Owing to the convexity of Φ0 and (Φ0)∗

±
{ t2

t1

−J(t) dt · ∇φ+

 t2

t1

−r(t) dt · Aφ
}

≤ (Φ0)∗
( t2

t1

−J(t) dt,

 t2

t1

−r(t) dt
)

+ Φ0(∇φ, Aφ) + Φ0(−∇φ, −Aφ)

≤
 t2

t1

(Φ0)∗(−J(t), −r(t)) dt+ Φ0(∇φ, Aφ) + Φ0(−∇φ, −Aφ) .

Thus, owing to the assumption (17)ˆ
Ω

{ t2

t1

−J(t) dt · ∇φ+

 t2

t1

−r(t) dt · Aφ
}

≤
 t2

t1

ˆ
Ω

(Φ0)∗(−J, −r) + (1 +K0)

ˆ
Ω

Φ0(∇φ, Aφ) +K1 |Ω| .

Similarly, we show thatˆ
∂Ω

{ t2

t1

−rΓ(t) dt · AΓφ

}
≤
 t2

t1

ˆ
∂Ω

(ΦΓ,0)∗(−rΓ)

+ (1 +KΓ
0 )

ˆ
∂Ω

ΦΓ,0(AΓφ) +KΓ
1 |Γ| .

Owing to standard approximation arguments, the identity (42) therefore extends by density to all φ ∈
W 1,1(Ω; RN) such that Φ0(∇φ, Aφ) ∈ L1(Ω) and ΦΓ,0(AΓφ) ∈ L1(∂Ω). Accepting first this
point, for almost all t ∈]0, T [, we obtain that

0 =

ˆ
Ω

R(x, q(t2))−R(x, q(t1))

t2 − t1
· q(t) (43)

+

ˆ
Ω

{ t2

t1

−J(t) dt · ∇q(t) +

 t2

t1

−r(t) dt · Aq(t)
}

+

ˆ
Γ

{ t2

t1

−rΓ(t) dt · AΓq(t)

}
.

For a function u ∈ L1(QT ) and t ≤ T − h we extend u(t) by zero to R− and we denote uh(t, x) =

h−1
´ h
t−h u(s, x) ds the lower Steklov averaging, and uh(t, x) := h−1

´ t+h
t

u(s, x) ds the upper
Steklov averaging.

We next observe that there are t1,h ≤ t2,h, t2,h−t1,h ≤ 2h such that qh(t) = q(t2,h) and qh(t−h) =
q(t1,h). We compute

∂t(R(x, qh))h(t) =
R(x, qh(t))−R(x, q(t− h))

h

=
R(x, q(t2,h))−R(x, q(t1,h))

h
.
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Thus, making use of (43)

0 =

ˆ
Ω

∂t(R(x, qh))h · q(t) (44)

+
t2,h − t1,h

h

ˆ
Ω

{ t2,h

t1,h

−J(t) dt · ∇q(t) +

 t2,h

t1,h

−r(t) dt · Aq(t)

}

+
t2,h − t1,h

h

ˆ
Γ

{
 t2,h

t1,h

−rΓ(t) dt · AΓq(t)} .

Denote fh(t) :=
´

Ω
∂t(R(x, qh))h · q(t). For all h < a < b < T , the standard properties of the

Steklov averaging operator yield

ˆ b

a

fh(t) dt =

ˆ b

a

ˆ
Ω

∂t(R(x, qh))h · q

=

ˆ b

a

ˆ
Ω

(∂tR(x, qh))h · q =

ˆ b

a−h

ˆ
Ω

∂tR(x, qh) · qh

=

ˆ b

a−h

ˆ
Ω

%0(x) ∂t(βz(qh) · qh − β(qz))

=

ˆ
Ω

%0(x) (H(βz(qh(b)))−H(βz(qh(a− h)))) .

Next we consider

gh(t) :=

ˆ
Ω

{ t2,h

t1,h

−J(s) ds · ∇q(t) +

 t2,h

t1,h

−r(s) ds · Aq(t)

}

+

ˆ
Γ

{ t2,h

t1,h

−rΓ(s) ds · AΓq(t)

}
.

The functions gh satisfy the majoration

±gh(t) ≤
 t2,h

t1,h

ˆ
Ω

(Φ0)∗(−J, −r) + (1 +K0)

ˆ
Ω

Φ0(∇q, Aq) +K1 |Ω|

+

 t2,h

t1,h

ˆ
Γ

(ΦΓ,0)∗(−rΓ) + (1 +KΓ
0 )

ˆ
Γ

Φ0,Γ(AΓq) +KΓ
1 |Γ| .

For h → 0, the right-hand converges strongly in L1(0, T ). Therefore, the functions gh converge
strongly in L1(0, T ) for h→ 0 to their pointwise limit g defined via

g =

ˆ
Ω

{−J(t) · ∇q(t)− r(t) · Aq(t)}+

ˆ
Γ

{−rΓ(t) · AΓq(t)} .

