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Abstract. We discuss the connection between strong-field ionization,
saturation of the Kerr response and the formation of the Kramers–Henneberger
(KH) atom and long-living excitations in intense infrared (IR) external fields.
We present a generalized model for the intensity-dependent response of atoms
in strong IR laser fields, describing deviations in the nonlinear response at the
frequency of the driving field from the standard model. We show that shaping
the driving laser pulse allows one to reveal signatures of the excited KH states in
the Kerr response of an individual atom.
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1. Introduction

The physical reality of bound states of a nearly free electron has been recently demonstrated
experimentally by Eichmann et al [1]. They have observed acceleration of neutral helium atoms
at a rate of 1014 times the Earth gravity g, expelled from the focus of the 800 nm, 100 fs
laser pulse with intensities approaching 1016 W cm−2. The high kinetic energies of the neutrals
expelled from the laser focus prove that the atoms have remained neutral throughout the whole
duration of the laser pulse. The ponderomotive force responsible for the acceleration could have
only come from laser-induced oscillations of the nearly free electron, still managing to pull the
heavy atomic core after itself during the laser pulse.

Theoretically, the existence and relevance of such ‘almost-free’ states for weakly bound
systems such as the potassium atom and modest IR laser intensities I ∼ 1013 W cm−2 has
recently been verified in [2]. Detailed ab initio theoretical study of the emergence of these
states for well-bound systems with an ionization potential Ip around 10–14 eV in the relevant
frequency regime (near-infrared (IR) light) has recently been done by Popov et al [3] and Kapoor
and Bauer [4].

The ‘bound states of a free electron’ are associated with the formation of the
Kramers–Henneberger (KH) atom: the stable system of ‘atom + strong laser field’ [3, 5, 6].
In such states the electron motion is a combination of nearly free oscillations and a slow drift
around the atomic core. The potential of the KH atom is described in the frame of reference
attached to the moving electron. It is defined as the laser-period averaged part of the ‘laser-
dressed’ oscillating ionic potential. For high frequencies in the extreme ultraviolet range it
appears to be natural that the harmonics of the oscillating ionic potential become negligible and
thus the stable KH states physically relevant. However, ab initio theoretical analysis [2, 3, 7, 8]
has confirmed the analytical prediction [7, 9] and Floquet analysis [10, 11] that for laser field
strengths F � FBS the KH states are also formed even for relatively small laser frequencies
h̄ω� Ip. Here FBS is the so-called barrier suppression field at which the potential barrier,
created by the Coulomb field together with the laser field, is suppressed below the binding
energy of the field-free state.

It is generally assumed that for the KH picture to hold, all atomic states must enter the
KH regime. Here, we analyse the situation where all excited atomic states are in the regime of
F � FBS while the ground state is still well bound. Importantly, this condition is fulfilled for all
excited states of noble gas atoms already at laser intensities I ∼ 1013 W cm−2.

We show that even when the ground state of the atom is well bound, the excited states
entering the KH regime show clear signatures in the system’s response, including the Kerr effect:
the (linear) growth of the refractive index at the driving field frequency with the field intensity.
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We show that while ionization does indeed play a very important role in the reversal of the
linear Kerr effect with increasing intensity in standard experimental conditions (see e.g. [12–18]
for experimental evidence), the ‘bound states of a free electron’ are equally, if not even more,
important for the onset of this behaviour, corroborating recent ab initio results of Béjot et al [19].
Thus, our results show that the suggestions made in [19–25] are not entirely without merit.

