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Local control of globally competing patterns in coupled
Swift–Hohenberg equations

Maximilian Becker, Thomas Frenzel, Thomas Niedermayer,
Sina Reichelt, Alexander Mielke, Markus Bär

Abstract

We present analytical and numerical investigations of two anti-symmetrically coupled 1D Swift–
Hohenberg equations (SHEs) with cubic nonlinearities. The SHE provides a generic formulation
for pattern formation at a characteristic length scale. A linear stability analysis of the homoge-
neous state reveals a wave instability in addition to the usual Turing instability of uncoupled SHEs.
We performed weakly nonlinear analysis in the vicinity of the codimension-two point of the Turing-
wave instability, resulting in a set of coupled amplitude equations for the Turing pattern as well as
left and right traveling waves. In particular, these complex Ginzburg–Landau-type equations pre-
dict two major things: there exists a parameter regime where multiple different patterns are stable
with respect to each other; and that the amplitudes of different patterns interact by local mutual
suppression. In consequence, different patterns can coexist in distinct spatial regions, separated
by localized interfaces. We identified specific mechanisms for controlling the position of these in-
terfaces, which distinguish what kinds of patterns the interface connects and thus allow for global
pattern selection. Extensive simulations of the original SHEs confirm our results.

Originally set up to describe convection instabilities, the Swift–Hohenberg equation (SHE)
generically captures the formation of stationary patterns in nonequilibrium systems. A scalar
parameter in this equation controls the bifurcation of a spatially homogeneous steady state
to a so-called Turing-pattern, a stable stationary pattern with a finite length scale. In this pa-
per, we consider two antisymmetrically coupled SHEs in one dimension. For comparable in-
trinsic length scales, the coupling gives rise to wave solutions emerging from an additional
linear instability. A linear stability analysis of the homogeneous state allowed us to identify the
codimension-two point where both patterns become unstable. Moreover, we have performed a
weakly nonlinear analysis in the vicinity of this point to derive so-called amplitude equations
which describe the evolution of patterns on large temporal and spatial scales. The amplitude
dynamics of left and right traveling waves as well as the Turing pattern is captured in three
mutually coupled complex Ginzburg–Landau equations. Numerical simulations of these equa-
tions and the coupled SHEs coincide, but the former provide substantially more insight into
the coexistence of patterns. Each pattern locally suppresses other patterns and tends to satu-
rate to a constant amplitude solution. In a certain range of parameters, both wave and Turing
patterns are stable. In this bistable regime, random initial conditions typically result in the
coexistence of different patterns in different spatial domains which are separated by distinct
interfaces: wave-Turing interfaces as well as sources and sinks which separate left and right
traveling waves, respectively. Now, the properties of these interfaces are pivotal for local con-
trol of globally competing patters: A small spatial dip in the scalar parameter mentioned above
may pin these interfaces. Moving this dip shifts the interface position and results in the expan-
sion of a pattern. As each type of interface has a different susceptibility to pinning, parameter
dips of certain magnitudes pin interfaces selectively. Therefore, global control by local inter-
vention can be achieved in the absence of spatial information.
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1 Introduction

Pattern formation is one of the central topics in the study of physical systems far from thermodynamical
equilibrium [4, 5]. Examples of nonequilibrium pattern formation have been reported in systems as
diverse as hydrodynamic flows [35], chemical reactions [11], and ecosystems [20]. Recently, many
studies have concentrated on biological patterns ranging from mechanochemical waves and protein
patterns inside cells [3, 8] over tissue organization and morphogenesis [15, 31] to vegetation pattern
[36].

Instabilities leading to such pattern formation can be classified in three types: (i) oscillatory in time
and stationary in space, (ii) periodic in space and stationary in time or (iii) periodic in both space and
time, which are referred to as Hopf, Turing, and wave instability [5]. The simultaneous occurrence of
two instabilities is associated with a codimension-two bifurcation. In the vicinity of such a bifurcation
interactions of the emerging patterns can be observed and the phenomenology gets increasingly rich.
Out of all possible combinations the Hopf-Turing system has been studied most extensively, both
experimentally and theoretically [6, 19, 28]. The other systems have been investigated to a lesser
degree. Turing-Turing interactions have been suggested as a possible explanation for experimentally
found superlattice hexagonal patterns [40] and are also subject of analysis in the modelling of dryland
vegetation patterns [12]. Wave-Turing interactions were mainly studied in the context of a Belousov-
Zhabotinsky reaction confined in a microemulsion [1, 2, 39].

