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SPHERICAL ACTIONS ON FLAG VARIETIES

ROMAN AVDEEV AND ALEXEY PETUKHOV

Abstract. For every finite-dimensional vector space V and every V -flag variety X we
list all connected reductive subgroups in GL(V ) acting spherically on X.

1. Introduction

Throughout this paper we fix an algebraically closed field F of characteristic 0, which is
the ground field for all objects under consideration. By F× we denote the multiplicative
group of F.

Let K be a connected reductive algebraic group and let X be a K-variety (that is,
an algebraic variety together with a regular action of K). The action of K on X, as
well as the variety X itself, is said to be spherical (or K-spherical when one needs to
emphasize the acting group) if a Borel subgroup of K has an open orbit in X. Every
finite-dimensional K-module that is spherical as a K-variety is said to be a spherical K-
module. Spherical varieties possess various remarkable properties; a review of them can
be found, for instance, in the monograph by Timashev [Tim].

Describing all spherical varieties for a fixed group K is an important and interesting
problem, and by now considerable results have been achieved in solving it. A review
of these results can be also found in the monograph [Tim]. Along with the problem
mentioned above one can also consider an opposite problem, namely, for a given algebraic
variety X find all connected reductive subgroups in the automorphism group of X that
act spherically on X. In this paper we consider this problem in the case where X is a
generalized flag variety.

A generalized flag variety is a homogeneous space of the form G/P , where G is a
connected reductive group and P is a parabolic subgroup of G. We call the variety G/P
trivial if P = G and nontrivial otherwise. The following facts are well known:

(1) all generalized flag varieties of a fixed group G are exactly all complete (and also
all projective) homogeneous spaces of G;

(2) the center of G acts trivially on G/P ;
(3) the natural action of G on G/P is spherical.
Let F (G) denote the set of all (up to a G-equivariant isomorphism) nontrivial gener-

alized flag varieties of a fixed group G. For every generalized flag variety X we denote by
Aut X its automorphism group.

2010 Mathematics Subject Classification. 14M15, 14M27.
Key words and phrases. Algebraic group, flag variety, spherical variety, nilpotent orbit.
The first author was supported by the RFBR grant no. 12-01-00704, the SFB 701 grant of the University

of Bielefeld (in 2013), the “Oberwolfach Leibniz Fellows” programme of the Mathematisches Forschungsin-
stitut Oberwolfach (in 2013), and Dmitry Zimin’s “Dynasty” Foundation (in 2014). The second author
was supported by the Guest Programme of the Max-Planck Institute for Mathematics in Bonn (in 2012–
2013).

1



2 ROMAN AVDEEV AND ALEXEY PETUKHOV

In [Oni, Theorem 7.1] (see also [Dem]) the automorphism groups of all generalized flag
varieties were described. This description implies that, for every X ∈ F (G), Aut X is an
affine algebraic group and its connected component of the identity (Aut X)0 is semisimple
and has trivial center. Moreover, it turns out that in most of the cases (all exceptions
are listed in [Oni, Table 8], see also [Dem, § 2]), including the case G = GLn, the natural
homomorphism G → (Aut X)0 is surjective and its kernel coincides with the center of G.
In any case one has X ∈ F ((Aut X)0), therefore the problem of describing all spherical
actions on generalized flag varieties reduces to the following one:

Problem 1.1. For every connected reductive algebraic group G and every variety X ∈
F (G), list all connected reductive subgroups K ⊂ G acting spherically on X.

Since the center of G acts trivially on any variety X ∈ F (G), when it is convenient,
in solving Problem 1.1 the group G without loss of generality may be assumed to be
semisimple.

The main goal of this paper is to solve Problem 1.1 in the case G = GLn (the results
are stated below in Theorems 1.6 and 1.7).

Let us list all cases known to the authors where Problem 1.1 is solved.
1) G and X are arbitrary and K is a Levi subgroup of a parabolic subgroup Q ⊂ G.

In this case the condition that the variety G/P ∈ F (G) be K-spherical is equivalent
to the condition that the variety G/P × G/Q be G-spherical, where G acts diagonally
(see Lemma 5.4). All G-spherical varieties of the form G/P ×G/Q are classified. In the
case where P, Q are maximal parabolic subgroups this was done by Littelmann [Lit]. In
the cases G = GLn and G = Sp2n the classification follows from results of the Magyar,
Weyman, and Zelevinsky papers [MWZ1] and [MWZ2], respectively. (In fact, in [MWZ1]
and [MWZ2] for G = GLn and G = Spn, respectively, the following more general problem
was solved: describe all sets X1, . . . , Xk ∈ F (G) such that G has finitely many orbits
under the diagonal action on X1× . . .×Xk.) Finally, for arbitrary groups G the classifica-
tion was completed by Stembridge [Stem]. The results of this classification for G = GLn

will be essentially used in this paper and are presented in § 5.2.
2) G and X are arbitrary and K is a symmetric subgroup of G (that is, K is the

subgroup of fixed points of a nontrivial involutive automorphism of G). In this case the
classification was obtained in the paper [HNOO].

3) G is an exceptional simple group, X = G/P for some maximal parabolic subgroup
P ⊂ G, and K is a maximal reductive subgroup in G. This case was investigated in the
preprint [Nie].

Let G be an arbitrary connected reductive group, g = Lie G, and K ⊂ G an arbitrary
connected reductive subgroup.

We now discuss the key idea utilized in this paper. Let P ⊂ G be a parabolic subgroup
and let N ⊂ P be its unipotent radical. Put n = Lie N . We regard the adjoint action
of G on g. In view of a well-known result of Richardson (see [Rich, Proposition 6(c)]), for
the induced action P : n there is an open orbit OP . We put

(1.1) N (G/P ) = GOP ⊂ g.

It is easy to see that N (G/P ) is a nilpotent (that is, containing 0 in its closure) G-orbit
in g.
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Definition 1.2. We say that two varieties X1, X2 ∈ F (G) are nil-equivalent (notation:
X1 ∼ X2) if N (X1) = N (X2).

It is well-known that every G-orbit in g is endowed with the canonical structure of a
symplectic variety. It turns out (see Theorem 2.6) that a variety X ∈ F (G) is K-spherical
if and only if the action K : N (X) is coisotropic (see Definition 2.2) with respect to the
symplectic structure on N (X). This immediately implies the following result.

Theorem 1.3. Suppose that X1, X2 ∈ F (G) and X1 ∼ X2. Then the following conditions
are equivalent:

(a) the action K : X1 is spherical;
(b) the action K : X2 is spherical.

Let [[X]] denote the nil-equivalence class of a variety X ∈ F (G). The inclusion relation
between closures of nilpotent orbits in g defines a partial order 4 on the set F (G)/∼ of all
nil-equivalence classes in the following way: for X1, X2 ∈ F (G) the relation [[X1]] 4 [[X2]]
(or [[X2]] < [[X1]]) holds if and only if the orbit N (X1) is contained in the closure of the
orbit N (X2). We shall also write [[X1]] ≺ [[X2]] (or [[X2]] Â [[X1]]) when [[X1]] 4 [[X2]] but
[[X1]] 6= [[X2]].

Using a result from the resent paper [Los] by Losev, in § 2.4 we shall prove the following
theorem.

Theorem 1.4. Suppose that X1, X2 ∈ F (G) and [[X1]] ≺ [[X2]]. If the action K : X2 is
spherical, then so is the action K : X1.

Theorems 1.3 and 1.4 yield the following method for solving Problem 1.1: at the first
step, for every class [[X]] ∈ F (G)/ ∼ that is a minimal element with respect to the
order 4, find all connected reductive subgroups K ⊂ G acting spherically on X; at the
second step, using the lists of subgroups K obtained at the first step, carry out the same
procedure for all nil-equivalence classes that are on the “next level” with respect to the
order 4; and so on.

We recall that there is the natural partial order 6 on the set F (G). This order can
be defined as follows. Fix a Borel subgroup B ⊂ G. Let X1, X2 ∈ F (G). Then X1 =
G/P1 and X2 = G/P2 where P1, P2 are uniquely determined parabolic subgroups of G
containing B. By definition, the relation X1 6 X2 holds if and only if P1 ⊃ P2. Now let Ni

be the unipotent radical of Pi, i = 1, 2. Then the condition P1 ) P2 implies that N1 ( N2,
from which one easily deduces that the orbit N (X1) is contained in the closure of the orbit
N (X2). Since dimN (Xi) = 2 dim Ni for i = 1, 2 (see, for instance, [CM, Theorem 7.1.1]),
one has N (X1) 6= N (X2). Thus, if X1 6 X2 and X1 6= X2 then [[X1]] ≺ [[X2]]. In
particular, if [[X]] is a minimal element of the set F (G)/∼ with respect to the partial
order 4, then X is a minimal element of the set F (G) with respect to the partial order 6.

We note that for a semisimple group G of rank n the set F (G) contains exactly n
minimal elements with respect to the partial order 6. On the other hand, using known
results on nilpotent orbits in the classical Lie algebras (see [CM, §§5–7]), one can show
that for a simple group G of type An, Bn, or Cn the set F (G)/ ∼ contains only one
minimal element with respect to the partial order 4 and for a simple group G of type Dn

(n > 4) the set F (G)/∼ contains two (for n = 2k + 1) or three (for n = 2k) minimal
elements with respect to the partial order 4. This shows that the partial order 4 is much
more effective in solving Problem 1.1 than the partial order 6.
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We now turn to V -flag varieties, which are the main objects in our paper. In order to
fix the definition of these varieties that is convenient for us, we need the following notion.
A composition of a positive integer d is a tuple of positive integers (a1, . . . , as) satisfying
the condition

a1 + . . . + as = d.

We say that a composition a = (a1, . . . , as) is trivial if s = 1 and nontrivial if s > 2.
Let V be a finite-dimensional vector space of dimension d and let a = (a1, . . . , as) be

a composition of d. The V -flag variety (or simply the flag variety) corresponding to a is
the set of tuples (V1, . . . , Vs), where V1, . . . , Vs are subspaces of V satisfying the following
conditions:

(a) V1 ⊂ . . . ⊂ Vs = V ;
(b) dim Vi/Vi−1 = ai for i = 1, . . . , s (here we suppose V0 = {0}).

We note that dim Vi = a1 + . . . + ai for all i = 1, . . . , s.
For every composition a = (a1, . . . , as), we denote by Fla(V ) the V -flag variety corre-

sponding to a. If a is nontrivial, then along with Fla(V ) we shall also use the notation
Fl(a1, . . . , as−1; V ).

The following facts are well known:
(1) every V -flag variety X is equipped with the canonical structure of a projective

algebraic variety and the natural action of GL(V ) on X is regular and transitive;
(2) up to a GL(V )-equivariant isomorphism, all V -flag varieties are exactly all general-

ized flag varieties of the group GL(V ).
In view of fact (2), in what follows all notions and notation introduced for generalized

flag varieties will be also used for V -flag varieties.
It is easy to see that a V -flag variety Fla(V ) is trivial (resp. nontrivial) if and only if

the composition a is trivial (resp. nontrivial).
For 1 6 k 6 d we regard the composition ck of d, where ck = (k, d−k) for 1 6 k 6 d−1

and cd = (d). The variety Flck
(V ) is said to be a Grassmannian, we shall use the special

notation Grk(V ) for it. Points of this variety are in one-to-one correspondence with k-
dimensional subspaces of V . The point corresponding to a subspace W ⊂ V will be
denoted by [W ]. It is easy to see that Grd(V ) consists of the single point [V ] and Gr1(V )
is nothing else but the projective space P(V ).

In this paper we implement the general method for solving Problem 1.1 discussed above
for G = GL(V ). In this case there is a well-known description of the map from F (GL(V ))
to the set of nilpotent orbits in gl(V ), as well as the partial order on the latter set (see
details in § 3). In particular, the following proposition holds (see Corollary 3.5):

Proposition 1.5. Let a and b be two compositions of d. The following conditions are
equivalent:

(a) the varieties Fla(V ) and Flb(V ) are nil-equivalent;
(b) a and b can be obtained from each other by a permutation (in particular, a and b

contain the same number of elements).

In view of Theorem 1.3, Proposition 1.5 implies the following theorem.

Theorem 1.6. Let a and b be two compositions of d obtained from each other by a per-
mutation and let K ⊂ GL(V ) be an arbitrary connected reductive subgroup. The following
conditions are equivalent:
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(a) the action K : Fla(V ) is spherical;
(b) the action K : Flb(V ) is spherical.

Theorem 1.6 reduces the problem of describing all spherical actions on V -flag varieties
to the case of varieties Fla(V ) such that the composition a = (a1, . . . , as) satisfies the
inequalities a1 6 . . . 6 as.

It is easy to see that the K-sphericity of P(V ) is equivalent to the sphericity of the
(K × F×)-module V , where F× acts on V by scalar transformations. Consequently, a de-
scription of all spherical actions on P(V ) is a trivial consequence of the known classification
of spherical modules, which was obtained in the papers [Kac], [BR], and [Lea]. (This clas-
sification plays a key role in this paper and is presented in § 5.1.) As P(V ) = Gr1(V ), to
complete the description of all spherical actions on V -flag varieties it suffices to restrict
ourselves to the case of varieties Fla(V ) such that the composition a is nontrivial and
distinct from (1, d− 1).

Before we state the main result of this paper, we need to introduce one more notion
and some additional notation.

Let K1, K2 be connected reductive groups, U1 a K1-module, and U2 a K2-module.
Regard the corresponding representations

ρ1 : K1 → GL(U1) and ρ2 : K2 → GL(U2).

Following Knop (see [Kn2, § 5]), we say that the pairs (K1, U1) are (K2, U2) geometrically
equivalent if there exists an isomorphism U1

∼−→ U2 identifying the groups ρ1(K1) ⊂
GL(U1) and ρ2(K2) ⊂ GL(U2). In other words, the pairs (K1, U1) and (K2, U2) are
geometrically equivalent if and only if they define the same linear group. For example,
every pair (K,U) is geometrically equivalent to the pair (K,U∗) (where U∗ is the K-
module dual to U), the pair (SL2, S

2F2) is geometrically equivalent to the pair (SO3,F3),
and the pair (SL2× SL2,F2 ⊗ F2) is geometrically equivalent to the pair (SO4,F4).

Let K be a connected reductive subgroup in GL(V ) and let K ′ be the derived subgroup
of K. We denote by C the connected component of the identity of the center of K.
Let X(C) denote the character group of C (in additive notation). We consider V as a
K-module and fix a decomposition V = V1 ⊕ . . . ⊕ Vr into a direct sum of simple K-
submodules. For every i = 1, . . . , r we denote by χi the character of C via which C acts
on Vi.

The following theorem is the main result of this paper.

Theorem 1.7. Suppose that a = (a1, . . . , as) is a nontrivial composition of d such that
a1 6 . . . 6 as and a 6= (1, d − 1). Then the variety Fla(V ) is K-spherical if and only if
the following conditions hold:

(1) the pair (K ′, V ), which is considered up to a geometrical equivalence, and the tuple
(a1, . . . , as−1) are contained in Table 1;

(2) the group C satisfies the conditions listed in the fourth column of Table 1.