For standard laser pulses, separating the contribution of ionization from other possible
mechanisms leading to the saturation of the Kerr effect is very challenging. In particular, the
importance of Rydberg states in the Kerr response has been extensively discussed in ab initio
simulations by Volkova et al [26, 27], concluding that while such states are important, the
numerical evidence does not prompt the revision of the existing filamentation paradigm. Similar
conclusion is reached by Köhler et al [28], using the method for analysis proposed by Nurhuda
et al [29]. This method separates the induced dipole into bound–bound, bound–continuum and
continuum–continuum contributions by projecting the exact time-dependent wavefunction on
the field-free states and associating the first two with (instantaneous) polarization of the ground
state while the third is associated with ionization. However, using the field-free states in the
presence of an intense laser field is not adequate, especially for identifying the role of the KH
states which, while bound, are dominated by the free electron motion. Interestingly, Nurhuda
et al have reached a somewhat different conclusion using the same approach, especially
regarding the ground state polarization via continuum states (compare figure 2(d) of [29] versus
figure 2(c) of [28]). The complexity in the analysis of the contribution of the nearly free states is
confirmed by results of Kano et al [30], who find that bound states alone can provide saturation
of the Kerr response.

Here we show that shaped laser pulses offer additional opportunities for addressing this
difficult question: they emphasize the role of the restructured spectrum of the dressed atom
compared to the field-free system and allow us to identify the origin of resonance structures
appearing in the Kerr response (also found but not discussed by e.g. Köhler et al [28] and Kano
et al [30]). We show that these resonances are associated with the KH states.

The ‘bound states of a free electron’ are relevant for the Kerr response in two
complementary ways. Firstly, their polarizability is largely the same as that of the genuinely
free electrons. Thus, once these states get populated, their response to the propagating light
pulse will be very similar to that of a plasma. Trapping of classical trajectories launched at
the exit from the tunnelling barrier, simulating ionization, has been documented and discussed
in [31]. It has now been analysed in detail, both experimentally and theoretically in [32–36], and
is called ‘frustrated tunnelling’. The bound nature of these trapped states can show up after the
end of the laser pulse, possibly in the anisotropic response of the excited medium to the delayed
probe pulse as recently shown in [37] using full ab initio treatment of the problem and solving
coupled Schrödinger and Maxwell equations.

Secondly, the laser-induced restructuring of the excited states should also have implications
for the instantaneous response of the ground state, i.e. non-resonant polarization associated with
virtual (rather than real) excitations. Consider the standard perturbative expression describing
the linear response of a ground-state atom to a weak laser field, linearly polarized along the
z-axis:

α(ω)=

∑
n,±

|zgn|
2

En − (Eg ±ω)
. (1)
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Here ω is the light frequency, Eg denotes the energy of the initial ground state |g〉, En is the
energy of the intermediate virtual state |n〉 and zng = 〈n|ẑ|g〉 is the corresponding transition
matrix element. Assuming for a second that a similar expression applies to the dressed atom,
except that the energies En(F) and the matrix elements zng(F) are those of the dressed
states, the restructuring of the spectrum should alter the susceptibility. One obvious effect is
the growth of the resonance denominators due to the ponderomotive shift Up of the excited
states, En → En(F)∼ En + Up, where Up = F2/4ω2. Clearly, if the substitutions En → En(F)
and zng → zng(F) were legitimate under certain conditions, one would expect the atomic
susceptibility to decrease with increasing intensity.

Below we discuss the generalization of (1) and show that such substitutions are indeed
justified in a field with frequency ω� En − Eg. For noble gases with a large gap between the
ground and the excited states this corresponds to IR frequencies. Then we discuss numerical
simulations for the hydrogen atom, both in one dimension (1D) and in three dimensions (3D),
and show how the field-dressed states influence the response of a single atom.

2. Preliminary analytical analysis

Due to the large gap between the ground and the excited states in noble gas atoms, or in air
molecules, it is useful to break the full Hilbert space of the field-free system into two subspaces,
one containing the lone ground state |g〉, another all other states |n〉, both excited bound and
continuum. Writing the wavefunction as

|9(t)〉 = ag(t)e
−iEg t

|g〉 + |9(2)(t)〉, (2)

where ag(t) is the ground state amplitude and 9(2)(t) belongs to the second subspace, we find
the exact formal expression for 9(2)(t) [38]:

|9(2)(t)〉 = −i
∫ t

−∞

dt ′ Û22(t, t ′)V̂L(t
′)|g〉ag(t

′)e−iEg t ′ . (3)

Here V̂L(t)= r̂ · F(t) describes the interaction with the linearly polarized laser field F(t)=

F(t)cos(ωt)ez (ez denotes the unit vector along the z-axis), which couples the two subspaces.
Û22 is the exact propagator in the second subspace, which includes fully the interaction with the
laser field that couples the field-free states of this subspace.