The dynamics near codimension-two bifurcations are either constructive interactions, where new pat-
terns are formed by resonant superpositions [40], or competing interactions, where the system ex-
hibits multiple stable possibilities [25]. In the latter case it remains an open question how to actively
manipulate patterns in order to select the desired one. Common concepts to control global system
characteristics in pattern forming systems involve feedback with [9] or without delay [30], and global
[23, 29] or local [26] spatiotemporal forcing.

Here we consider a generic model for competing wave and Turing patterns and show how to select
between certain solutions by imposing local control on the system. We make use of the fact that
competing patterns in large scale system occur in distinct spatial regions that are organized by the
interfaces separating them. Those interfaces can be dragged, similarly to the position control of wave
fronts [18], by local control. We explain the underlying mechanisms in terms of amplitude equations.

The model we study, which was proposed in [33], consists of two anti-symmetrically coupled Swift–
Hohenberg equations (SHEs)

∂tu1 = ηu1 − (1 + ∂xx)
2 u1 − u3

1 − αu2 (1a)

∂tu2 = ηu2 −
(
1 + µ2∂xx

)2
u2 − u3

2 + αu1 , (1b)

where η, α and µ are the control parameter of a single SHE, the coupling strength and the ratio of
intrinsic wavenumbers of the individual equations, respectively.

The Swift–Hohenberg equation is a generic equation for a supercritical Turing instability. As such, it is
used to model many physical, chemical and biological systems [17, 34]. The antisymmetric coupling
of the equations breaks the variational nature of the single SHE and allows for oscillatory dynam-
ics. More pictorially, the Turing patterns from the single equations are dragging each other due to
the antisymmetric coupling, which results into traveling waves. The SHE captures only the essential
characteristics that are necessary to generate Turing patterns. Thus, model (1) brings us close to a
minimal system to study wave-Turing interaction.

There exist several mathematical papers that rigorously justify the Ginzburg–Landau equation as am-
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plitude equation for the single Swift–Hohenberg equation, see e.g. [13, 21, 22]. To our best knowledge,
all rigorous methods fail when two Swift–Hohenberg equations are coupled antisymmetrically, and,
therefore, we formally justify our amplitude equations following e.g. [24].

The present paper is organized as follows: In Section 2 we briefly discuss the basic properties of the
model’s homogeneous steady state via linear stability analysis. In section 3 we derive amplitude equa-
tions for the systems and use them to identify the main features that govern the system’s dynamics.
Sections 4.1 and 4.2 cover the control of competition between wave-wave and wave-Turing patterns,
respectively. Section 5 is devoted to concluding and discussing the results. In the appendix we carry
out the linear stability analysis and the derivation of the amplitude equations in more detail.

2 Linear stability analysis

For all parameter values, Eq. (1) exhibits the homogeneous fixed point (0, 0)>, for which we perform
linear stability analysis, see appendix A. For a fixed ratio of intrinsic wavelengths µ, with 0 < µ < 1, it
reveals two supercritical bifurcations: a Turing instability and a wave instability, whose bifurcation lines
are intersecting at a codimension-two bifurcation point, given by

ηc =
(1− µ2)2

2 (1 + µ4)
, (2a)

αc =

√
−
(
ηc − (1− k2

T)
2
)(

ηc − (1− µ2k2
T)

2
)
, (2b)

where kT is the critical wavenumber of the Turing instability, implicitly given in Eq. (34). Analogously,
the critical wavenumber of the wave instability is detailed in Eq. (33). The linear stability diagram, which
is qualitatively invariant for different values of µ, is shown in Fig. 1 for µ = 1/2. The stability behavior
of the two limit cases µ → 1 and µ → 0 can be deduced from Eqs. (2): The former case results in
ηc → 0 and a wave bifurcation only, which evolves as the two identical Turing modes of the single
SHEs are dragging each other. As µ → 0, αc → ∞ and the wave instability vanishes. This can be
rationalized by the scale separation of the two Turing patterns. Note that our results displayed in Fig. 1
differ in some aspects from the linear stability diagram given in [33]: The maxima of the dispersion
relation related to the wave instability and a long-wavelength Turing instability do not coincide. Thus,
there exists a parameter regime in which three patterns could potentially get unstable.