Theorem 1.7 is a union of Theorems 6.1, 6.6, 6.7, and 6.8.
Let us explain the notation and conventions used in Table 1. In each case we assume

that the i-th factor of K ′ acts on the i-th direct factor of V . Further, we assume that
the group of type SLq (resp. Sp2q, SOq) naturally acts on Fq (resp. F2q, Fq). In row 4
the group Spin7 acts on F8 via the spinor representation. If the description of the tuple
(a1, . . . , as−1) given in the third column contains parameters, then these parameters may
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Table 1
No. (K ′, V ) (a1, . . . , as−1) Conditions on C Note

s = 2 (Grassmannians)
1 (SLn,Fn) (k) n > 4
2 (Sp2n,F2n) (k) n > 2
3 (SOn,Fn) (k) n > 4
4 (Spin7,F8) (2)
5 (Sp2n,F2n ⊕ F) (k) n > 2

6 (SLn× SLm,Fn ⊕ Fm) (k) χ1 6= χ2 for n = m = k
n > m > 1,
n + m > 4

7 (Sp2n× SLm,F2n ⊕ Fm) (2) χ1 6= χ2 for m = 2 n,m > 2
8 (Sp2n× SLm,F2n ⊕ Fm) (3) χ1 6= χ2 for m 6 3 n,m > 2
9 (Sp4× SLm,F4 ⊕ Fm) (k) χ1 6= χ2 for k = m = 4 m, k > 4

10 (Sp2n× Sp2m,
F2n ⊕ F2m)

(2) χ1 6= χ2 n > m > 2

11 (SLn× SLm,
Fn ⊕ Fm ⊕ F)

(k)
χ2 − χ1, χ3 − χ1

lin. ind. for k = n
χ2 6= χ3 for m 6 k < n

n > m > 1,
n > 2

12 (SLn× SLm× SLl,
Fn ⊕ Fm ⊕ Fl)

(2)

χ2 − χ1, χ3 − χ1

lin. ind. for n = 2
χ2 6= χ3 for

n > 3, m 6 2

n>m>l>1,
n > 2

13 (Sp2n× SLm× SLl,
F2n ⊕ Fm ⊕ Fl)

(2)

χ2 − χ1, χ3 − χ1

lin. ind. for m 6 2
χ1 6= χ3 for
m > 3, l 6 2

n > 2,
m > l > 1

14 (Sp2n× Sp2m× SLl,
F2n ⊕ F2m ⊕ Fl)

(2)
χ2 − χ1, χ3 − χ1

lin. ind. for l 6 2
χ1 6= χ2 for l > 3

n > m > 2,
l > 1

15 (Sp2n× Sp2m× Sp2l,
F2n ⊕ F2m ⊕ F2l)

(2)
χ2 − χ1, χ3 − χ1

lin. ind. n >m >l >2

s > 3
16 (SLn,Fn) (a1, . . . , as−1) n > 3
17 (Sp2n,F2n) (1, a2) n > 2
18 (Sp2n,F2n) (1, 1, 1) n > 2
19 (SLn,Fn ⊕ F) (a1, . . . , as−1) χ1 6= χ2 for s = n + 1 n > 2
20 (SLn× SLm,Fn ⊕ Fm) (1, a2) χ1 6= χ2 for n = 1 + a2 n > m > 2

21 (SLn× SL2,Fn ⊕ F2) (a1, a2)
χ1 6= χ2 for

n = 4, a1 = a2 = 2
n > 4,
a1 > 2

22 (Sp2n× SLm,
F2n ⊕ Fm)

(1, 1) χ1 6= χ2 for m 6 2
n > 2,
m > 1

23 (Sp2n× Sp2m,
F2n ⊕ F2m)

(1, 1) χ1 6= χ2 n > m > 2
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take any admissible values (that is, any values such that a1 6 . . . 6 as and a 6= (1, d−1)).
In particular, in rows 16 and 19 any composition a satisfying the above restrictions is
possible. The empty cells in the fourth column mean that there are no conditions on C,
that is, the characters χ1, . . . , χr may be arbitrary. The abbreviation “lin. ind.” stands
for “are linearly independent in X(C)”.

Our proof of Theorem 1.7 is based on an analysis of the partial order 4 on the
set F (GL(V ))/∼. Here the starting points are the following facts:

(1) if X ∈ F (GL(V )) then [[X]] < [[P(V )]];
(2) if X ∈ F (GL(V )), [[X]] 6= [[P(V )]], and d > 4, then [[X]] < [[ Gr2(V )]].
In view of Theorem 1.4, facts (1) and (2) imply the following results, which hold for

any nontrivial V -flag variety X and any connected reductive subgroup K ⊂ GL(V ):
(1′) if X is a K-spherical variety then so is P(V ) (see Proposition 3.7);
(2′) if X is a K-spherical variety, [[X]] 6= [[P(V )]], and d > 4, then Gr2(V ) is a K-spherical

variety (see Proposition 3.9).
Assertion (1′) means that a necessary condition for K-sphericity of a nontrivial V -

flag variety is that V be a spherical (K × F×)-module, where F× acts on V by scalar
transformations (see Corollary 3.8). Assertion (2′) implies that the first step in the proof
of Theorem 1.7 is a description of all spherical actions on Gr2(V ).

We note that assertion (1′) was in fact proved in [Pet, Theorem 5.8] using the ideas
discussed in this paper.

The list of subgroups of GL(V ) acting spherically on Gr2(V ) (see Theorems 6.1 and 6.6)
turns out to be substantially shorter than that of subgroups acting spherically on P(V ).
This makes the subsequent considerations easier and enables us to complete the descrip-
tion of all spherical actions on nontrivial V -flag varieties that are nil-equivalent to neither
P(V ) nor Gr2(V ) (see Theorems 6.7 and 6.8).

This paper is organized as follows. In § 2 we recall some facts on Poisson and symplectic
varieties and then, using them, we prove the K-sphericity criterion of a generalized flag
variety X in terms of the action K : N (X) (this criterion implies Theorem 1.3). In the end
of § 2 we prove Theorem 1.4. In § 3 we study the nil-equivalence relation and the partial
order on nil-equivalence classes in the case G = GL(V ). We also discuss a transparent
interpretation of this partial order in terms of Young diagrams. In § 4 we collect all
auxiliary results that will be needed in our proof of Theorem 1.7. In § 5 we present
two known classifications that will be used in the proof of Theorem 1.7: the first one
is the classification of spherical modules and the second one is the classification of Levi
subgroups in GL(V ) acting spherically on V -flag varieties. We prove Theorem 1.7 in § 6.
At last, Appendix A contains the most complicated technical proofs of some statements
from § 4.

The authors express their gratitude to E.B. Vinberg and I. B. Penkov for useful discus-
sions.

Basic notation and conventions. In this paper all varieties, groups, and subgroups
are assumed to be algebraic. All topological terms relate to the Zariski topology. The
Lie algebras of groups denoted by capital Latin letters are denoted by the corresponding
small Gothic letters. All vector spaces are assumed to be finite-dimensional.
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Let V be a vector space. Any nondegenerate skew-symmetric bilinear form on V will
be called a symplectic form. If Ω is a fixed symplectic form on V , then for every subspace
W ⊂ V we shall denote by W⊥ the skew-orthogonal complement to W with respect to Ω.

All notation and conventions used in Table 1 will be also used in all other tables
appearing in this paper.

Notation:
|X| is the cardinality of a finite set X;
V ∗ is the space of linear functions on a vector space V
S2V is the symmetric square of a vector space V ;
∧2V is the exterior square of a vector space V ;
〈v1, . . . , vk〉 is the linear span of vectors v1, . . . , vk of a vector space V ;
G : X denotes an action of a group G on a variety X;
Gx is the stabilizer of a point x ∈ X under an action G : X;
G′ is the derived subgroup of G;
G0 is the connected component of the identity of a group G;
X(G) is the character group of a group G (in additive notation);
S(Ln × Lm) is the subgroup in GLn+m equal to (GLn×GLm) ∩ SLn+m;
S(On ×Om) is the subgroup in On+m equal to (On ×Om) ∩ SOn+m;
Y is the closure of a subset Y of a variety X;
rk G is the rank of a reductive group G, that is, the dimension of a maximal torus of G;
Xreg is the set of regular points of a variety X;
F[X] is the algebra of regular functions on a variety X;
F(X) is the field of rational functions on a variety X;
AG is the algebra of invariants of an action of a group G on an algebra A;
Quot A is the field of fractions of an algebra A without zero divisors;
Spec A is the spectrum of a finitely generated algebra A without zero divisors and nilpo-

tents, that is, the affine algebraic variety whose algebra of regular functions is isomorphic
to A;

TxX is the tangent space to a variety X at a point x;
T ∗

xX = (TxX)∗ is the cotangent space to a variety X at a point x;
T ∗X is the cotangent bundle of a variety X;
P> is the transpose matrix of a matrix P .

2. Generalized flag varieties and nilpotent orbits

Throughout this section we fix an arbitrary connected reductive group G and an arbi-
trary connected reductive subgroup K ⊂ G.

2.1. Poisson and symplectic varieties. In this subsection we gather all the required
information on Poisson and symplectic varieties. The information here is taken from [Vin,
§§ II.1–II.3].

Suppose we are given an irreducible variety X together with a bilinear anticommutative
operation {· , ·} on F(X) satisfying the identities

{f, gh} = {f, g}h + {f, h}g, (Leibniz identity)
{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity)
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for any f, g, h ∈ F(X). In this situation, the operation {· , ·} is said to be a Poisson bracket
and X is said to be a Poisson variety. Next, a smooth irreducible variety X together with
a nondegenerate closed 2-form ω on it is said to be a symplectic variety. In this situation,
the form ω is said to be the structure 2-form.

Let X be a Poisson variety. There is a unique bivector field B on Xreg with the following
property:

(2.1) {f, g} = B(df, dg)

for any f, g ∈ F(X). We call B the Poisson bivector. If B is nondegenerate in each point of
a nonempty open subset Z ⊂ Xreg, then the 2-form ω = (B>)−1 determines a symplectic
structure on Z.

Conversely, if X is a symplectic variety with structure 2-form ω then the bivector
B = (ω>)−1 defines the structure of a Poisson variety on X by the formula (2.1), so that
every symplectic variety is Poisson.

A morphism X → Y of Poisson varieties is said to be Poisson if the respective field ho-
momorphism F(Y ) → F(X) preserves the Poisson bracket. It follows from the definitions
that for a Poisson morphism X → Y of symplectic varieties the pullback of the structure
2-form on Y coincides with the structure 2-form on X.

The space g∗ is endowed with a natural structure of a Poisson variety. In view of the
Jacobi identity the Poisson bracket on F(g∗) is uniquely determined by its values on linear
functions, that is, on the space (g∗)∗ ' g. For ξ, η ∈ g one defines {ξ, η} = [ξ, η].

It is well known that for an arbitrary G-orbit O in g∗ the restriction of the Poisson
bivector to O is well defined and nondegenerate, which induces a symplectic structure
on O. This symplectic structure is determined by the 2-form ω given at a point α ∈ g∗

by the formula
ω(ξ · α, η · α) = α([ξ, η]), where ξ, η ∈ g.

The form ω is said to be the Kostant–Kirillov form.
Let X be a smooth irreducible variety. Then its cotangent bundle

T ∗X = {(x, p) | x ∈ X, p ∈ T ∗
xX}

is also a smooth irreducible variety. There is a canonical symplectic structure on T ∗X.
The structure 2-form ωX can be expressed in the form ωX = −dθ, where θ is the 1-
form defined as follows. Let π : T ∗X → X be the canonical projection and let dπ be its
differential. Let ξ be a tangent vector to T ∗X at the point (x, p). Then θ(ξ) = p(dπ(ξ)).

2.2. Some properties of symplectic G-varieties. Let X be a smooth irreducible G-
variety. The action G : X naturally induces an action G : T ∗X preserving the structure
2-form ωX .

Let V (X) be the Lie algebra of vector fields on X. The action of G on X determines a
Lie algebra homomorphism τX : g → V (X) taking each element ξ ∈ g to the corresponding
velocity field on X. For all ξ ∈ g and x ∈ X let ξx denote the value of the field τX(ξ) at
a point x ∈ X.

The map Φ: T ∗X → g∗ given by the formula

(x, p) 7→ [ξ 7→ p(ξx)], where x ∈ X, p ∈ T ∗
xX, ξ ∈ g,

is said to be the moment map.
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Proposition 2.1 ([Vin, § II.2.3, Proposition 2]). The map Φ is a G-equivariant morphism
of Poisson varieties.

Let V be a vector space with a given symplectic form Ω. A subspace W ⊂ V is said
to be isotropic if the restriction of Ω to W is zero and coisotropic if the skew-orthogonal
complement of W is isotropic.

Let X be a symplectic variety with structure 2-form ω. A smooth irreducible locally
closed subvariety Z ⊂ X is said to be coisotropic if the subspace TxZ is coisotropic in
TxX for every point x ∈ Z.

Definition 2.2. An action G : X preserving the structure 2-form ω is said to be
coisotropic if orbits of general position for this action are coisotropic.

The following theorem is implied by [Kn1, Theorem 7.1], see also [Vin, § II.3.4, Theo-
rem 2, Corollary 1].

Theorem 2.3. Let X be a smooth irreducible G-variety. The following conditions are
equivalent:

(a) the action G : X is spherical;
(b) the action G : T ∗X is coisotropic.

Let X be a Poisson variety. A subalgebra A ⊂ F(X) will be called Poisson-commutative
if the restriction of the Poisson bracket to A vanishes.

Proposition 2.4 ([Vin, § II.3.2, Proposition 5]). Let X be a symplectic G-variety such
that the structure 2-form is G-invariant. The following conditions are equivalent:

(a) the action G : X is coisotropic;
(b) the field F(X)G is Poisson-commutative.

2.3. The K-sphericity criterion of a generalized flag variety. The main result of
this subsection is Theorem 2.6.

We identify g and g∗ via the Killing form.
Let P ⊂ G be a parabolic subgroup and let N be the unipotent radical of P . We

recall that in Introduction we defined the nilpotent orbit N (G/P ) ⊂ g, see (1.1). Put
o = eP ∈ G/P . Let ΦP : T ∗(G/P ) → g be the moment map corresponding to the natural
action G : G/P .

Proposition 2.5. The image of the map ΦP coincides with the closure of the orbit
N (G/P ) ⊂ g. Moreover, the map ΦP is finite over N (G/P ).