For time-periodic Hamiltonians, we can introduce the exact Floquet states

|8k(t)〉 = e−i
∫ t
−∞

Ek(τ )dτ |φk(t)〉 (4)

in the second subspace, where both the energy Ek(t) and the wavefunction φk(t) are periodic
functions of time with period Tω = 2π/ω. These states form a complete basis set in the second
subspace, and hence the decomposition of identity

∑
k |8k〉〈8k| can be inserted into (3) between

Û22 and V̂L:

|9(2)(t)〉 =

∑
k

|φk(t)〉ak(t),

(5)

ak(t)= −i
∫ t

−∞

dt ′ e−i
∫ t

t ′ Ek(τ )dτ F(t ′)〈φk(t
′)|ẑ|g〉ag(t

′)e−iEg t ′ .
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Using (2), one can see that the dipole induced by the laser field contains two components

Dz(t)= 〈9(t)|d̂z|9(t)〉

= −
[
a∗

g(t)e
iEg t

〈g|ẑ|9(2)(t)〉 + c.c.
]
− 〈9(2)(t)|ẑ|9(2)(t)〉

= [D12(t)+ c.c.] + D22(t). (6)

In the strong-field limit, keeping in mind that F(t ′) is a slow function of time compared to the
t ′-dependent phases, the amplitudes ak(t) are given by integrals of fast-oscillating functions,
see (5). Such integrals always have two types of contributions. The first main contribution
comes from the saddle points inside the integration contour and signify real transitions from
the ground state into the excited and continuum states, which, in turn, contribute to the induced
dipole. Deviations from the usual linear Kerr effect due to real ionization and real excitation are
associated with these transitions.

The second contribution to the integral in (5) comes from the end point of the integral,
t ′

= t , and is equally standard. This contribution is derived using integration by parts and
assuming that the laser field Fcos(ωt) is slow compared to the oscillations of the exponents.
Writing out explicitly the ground-state Stark shift in the low-frequency field as

ag(t)= bg(t) exp

(
−i

∫ t

ti

1E (S)
g (τ )dτ

)
, (7)

we find for the second contribution

a(inst)
k (t)= ag(t)e

−iEg t F(t)
zkg(t)

Ek(t)− Eg(t)
, (8)

where Eg(t)= Eg +1E (S)
g (t) and zkg(t)= 〈φk(t)|ẑ|g〉. This contribution describes virtual

transitions from the ground state to the excited states, i.e. the instantaneous polarization of
the ground state driven by the low-frequency field. At the intensities of interest, a(inst)

k � 1 since
Fzkg � Ek − Eg. Substituting this expression into (6) for the leading term D12(t), we obtain the
contribution to the ground-state atom response from the instantaneous polarization following the
driving laser field:

D(inst)
12 (t)+ c.c.' 2|ag(t)|

2 F(t)
∑

k

|zgk(t)|2

Ek(t)− Eg(t)
. (9)

There are several obvious restrictions on the applicability of this expression. Firstly, it is
only valid in the low-frequency field, when the photon energy is small compared to the energy
gap between the ground and the excited states. Secondly, the virtual amplitudes ak must be
small, i.e. 1 − |ag(t)|2 � 1, otherwise the D22(t) term becomes equally important.

Expression (9) is remarkably similar to the lowest-order perturbation theory result, except
that the field-free states and their energies are replaced by the dressed Floquet states and the
associated energies Ek(t).