It remains to integrate (44) over ]a, b[⊂]0, T [. For h tending to zero, we obtain for almost all a, b that
ˆ

Ω

%0(x) (H(βz(q(b)))−H(βz(q(a))))

=

ˆ b

a

ˆ
Ω

{−J(t) · ∇q(t)− r(t) · Aq(t)}+

ˆ b

a

ˆ
∂Ω

{−rΓ(t) · AΓq(t)} .
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5 More regularity in the case of strongly thermodynamic closure

The regularity analysis turns out particularly convenient in the case of a thermodynamically consistent
closure. We here can obtain higher order estimates. Recall that a thermodynamic consistent closure
in the sense of Wolfgang Dreyer means that the fluxes and densities are derived from potentials Φ
and ΦΓ that are functions of the driving forces D and DR only.

The additional regularity Applying the same approximation scheme than in the Section 4, we mul-
tiply the equations (37) with ∂ta(n), and it follows that

ˆ
Ω

(Rz(x, q
n) + 1

n
Id)∂tq

n · ∂tqn

+ ∂t

(ˆ
Ω

Φ(∇qn, Aqn) +

ˆ
Γ

ΦΓ(AΓqn)

)
= 0 .

Time integration yields
ˆ
Qt

Rz(x, q
n)∂tq

n · ∂tqn +

ˆ
Ω

Φ(∇qn(t), Aqn(t)) +

ˆ
Γ

ΦΓ(AΓqn(t))

=

ˆ
Ω

Φ(∇q0,n, Aq0,n) +

ˆ
Γ

ΦΓ(AΓq0,n) .

Thus, if
´

Ω
Φ(∇q0, Aq0)+

´
Γ

ΦΓ(AΓq0) < +∞, we can choose an appropriate sequence q0,n such
as to ensure thatˆ

Qt

Rz(x, q
n)∂tq

n · ∂tqn +

ˆ
Ω

Φ(∇qn(t), Aqn(t)) +

ˆ
Γ

ΦΓ(AΓqn(t)) ≤ C0 . (45)

We note next that for ` = 1, . . . , N

|Rz(x, q
n)∂tq

n · e`| ≤ (Rz(x, q
n)∂tq

n · ∂tqn)
1
2 (Rz(x, q

n) e` · e`)
1
2

≤ ‖%0‖
1
2
L∞(Ω) ‖βz‖

1
2
L∞(RN )

(Rz(x, q
n)∂tq

n · ∂tqn)
1
2 .

Thus

‖∂tR(x, qn)‖2
L2(Q;RN ) ≤ ‖%0‖L∞(Ω) ‖βz‖L∞(RN )

ˆ
Q

Rz(x, q
n)∂tq

n · ∂tqn ≤ C0 .

Thus, the limit R(x, q) possesses a weak time–derivative in L2(Q; RN), and we can rely on the
identity

ˆ
Q

J(∇q, Aq) · ∇φ =

ˆ
Q

(−f(q, ∇q) + ∂tR(x, q)) · φ−
ˆ
S

fΓ(q) · φ ,

for all φ ∈ C1(QT ; RN). Thus, for almost all t ∈ [0, T ], the vector u := q(t) is a weak solution to
the equations

− div(ΦD(∇u, Au)) + ΦDR(∇u, Au)A = g in Ω (46)

−ΦD(∇u, Au) ν(x) + ΦΓ
DΓ,R(AΓu)AΓ = 0 on ∂Ω . (47)
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Here, g = ∂tR(x, q)(t) ∈ L2(Ω; RN).

If the boundary of Ω is of class C1,1, the assumptions of Theorem 2.2 and classical results for quasilin-
ear elliptic systems (resumed here below in Lemma 5.1) yield ‖D2q‖L2(Q) ≤ C ‖∂tR(q)‖L2(Q) and
the proof of Theorem 2.2 is finished.

We at last show how to obtain the higher regularity in the quasilinear elliptic system. For simplicity, we
present a formal proof of the a priori bound. This bound can rigorously be established by means of
local flattening of the boundary ∂Ω and applying difference quotients.

Lemma 5.1. Assume that u ∈ W 2,2(Ω; RN) satisfies (46), (47). Denote D2Φ is the Hessian of Φ
as a field defined on RN×3 × Rs, and assume that there is λ0 > 0 such that

D2Φ(X) (D, DR) · (D, DR) ≥ λ0 |D|2 for all X, (D, DR) ∈ RN×3 × Rs .

Assume moreover that there is a constant λ1 ∈ R+ such that

|ΦD,DR |∞ + |ΦD,D|∞ ≤ λ1 .

Finally, assume that there is γ > 1 such that for all J ∈ RN×3 and r ∈ Rs

(Φ0)∗(−J, −r) ≥ c0 |r|γ − c1 .