Proof. In view of the identifications T ∗
o (G/P ) ' (g/p)∗ ' n, it follows from [Vin, § II.2.3,

Example 5] that ΦP (T ∗
o (G/P )) = n. This together with the G-equivariance of the map ΦP

(see Proposition 2.1) implies that the image of ΦP coincides with the subset Gn ⊂ g and, in
particular, is irreducible. By [Stei, § 2.13, Lemma 2] (see also [Tim, Proposition 2.7]) this
image is closed in g. It follows from the definition of the orbit N (G/P ) that it is dense
in Gn. Applying the general result [CM, Theorem 7.1.1] we find that dimN (G/P ) =
2 dim n, whence dimN (G/P ) = dim T ∗(G/P ). The latter means that the map ΦP is
finite over N (G/P ). ¤
Theorem 2.6. The following conditions are equivalent:

(a) the action K : G/P is spherical;
(b) the action K : N (G/P ) is coisotropic.
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Proof. Regard the open subset U = Φ−1
P (N (G/P )) in T ∗(G/P ). By Proposition 2.1, the

map ΦP |U : U → N (G/P ) is a G-equivariant Poisson morphism of symplectic varieties,
therefore the pullback of the structure 2-form on N (G/P ) coincides with the structure 2-
form on U . Next, by Proposition 2.5 the map ΦP |U is a covering. Consequently, the action
K : N (G/P ) is coisotropic if and only if the action K : U is coisotropic or, equivalently,
if the action K : T ∗(G/P ) is coisotropic. In view of Theorem 2.3 the latter holds if and
only if the action K : G/P is spherical. ¤
2.4. Proof of Theorem 1.4. In view of Theorem 2.6, the proof of Theorem 1.4 reduces
to that of the following proposition.

Proposition 2.7. Let O1,O2 be two nilpotent G-orbits in g such that O1 ⊂ O2. If the
action K : O2 is coisotropic then so is the action K : O1.

In order to prove this proposition we shall need Lemma 2.8 and Proposition 2.9 stated
and proved below.

Lemma 2.8. For every G-orbit O ⊂ g the algebra F[O] is the integral closure of the
algebra F[O] in the field F(O). In particular, F[O] is integrally closed.

Proof. Let ϕ : X → O be the normalization morphism of the variety O. The action
G : O canonically lifts to an action G : X and the morphism ϕ is G-equivariant. As ϕ is
birational, it follows that ϕ−1(O) ' O. Since all G-orbits in g have even dimension, the
codimension in O of the complement to O is at least two, therefore the codimension in
X of the complement to ϕ−1(O) is also at least two. Taking into account the normality
of X we get F[X] = F[O], which implies the required result. ¤
Proposition 2.9. For every G-orbit O ⊂ g, one has F(O)K = Quot(F[O]K).

Proof. Lemma 2.8 implies that the variety SpecF[O] is normal. Now the required result
follows from [Los, Corollary 3.4.1] and [Los, Theorem 1.2.4, part 1]. ¤
Proof of Proposition 2.7. Suppose that the action K : O2 is coisotropic. Then by Propo-
sition 2.4 the field F(O2)

K is Poisson-commutative. Therefore the algebra F[O2]
K is

Poisson-commutative as well. Consider the restriction map F[O2] → F[O1]. It is surjec-
tive and is a K-module homomorphism, hence the image of F[O2]

K coincides with F[O1]
K .

It follows that the latter algebra is Poisson-commutative. Let us show that the algebra
F[O1]

K is also Poisson-commutative. Let f ∈ F[O1]
K be an arbitrary element. It follows

from Lemma 2.8 that f satisfies an equation of the form
(2.2) fn + cn−1f

n−1 + . . . + c1f + c0 = 0,

where n > 1 and c0, . . . , cn−1 ∈ F[O1]. Applying the operator of “averaging over K”
(which is also known as the Reynolds operator, see [PV, § 3.4]) we may assume that
c0, . . . , cn−1 ∈ F[O1]

K . Moreover, we shall assume that the number n is minimal among
all equations of the form (2.2). For an arbitrary element g ∈ F[O1]

K we have {ci, g} = 0
for all i = 0, . . . , n − 1. Therefore, applying the Poisson bracket with g to both sides
of (2.2), we obtain

(nfn−1 + (n− 1)cn−1f
n−2 + . . . + c1){f, g} = 0.

Since n is minimal, the expression nfn−1 +(n−1)cn−1f
n−2 + . . .+c1 is different from zero,

hence {f, g} = 0. Consequently, {F[O1]
K ,F[O1]

K} = 0. Applying the same argument to



12 ROMAN AVDEEV AND ALEXEY PETUKHOV

an arbitrary element g ∈ F[O1]
K , again we get {f, g} = 0, hence the algebra F[O1]

K is
Poisson-commutative. Then Proposition 2.9 implies that the field F(O1)

K is also Poisson-
commutative. Applying Proposition 2.4 we find that the action K : O1 is coisotropic. ¤

Remark 2.10. In the case G = GLn (or SLn) the proof of Proposition 2.7 simplifies.
Namely, as was proved in [KP], in this case the closure of every G-orbit in g is normal.
Hence by Lemma 2.8 we have F[O1] = F[O1], and so F[O1]

K = F[O1]
K .

3. The partial order on the set of nil-equivalence classes
of V -flag varieties

Throughout this section we fix a vector space V of dimension d.

3.1. Nilpotent orbits in gl(V ). A composition (a1, . . . , as) of d will be called non-
increasing if a1 > . . . > as.

The following fact is well known.

Theorem 3.1. There is a bijection between the nilpotent orbits in gl(V ) and the non-
increasing compositions of d. Under this bijection, the orbit corresponding to a compo-
sition (a1, . . . , as) consists of all matrices whose Jordan normal form has zeros on the
diagonal and the block sizes are a1, . . . , as up to a permutation.

For every non-increasing composition a = (a1, . . . , as) of d we denote by Oa the corre-
sponding nilpotent orbit in gl(V ).

We now introduce a partial order on the set of non-increasing compositions of d in the
following way. For two compositions a = (a1, . . . , as) and b = (b1, . . . , bt) we write a 4 b
(or b < a) if

a1 + . . . + ai 6 b1 + . . . + bi for all i = 1, . . . , d

(in this formula we put aj = 0 for j > s and bj = 0 for j > t).

Theorem 3.2 (see [CM, Theorem 6.2.5]). Let a and b be two non-increasing compositions
of d. The following conditions are equivalent:

(a) Oa ⊂ Ob;
(b) a 4 b.

3.2. The correspondence between V -flag varieties and nilpotent orbits in gl(V ).
For every composition a = (a1, . . . , as) of d one defines the dual non-increasing composi-
tion â = (â1, . . . , ât) of d by the following rule:

âi = |{j | aj > i}|, i = 1, . . . , t.

Obviously, for every composition b of d obtained from a by a permutation one has â = b̂.
Besides, it is not hard to see that the operation a 7→ â is an involution on the set of
non-increasing compositions.

Proposition 3.3 (see [CM, Lemma 6.3.1]). Let a and b be two non-increasing composi-
tions of d. The following conditions are equivalent:

(a) a 4 b;
(b) â < b̂.



SPHERICAL ACTIONS ON FLAG VARIETIES 13

Let a be an arbitrary composition of d. We introduce the following notation:
Pa is a parabolic subgroup in GL(V ) that is the stabilizer of a point in Fla(V );
a\ is the non-increasing composition of d obtained from a by arranging its elements in

the non-increasing order.

Proposition 3.4. For every composition a of d one has N (Fla(V )) = Oâ.

Proof. Put c = a\. Clearly, Levi subgroups of Pa and Pc are conjugate in GL(V ). Then
from [JR, Theorem 2.7] it follows that N (Fla(V )) = N (Flc(V )). Further, by [Kra, § 2.2,
Theorem] (see also [CM, Theorem 7.2.3]) one has N (Flc(V )) = Oĉ. Since â = ĉ, we
obtain N (Fla(V )) = Oâ. ¤

Corollary 3.5. Let a and b be two compositions of d. The following conditions are
equivalent:

(a) Fla(V ) ∼ Flb(V );
(b) a\ = b\.

Proof follows from Proposition 3.4 and the fact that â = b̂ if and only if a\ = b\. ¤

Corollary 3.6. Let a and b be two compositions of d. The following conditions are
equivalent:

(a) [[ Fla(V )]] 4 [[ Flb(V )]];
(b) â 4 b̂;
(c) a\ < b\.

Proof. Equivalence of (a) and (b) follows from Theorem 3.2 and Proposition 3.4. Equiv-
alence of (b) and (c) follows from Proposition 3.3. ¤

3.3. Young diagrams of V -flag varieties. With every non-increasing composition a =
(a1, . . . , as) we associate the left-aligned Young diagram YD(a) whose i-th row from the
bottom contains ai boxes. With every variety Fla(V ) we associate the Young diagram
YD(a\). As an example, on Figure 1 we show the Young diagrams of some F6-flag varieties.

P(F6) Gr2(F6) Gr3(F6) Fl(1, 1;F6) Fl(1, 2;F6)
Figure 1

The partial order on the set of nil-equivalence classes of V -flag varieties admits a trans-
parent interpretation in terms of Young diagrams. Namely, let a and b be two composi-
tions of d. Then Fla(V ) 4 Flb(V ) if and only if the diagram YD(a\) can be obtained from
the diagram YD(b\) by crumbling, that is, by moving boxes from upper rows to lower
ones. For example, using this interpretation it is easy to construct the Hasse diagram
for the partial order on the set of nil-equivalence classes of flag varieties appearing on
Figure 1. This diagram is shown on Figure 2.

3.4. Some necessary sphericity conditions for actions on V -flag varieties. Let
K ⊂ GL(V ) be a connected reductive subgroup. In this subsection, making use of the
description of the partial order on the set F (GL(V ))/∼ given in §§ 3.2, 3.3, we obtain two
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[[ Fl(1, 2;F6)]]
¡ @

[[ Fl(1, 1;F6)]] [[ Gr3(F6)]]
@ ¡
[[ Gr2(F6)]]

[[P(F6)]]
Figure 2

necessary conditions for V -flag varieties to be K-spherical (see Propositions 3.7 and 3.9).
These conditions will be starting points in the proof of Theorem 1.7.

Let a be a nontrivial composition of d.

Proposition 3.7 (see also [Pet, Theorem 5.8]). If the variety Fla(V ) is K-spherical, then
so is the variety P(V ).

Proof. Clearly P(V ) = Flb(V ), where b = (1, d − 1). As a 6= (d), we have b\ < a\. In
view of Corollary 3.6 the latter implies that [[ Fla(V )]] < [[P(V )]]. It remains to apply
Theorem 1.4. ¤
Corollary 3.8. If the variety Fla(V ) is K-spherical, then V is a spherical (K × F×)-
module (where F× acts on V by scalar transformations).

Proposition 3.9. If the variety Fla(V ) is K-spherical, [[ Fla(V )]] 6= [[P(V )]], and d > 4,
then the variety Gr2(V ) is K-spherical.

Proof. We have Gr2(V ) = Flb(V ), where b = (2, d−2). As d > 4, we have b\ = (d−2, 2).
Next, the hypothesis implies that the composition a\ is different from (d) and (d− 1, 1).
The latter means that b\ < a\, whence by Corollary 3.6 we obtain [[ Fla(V )]] < [[ Gr2(V )]].
The proof is completed by applying Theorem 1.4. ¤
Remark 3.10. For d = 3 we have Gr2(V ) ∼ P(V ).

4. Tools

In this section we collect all auxiliary results that will be needed in our proof of Theo-
rem 1.7.

4.1. Spherical varieties and spherical subgroups. Let K be a connected reductive
group, B a Borel subgroup of K, and X a spherical K-variety.

Proposition 4.1. One has

(4.1) dim K + rk K > 2 dim X.

Proof. Since there is an open B-orbit in X, one has dim B > dim X. To complete the
proof it remains to notice that 2 dim B = dim K + rk K. ¤

In what follows we shall need the following notion.
A subgroup H ⊂ K is said to be spherical if the homogeneous space K/H is a spherical

K-variety. It is easy to see that H is spherical if and only if H0 is so.
Proposition 4.1 implies

Corollary 4.2. For every spherical subgroup H ⊂ K one has 2 dim H > dim K − rk K.
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4.2. Homogeneous bundles. Let G be a group, H a subgroup of G, and X a G-variety.
Suppose that there is a surjective G-equivariant morphism ϕ : X → G/H. Let Y denote
the fiber of ϕ over the point o = eH. Evidently, Y is an H-variety. In this situation we
say that X is a homogeneous bundle over G/H with fiber Y (or simply a homogeneous
bundle over G/H).

Since ϕ is G-equivariant, we have the following facts:
(1) every G-orbit in X meets Y ;
(2) for g ∈ G and y ∈ Y the condition gy ∈ Y holds if and only if g ∈ H.
Facts (1) and (2) imply that for every G-orbit O ⊂ X the intersection O ∩ Y is a

nonempty H-orbit.

Proposition 4.3. The map ι : O 7→ O ∩ Y is a bijection between G-orbits in X and
H-orbits in Y . Moreover, for every G-orbit O ⊂ X one has dimO − dim(O ∩ Y ) =
dim X − dim Y .

Proof. It is easy to see that the map inverse to ι takes an arbitrary H-orbit Y0 ⊂ Y
to the G-orbit GY0 ⊂ X. Now regard an arbitrary G-orbit O ⊂ X and an arbitrary
point y ∈ O ∩ Y . Making use of fact (2), we obtain Gy ⊂ H, whence O ' G/Gy and
O∩Y ' H/Gy. Consequently, dimO−dimO∩Y = dim G−dim H. Since all fibers of ϕ
are isomorphic to Y (all of them are G-shifts of Y ), we have dim X − dim Y = dim G/H,
hence the required equality. ¤

Corollary 4.4. There is an open G-orbit in X if and only if there is an open H-orbit
in Y .

4.3. Supplementary information on V -flag varieties. Let V be a vector space of
dimension d and let a = (a1, . . . , as) be a nontrivial composition of d. We put m =
a1 + . . . + as−1 = d− as and consider the vector space

U = V ⊕ . . .⊕ V︸ ︷︷ ︸
m

' V ⊗ Fm.

The natural (GL(V ) × GLm)-module structure on V ⊗ Fm is transferred to U so that
GL(V ) acts diagonally on U and the action of GLm on U is given by the formula

(g, (v1, . . . , vm)) 7→ (v1, . . . , vm)g>,

where g ∈ GLm and (v1, . . . , vm) ∈ U .
Consider the open subset U0 ⊂ U formed by tuples (v1, . . . , vm) of linearly independent

vectors. Evidently, U0 is a (GL(V ) × GLm)-stable subset. There is the natural GL(V )-
equivariant surjective map

ρ : U0 → Fla(V )

taking a tuple u = (v1, . . . , vm) ∈ U0 to the set of subspaces ρ(u) = (V1, . . . , Vs), where
Vi = 〈v1, . . . , va1+...+ai

〉 for i = 1, . . . , s− 1 and Vs = V .
Let e1, . . . , em be the standard basis in Fm. We denote by Qa the subgroup in GLm

preserving each of the subspaces

〈e1, . . . , ea1+...+ai
〉, i = 1, . . . , s− 1.