Knowing the structure of the states φk(t) and the energies Ek(t), one can analyse the
field dependence of the instantaneous response. In particular, one can apply the first-order
perturbation theory to the field-free states φk , Ek to find corrections introduced by the field.
In this approximation, one immediately obtains the standard Kerr effect, i.e. α = α0 + κF2. As
the application of the first-order perturbation theory to the excited states becomes insufficient,
one should not be surprised to see deviations from the linear intensity dependence. From this
perspective, the recent experimental results for near-IR laser fields [39] showing that this does
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not happen until close to the onset of ionization, are counter-intuitive. We will return to this
point later in the paper, when discussing our numerical results.

Consider now non-perturbative IR fields with intensities in the range of 1013 W cm−2, and
noble gases such as Ne, Ar or Kr. The ground state, with Ip ∼ 14 eV or even larger, remains
strongly bound at these intensities, and its Stark shift 1E (S)

g is negative. All excited states are,
however, deeply in the barrier suppression regime. The dressed states associated with them are
the quasi-bound KH states [3, 5, 6]. In the so-called KH reference frame, which oscillates with
the free electron r = rKH + (F/ω2)cos(ωt)ez, they are well approximated [2, 4] by stationary
eigenstates φ(KH)

k (rKH) of the laser-cycle averaged binding potential

U (KH)(rKH)=
1

2π

∫ 2π

0
dφ U (rKH + a0cos(φ)ez), (10)

where a0 = F/ω2 is the quiver amplitude of the free electron. For a0 � 1 the potential
acquires the characteristic double-well structure, with the two wells separated by 2a0, becoming
shallower as a0 increases. As a consequence the spectrum changes. Transforming back to the
laboratory frame, the states φ(KH)

k (rKH) (i) begin to oscillate and (ii) acquire the associated phase,

8k(r, t)= e−iE (KH)
k t− i

2

∫ t
−∞

A2(τ )dτφ
(KH)
k (r − a(t)), (11)

where A(t)= −(F/ω)sin (ωt)ez and a(t)= a0cos (φ)ez. Thus, the instantaneous contribution
to the induced dipole reads

D(inst,KH)(t)∼ D(inst,KH)
12 (t)+ c.c.

' 2|ag(t)|
2 F(t)

∑
k

|zgk(t)|2

E (KH)
k + A2(t)/2 − Eg(t)

. (12)

The ponderomotive term A2(t)/2 is large and positive. Consequently, the denominator grows.
Simultaneously, the φ(KH)

k become progressively more delocalized with increasing a0, leading
to the reduction of the transition matrix elements. Hence, it is reasonable to expect that the
instantaneous response decreases with intensity as the excited states enter the KH regime, i.e.
for laser field strengths F � FBS. For states with binding energies of a few eV this implies
I > 1013 W cm−2.

3. Numerical simulations

To gauge the importance of light-induced restructuring of the atom for its nonlinear response,
we have calculated the full nonlinear response of a 1D model hydrogenic system and the real
3D hydrogen atom by solving the time-dependant Schrödinger equation (TDSE) numerically on
a grid. We have computed the induced dipole d(t) and its Fourier transform at the fundamental
driving frequency dω for a broad range of peak laser field strengths F0 and frequencies ω rang-
ing from UV to mid-IR. In all 1D and 3D simulations a reflection-free absorbing boundary [40]
is used.

Numerical analysis of the importance and the relative contribution of the KH states
is challenging for two conceptual reasons. Firstly, there is a well-known difficulty of
unambiguously distinguishing bound versus continuum states when the laser pulse is still
present. Secondly, it is also difficult to separate virtual from real excitations while the field is
turned on, and such analysis is even sensitive to the gauge [19]. Moreover, given the very large
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negative polarizability of both continuum and KH states, even small transfer of real population
to these states (at the few 10−3 level) will dominate the negative contribution to the Kerr response
for IR laser frequencies.

The strategy we have adopted to deal with these challenges is as follows. For each set
of laser parameters, we have performed our calculations for different sizes of the simulation
volume. For small volumes, all or most of the free electrons are absorbed, suppressing their
contribution (the plasma response) to dω. For very large simulation volumes, all continuum
electrons are retained in the calculation until the end of the laser pulse. Thus, following the
dependence (or independence) of the response on the size of the simulation volume, we can
quantify the contribution of the free electrons.