3 Weakly nonlinear analysis

3.1 Amplitude equations

Passing through the codimension-two bifurcation point from the regime where the homogeneous so-
lution is stable, Turing and wave patterns become unstable simultaneously. Near this point we can
expect both patterns to be relevant for the system dynamics. In order to study possible interactions,
we perform weakly nonlinear analysis, making use of the amplitude equation formalism [5, 10]. We
introduce a formal perturbation ansatz for u = (u1, u2)> with η = ηc + ε2ηp and α = αc + ε2αp,

DOI 10.20347/WIAS.PREPRINT.2457 Berlin 2017



M. Becker, Th. Frenzel, Th. Niedermayer, S. Reichelt, A. Mielke, M. Bär 4

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

k

λ

T

k

λ

T+Wk

λ
k

λ

W

k

λ

T+T+W

k

λ

T+T η

α

Figure 1: Linear stability diagram of the homogeneous state (0, 0)> for µ = 1/2. The solid red and
black lines represent supercritical wave and Turing bifurcations, respectively. The dashed red and
black lines indicate regions of wave and Turing instabilities, respectively, see appendix A for details.
The dotted black line indicates the instability of a second Turing pattern with larger wavelength, which
originates from Eq. (1b). The subfigures show the real (solid blue line) and imaginary (dashed orange
line) part of the characteristic dispersion relation for different parameter regions. Their headline denote
corresponding instabilities.

where 0 < ε� 1

u(t, x) = εRe
[
AL(εt, ε2t, εx, ε2x)ei(kWx+ωt)uL

+AR(εt, ε2t, εx, ε2x)ei(kWx−ωt)uR

+AT(εt, ε2t, εx, ε2x)ei(kTx)uT

]
+ε2u2 + ε3u3 +O(ε4) .

(3)

Thus, we expand the model variables in terms of complex amplitudes of the three linearly unstable
modes at the codimension-two point: left traveling waves AL, right traveling waves AR, and Turing
patterns AT. This ansatz is inserted into Eq. (1), setting the slow scales χ1 = εx, χ2 = ε2x,
τ1 = εt, τ2 = ε2t and sorting in powers of ε. Assuming that secular terms of the resulting equations
vanish, one finds the following solvability conditions of order ε2

(∂τ1 − c∂χ1)A
∗
L = 0

(∂τ1 + c∂χ1)A
∗
R = 0

(4)

and of order ε3

(∂τ2 − c∂χ2)A
∗
L = κWA

∗
L +DW∂χ1χ1A

∗
L + σW|A∗L|2A∗L

+ σWW|A∗R|2A∗L + σWT|A∗T|2A∗L
(∂τ2 + c∂χ2)A

∗
R = κWA

∗
R +DW∂χ1χ1A

∗
R + σW|A∗R|2A∗R

+ σWW|A∗L|2A∗R + σWT|A∗T|2A∗R
∂τ2A

∗
T = κTA

∗
T +DT∂χ1χ1A

∗
T + σT|A∗T|2A∗T

+ σTW|A∗L|2A∗T + σTW|A∗R|2A∗T . (5)
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Figure 2: Numerical comparison of the SHEs (1) and the amplitude Eqs. (6) with corresponding initial
conditions after t=200. u1 is shown as blue solid line, u1

T|AT|, as dashed black line, u1
W|AL| as

red solid line and u1
W|AR| as green dash-dotted line. Simulations were performed at α = αc, η =

ηc + 0.05 and µ = 0.5 with periodic boundary conditions. See also video 1 in the supplementary
material for the whole simulation.

The coefficients admit closed form expressions that are given in Appendix B alongside a more detailed
derivation of the equations in (4)–(5). For the understanding of the following it suffices to know that
the coefficients κW, DW and σWT are complex while the other coefficients are real valued. All the
coupling coefficients σi have negative real parts. Considering that the solvability conditions yield a
system of evolution equations for the amplitudes, negativity of the coupling coefficients corresponds
to local mutual suppression of the different patterns.