It is easy to see that the fibers of ρ are exactly the orbits of the group Qa.
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Proposition 4.5. Let G ⊂ GL(V ) be an arbitrary subgroup and let a be a nontrivial
composition of d. The following conditions are equivalent:

(a) there is an open G-orbit in Fla(V );
(b) there is an open (G×Qa)-orbit in V ⊗ Fm.

Proof. It suffices to prove that the existence of an open G-orbit in Fla is equivalent to
the existence of an open (G×Qa)-orbit in U0. The latter is implied by the fact that the
fibers of ρ are exactly the orbits of Qa. ¤
Corollary 4.6. Suppose that K ⊂ GL(V ) is a connected reductive subgroup and

a(m) = (1, . . . , 1︸ ︷︷ ︸
m

, d−m),

where 0 < m < d. Then the following conditions are equivalent:
(a) Fla(m)(V ) is a K-spherical variety;
(b) V ⊗ Fm is a spherical (K ×GLm)-module.

Proof. We note that Qa(m) is nothing else but a Borel subgroup in GLm. It remains to
apply Proposition 4.5 taking G to be a Borel subgroup of K. ¤

The following result is also a particular case of [Ela, Lemma 1].

Corollary 4.7. Let 0 < k < d and let K ⊂ GL(V ) be an arbitrary subgroup. Suppose that
for the natural action of K×GLk on V ⊗Fk there is a point z ∈ V ⊗Fk with stabilizer H
such that the orbit of z is open. Then for the action of K on Grk(V ) the orbit of ρ(z) is
open and the stabilizer Kρ(z) equals p(H), where p : K×GLk → K is the projection to the
first factor. Moreover, p(H) ' H.

Remark 4.8. It follows from what we have said in this subsection that for an arbitrary
nontrivial composition a of d the variety Fla(V ) is the geometric quotient of U0 by the
action of Qa, see [PV, § 4.2 and Theorem 4.2].

4.4. A method for verifying sphericity of some actions. Let K be a connected
reductive group, B a Borel subgroup of K, and X a spherical K-variety.

Definition 4.9. We say that a point x ∈ X and a connected reductive subgroup L ⊂ Kx

have property (P) if the orbit Kx is open in X and for every pair (Z, ϕ), where Z is
an irreducible K-variety and ϕ : Z → X is a surjective K-equivariant morphism with
connected fiber over x, the following conditions are equivalent:

(1) the variety Z is K-spherical;
(2) the variety ϕ−1(x) ⊂ Z is L-spherical.

Proposition 4.10. Suppose that a point x ∈ X and a connected reductive subgroup
L ⊂ Kx are such that the orbit Bx is open in X and Bx is a Borel subgroup of L. Then
the point x and the subgroup L have property (P).

Proof. Let Z be an arbitrary irreducible K-variety and let ϕ : Z → X be a surjective K-
equivariant morphism with connected fiber over x. Since the orbit Bx is open in X, the
set Z0 = ϕ−1(Bx) is open in Z and is a homogeneous bundle over Bx. By Corollary 4.4,
the existence in Z0 of an open B-orbit is equivalent to the existence in ϕ−1(x) of an open
Bx-orbit. As Bx is a Borel subgroup of L, the latter condition is equivalent to the fact
that the action L : ϕ−1(x) is spherical. ¤
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The following theorem is implied by results of Panyushev [Pa1].

Theorem 4.11. For every spherical K-variety X there are a point x ∈ X and a connected
reductive subgroup L ⊂ Kx having property (P).

Proof. It follows from [Pa1, Theorem 1] that there exist a point x ∈ X and a connected
reductive subgroup L ⊂ Kx such that the orbit Bx is open in X and Bx is a Borel subgroup
of L. Then by Proposition 4.10 the point x and the subgroup L have property (P). ¤

In the remaining part of this subsection we find explicitly a point x ∈ X and a connected
reductive subgroup L ⊂ Kx having property (P) for the following two cases:

(1) K = SLn, X = Grk(Fn), where n > 2 and 1 6 k 6 n− 1;
(2) K = Sp2n, X = Grm(F2n), where n > 2 and 1 6 m 6 2n− 1.

The explicit form of x and L in the above-mentioned cases will be many times used in § 6.
It is well known that, for n > 2 and 1 6 k 6 n − 1, the action of SLn on Grk(Fn) is

spherical. Also, the following result holds.

Proposition 4.12. For n > 2 and 1 6 m 6 2n − 1, the action of Sp2n on Grm(F2n) is
spherical.

This proposition can be proved by presenting an open Sp2n-orbit in Grm(F2n) and
showing that the stabilizer of some point in this orbit is a spherical subgroup of Sp2n.
(Here the most difficulty comes from the case of odd m.) We omit this argument because
later in this paper, when proving Propositions 4.14 and 4.16 (see also Corollaries 4.15
and 4.17), we shall indicate a point x ∈ Grm(F2n) and a Borel subgroup B ⊂ Sp2n

such that the orbit Bx is open in Grm(F2n). The latter exactly means that the action
Sp2n : Grm(F2n) is spherical.

In what follows, for cases (1) and (2) we provide a description (in a slightly more general
situation) of a point x ∈ X and a connected reductive subgroup L ⊂ Kx having prop-
erty (P). Proposition 4.13 corresponds to case (1), Proposition 4.14 and Corollary 4.15
correspond to case (2) with m = 2k, Proposition 4.16 and Corollary 4.17 correspond
to case (2) with m = 2k + 1. Propositions 4.13, 4.14, and 4.16 are the most compli-
cated statements of this paper from the technical viewpoint, therefore we prove them in
Appendix A.

Proposition 4.13. Suppose that n > 2, V = Fn, K∗ = SLn, K̃ is an arbitrary connected
reductive group, and K = K∗ × K̃. For 1 6 k 6 n− 1 put X = Grk(V ). Equip X with a
K-variety structure, extending the natural action of K∗ by the trivial action of K̃. Then
there are a point [W ] ∈ X and a connected reductive subgroup L∗ ⊂ (K∗)[W ] satisfying the
following conditions:

(1) the point [W ] and the subgroup L∗ × K̃ ⊂ K have property (P);
(2) L∗ ' S(Lk × Ln−k);
(3) the pair (L∗,W ) is geometrically equivalent to the pair (GLk,Fk);
(4) the pair (L∗, V ) is geometrically equivalent to the pair (S(Lk × Ln−k),Fn).

Proof. See Appendix A. ¤
Proposition 4.14. Suppose that n > 2, V = F2n, K∗ = Sp2n, K̃ is an arbitrary connected
reductive group, and K = K∗ × K̃. For 1 6 k 6 n/2 put X = Gr2k(V ). Equip X with a
K-variety structure, extending the natural action of K∗ by the trivial action of K̃. Then
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there are a point [W ] ∈ X and a connected reductive subgroup L∗ ⊂ (K∗)[W ] satisfying the
following conditions:

(1) the point [W ] and the subgroup L∗ × K̃ ⊂ K have property (P);
(2) L∗ = L1 × . . .× Lk × Lk+1, where Li ' SL2 for i = 1, . . . , k and Lk+1 ' Sp2n−4k;
(3) there is a decomposition W = W1 ⊕ . . . ⊕Wk into a direct sum of L∗-modules so

that:
(3.1) dim Wi = 2 for i = 1, . . . , k;
(3.2) for every i = 1, . . . , k the group Li acts trivially on all summands Wj with j 6= i;
(3.3) for every i = 1, . . . , k the pair (Li,Wi) is geometrically equivalent to the pair

(SL2,F2);
(4) there is a decomposition V = V1 ⊕ . . .⊕ Vk ⊕ Vk+1 into a direct sum of L∗-modules

so that:
(4.1) dim Vi = 4 for i = 1, . . . , k and dim Vk+1 = 2n− 4k;
(4.2) for every i = 1, . . . , k + 1 the group Li acts trivially on all summands Vj with

j 6= i;
(4.3) for every i = 1, . . . , k the pair (Li, Vi) is geometrically equivalent to the pair

(SL2,F2 ⊕ F2), where SL2 acts diagonally, and the pair (Lk+1, Vk+1) is geometrically
equivalent to the pair (Sp2n−4k,F2n−4k).
(For n = 2k the group Lk+1 and the space Vk+1 are trivial.)

Proof. See Appendix A. ¤
Corollary 4.15. In the hypotheses and notation of Proposition 4.14 suppose that a point
[W ] ∈ Gr2k(V ) and a group L∗ ⊂ K[W ] satisfy conditions (1)–(4). Then, for the variety
Gr2n−2k(V ), the point [W⊥] and the group L∗×K̃ have property (P), and the pair (L∗,W⊥)
is geometrically equivalent to the pair (L∗,W ⊕ Vk+1), where L∗ acts diagonally.

Proof. Let Ω be a K∗-invariant symplectic form on V . There is a natural K∗-equivariant
isomorphism Gr2k(V ) ' Gr2n−2k(V ) taking each 2k-dimensional subspace in V to its
skew-orthogonal complement with respect to Ω. In view of condition (1) this implies that
the point [W⊥] and the group L∗ × K̃ have property (P). Further, since the K∗-orbit
of [W ] is open in Gr2k(V ), the restriction of Ω to the subspace W is nondegenerate.
Hence V = W ⊕W⊥, which by conditions (3) and (4) uniquely determines the L∗-module
structure on W⊥. ¤
Proposition 4.16. Suppose that n > 2, V = F2n, K∗ = Sp2n, K̃ is an arbitrary connected
reductive group, and K = K∗ × K̃. For 0 6 k 6 (n − 1)/2 put X = Gr2k+1(V ). Equip
X with a K-variety structure, extending the natural action of K∗ by the trivial action
of K̃. Then there are a point [W ] ∈ X and a connected reductive subgroup L∗ ⊂ (K∗)[W ]

satisfying the following conditions:
(1) the point [W ] and the subgroup L∗ × K̃ ⊂ K have property (P);
(2) L∗ = L0 × L1 × . . . × Lk × Lk+1, where L0 ' F×, Li ' SL2 for i = 1, . . . , k and

Lk+1 ' Sp2n−4k−2;
(3) there is a decomposition W = W0⊕W1⊕ . . .⊕Wk into a direct sum of L∗-modules

so that:
(3.1) dim W0 = 1 and dim Wi = 2 for i = 1, . . . , k;
(3.2) for every i = 0, 1, . . . , k the group Li acts trivially on all summands Wj with

j 6= i;
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(3.3) the pair (L0,W0) is geometrically equivalent to the pair (F×,F) and for every
i = 1, . . . , k the pair (Li,Wi) is geometrically equivalent to the pair (SL2,F2);
(4) there is a decomposition V = V0⊕V1⊕. . .⊕Vk⊕Vk+1 into a direct sum of L∗-modules

so that:
(4.1) dim V0 = 2, dim Vi = 4 for i = 1, . . . , k and dim Vk+1 = 2n− 4k − 2;
(4.2) for every i = 0, 1, . . . , k + 1 the group Li acts trivially on all summands Vj with

j 6= i;
(4.3) the pair (L0, V0) is geometrically equivalent to the pair (F×,F ⊕ F) with the

action (t, (x1, x2)) 7→ (tx1, t
−1x2), for every i = 1, . . . , k the pair (Li, Vi) is geometrically

equivalent to the pair (SL2,F2⊕F2) with SL2 acting diagonally, and the pair (Lk+1, Vk+1)
is geometrically equivalent to the pair (Sp2n−4k−2,F2n−4k−2).
(For n = 2k + 1 the group Lk+1 and the space Vk+1 are trivial.)

Proof. See Appendix A. ¤
Corollary 4.17. Under the hypotheses and notation of Proposition 4.16 suppose that a
point [W ] ∈ Gr2k+1(V ) and a group L∗ ⊂ K[W ] satisfy conditions (1)–(4). Then for the
variety Gr2n−2k−1(V ) the point [W⊥] and the group L∗×K̃ have property (P), and the pair
(L∗,W⊥) is geometrically equivalent to the pair (L∗,W ⊕Vk+1), where L∗ acts diagonally.

Proof. Let Ω be the K∗-invariant symplectic form on V . There is a natural K∗-equivariant
isomorphism Gr2k+1(V ) ' Gr2n−2k−1(V ) taking each (2k + 1)-dimensional subspace in V
to its skew-orthogonal complement with respect to Ω. In view of condition (1) this implies
that the point [W⊥] and the group L∗× K̃ have property (P). Further, since the K∗-orbit
of [W ] is open in Gr2k+1(V ), the restriction of Ω to the subspace W has rank 2k. Hence
dim(W ∩W⊥) = 1, which by condition (4) implies W ∩W⊥ = W0. Now the L∗-module
structure on W⊥ is uniquely determined from conditions (3) and (4). ¤
4.5. Some sphericity conditions for actions on V -flag varieties. Let K be a con-
nected reductive group, V a K-module, and V = V1 ⊕ V2 a decomposition of V into a
direct sum of two (not necessarily simple) nontrivial K-submodules.

Proposition 4.18. Let 1 6 k 6 dim V1, Z = Grk(V ), and X = Grk(V1).
(a) Suppose that Z is a K-spherical variety. Then X is also a K-spherical variety.
(b) Suppose that X is a K-spherical variety. Suppose that a point [W0] ∈ X and a

connected reductive subgroup L ⊂ K[W0] have property (P). Then the following conditions
are equivalent:

(1) Z is K-spherical variety;
(2) W ∗

0 ⊗ V2 is a spherical L-module.

Proof. Let p denote the projection of V to V1 along V2. Let Z0 ⊂ Z be the open K-stable
subset consisting of all points [U ] with dim p(U) = k. Then p induces a surjective K-
equivariant morphism ϕ : Z0 → X. For each point [W ] ∈ X the fiber ϕ−1([W ]) consists
of all points [U ] such that p(U) = W , whence

ϕ−1([W ]) ' Hom(W,V2) ' W ∗ ⊗ V2.

It is easy to see that the K-sphericity of Z0 implies the K-sphericity of X, which proves
part (a). To complete the proof of part (b), it remains to make use of property (P) for
the point [W0] and the group L. ¤
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Corollary 4.19. Suppose that k = dim V1 and Z = Grk(V ). Then the following condi-
tions are equivalent:

(1) Z is a K-spherical variety;
(2) V ∗

1 ⊗ V2 is a spherical K-module.

Proof. In this situation X consists of the single point [V1]. Evidently, this point and the
group K have property (P). ¤
Proposition 4.20. Suppose that dim V > 4 and Z = Gr2(V ) is a K-spherical variety.
Then V2 ⊗ F2 is a spherical (K ×GL2)-module.