Moreover, changing the size of the simulation volume also allows us to gauge the role
of the KH states. Indeed, for high laser intensities their size is ∼ ±2a0, where a0 = F/ω2 is
the electron oscillation amplitude. As soon as the size of the simulation volume, including the
width of the absorbing potential (33 au in our case) becomes less than ±2a0, the KH states will
be effectively destroyed and their contribution to dω suppressed. This turns the system into an
analogue of a short-range potential with a sole bound (ground) state left. The short-range system
has been analysed by Kolesik and collaborators [41, 42], showing that in this case the linear Kerr
effect persists until ionization. Our calculations shown in figure 1(c) are fully in line with their
results for small box sizes.

Importantly, the laser pulse envelope will have significant effect on the relative role,
existence and stability of the KH states. Indeed, the formation of stable ‘bound states of the free
electron’ requires that the intensity of the laser field remains constant during many laser cycles.
In the case of short bell-shaped laser pulses the positions of these states, and their lifetimes,
change from cycle to cycle, making their identification much more difficult and smearing
distinct features that they might produce in the nonlinear response. Moreover, the KH states
suffer fast decay during the transition between the perturbative and the KH regime. Therefore
our analysis was done for two different laser pulse shapes: (i) a short eight-cycle pulse with a
smooth bell-shaped envelope ((4-0-4)-pulse) and (ii) a long flat-top pulse that turns on in four
cycles until the peak intensity is reached, which then remains constant during the next 40 cycles
until the pulse smoothly turns off in four cycles ((4-40-4)-pulse). In both cases the leading edge
and the trailing edge of the two pulses are described by a sin2-envelope. The flat-top pulse is
favourable for the existence, stability and efficient population of the KH states.

In figure 1 we present the intensity-dependent response of the hydrogen atom, both
1D and 3D, for two selected frequencies and the short (4-0-4)-pulse. In all calculations
the applied electric field has linear polarization along the z axis. We plot the real
part of the nonlinear contribution to the frequency-dependent polarizability, calculated as
1αω(F)= dω(F)/F0 − limF0→0dω(F)/F0, where ω is the central frequency of the driving field
and F0 is the peak value of the electric field.

Panels (a) and (c) show the results for a 0.9µm and a 1.8µm laser pulse acting on a
model 1D system with soft-core Coulomb potential V (z)= −1/

√
(z)2 + (1.4142)2 and ground

state energy Eg = −0.5 au. The response is calculated by solving the TDSE for different
grid sizes ranging from z ∈ [−100, 100] au to z ∈ [−1000, 1000] au, with a time-step of 1t =

0.125 au, and a grid step-size of 1z = 0.05 au. The orange lines in the insets of figure 1
are the extrapolations of the linear response at small intensities towards higher intensities.
For λ' 0.9µm, the polarizability increases linearly until I ' 2.4 × 1013 W cm−2. Beyond this
intensity the Kerr response first saturates and subsequently reverses its sign.
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Figure 1. Dependence of the Kerr response on the size of the simulation grid for
the short (4-0-4)-pulse. Plotted is the real part of the nonlinear contribution to
the polarizability (with the low-field limit subtracted) as a function of intensity
for (a) the 1D hydrogenic system and a central frequency of the driving pulse
of ω = 0.050 au, (b) the 3D hydrogen atom and a central frequency of the
driving pulse of ω = 0.050 au, (c) same as (a), but for ω = 0.025 au, (d) same
as (b), but for ω = 0.025 au. 1D results are shown for different grid sizes ranging
from z ∈ [−100, 100] au to z ∈ [−1000, 1000] au. 3D results are computed in
cylindrical coordinates for the simulation volume 0 with radius ρ ∈ [0, 100] au
and z ∈ [−100, 100] au, simulation volume 1 with radius ρ ∈ [0, 100] au and
z ∈ [−200, 200] au, simulation volume 2 with radius ρ ∈ [0, 100] au and z ∈

[−400, 400] au, and simulation volume 3 with radius ρ ∈ [0, 200] au and z ∈

[−800, 800] au. The horizontal black solid line indicates Re[1αω] = 0. The
insets show a zoom of the intensity regions, in which the Kerr response saturates.
The solid orange lines are the extrapolations of the linear response at small
intensities towards higher intensities.