Then ‖D2u‖Lmin{γ,2}(Ω) ≤ c
(

1 + ‖g‖2
L2(Ω) +

´
Ω

(Φ0)∗(−J, −r)
) 1

min{γ,2}
.

Proof. We start from the weak form of (46)ˆ
Ω

{ΦD(∇u, Au) : ∇ζ + ΦDR(∇u, Au) · Aζ}

+

ˆ
∂Ω

ΦΓ
DΓ,R(AΓu) · AΓζ =

ˆ
Ω

g ζ .

for all ζ ∈ C1(Ω; RN). We choose testfunctions of the form ζ = η
∑3

β=1 τβ(x) ∂xβψ. Here, η ∈
C1(Ω) is a cut-off function, τ ∈ C0,1(Ω; R3) is a vector field assumed tangent at ∂Ω on the support
of η, and Ψ ∈ C1(Ω; RN) is arbitrary.

For i = 1, . . . , N , we denote wτi = η
∑3

β=1 τβ(x) ∂xβui. After obvious shifting, we see that wτ

satisfies the relationsˆ
Ω

D2Φ(∇u, Au)(∇wτ , Awτ ) · (∇ψ, Aψ) +

ˆ
Γ

ΦDΓ,R,DΓ,R(AΓu)AΓwτ · AΓψ

= −
ˆ

Ω

g · div(η τ ψ)−
ˆ
∂Ω

(τ · ∇ν) · ΦD(∇u, Au) · ψ η

Here, D2Φ is the Hessian of Φ as a field defined on RN×3 × Rs with blocks ΦD,D, ΦD,DR , etc.
Obviously ∣∣∣∣ˆ

Ω

g · div(η τ ψ)

∣∣∣∣ ≤ c ‖η τ‖C1(Ω) ‖g‖L2 ‖ψ‖W 1,2 .

We express

ΦD(∇u, Au) = ΦD(∇u, Au)− ΦD(0)

=

ˆ 1

0

ΦD,D(θ∇u, θ Au) dθ∇u+

ˆ 1

0

ΦD,DR(θ∇u, θ Au) dθ Au

=: Φθ
D,D∇u+ Φθ

D,DR Au .
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Therefore, since the vector τ · ∇ν is tangent on ∂Ω and bounded by the curvatures, it follows that∣∣∣∣ˆ
∂Ω

(τ · ∇ν) · ΦD(∇u, Au) · ψ η
∣∣∣∣

≤ ‖ δ ν‖L∞(∂Ω) λ1 (‖ δ u‖L2(∂Ω) + ‖Au‖L2(∂Ω)) ‖ψ‖L2(∂Ω) .

Here, δ is the tangential gradient on ∂Ω. We clearly obtain an estimate

λ0

ˆ
Ω

|∇wτ |2 ≤ c (‖g‖L2 + ‖u‖W 1,2 + ‖ δ u‖L2(∂Ω)) ‖wτ‖W 1,2(Ω) .

Since W 1,2(Ω) ↪→ L2(∂Ω) compactly, there is for all ε > 0 a constant cε such that ‖f‖L2(∂Ω) ≤
ε ‖∇f‖L2(Ω) + cε ‖f‖L2(Ω). We decompose the tangential gradient δ u via δ u =

∑
k=1,2 τ

k ·∇u τ k
where τ 1, τ 2 are chosen orthonormal on ∂Ω. In the end we obtain

2∑
k=1

ˆ
Ω

|∇wτk |2 ≤ c ε
2∑

k=1

ˆ
Ω

|∇wτk |2 + Cε (‖g‖2
L2 + ‖u‖2

W 1,2) .

In order to obtain a complete estimate, we next make use of the strong form (46). Performing the
differentiation, it follows that

−
N∑
j=1

3∑
k,`=1

D2ΦDk,D
j
`
(∇u, Au)ujxk,x`

= g + ΦD,DR(∇u, Au)A∇u− ΦDR(∇u, Au)A . (48)

We choose locally in Ω on orthonormal system {τ 1, τ 2, ν}, so that the vectors τ k and ν belong
to C1(Ω; R3) and {τ 1, τ 1} span the tangential plane to ∂Ω in each point of the considered local
subregion adjacent to the boundary.

Denoting Mi,j :=
∑3

k,`=1 νk, ν`D
2ΦDik,D

j
`
(∇u, Au), we see that M is symmetric and positive

definite as an element of RN×N and that λinf(M) ≥ λ0. We make use of the relation (48) to obtain
an estimate of the type

|ν ux,x ν| ≤ C (|g|+ |∇u|+ |wτx|+ |ΦDR(∇u, Au)|) .

If (Φ0)∗(−J, −r) ≥ c |r|γ for r ∈ Rs, we obtain finally that

‖ν ux,x ν‖Lmin{γ,2}(Ω) ≤ C

(
‖g‖2

L2 + ‖u‖2
W 1,2 +

ˆ
Ω

(Φ0)∗(−J, −r)
) 1

min{γ,2}

.

The claim follows.
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