Proof. We first consider the case dim V1 > 2. Put X = Gr2(V1). Regard the open subset
Z0 ⊂ Z and the morphism ϕ : Z0 → X as in the proof of Proposition 4.18. It follows
from the hypothesis that Z0 is a spherical K-variety. Since the morphism ϕ is surjective
and K-equivariant, it follows that X is also a spherical K-variety. By theorem 4.11 there
are a point x ∈ X and a connected reductive subgroup L ⊂ Kx having property (P).
Then Proposition 4.18(b) implies that V2 ⊗ F2 is a spherical L-module, hence a spherical
(K ×GL2)-module.

We now consider the case dim V1 = 1. Then dim V2 > 3. For each two-dimensional
subspace W ⊂ V put W1 = W ∩V2 and let W2 denote the projection of W to V2 along V1.

Let Z0 ⊂ Z be the open K-stable subset consisting of all points [W ] with dim W1 = 1
and dim W2 = 2. It is easy to see that the morphism

Z0 → Fl(1, 1; V2), [W ] 7→ (W1,W2, V2),

is surjective and K-equivariant, hence the K-sphericity of Gr2(V ) implies the K-sphericity
of Fl(1, 1; V2). Then Corollary 4.6 implies that V2⊗F2 is a spherical (K×GL2)-module. ¤
Proposition 4.21. Fix k1 > 1, k2 > 1 such that k1 +k2 6 dim V1. Put Z = Fl(k1, k2; V ),
X = Grk1+k2(V1) and suppose that X is a K-spherical variety. Suppose that a point
[W0] ∈ X and a connected reductive subgroup L ⊂ K[W0] have property (P). Then the
following conditions are equivalent:

(1) Z is a K-spherical variety;
(2) (W ∗

0 ⊗ V2)×Grk1(W0) is an L-spherical variety (L acts diagonally).

Proof. Let p denote the projection of V to V1 along V2. Let Z0 ⊂ Z be the open K-stable
subset consisting of all points (U1, U2, V ) ∈ Z with dim p(U2) = k1 + k2. Then p induces
a surjective K-equivariant morphism ϕ : Z0 → X taking a point (U1, U2, V ) to p(U2). For
each point [W ] ∈ X, the fiber ϕ−1([W ]) is isomorphic to

Hom(W,V2)×Grk1(W ) ' (W ∗ ⊗ V2)×Grk1(W ).

To complete the proof it remains to make use of property (P) for the point [W0] and the
group L. ¤

5. Known classifications used in this paper

5.1. Classification of spherical modules. In this subsection we present the classifica-
tion of spherical modules obtained in the papers [Kac], [BR], and [Lea].

Let K be a connected reductive group and let C be the connected component of the
identity of the center of K. For every simple K-module V we consider the character
χ ∈ X(C) via which C acts on V .
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Theorem 5.1. [Kac, Theorem 3] A simple K-module V is spherical if and only if the
following conditions hold:

(1) up to a geometrical equivalence, the pair (K ′, V ) is contained in Table 2;
(2) the group C satisfies the conditions listed in the fourth column of Table 2.

Table 2

No. K ′ V Conditions on C Note
1 SLn Fn χ 6= 0 for n = 1 n > 1
2 SOn Fn χ 6= 0 n > 3
3 Sp2n F2n n > 2
4 SLn S2Fn χ 6= 0 n > 3
5 SLn ∧2Fn χ 6= 0 for n = 2k n > 5

6 SLn× SLm Fn ⊗ Fm χ 6= 0 for n = m
n,m > 2

n + m > 5
7 SL2× Sp2n F2 ⊗ F2n χ 6= 0 n > 2
8 SL3× Sp2n F3 ⊗ F2n χ 6= 0 n > 2
9 SLn× Sp4 Fn ⊗ F4 χ 6= 0 for n = 4 n > 4
10 Spin7 F8 χ 6= 0
11 Spin9 F16 χ 6= 0
12 Spin10 F16

13 G2 F7 χ 6= 0
14 E6 F27 χ 6= 0

Let us give some comments and explanations for Table 2. In rows 3–8 the restrictions
in the column “Note” are imposed in order to avoid coincidences (up to a geometric
equivalence) of the respective K ′-modules with K ′-modules corresponding to other rows.
In rows 10 and 11, the group K ′ acts on V via the spinor representation. In row 12, the
group K ′ acts on V via a (any of the two) half-spinor representation. At last, in rows 13
and 14 the group K ′ acts on V via a simplest representation.

Let V be a K-module. We say that V is decomposable if there exist connected reductive
subgroups K1, K2, a K1-module V1, and a K2-module V2 such that the pair (K, V ) is
geometrically equivalent to the pair (K1 × K2, V1 ⊕ V2). We note that in this situation
V1 ⊕ V2 is a spherical (K1 × K2)-module if and only if V1 is a spherical K1-module and
V2 is a spherical K2-module. We say that V is indecomposable if V is not decomposable.
At last, we say that V is strictly indecomposable K-module if V is an indecomposable
K ′-module. Evidently, every simple K-module is strictly indecomposable.

Let V be a K-module and let V = V1 ⊕ . . .⊕ Vr be a decomposition of V into a direct
sum of simple K-submodules. For every i = 1, . . . , r we denote by χi the character of C
via which C acts on Vi.

Theorem 5.2 ([BR], [Lea]). In the above notation suppose that V is not a simple K-
module. Then V is a strictly indecomposable spherical K-module if and only if r = 2 and
the following conditions hold:

(1) up to a geometrical equivalence, the pair (K ′, V ) is contained in Table 3;
(2) the group C satisfies the conditions listed in the third column of Table 3.
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Table 3
No. (K ′, V ) Conditions on C Note

1 ¢ A
Fn ⊕ Fn

SLn χ1, χ2 lin. ind. for n = 2;
χ1 6= χ2 for n > 3

n > 2

2 ¡ @
(Fn)∗ ⊕ Fn

SLn
χ1 6= −χ2 n > 3

3 ¡ @
Fn ⊕ ∧2Fn

SLn χ2 6= 0 for n = 2k
χ1 6= −n−1

2
χ2 for n = 2k+1

n > 4

4 ¡ @
(Fn)∗ ⊕ ∧2Fn

SLn χ2 6= 0 for n = 2k
χ1 6= n−1

2
χ2 for n = 2k+1

n > 4

5 ¢ @ @
Fn ⊕ (Fn ⊗ Fm)

SLn× SLm

χ1 6= 0 for n 6 m− 1
χ1, χ2 lin. ind.

for n = m,m + 1
χ1 6= χ2 for n > m + 2

n,m > 2

6 ¢ QQ QQ
(Fn)∗ ⊕ (Fn ⊗ Fm)

SLn× SLm

χ1 6= 0 for n 6 m− 1
χ1, χ2 lin. ind.

for n = m,m + 1
χ1 6= −χ2 for n > m + 2

n > 3,m > 2

7 ¢ @ @
F2 ⊕ (F2 ⊗ F2n)

SL2× Sp2n
χ1, χ2 lin. ind. n > 2

8 ¡ ¡ @ @
(Fn ⊗ F2)⊕ (F2 ⊗ Fm)

SLn× SL2× SLm
χ1, χ2 lin. ind.
for n = m = 2

χ2 6= 0 for n > 3 and m = 2
n > m > 2

9 ¡ ¡ @ @
(Fn ⊗ F2)⊕ (F2 ⊗ F2m)

SLn× SL2× Sp2m χ1, χ2 lin. ind. for n = 2
χ2 6= 0 for n > 3

n,m > 2

10 ¢ ¡ @ A
(F2n ⊗ F2)⊕ (F2 ⊗ F2m)

Sp2n× SL2× Sp2m
χ1, χ2 lin. ind. n > m > 2

11 ¡ @
F2n ⊕ F2n

Sp2n
χ1, χ2 lin. ind. n > 2

12 ¡ QQ
HS(F8)⊕ F8

Spin8
χ1, χ2 lin. ind.

Let us explain some notation in Table 3. In the second column the pair (K ′, V ) is
arranged in two levels, with K ′ in the upper level and V in the lower one. Further, each
factor of K ′ acts diagonally on all components of V with which it is connected by an
edge. In row 12 the notation HS(F8) stands for the space of a (any of the two) half-spinor
representations of the group Spin8.

Let V be a K-module such that, up to a geometrical equivalence, the pair (K ′, V ) is
contained in one of Tables 2 or 3. Using the information in the column “Conditions on C”,
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to V we assign a multiset (that is, a set whose members are considered together with their
multiplicities) I(V ) consisting of a few characters of C in the following way:

(1) I(V ) = ∅ if there are no conditions on C;
(2) I(V ) = {ψ1 − ψ2} if the condition on C is of the form “ψ1 6= ψ2” for some ψ1, ψ2 ∈

X(C);
(3) I(V ) = {χ1, χ2} if the condition on C is of the form “χ1, χ2 lin. ind.”
In the above notation, V is a spherical K-module if and only if all characters in I(V )

are linearly independent in X(C).
Let V be an arbitrary K-module. It is easy to see that there are a decomposition

V = W1 ⊕ . . . ⊕ Wp into a direct sum of K-submodules (not necessarily simple) and
connected semisimple normal subgroups K1, . . . , Kp ⊂ K ′ (some of them are allowed to
be trivial) with the following properties:

(1) Wi is a strictly indecomposable K-module for all i = 1, . . . , p;
(2) the pair (K ′, V ) is geometrically equivalent to the pair

(K1 × . . .×Kp,W1 ⊕ . . .⊕Wp).

The theorem below provides a sphericity criterion for the K-module V . This theorem
is a reformulation of [BR, Theorem 7], see also [Lea, Theorem 2.6].

Theorem 5.3. In the above notation, V is a spherical K-module if and only if the fol-
lowing conditions hold:

(1) Wi is a spherical K-module for all i = 1, . . . , p;
(2) all the |I(W1)| + . . . + |I(Wp)| characters in the multiset I(W1) ∪ . . . ∪ I(Wp) are

linearly independent in X(C).

5.2. Classification of Levi subgroups in GL(V ) acting spherically on V -flag va-
rieties. Let G be an arbitrary connected reductive group. Let P,Q ⊂ G be parabolic
subgroups and let K be a Levi subgroup of P .

The following lemma is well known. For convenience of the reader we provide a proof
of it.

Lemma 5.4. The following conditions are equivalent:
(a) G/Q is a K-spherical variety;
(b) G/P ×G/Q is a spherical variety with respect to the diagonal action of G.

Proof. It is well known that there is a Borel subgroup B ⊂ G with the following properties:
(1) the set BP is open in G;
(2) the group BK = B ∩ P is a Borel subgroup of K.

For the action B : G/P , BK is exactly the stabilizer of the point o = eP and the orbit
O = Bo ' B/BK is open. Regard the open subset O×G/Q in G/P ×G/Q. This subset
is a homogeneous bundle over B/BK with fiber G/Q, see § 4.2. Applying Corollary 4.4
we find that the existence of an open B-orbit in O × G/Q is equivalent to the existence
of an open BK-orbit in G/Q, which implies the required result. ¤

As was already mentioned in Introduction, there is a complete classification of all G-
spherical varieties of the form G/P ×G/Q. Below, using Lemma 5.4, we reformulate the
results of this classification in the case G = GL(V ) and thereby list all cases where a Levi
subgroup K ⊂ GL(V ) acts spherically on a V -flag variety Fla(V ) (see Theorem 5.5).
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Let V be a vector space of dimension d and let d = (d1, . . . , dr) be a nontrivial compo-
sition of d such that d1 6 . . . 6 dr. Fix a decomposition

V = V1 ⊕ . . .⊕ Vr

into a direct sum of subspaces, where dim Vi = di for all i = 1, . . . , r. Put

Kd = GL(V1)× . . .×GL(Vr) ⊂ GL(V ).

Let Q denote the stabilizer in GL(V ) of the point

(V1, V1 ⊕ V2, . . . , V1 ⊕ . . .⊕ Vr) ∈ Fld(V ).

Clearly, Q is a parabolic subgroup of GL(V ) and Kd is a Levi subgroup of Q. It is well
known that every Levi subgroup in GL(V ) is conjugate to a subgroup of the form Kd.

The following theorem follows from results of the paper [MWZ1], see also [Stem, Corol-
lary 1.3.A].

Theorem 5.5. Suppose that a = (a1, . . . , as) is a nontrivial composition of d such that
a1 6 . . . 6 as. Then the variety Fla(V ) is Kd-spherical if and only if the pair of compo-
sitions (d, a) is contained in Table 4.

Table 4
No. d a
1 (d1, d2) (a1, a2)
2 (2, d2) (a1, a2, a3)
3 (d1, d2, d3) (2, a2)
4 (d1, d2) (1, a2, a3)
5 (1, d2, d3) (a1, a2)
6 (1, d2) (a1, . . . , as)
7 (d1, . . . , dr) (1, a2)

6. Proof of theorem 1.7

We divide the proof of Theorem 1.7 into several steps. As follows from Proposition 3.9,
the first step of the proof is a description of all spherical actions on the variety Gr2(V ).
This is done in § 6.1 (in the case where V is a simple K-module) and § 6.2 (in the case
where V is a nonsimple K-module). At the next step we classify all spherical actions on
arbitrary Grassmannians, see § 6.3. Finally, in § 6.4 we list all spherical actions on V -flag
varieties that are not Grassmannians.

We recall that the statement of Theorem 1.7 includes the following objects:
V is a vector space of dimension d;
K is a connected reductive subgroup of GL(V );
C is a connected component of the identity of the center of K.
Next, there is a decomposition

(6.1) V = V1 ⊕ . . .⊕ Vr

into a direct sum of simple K-submodules and for every i = 1, . . . , r the group C acts
on Vi via a character denoted by χi.

We fix all the above-mentioned objects and notation until the end of this section.
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6.1. Spherical actions on Gr2(V ) in the case where V is a simple K-module. The
goal of this subsection is to prove the following theorem.
Theorem 6.1. Suppose that d > 4 and V is a simple K-module. Then the variety Gr2(V )
is K-spherical if and only if, up to a geometrical equivalence, the pair (K ′, V ) is contained
in Table 5.

Table 5
No. K ′ V Note
1 SLn Fn n > 4
2 Sp2n F2n n > 2
3 SOn Fn n > 4
4 Spin7 F8

Proof. First of all we note that, since V is a simple K-module, the center of K acts trivially
on Gr2(V ). Therefore the variety Gr2(V ) is K-spherical if and only if it is K ′-spherical.

If Gr2(V ) is a spherical K-variety then V is a spherical (K × F×)-module by Corol-
lary 3.8. Theorem 5.1 implies that, up to a geometrical equivalence, the pair (K ′, V ) is
contained in Table 2.

It is well known that every flag variety of the group SLn is spherical. Thus for every
n > 4 the variety Gr2(Fn) is SLn-spherical.

The variety Gr2(F2n) is Sp2n-spherical for n > 2 by Proposition 4.12.
The variety Gr2(Fn) is SOn-spherical for n > 4 in view of the following lemma.

Lemma 6.2. For n > 3 and 1 6 k 6 n− 1, the action of SOn on Grk(Fn) is spherical.