Firstly, we note that saturation starts just before the results begin to depend on the
simulation volume. Thus, it is not yet dominated by the free electrons.

Secondly, there is a very peculiar dependence on the volume size beyond I =

2.9 × 1013 W cm−2. For grid sizes above ±200 au, there is no size-dependence of the response.
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Thus, all electrons responsible for the saturation of the Kerr response are within the
±(200 − 33) au = ±167 au distance from the origin.

Thirdly, comparing with the results for the smallest simulation volume ±100 au, we see
that about half of them are much closer, within ±(100 − 33) au = ±67 au for the intensity range
shown in the inset. They are either trapped into Rydberg states or have a positive energy below
0.5 eV (our absorbing potential absorbs virtually all electrons above this energy).

The physics becomes much clearer for the mid-IR wavelength of 1.8µm. Here we can see
a clear dependence of the saturation effect on the grid size.

First, let us consider all grids larger than ±200 au. The saturation occurs universally at the
same intensity and starts just before the onset of the grid-size dependence. For higher intensities,
the clear dependence on the grid size demonstrates the contribution of free electrons.

Now, we bring the reader’s attention to the dramatic change for the ±(100 − 33) au =

±67 au grid: the linear dependence of the Kerr response is perfectly restored. To interpret
this result, we note that the size of the KH states is 2a0 ≈ 90 au at the intensity I = 2.7 ×

1013 W cm−2. Thus, in this regime the saturation and the reversal of the Kerr effect are dominated
by the response of the KH states, which are not supported by the ±100 au grid.

Figures 1(b) and (d) show similar calculations for the 3D hydrogen atom. A spatial
resolution of 0.2 au and a time-step of1t = 0.005 au is used. For λ' 0.9µm, the Kerr response
is saturated around I = 4.3 × 1013 W cm−2, however, the results do not depend on the size of the
simulation volume. Virtually all states that contribute to the atom’s response are confined within
the smallest simulation volume (ρmax = 100 au, −100< z < 100 au).

At I = 5.6 × 1013 W cm−2 the Kerr effect is reversed and the polarizability shows a
dependence on the simulation volume meaning that the free electrons contribute. However,
the overall decrease relative to the linear Kerr response is noticeably larger than the variation
between the bigger simulation volumes, suggesting that the physics is similar to that in the 1D
case: substantial contribution of the Rydberg states.

Also for λ' 1.8µm, the 3D simulations are in line with the 1D results. For the smallest
simulation volume, the KH states are absorbed by the absorbing boundary, preventing the
saturation and reversal of the Kerr response at higher intensities. For the larger simulation
volumes, the Kerr effect is saturated at the same intensity I = 4.3 × 1013 W cm−2 as for
λ' 0.9µm. However, the grid size dependence is more pronounced: the deviation from the
linear response is twice as big for the largest simulation volume compared to that of volume 1
and that of volume 2, for which the response is virtually the same. The grid size dependence
demonstrates bi-modal distribution of electrons: at this intensity half of the contributing
electrons are located within the volume 1 with |z|< 200 au while the rest are outside volume 2,
i.e. at |z|> 400 au.

How does the Kerr response change for the longer (4-40-4)-pulse? Good convergence of the
results in 3D requires very large simulation volumes, with |zmax| = 1600 au and ρmax = 400 au,
making reliable computations for long laser pulses prohibitively expensive. Figure 2 shows
our results for the 1D hydrogenic system and several values of the laser wavelength. A spatial
resolution of 0.1 au and a time-step of 1t = 0.125 au is used.