System (4)-(5) consists in total of five equations in four different variables. This is quite impractical for
further numerical and analytical computations. In the literature several ways are discussed to simplify
such systems [14]. We make use of the method of reconstitution. We reconstitute the original scales
(t, x) and multiply Eqs. (4)-(5) with the corresponding order of ε2 and ε3, respectively. Adding them
up results in a reduced system of coupled complex Ginzburg–Landau equations (CGLE)

(∂t − c∂x)AL = ε2κWAL +DW∂xxAL + σW|AL|2AL

+σWW|AR|2AL + σWT|AT|2AL

(∂t + c∂x)AR = ε2κ̄WAR +DW∂xxAL + σW|AR|2AR

+σWW|AL|2AR + σWT|AT|2AR

∂tAT = ε2κTAT +DT∂xxAT + σT|AT|2AT

+σTW|AL|2AT + σTW |AR|2AT , (6)

where Ak(t, x) = A∗k(εt, ε
2t, εx, ε2x) + O(ε4) for k ∈ {L,R,T}. Using the CGLE for model-

ing the amplitude behavior of counterpropagating wave systems is a common approach and it often
yields qualitative correct behavior [37]. In particualr, as ε → 0 they are again described by Eqs. (4)-
(5). Nevertheless they are not the asymptotically correct amplitude equations and therefore careful
comparison with the underlying SHEs has to be done. See [14] for a detailed discussion of this issue.

As for this work, the analytical results presented in subsection 3.2 are also valid for the system (4)-
(5), while the numerics were performed using the reduced equations (6). Numerical results of the
amplitude equations will be validated by direct numerical integration of the underlying SHEs (1). To
put this into context and motivate the validity for finite ε, Fig. 2 shows a direct comparison between
SHEs (1) and the reduced amplitude equations (6) at a distance from the codimension-two point of
α−αc = 0 and η− ηc = 0.05. Apparently, the amplitude equations approximate the envelope of the
patterns that evolve in simulations of the SHEs very well, both qualitatively and quantitatively. These
solutions also exhibit the basic structures of patterns in the weakly nonlinear regime of the SHEs.
The amplitude equations reveal that the evolution of the different modes is mainly governed by linear
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driving associated with κW and κT, diffusion with constants DW and DT and negative cubic coupling
with coupling coefficients σi. Small initial perturbations in single modes will therefore grow through
linear driving and spread due to diffusion into the whole domain until the nonlinearity balances out the
growth. This leads to constant amplitude solutions that are discussed in Sec. 3.2.

In the case that perturbations in different modes occur a single system they will start to spread individ-
ually until they suppress each other due to cubic interaction. This local mutual suppression results into
a situation where patches of different patterns exist in the system connected by localized interfaces as
in Fig. 2. We further characterize those interface solutions in Sec. 3.4.

3.2 Constant amplitude solutions and
secondary instabilities

As stated before, single patterns tend to saturate to constant amplitude solutions. In terms of amplitude
equations these states balance the linear driving terms associated with κT and κW, and the saturation
terms associated with σT and σW. They can be written as:

AL = ρWe
i(ΩWt+pLx), AR = 0, AT = 0 , (7)

AL = 0, AR = ρWe
i(−ΩWt+pRx), AT = 0 , (8)

AL = 0, AR = 0 AT = ρTe
ipTx . (9)

with

ρ2
W = −

Re
[
ε2κW − p2

L/RDW

]
σW

(10)

ΩW =
(
Im
[
p2

L/RDW + ε2κW

]
+ pL/Rc

)
(11)

ρ2
T = −ε

2κT − p2
TDT

σT

. (12)

The free parameters pL, pR and pT denote the deviation of the particular pattern’s wavelength from
their critical values at the codimension-two point. ρL, ρR and ρT are the saturated amplitudes, while ΩL

and ΩR denote corrections to the waves phase velocities. In order to further understand the system’s
behavior, stability analysis of the constant amplitude solutions is performed. It turns out that saturated
Turing patterns are unconditionally stable, if the criterion