Proof. Let Ω be a nondegenerate symmetric bilinear form on Fn preserved by SOn. It is
easy to see that the variety Grk(Fn) contains an open SOn-orbit consisting of all points [W ]
such that the restriction of Ω to the subspace W is nondegenerate. The stabilizer of every
such subspace W is conjugate to the group H = S(Ok × On−k). It is well-known (see,
for instance, [Krä, Table 1]) that the subgroup H0 = SOk× SOn−k is spherical in SOn,
therefore so is H. ¤

Let us show that the variety Gr2(F8) is Spin7-spherical. It is known (see [Ela, Table 6,
row 4] or [SK, § 5, Proposition 26]) that under the natural action of the group Spin7×GL2

on F8⊗F2 there is an open orbit and the Lie algebra of the stabilizer of any point of this
orbit is isomorphic to gl3. Applying Corollary 4.7, we find that under the action of the
group Spin7 on Gr2(F8) there is an open orbit O and the Lie algebra of the stabilizer of
any point x ∈ O is still isomorphic to gl3. It follows that the connected component of the
identity of the stabilizer of any point x ∈ O is isomorphic to GL3. It is well known (see,
for instance, [Krä, Table 1]) that GL3 is a spherical subgroup in Spin7.

We now prove that the variety Gr2(V ) is not K ′-spherical for the pairs (K ′, V ) in rows
4–9, 11–14 of Table 2.

Applying Proposition 4.1, we obtain the following necessary condition for Gr2(V ) to be
K ′-spherical:
(6.2) dim K ′ + rk K ′ > 4 dim V − 8.

A direct check shows that inequality (6.2) does not hold for the pairs (K ′, V ) in rows 4,
5, 11–14 of Table 2.



26 ROMAN AVDEEV AND ALEXEY PETUKHOV

Lemma 6.3. Suppose that L is a semisimple subgroup in SLn× SLm, where n > m > 2.
Then the variety Gr2(Fn⊗Fm) is L-spherical if and only if n = m = 2 and L = SL2× SL2.

Proof. If n = m = 2 and L = SL2× SL2, then the pair (L,F2 ⊗ F2) is geometrically
equivalent to the pair (SO4,F4). By Lemma 6.2 the action of SO4 on Gr2(F4) is spherical.

We now prove that the L-sphericity of the variety Gr2(Fn ⊗ Fm) implies n = m = 2.
Obviously, if Gr2(Fn⊗Fm) is L-spherical then it is also (SLn× SLm)-spherical. Therefore
it suffices to prove the required assertion in the case L = SLn× SLm.

We divide our subsequent consideration into two cases.
Case 1. n > 2m. Let us show that in this case the variety Gr2(Fn ⊗ Fm) is not

(SLn× SLm)-spherical. Since n > 2m, the group SLn has an open orbit under the diagonal
action on the space

Fn ⊕ . . .⊕ Fn

︸ ︷︷ ︸
2m

' Fn ⊗ F2m,

therefore the group SLn× SLm×GL2 has an open orbit under the natural action on
Fn ⊗ Fm ⊗ F2. By Corollary 4.7 this implies that the group SLn× SLm has an open orbit
in Gr2(Fn⊗Fm). Thus it suffices to prove that for the action SLn× SLm on Gr2(Fn⊗Fm)
the stabilizer of some point in the open orbit is not a spherical subgroup in SLn× SLm.

An argument essentially repeating the proof of Theorem 4 in [Ela] shows that for the
action SLn× SLm×GL2 on Fn⊗Fm⊗F2 there is a point in the open orbit whose stabilizer
consists of all triples of the form

(

(
P ⊗Q S

0 tR

)
, (P>)−1, (Q>)−1),

where P ∈ SLm, Q ∈ GL2, R ∈ SLn−2m, S is a matrix of size 2m × (n − 2m), t ∈ F×,
t2m−n = (det Q)m. By Corollary 4.7, for the action of SLn× SLm on Gr2(Fn ⊗ Fm) there
is a point in the open orbit whose stabilizer H consists of all pairs of the form

(

(
t2m−nP ⊗Q S

0 t2mR

)
, (P>)−1),

where P ∈ SLm, Q ∈ SL2, R ∈ SLn−2m, S is a matrix of size 2m× (n− 2m), t ∈ F×.
Let H1 ⊂ SLn× SLm be the subgroup consisting of all pairs of the form

(

(
t2m−nP ⊗Q 0

0 t2mR

)
, (P>)−1),

where P ∈ SLm, Q ∈ SL2, R ∈ SLn−2m, t ∈ F×. Applying any of the sphericity crite-
ria [Bri, Proposition I.1, 3), 4)] or [Pa2, Theorem 1.2(i)] we find that H is spherical in
SLn× SLm if and only if H1 is spherical in the group M = S(L2m × Ln−2m)× SLm. Since
H1 contains the center of M , the latter is equivalent to H ′

1 being spherical in the group
M ′ = SL2m× SLn−2m× SLm. As the second factor of M ′ is contained in H ′

1, the condition
of H ′

1 being spherical in M ′ is equivalent to the condition that the subgroup

H2 = {(P ⊗Q, (P>)−1) | P ∈ SLm, Q ∈ SL2}
be spherical in the group SL2m× SLm. In view of Corollary 4.2 the latter condition implies
the inequality

2 dim H2 > dim(SL2m× SLm)− rk(SL2m× SLm),
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which takes the form
3m2 − 3m− 4 6 0

after transformations. It is easy to see that this inequality does not hold for m > 2. Thus
H is not a spherical subgroup in SLn× SLm.

Case 2. m 6 n 6 2m. Suppose that n = 2m − l, where 0 6 l 6 m. If the variety
Gr2(Fn ⊗ Fm) is (SLn× SLm)-spherical, then applying (4.1) we get the inequality

(2m− l)2 − 1 + m2 − 1 + (2m− l)− 1 + m− 1 > 4(2m− l)m− 8,

which takes the form
(6.3) 3m2 − 3m− 4 6 l2 − l

after transformations. Since 0 6 l 6 m, inequality (6.3) implies that 3m2− 3m− 4 6 m2.
Hence 2m2 − 3m− 4 6 0 and so m = 2. Then l = 0, 1 or 2, but the first to cases do not
occur by (6.3). Thus l = 2, that is, n = 2.

It remains to show that for every proper semisimple subgroup L ⊂ SL2× SL2 the action
L : Gr2(F2 ⊗ F2) is not spherical. Indeed, in this case we have rk L 6 2 and dim L 6 5,
hence inequality (4.1) does not hold.

The proof of the lemma is completed. ¤
Lemma 6.3 immediately implies that the variety Gr2(V ) is not K ′-spherical for the

pairs (K ′, V ) in rows 6–9 of Table 2, which completes the proof of Theorem 6.1. ¤
6.2. Spherical actions on Gr2(V ) in the case where V is a nonsimple K-module.
In this subsection we suppose that r > 2. Here the main result is Theorem 6.6.

Proposition 6.4. Suppose that Gr2(V ) is a spherical K-variety. Then for every i =
1, . . . , r the pair (K ′, Vi) is geometrically equivalent to either of the pairs (SLn,Fn) (n > 1)
or (Sp2n,F2n) (n > 2).

Proof. It follows from Proposition 4.20 that Vi ⊗ F2 is a spherical (K ×GL2)-module for
every i = 1, . . . , r. The proof is completed by applying Theorem 5.1. ¤
Proposition 6.5. Suppose that Gr2(V ) is a spherical K-variety. Then every simple
normal subgroup in K ′ acts nontrivially on at most one summand of decomposition (6.1).

Proof. Assume that there is a simple normal subgroup K0 ⊂ K ′ acting nontrivially on two
different summands of decomposition (6.1). Without loss of generality we shall assume
that K0 acts nontrivially on V1 and V2. (We note that dim V1 > 2 and dim V2 > 2.)
Proposition 4.18(a) implies that the variety Gr2(V1 ⊕ V2) is K-spherical. Making use of
Proposition 6.4, we find that, up to a geometrical equivalence, the pair (K ′, V1 ⊕ V2) is
contained in Table 6, where K ′ is assumed to act diagonally on V1 and V2 in all cases.

Table 6
No. K ′ V1 V2 Note
1 SLn Fn Fn n > 2
2 SLn Fn (Fn)∗ n > 3
3 Sp2n F2n F2n n > 2

For each case in Table 6 we put Z = Gr2(V1 ⊕ V2) and X = Gr2(V1). Let us show that
the variety Z is not K-spherical. We consider all the three cases separately.
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Case 1. If n = 2 then by Corollary 4.19 the condition of Z being K-spherical is
equivalent to the sphericity of the (C × K ′)-module V ∗

1 ⊗ V2, where K acts diagonally
and C acts via the character χ2−χ1. This implies that F2⊗F2 is a spherical (SL2×F×)-
module, where SL2 acts diagonally and F× acts by scalar transformations. The latter is
not true since the indicated module does not satisfy inequality (4.1).

In what follows we suppose that n > 3. Applying Proposition 4.13 to X and then
Proposition 4.18(b) to Z and X, we find a point [W ] ∈ X and a group L ⊂ (K ′)[W ] with
the following properties:

(1) L ' S(L2 × Ln−2);
(2) the pair (L,W ) is geometrically equivalent to the pair (GL2,F2);
(3) the pair (L, V2) is geometrically equivalent to the pair (S(L2 × Ln−2),F2 ⊕ Fn−2);
(4) the condition of Z being K-spherical is equivalent to the sphericity of the (C ×L)-

module W ∗ ⊗ V2, where L acts diagonally and C acts via the character χ2 − χ1.
In view of the SL2-module isomorphisms (F2)∗ ' F2 and F2 ⊗ F2 ' S2F2 ⊕ F, the

sphericity of the (C ×L)-module W ∗⊗ V2 implies that the (SL2× SLn−2×(F×)2)-module

S2F2 ⊕ (F2 ⊗ Fn−2)

is spherical, where SL2 acts diagonally on S2F2 and F2, SLn−2 acts on Fn−2, and (F×)2 acts
on each of the direct summands by scalar transformations. By Theorem 5.2 the indicated
module is not spherical.

Case 2. Using an argument similar to that in Case 1 for n > 3 we deduce from the
condition of Z being K-spherical that the (SL2× SLn−2×(F×)2)-module

S2F2 ⊕ (F2 ⊗ (Fn−2)∗)

is spherical, where SL2 acts diagonally on S2F2 and F2, SLn−2 acts on (Fn−2)∗, and (F×)2

acts on each of the direct summands by scalar transformations. By Theorem 5.2 the
indicated module is not spherical.

Case 3. If the variety Z is K-spherical, then Z is also (C×SL2n)-spherical (where SL2n

acts diagonally on V1 ⊕ V2). As was shown in Case 1, the latter is not true. ¤
Theorem 6.6. Suppose that d > 4 and r > 2. Then the variety Gr2(V ) is K-spherical if
and only if the following conditions are satisfied:

(1) up to a geometrical equivalence, the pair (K ′, V ) is contained in Table 7;
(2) the group C satisfies the conditions listed in the fourth column of Table 7.

Proof. Put U = V2 ⊕ . . . ⊕ Vr. Let K1 (resp. K2) be the image of K ′ in GL(V1) (resp.
GL(U)).

If the variety Gr2(V ) is spherical with respect to the action of K, then it is also spherical
with respect to the action of GL(V1)×. . .×GL(Vr). Then it follows from Theorem 5.5 that
r 6 3. Applying Propositions 6.4 and 6.5 we find that, up to a geometrical equivalence,
the pair (K ′, V ) is contained in Table 7. The subsequent reasoning is similar for each
of the cases in Table 7; the key points of the arguments are gathered in Table 8. First
of all, applying an appropriate combination of statements 4.13, 4.14, 4.18(b), and 4.19
(see the column “References”) to the varieties Z = Gr2(V ) and X = Gr2(V1), we find a
connected reductive subgroup L ⊂ K and an L-module R with the following property:
Z is K-spherical if and only if R is a spherical L-module. After that the sphericity of
the L-module R is verified using Theorems 5.1 and 5.2. Since the group C acts trivially
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Table 7
No. K ′ V Conditions on C Note

1 SLn× SLm Fn ⊕ Fm χ1 6= χ2 for n = m = 2
n > m > 1,
n + m > 4

2 Sp2n× SLm F2n ⊕ Fm χ1 6= χ2 for m = 2 n > 2, m > 1
3 Sp2n× Sp2m F2n ⊕ F2m χ1 6= χ2 n > m > 2

4 SLn× SLm× SLl Fn ⊕ Fm ⊕ Fl

χ2 − χ1, χ3 − χ1

lin. ind. for n = 2;
χ2 6= χ3 for

n > 3, m 6 2

n > m > l > 1,
n > 2

5 Sp2n× SLm× SLl F2n ⊕ Fm ⊕ Fl

χ2 − χ1, χ3 − χ1

lin. ind. for m 6 2
χ1 6= χ3 for
m > 3, l 6 2

n > 2,
m > l > 1

6 Sp2n× Sp2m× SLl F2n ⊕ F2m ⊕ Fl

χ2 − χ1, χ3 − χ1

lin. ind. for l 6 2
χ1 6= χ2 for l > 3

n > m > 2,
l > 1

7 Sp2n× Sp2m× Sp2l F2n ⊕ F2m ⊕ F2l χ1 − χ2, χ1 − χ3

lin. ind. n > m > l > 2

Table 8
Case References (M, W )
1,

n=m=2
4.19 (SL2,F2)

1, n > 3 4.13, 4.18(b) (GL2,F2)
2 4.14, 4.18(b) (SL2,F2)
3 4.14, 4.18(b) (SL2,F2)

4, n = 2 4.19 (SL2,F2)
4, n > 3 4.13, 4.18(b) (GL2,F2)

5 4.14, 4.18(b) (SL2,F2)
6 4.14, 4.18(b) (SL2,F2)
7 4.14, 4.18(b) (SL2,F2)

on X, we have C ⊂ L. Therefore to describe the action L : R it suffices to describe the
actions (L ∩ K ′) : R and C : R. In all the cases we have L ∩ K ′ = M × K2 for some
subgroup M ⊂ K1. Moreover, R = W ∗⊗U , where M acts on W ∗ and K2 acts on U . For
each of the cases, up to a geometrical equivalence, the pair (M, W ) is indicated in the
third column of Table 8. The action of C on W is the same as on V1 and the action of C
on U coincides with the initial one. ¤
6.3. Spherical actions on Grassmannians. In this subsection we complete the de-
scription of spherical actions on Grassmannians initiated in §§ 6.1, 6.2. The main result
of this subsection is the following theorem.

Theorem 6.7. Suppose that d > 6 and 3 6 k 6 d/2. Then the variety X = Grk(V ) is
K-spherical if and only if the following conditions are satisfied:

(1) up to a geometrical equivalence, the pair (K ′, V ) is contained in Table 9;
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(2) the number k satisfies the conditions listed in the fourth column of Table 9;
(3) the group C satisfies the conditions listed in the fifth column of Table 9.