First of all, we note that there are clear resonances in the response at the driving frequency,
especially well pronounced for shorter laser wavelengths (λ' 0.5µm and λ' 0.7µm), where
they are accompanied by a dramatic drop in the Kerr response due to population transfer into
excited states with large negative polarizability.
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Figure 2. Kerr response for the long (4-40-4)-pulse. Plotted is the real part of the
nonlinear contribution to the polarizability (with the low-field limit subtracted)
as a function of intensity for the 1D hydrogenic system and a central frequency
of the driving pulse of (a) ω = 0.0675 au, (b) ω = 0.090 au (red), ω = 0.055 au
(blue) and ω = 0.025 au (green). The insets show the low-intensity regions. The
horizontal black dashed line indicates Re[1αω] = 0. The vertical orange dashed
lines in (a) indicate the intensity values for which the Floquet spectra shown in
figure 3(c) are computed.

Complementary calculations monitoring ionization (not depicted here) show that these
resonances are accompanied by very little ionization and that the population stays bound
after the end of the laser pulse. For λ' 0.8µm, the drop in the Kerr response due to a
multiphoton resonance just precedes the onset of ionization. For longer wavelengths, the onset
of ionization is essentially frequency-independent, with ionization probability reaching 0.5%
around I = 3.2 × 1013 W cm−2. Importantly, for the longest wavelengths, resonances persist in
the tunnelling regime of the Keldysh parameter γ 2

= Ip/2Up = 2Ipω
2/F2 < 1 and even well in

the barrier suppression regime for all excited states.
What is the origin of these resonance structures? We stress that we are looking at the

response at the fundamental frequency, ω, with the ground state well separated from the rest of
the spectrum. Let us focus on the prominent resonance for λ' 0.7µm, centred at the intensity
I = 2.39 × 1013 W cm−2. Figure 3(a) shows the intensity-dependent energy structure of the 1D
hydrogenic system. The dashed lines represent the energies of its excited states shifted by Up.
The Stark shift of the ground state of only ∼ −0.08 eV at 3 × 1013 W cm−2 is negligible.

First thing to note is the six-photon Freeman resonance [43] between the ground state
|g〉 and the second excited state |2〉 at I = 2.39 × 1013 W cm−2. Figure 3(c) shows the Floquet
analysis of the energy-amplitude structure of the populated field-dressed states for I = 2.39 ×

1013 W cm−2, as well as for a lower intensity, I = 1.56 × 1013 W cm−2 and for a higher intensity,
I = 2.64 × 1013 W cm−2, both outside the resonance region, cf figure 2(a). The Floquet analysis
was carried out as described in [4]. Surprisingly, the six-photon peak is negligible. However,
the three-photon peak and the four-photon peak are distinct for I = 2.39 × 1013 W cm−2 and
drop considerably for I = 2.64 × 1013 W cm−2. The solid lines in figure 3(a) show the intensity-
dependent energies of the excited states of the associated KH atom. In the KH picture no six-
photon Freeman resonance occurs, explaining why the six-photon peak is negligible.
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Figure 3. Analysis of the origin of the resonance in the response for λ'

0.7µm at I = 2.39 × 1013 W cm−2, see figure 2(a). (a) Energy structure of the
1D hydrogenic system versus intensity. Dashed lines represent the energies of
its excited states shifted by Up. The solid black line represents the ground
state energy, which is assumed to remain constant for all intensities. The six-
photon Freeman resonance between the ground state and the second excited
state at I = 2.39 × 1013 W cm−2 is indicated. Non-black solid lines represent
the energies of the excited states of the associated KH atom. (b) Transition
energies between the third and the second excited KH state, E|KH3〉 − E|KH2〉,
and between the second and the first excited KH state, E|KH2〉 − E|KH1〉, versus
intensity. The horizontal orange line denotes the one-photon energy of the λ'

0.7µm laser field. The vertical orange line indicates I = 2.39 × 1013 W cm−2.
(c) Quasi-energy spectra for I = 1.56 × 1013 W cm−2 (green solid line), I =