Table 9
No. K ′ V Conditions on k Conditions on C Note
1 SLn Fn n > 6
2 Sp2n F2n n > 3
3 SOn Fn n > 6

4 SLn× SLm Fn ⊕ Fm χ1 6= χ2 for n = m = k
n > m,

n + m > 6
5 Sp2n F2n ⊕ F n > 3
6 Sp2n× SLm F2n ⊕ Fm k = 3 χ1 6= χ2 for m 6 3 n,m > 2
7 Sp4× SLm F4 ⊕ Fm k > 4 χ1 6= χ2 for k = m = 4 m > 4

8 SLn× SLm Fn ⊕ Fm ⊕ F
χ2 − χ1, χ3 − χ1

lin. ind. for k = n;
χ2 6= χ3 for m 6 k < n

n > m > 1,
n + m > 5

In the fourth column of Table 9 the empty cells mean that k may be any number such
that 3 6 k 6 d/2.

Proof of Theorem 6.7. We first consider the case r = 1, that is, the case where V is a
simple K-module. In this situation the center of K acts trivially on Grk(V ), hence Grk(V )
is K-spherical if and only if it is K ′-spherical.

If Grk(V ) is K ′-spherical, then by Proposition 3.9 and Theorem 6.1 the pair (K ′, V ) is
geometrically equivalent to one of the pairs in Table 5.

Since every flag variety of the group SLn is SLn-spherical, then so is Grk(Fn).
For n > 3 and 3 6 k 6 n the variety Grk(F2n) is Sp2n-spherical by Proposition 4.12.
For n > 6 and 3 6 k 6 n/2 the variety Grk(Fn) is SOn-spherical by Lemma 6.2.
For 3 6 k 6 4 the variety Grk(F8) is not Spin7-spherical since inequality (4.1) does not

hold in this case.
We now consider the case r > 2. By Proposition 3.9 the K-sphericity of Grk(V ) implies

the K-sphericity of Gr2(V ). Applying Theorems 6.6 and 5.5 we find that the pair (K ′, V )
is geometrically equivalent to one of the pairs in Table 10.

Table 10
No. K ′ V Note
1 SLn× SLm Fn ⊕ Fm n > m > 1, n + m > 6
2 Sp2n× SLm F2n ⊕ Fm n > 2, m > 1, 2n + m > 6
3 Sp2n× Sp2m F2n ⊕ F2m n > m > 2
4 SLn× SLm Fn ⊕ Fm ⊕ F n > m > 1, n + m > 5
5 Sp2n× SLm F2n ⊕ Fm ⊕ F n > 2, m > 1
6 Sp2n× Sp2m F2n ⊕ F2m ⊕ F n > m > 2

For each case in Table 10 we denote by K1 (resp. K2) the first (resp. second) factor
of K ′. We also put

U = V2 ⊕ . . .⊕ Vr.
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Table 11
No. (K1, V1) Case (M, W )

1 (SLn,Fn),
k = n

4.19 (SLn,Fn)

2 (SLn,Fn),
k < n

4.13, 4.18(b) (GLk,Fk)

3 (Sp2n,F2n),
k 6 n, k = 2l

4.14, 4.18(b) (SL2× . . .× SL2︸ ︷︷ ︸
l

, F2⊕ . . .⊕F2

︸ ︷︷ ︸
l

)

4 (Sp2n,F2n),
k 6 n, k = 2l + 1

4.16, 4.18(b) (F×× SL2× . . .× SL2︸ ︷︷ ︸
l

,F⊕F2⊕ . . .⊕F2

︸ ︷︷ ︸
l

)

5
(Sp2n,F2n),
n < k < 2n,
2n− k = 2l

4.15, 4.18(b)

(SL2× . . .× SL2︸ ︷︷ ︸
l

× Sp2n−4l,

F2⊕ . . .⊕F2

︸ ︷︷ ︸
l

⊕F2n−4l)

6
(Sp2n,F2n),
n < k < 2n,

2n− k = 2l + 1
4.17, 4.18(b)

(F×× SL2× . . .× SL2︸ ︷︷ ︸
l

× Sp2n−4l−2,

F⊕F2⊕ . . .⊕F2

︸ ︷︷ ︸
l

⊕F2n−4l−2)

7 (Sp2n,F2n),
k = 2n

4.19 (Sp2n,F2n)

Up to changing the order of factors of K (along with simultaneously interchanging the
first and second summands of V ), the pair (K1, V1) fits in at least one of the cases listed in
the second column of Table 11. In all these cases the subsequent reasoning is similar. At
first, applying an appropriate combination of statements 4.13–4.19 (see the third column
of Table 11) to Z = Grk(V ) and X = Grk(V1), we find a connected reductive subgroup
L ⊂ K and an L-module R with the following property: Z is K-spherical if and only if
R is a spherical L-module. After that the sphericity of the L-module R is verified using
Theorems 5.1, 5.2, and 5.3. Since C acts trivially on X, we have C ⊂ L. Therefore to
describe the action L : R it suffices to describe the actions (L ∩K ′) : R and C : R. In all
the cases we have L∩K ′ = M ×K2 for some subgroup M ⊂ K1. Moreover, R = W ∗⊗U
where M acts on W ∗ and K2 acts on U . For each of the cases, up to a geometrical
equivalence, the pair (M,W ) is indicated in the fourth column of Table 11. The action of
C on W is the same as on V1 and the action of C on U coincides with the initial one. ¤

6.4. Completion of the classification. In this subsection we classify all spherical ac-
tions on V -flag varieties that are not Grassmannians (see Theorem 6.8). Thereby we
complete the proof of Theorem 1.7.

Let a = (a1, . . . , as) be a composition of d such that a1 6 . . . 6 as and s > 3. (The
latter exactly means that Fla(V ) is not a Grassmannian.)

Theorem 6.8. The variety Fla(V ) is K-spherical if and only if the following conditions
are satisfied:

(1) the pair (K ′, V ), which is considered up to a geometrical equivalence, and the tuple
(a1, . . . , as−1) are contained in Table 12;
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(2) the group C satisfies the conditions listed in the fifth column of Table 12.

Table 12
No. K ′ V (a1, . . . , as−1) Conditions on C Note
1 SLn Fn (a1, . . . , as−1) n > 3
2 Sp2n F2n (1, a2) n > 2
3 Sp2n F2n (1, 1, 1) n > 2
4 SLn Fn ⊕ F (a1, . . . , as−1) χ1 6= χ2 for s = n + 1 n > 2
5 SLn× SLm Fn ⊕ Fm (1, a2) χ1 6= χ2 for n = 1 + a2 n > m > 2

6 SLn× SL2 Fn ⊕ F2 (a1, a2)
χ1 6= χ2 for

n = 4 and a1 = a2 = 2
n > 4,
a1 > 2

7 Sp2n× SLm F2n ⊕ Fm (1, 1) χ1 6= χ2 for m 6 2
n > 2,
m > 1

8 Sp2n× Sp2m F2n ⊕ F2m (1, 1) χ1 6= χ2 n > m > 2

In the proof of Theorem 6.8 we shall need several auxiliary results.

Proposition 6.9. Suppose that n > 3, V = F2n, K = Sp2n, and 2 6 k 6 n − 1. Then
the variety Fl(1, k; V ) is K-spherical.

Proof. Put Z = Fl(1, k; V ), X = P(V ) and regard the natural K-equivariant morphism
ϕ : Z → X. Using Proposition 4.16 and then Definition 4.9, we find that there are a point
[W ] ∈ X and a connected reductive subgroup L ⊂ K[W ] with the following properties:

(1) the pair (L, V/W ) is geometrically equivalent to the pair (F× × Sp2n−2,F⊕ F2n−2);
(2) the condition of Z being K-spherical is equivalent to the condition that the variety

ϕ−1([W ]) ' Grk(V/W ) be L-spherical.
By Theorems 6.6 and 6.7 the variety Grk(V/W ) is L-spherical, which completes the

proof. ¤

Proposition 6.10. Suppose that n > 3, V = F2n, and K = Sp2n. Then the variety
Fl(2, 2; V ) is not K-spherical.

Proof. Put Z = Fl(2, 2; V ), X = Gr2(V ) and regard the natural K-equivariant morphism
ϕ : Z → X. Applying Proposition 4.14 and taking into account Definition 4.9, we find
that there are a point [W ] ∈ X and a connected reductive subgroup L ⊂ K[W ] with the
following properties:

(1) the pair (L, V/W ) is geometrically equivalent to the pair

(SL2× Sp2n−4,F2 ⊕ F2n−4);

(2) the condition of Z being K-spherical is equivalent to the condition that the variety
ϕ−1([W ]) ' Gr2(V/W ) be L-spherical.

By Theorem 6.6 the variety Gr2(V/W ) is not L-spherical, which completes the proof.
¤

Proposition 6.11. Suppose that n > 2, m > 1, V1 = F2n, V2 = Fm, V = V1 ⊕ V2,
K1 = Sp2n, K2 = GLm, and K = K1 × K2. Then the variety Fl(1, 2; V ) is not K-
spherical.
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Proof. Put Z = Fl(1, 2; V ) and X = Gr3(V1). Applying Proposition 4.16 (for n > 3) or
Corollary 4.17 (for n = 2) to X and then Proposition 4.21 to Z and X, we find that there
are a point [W ] ∈ X and a connected reductive subgroup L ⊂ K[W ] with the following
properties:

(1) L = L1 ×K2, where L1 ⊂ K1;
(2) L1 ' F× × SL2 for 2 6 n 6 3 and L1 ' F× × SL2× Sp2n−6 for n > 4;
(3) the pair (L1,W ) is geometrically equivalent to the pair (F× × SL2,F⊕ F2);
(4) the condition of Z being K-spherical is equivalent to the condition that the variety

(W ∗ ⊗ V2) × P(W ) be L-spherical, where L1 acts diagonally on W ∗ and P(W ) and K2

acts on V2.
It is easy to see that the L-sphericity of (W ∗⊗V2)×P(W ) is equivalent to the sphericity

of the (L1 ×K2 × F×)-module (W ∗ ⊗ V2)⊕W , where L1 acts diagonally on W ∗ and W ,
K2 acts on V2, and F× acts on the summand W by scalar transformations. Applying
Theorem 5.2 we find that the indicated module is not spherical, which completes the
proof. ¤
Proof of Theorem 6.8. Throughout this proof we use without extra reference the descrip-
tion of the partial order 4 on the set F (GL(V ))/ ∼ (see Corollary 3.6 and § 3.3) and
Theorem 1.4.

Since Fla(V ) is not a Grassmannian, we have

[[ Fla(V )]] < [[ Fl(1, 1; V )]].

Therefore the K-sphericity of Fla(V ) implies the K-sphericity of Fl(1, 1; V ). The following
proposition provides a complete classification of pairs (K, V ) for which K acts spherically
on Fl(1, 1; V ).

Proposition 6.12. Suppose that d > 3. Then the variety Fl(1, 1; V ) is K-spherical if
and only if the following conditions hold:

(1) up to a geometrical equivalence, the pair (K ′, V ) is contained in Table 13;
(2) the group C satisfies the conditions listed in the fourth column of Table 13.

Table 13
No. K ′ V Conditions on C Note
1 SLn Fn n > 3
2 Sp2n F2n n > 2
3 SLn Fn ⊕ F χ1 6= χ2 for n = 2 n > 2
4 SLn× SLm Fn ⊕ Fm χ1 6= χ2 for n = m = 2 n > m > 2
5 Sp2n× SLm F2n ⊕ Fm χ1 6= χ2 for m 6 2 n > 2, m > 1
6 Sp2n× Sp2m F2n ⊕ F2m χ1 6= χ2 n,m > 2

Proof. By Corollary 4.6 the action K : Fl(1, 1; V ) is spherical if and only if V ⊗ F2

is a spherical (K × GL2)-module. Now the required result follows from Theorems 5.1
and 5.2. ¤

In view of Proposition 6.12, to complete the proof of Theorem 6.8 it remains to find all
K-spherical V -flag varieties X with [[X]] Â [[ Fl(1, 1; V )]] for all cases in Table 12. In what
follows we consider each of these cases separately.
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Case 1. K ′ = SLn, V = Fn. We have [[X]] 4 [[ Flb(V )]] where b = (1, . . . , 1). By
Corollary 4.6 and Theorem 5.1 the variety Flb(V ) is K-spherical, hence so is X.

Case 2. K ′ = Sp2n, V = F2n. If s = 3 and a1 = 1, then X is K-spherical by
Proposition 6.9. If s = 3 and a1 > 2, then [[X]] < [[ Fl(2, 2; V )]], and so X is not K-
spherical by Proposition 6.10. If s = 4 and a1 = a2 = a3 = 1, then X is K-spherical by
Corollary 4.6 and Theorem 5.1. If s = 4 and a3 > 2, then [[X]] < [[ Fl(2, 2; V )]], and so
X is not K-spherical by Proposition 6.10. In what follows we assume that s > 5. Then
[[X]] < [[ Fl(1, 1, 1, 1; V )]]. The variety Fl(1, 1, 1, 1; V ) is not K-spherical by Corollary 4.6
and Theorem 5.1, hence X is not K-spherical either.

Case 3. K ′ = SLn, V = Fn⊕F. If s = n+1, that is, a = (1, . . . , 1), then by Corollary 4.6
and Theorem 5.2 the variety X is K-spherical if and only if χ1 6= χ2. In what follows we
assume that s 6 n. Then [[X]] 4 [[ Flb(V )]], where b = (1, . . . , 1, 2). By Corollary 4.6 and
Theorem 5.2 the variety Flb(V ) is K ′-spherical, hence X is K-spherical.

Case 4. K ′ = SLn× SLm, V = Fn ⊕ Fm, n > m > 2. Put K1 = SLn, K2 = SLm,
V1 = Fn, V2 = Fm. If s > 4 then [[X]] < [[ Fl(1, 1, 1; V )]]. By Corollary 4.6 and Theorem 5.2
the variety Fl(1, 1, 1; V ) is not K-spherical, hence X is not K-spherical either. In what
follows we assume that s = 3. Put k = a1 + a2. We consider the following two subcases:
a1 = 1 and a1 > 2.

Subcase 4.1. a1 = 1. Then k 6 n. In view of Propositions 4.13 and 4.21 there are a
point [W ] ∈ Grk(V1) and a subgroup L ⊂ (K1)[W ] with the following properties:

(1) the pair (L, W ) is geometrically equivalent to the pair (GLk,Fk) for k < n and the
pair (SLk,Fk) for k = n;

(2) the condition of X being K-spherical is equivalent to the condition that the variety
(W ∗⊗V2)×P(W ) be (C×L×K2)-spherical, where L acts diagonally on W ∗ and W , K2 acts
on V2, and C acts on W ∗, V2, and W via the characters −χ1, χ2, and χ1, respectively.

It follows from (2) that the K-sphericity of X is equivalent to the sphericity of the
(C × L×K2 × F×)-module (W ∗ ⊗ V2)⊕W , where C, L, and K2 act as described in (2)
and F× acts on the summand W by scalar transformations. Applying Theorem 5.2 we
find that the indicated module is not spherical when k = n, χ1 = χ2 and is spherical in
all other cases.

Subcase 4.2. a1 > 2. By Theorem 5.5 the K-sphericity of X implies that m = 2. Then
k 6 n and the equality is attained if and only if a1 = a2 = 2 and n = 4. In view of
Propositions 4.13 and 4.21 there are a point [W ] ∈ Grk(V1) and a subgroup L ⊂ (K1)[W ]

with the following properties:
(1) the pair (L, W ) is geometrically equivalent to the pair (GLk,Fk) for k < n and the

pair (SLk,Fk) for k = n;
(2) the condition of X being K-spherical is equivalent to the condition that the variety

Y = (W ∗ ⊗ V2) × Gra1(W ) be (C × L × K2)-spherical, where L acts diagonally on W ∗

and Gra1(W ), K2 acts on V2, and C acts on W ∗ and V2 via the characters −χ1 and χ2,
respectively.

Applying Proposition 4.13 to Gra1(W ) and then considering the natural projection
Y → Gra1(W ), we find that there is a subgroup L1 ⊂ L with the following properties:

(1) the pair (L1,W ) is geometrically equivalent to the pair (GLa1 ×GLa2 ,Fa1⊕Fa2) for
k < n and the pair (S(La1 × La2),Fa1 ⊕ Fa2) for k = n;

(2) the (C×L×K2)-sphericity of Y is equivalent to the sphericity of the (C×L1×K2)-
module W ∗ ⊗ V2 on which C and K2 act as described above and L1 acts on W ∗.



SPHERICAL ACTIONS ON FLAG VARIETIES 35

By Theorem 5.2 the indicated module is not spherical when k = n, χ1 = χ2 and is
spherical in all other cases.

Case 5. K ′ = Sp2n× SLm, V = F2n ⊕ Fm, n > 2, m > 1. It follows from the condition
[[X]] Â [[ Fl(1, 1; V )]] that [[X]] < [[ Fl(1, 2; V )]]. The variety Fl(1, 2; V ) is not K-spherical
by Proposition 6.11, hence X is not K-spherical either.

Case 6. K ′ = Sp2n× Sp2m, V = F2n ⊕ F2m, n > m > 2. If X is K-spherical then X is
also (Sp2n× SL2m)-spherical. As was shown in Case 5, the latter is false.

The proof of Theorem 6.8, as well as the proof of Theorem 1.7, is completed. ¤

Appendix A. Proofs of Propositions 4.13, 4.14, and 4.16

Proof of Proposition 4.13. Let e1, . . . , en be a basis of V . Put W = 〈e1, . . . , ek〉, and
W ′ = 〈ek+1, . . . , en〉. Denote by L∗ the subgroup in K∗ preserving each of the subspaces
W and W ′. It is easy to see that the point [W ] ∈ X and the group L∗ ⊂ (K∗)[W ] satisfy
conditions (2)–(4). It remains to show that condition (1) is also satisfied.

For each i = 1, . . . , n we introduce the subspace Vi = 〈en, . . . , en−i+1〉 ⊂ V . The
stabilizer in K∗ of the flag (V1, . . . , Vn) is a Borel subgroup of K∗, we denote it by B∗. It
is not hard to check that the subgroup (B∗)[W ] is a Borel subgroup of L∗.

Computations show that dim(B∗)[W ] = n(n + 1)/2− k(n− k)− 1, whence

dim B∗[W ] = dim B∗ − dim(B∗)[W ] = k(n− k) = dim X,

and so the orbit B∗[W ] is open in X.
Let B̃ be an arbitrary Borel subgroup of K̃. Applying Proposition 4.10 to the groups K,

B = B∗ × B̃, L = L∗ × K̃ and the point [W ] we find that condition (1) holds. ¤

In the proofs of Propositions 4.14 and 4.16 we shall need the following notion.
Let U be a finite-dimensional vector space with a given symplectic form Ω on it and let

dim U = 2m. A basis e1, . . . , e2m of U will be called standard if the matrix of Ω has the
form 



0 1
−1 0

0

. . .

0
0 1
−1 0




in this basis.

Proof of Proposition 4.14. Let Ω be a symplectic form on V preserved by K∗. We fix a
decomposition into a skew-orthogonal direct sum

V = W ⊕W ′ ⊕R,

where dim W = dim W ′ = 2k, dim R = 2n − 4k, and the restriction of Ω to each of the
subspaces W,W ′, R is nondegenerate. Let e1, . . . , e2k be a standard basis in W and let
e′1, . . . , e

′
2k be a standard basis in W ′. If n > 2k (that is, R is nontrivial), then we fix in

R a linearly independent set of vectors r1, . . . , rn−2k that generates a maximal isotropic
subspace in R. For every i = 1, . . . , k we introduce the two-dimensional subspaces

Wi = 〈e2i−1, e2i〉 ⊂ W and W ′
i = 〈e′2i−1, e

′
2i〉 ⊂ W ′.
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For every i = 1, . . . , 2k we put fi = ei + (−1)ie′i. If n > 2k then for every j =
1, . . . , n − 2k we put f2k+j = rj. For every i = 1, . . . , n we introduce the subspace
Fi = 〈f1, . . . , fi〉 ⊂ V . A direct check shows that Ω(fi, fj) = 0 for all i, j = 1, . . . , n,
hence Fn is a maximal isotropic subspace in V . Consequently, the stabilizer in K∗ of the
isotropic flag (F1, . . . , Fn) is a Borel subgroup of K∗, we denote it by B∗.

Put H = (K∗)[W ]. Clearly, H preserves the subspace W⊥ = W ′ ⊕R.
Put Vi = Wi ⊕W ′

i for i = 1, . . . , k and Vk+1 = R. Then

(A.1) V = V1 ⊕ . . .⊕ Vk ⊕ Vk+1.

We define the group L∗ to be the stabilizer in H of the flag (F2, F4, . . . , F2k). For
every i = 1, . . . , k the L∗-invariance of the subspace Fi implies the L∗-invariance of its
projections to W and W⊥, hence both subspaces

W1 ⊕ . . .⊕Wi and W ′
1 ⊕ . . .⊕W ′

i

are invariant with respect to L∗. This implies that L∗ preserves each of the subspaces
W1, . . . , Wk, W ′

1, . . . , W
′
k, hence it preserves each of the subspaces V1, . . . , Vk, Vk+1. At

last, for every i = 1, . . . , k the L∗-invariance of the subspaces Vi and Fi implies the L∗-
invariance of the subspace Vi ∩ Fi = 〈f2i−1, f2i〉.

For every i = 1, . . . , k, k + 1 let Li denote the subgroup in L consisting of all trans-
formations acting trivially on all summands of decomposition (A.1) except for Vi. Then
L∗ = L1 × . . .× Lk × Lk+1.

For a fixed i ∈ {1, . . . , k}, the L∗-invariance of the subspace 〈f2i−1, f2i〉 implies that
Li diagonally acts on the direct sum Wi ⊕ W ′

i transforming the bases (e2i−1, e2i) and
(−e′2i−1, e

′
2i) in the same way. Consequently, Li ' SL2 and the pair (Li, Vi) is geometrically

equivalent to the pair (SL2,F2 ⊕ F2) with the diagonal action of SL2.
The above arguments show that the point [W ] ∈ X and the group L∗ ⊂ (K∗)[W ] satisfy

conditions (2)–(4). We now prove that condition (1) also holds.
Let us show that the group (B∗)[W ] = H ∩ B∗ = L∗ ∩ B∗ is a Borel subgroup of L∗.

It is easy to see that (B∗)[W ] = B1 × . . . × Bk × Bk+1, where Bi = B∗ ∩ Li for all
i = 1, . . . , k, k + 1. For every i = 1, . . . , k the group Bi is the stabilizer in Li of the line
〈f2i−1〉 and the group Bk+1 is the stabilizer in Lk+1 of the maximal isotropic flag

(〈r1〉, 〈r1, r2〉, . . . , 〈r1, r2, . . . , rn−2k〉)
in Vk+1. From this one deduces that Bi is a Borel subgroup of Li for all i = 1, . . . , k, k+1,
hence (B∗)[W ] is a Borel subgroup of L∗.

Computations show that dim(B∗)[W ] = (n− 2k)2 + n, whence

dim B∗[W ] = dim B∗ − dim(B∗)[W ] = n2 − (n− 2k)2 = 2k(2n− 2k) = dim X,

and so the orbit B∗[W ] is open in X.
Let B̃ be an arbitrary Borel subgroup of K̃. Applying Proposition 4.10 to the groups

K, B = B∗ × B̃, L = L∗ × K̃ and the point [W ] we find that condition (1) holds. ¤

Proof of Proposition 4.16. Let Ω be a symplectic form on V preserved by K∗. We fix a
decomposition into a skew-orthogonal direct sum

V = U0 ⊕ U ⊕ U ′ ⊕R,



SPHERICAL ACTIONS ON FLAG VARIETIES 37

where dim U0 = 2, dim U = dim U ′ = 2k, dim R = 2n− 4k − 2 and the restriction of the
form Ω to each of the subspaces U0, U, U ′, R is nondegenerate. We choose a standard basis
e0, e

′
0 in U0, a standard basis e1, . . . , e2k in U , and a standard basis e′1, . . . , e

′
2k in U ′. If

n > 2k +1 (that is, R is nontrivial), then we fix in R a linearly independent set of vectors
r1, . . . , rn−2k−1 that generates a maximal isotropic subspace in R. We put W0 = 〈e0〉 and
for every i = 1, . . . , k we introduce the two-dimensional subspaces

Wi = 〈e2i−1, e2i〉 ⊂ U and W ′
i = 〈e′2i−1, e

′
2i〉 ⊂ U ′.

We put f0 = e′0. Next, for every i = 1, . . . , 2k we put fi = ei + (−1)ie′i. At last,
if n > 2k + 1 then for every j = 1, . . . , n − 2k − 1 we put f2k+j = rj. For every
i = 0, 1, . . . , n − 1 we introduce the subspace Fi = 〈f0, . . . , fi−1〉 ⊂ V . A direct check
shows that Ω(fi, fj) = 0 for all i, j = 0, . . . , n − 1, hence Fn is a maximal isotropic
subspace in V . Consequently, the stabilizer in K∗ of the isotropic flag (F0, . . . , Fn−1) is a
Borel subgroup of K∗, we denote it by B∗.

Put W = W0 ⊕ U and H = (K∗)[W ].
Put V0 = U0, Vi = Wi ⊕W ′

i for i = 1, . . . , k and Vk+1 = R. Then

(A.2) V = V0 ⊕ V1 ⊕ . . .⊕ Vk ⊕ Vk+1.

We define the group L∗ to be the stabilizer in H of the flag (F0, F2, F4, . . . , F2k).
Since the subspaces W and 〈e′0〉 = F0 are L∗-invariant, it follows that the subspace

〈e′0〉 ⊕ W = U0 ⊕ U is also L∗-invariant, hence so is its skew-orthogonal complement
(U0 ⊕ U)⊥ = U ′ ⊕R. Thus V admits the decomposition V = 〈e′0〉 ⊕W ⊕ (U ′ ⊕R) into a
direct sum of three L∗-invariant subspaces.

For every i = 1, . . . , k the L∗-invariance of the subspace Fi implies the L∗-invariance
of its projections to W (along 〈e′0〉 ⊕ U ′ ⊕ R) and U ′ ⊕ R (along 〈e′0〉 ⊕W ), hence both
subspaces

W1 ⊕ . . .⊕Wi and W ′
1 ⊕ . . .⊕W ′

i

are invariant with respect to L∗. This implies that L∗ preserves each of the subspaces
W1, . . . , Wk, W ′

1, . . . , W
′
k, hence it preserves W0 and each of the subspaces V0, V1, . . . , Vk, Vk+1.

At last, for every i = 1, . . . , k the L∗-invariance of the subspaces Vi and Fi implies the
L∗-invariance of the subspace Vi ∩ Fi = 〈f2i−1, f2i〉.

For every i = 0, 1, . . . , k, k + 1 let Li denote the subgroup in L consisting of all trans-
formations acting trivially on all summands of decomposition (A.2) except for Vi. Then
L∗ = L0 × L1 × . . .× Lk × Lk+1.

Since L∗ preserves each of the two one-dimensional subspaces W0 = 〈e0〉 and 〈e′0〉,
it follows that L0 acts on the direct sum 〈e0〉 ⊕ 〈e′0〉 diagonally, multiplying e0 and e′0
by mutually inverse numbers. Hence L0 ' F× and the pair (L0, V0) is geometrically
equivalent to the pair (F×,F ⊕ F) with the action (t, (x1, x2)) 7→ (tx1, t

−1x2). Next,
for a fixed i ∈ {1, . . . , k}, the L∗-invariance of the subspace 〈f2i−1, f2i〉 implies that Li

diagonally acts on Wi⊕W ′
i transforming the bases (e2i−1, e2i) and (−e′2i−1, e

′
2i) in the same

way. Consequently, Li ' SL2 and the pair (Li, Vi) is geometrically equivalent to the pair
(SL2,F2 ⊕ F2) with the diagonal action of SL2.

The above arguments show that the point [W ] ∈ X and the group L∗ ⊂ (K∗)[W ] satisfy
conditions (2)–(4). We now prove that condition (1) also holds.

Let us show that the group (B∗)[W ] = H ∩ B∗ = L∗ ∩ B∗ is a Borel subgroup in L∗.
It is easy to see that (B∗)[W ] = B0 × B1 × . . . × Bk × Bk+1, where Bi = B∗ ∩ Li for all
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i = 1, . . . , k, k + 1. Evidently, B0 = L0. Next, for every i = 1, . . . , k the group Bi is
the stabilizer in Li of the line 〈f2i−1〉 and the group Bk+1 is the stabilizer in Lk+1 of the
maximal isotropic flag

(〈r1〉, 〈r1, r2〉, . . . , 〈r1, r2, . . . , rn−2k−1〉)
in Vk+1. From this one deduces that Bi is a Borel subgroup of Li for all i = 0, 1, . . . , k, k+1,
hence (B∗)[W ] is a Borel subgroup of L∗.

Computations show that dim(B∗)[W ] = (n− 2k − 1)2 + n, whence

dim B∗[W ] = dim B∗ − dim(B∗)[W ] =

n2 − (n− 2k − 1)2 = (2k + 1)(2n− 2k − 1) = dim X,

and so the orbit B∗[W ] is open in X.
Let B̃ be an arbitrary Borel subgroup of K̃. Applying Proposition 4.10 to the groups

K, B = B∗ × B̃, L = L∗ × K̃ and the point [W ], we find that condition (1) holds. ¤
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