2.39 × 1013 W cm−2 (red dashed line) and I = 2.64 × 1013 W cm−2 (blue dashed
line). The energies corresponding to a n-photon (n = 1, . . . , 7) transition
starting from the unperturbed ground state are indicated. Panels (d) and (e)
show the partial quasi-energy spectra calculated for a subsystem consisting
of the seven lowest excited KH states for I = 1.56 × 1013 W cm−2 and I =

2.39 × 1013 W cm−2, respectively. The orange dashed lines indicate the energies
corresponding to the three-photon and the four-photon transition starting from
the unperturbed ground state.
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However, the transition energies between the third and the second excited KH state,
E|KH3〉 − E|KH2〉, and between the second and the first excited KH state, E|KH2〉 − E|KH1〉,
become nearly resonant with the λ' 0.7µm laser field, see figure 3(b). Hence, for I =

2.39 × 1013 W cm−2, these excited KH states are strongly coupled by the field, potentially
forming a Floquet ladder which can be felt by the ground state.

To check this idea we have considered a subsystem consisting of the seven lowest excited
KH states, 9(KH)

sub =
∑7

i=1 a(KH)
i (t)ψ (KH)

i , which are coupled by the first and second harmonic
of the KH potential, see (10). Starting from the first excited KH state, we have solved the
(truncated) TDSE in the KH frame

i∂t9
(KH)
sub =

[
−

1

2
∇

2 +
2∑

n=0

Un(zKH)cos(nωt)

]
9
(KH)
sub ,

Un(zKH)=
1

2π

∫ 2π

0
U (zKH + a0cos(φ))cos(nφ) dφ,

where U is the binding potential, thereby obtaining the time-dependent partial amplitudes
a(KH)

i (t) and their Fourier transforms a(KH)
i (ω).

Panels (d) and (e) show the partial quasi-energy spectra |a(KH)
i (h̄ω)|2 for I =

1.56 × 1013 W cm−2 and I = 2.39 × 1013 W cm−2, respectively. The energies corresponding to
the three-photon transition and to the four-photon transition starting from the unperturbed
ground state are indicated. For I = 1.56 × 1013 W cm−2 no resonance is present. For I =

2.39 × 1013 W cm−2 two quasi-energy peaks appear at the three-photon and four-photon
resonance, consistent with the full calculation. We note that the relative amplitudes of the
quasi-energy peaks are not reliable due to the limited number of states included in the calcula-
tion, especially due to the absence of the ground state. Thus, our analysis suggests an interplay
of quasi-static tunnelling from the ground state, trapping of the tunnelled population in the
KH states, and the modifications of the ‘instantaneous’ response of the dressed ground state
associated with the establishment of the KH regime for the excited states (which requires
several laser cycle with constant intensity).

4. Conclusions

We have shown that our numerical analysis supports our analytical prediction that the
restructuring of a ‘laser-dressed’ atom, in particular the formation of KH states, does play an
important role in the nonlinear Kerr effect, even for mid-IR wavelengths. This is an unusual
regime since the KH atom is only formed for the excited states but not for the ground state,
which remains only weakly perturbed. The significance of the KH states for the Kerr response
is strongly pulse-shape dependent. For the short bell-shaped pulse our numerical results indicate
that the saturation of the Kerr response happens just before ionization sets in. The higher-order
Kerr effect appears to be real, but it is important only in a very narrow intensity window.
As soon as ionization occurs, the free electrons start to dominate. The deviations from the
standard model are much more prominent for the flat-top pulse, for which our calculations
reveal clear resonances in the response at the driving frequency. Our Floquet analysis suggests
that these resonances can be explained by population transfer into excited KH states. While
clear observation of these effects in laser filamentation is challenging and requires the use of
shaped laser pulses, their signatures could be visible due to the presence of resonance structures
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in the Kerr response, possibly leading to unusual self-focusing and propagation dynamics. From
the perspective of attosecond and intense-field physics, finding such signatures outside the
traditional setup employing high-resolution photo-electron spectroscopy, velocity map imaging
and COLTRIMS, would be extremely exciting.
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