Re
[
ε2κW + ρ2

TσWT

]
< 0 (13)

holds. This can be expressed in terms of the original model parameters as α < αc. If Eq. (13) is not
fulfilled, the fixed point gets unstable with respect to perturbations of the traveling wave amplitudesAL

and AR. Constant amplitude wave solutions on the other hand are stable, if

Re
[
ε2κT + ρ2

WσTW

]
< 0 . (14)

Otherwise there is an instability with respect to perturbations in the Turing amplitude. Eq. (14) can be
rewritten as

α− αc <
α2

c − a2
T

2αcaT

(η − ηc) , (15)
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Figure 3: Phase diagram of the coupled SHEs for µ = 0.5. Alongside the Turing and wave bifurca-
tions that are shown in the same way as in Fig. 1 secondary bifurcations of plain waves and Turing
patterns are shown. Blue lines indicate the stability criterion derived from the amplitude equations,
see Eqs. (13) and (14). Black circles are calculated by integrating the SHEs (1). For fixed values of
η, several simulations were run starting from either plain waves or Turing patterns for t=20000 each.
The value of α was changed iteratively in multiple simulations which used the final state of the last
simulation as initial conditions until a change of the patterns occurred. Black circles indicate the last
parameter combination where no change of pattern was observed.

where we introduced aT = ηc − (1 − k2
T)2 for easier notation. The system’s stability is not further

limited by sideband instabilities as the Benjamin–Feir or the Eckhaus instability. For waves we find that

σW

(
DW +DW

)
= −3α2

c(1 + µ2) < 0 (16)

is satisfied unconditionally, which corresponds to the Benjamin–Feir criterion. Similarly for Turing pat-
terns it holds that σTDT < 0. Therefore there is no Eckhaus instability.

Eqs. (7)–(9) are not the only constant amplitude fixed points of the amplitude equations. Also combina-
tions of constant amplitudes, such as standing waves (combination of left and right traveling waves) or
wave-Turing mixed states can be considered. The corresponding stability criterion for standing waves
(wave-wave mixed states) is given by

σW ± σWW < 0 . (17)

As σW + σWW > σW − σWW = 3
4
α2

c > 0, this is never satisfied and standing waves are always
unstable with respect to single traveling wave amplitudes. The remaining criteria of other mixed states
get highly intricate. Thus we draw on numerical simulations of the amplitude equations. There mixed
states did not appear. Therefore we expect they are not stable. This behavior is also in line with our
perspective of mutually suppressing amplitudes.

3.3 Bistability

From the stability considerations above, we derived the phase diagram, see Fig. 3, which exhibits
overlapping stability regions of traveling waves and Turing patterns, resulting in a bistable regime.
The phase diagram stays qualitatively invariant for all µ. The predicted bistable regime was validated
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Figure 4: Two counterpropagating waves separated by a source and a sink. (a) Space-time plot of u2

obtained by numerical integration of the SHEs (1). Parameters are η = ηc + 0.3, α = αc, µ = 0.5.
(b) Result from numerical integration of the amplitude equations (6). |AL| and |AR| in solid blue and
red line, respectively, while |AL +AR| is depicted as dotted black line. Parameters are η = ηc + 0.1,
α = αc and µ = 0.5. Arrows indicate the direction of the group velocity of the respective traveling
wave.

numerically by integrating Eq. (1), see Fig. (3). The numerically calculated region of bistability is in
good agreement with the analytical predictions of Eqs. (13) and (14) near the codimension-two point.
At larger distance to this point nonlinear effects become important, such that the bifurcation lines start
to differ.

Overall, Eq. (1) exhibit two kinds of bistability: (i) bistability of left and right traveling waves that all
traveling wave systems with spatial reflection symmetry share and (ii) bistability of Turing and wave
patterns that is discussed above.

3.4 Sources, sinks, and wave-Turing interfaces

We have pointed out parameter regimes for which different patterns can not only emerge from the
homogeneous state, but their saturated states are also stable. The situation gets more complicated if
the initial conditions are such that different patterns are evolving in different spatial regions.

Eventually the patterns will compete for the same space, since mixed states are not stable. Because
of local mutual suppression they cannot penetrate each other and localized interfaces are forming that
connect individual patches of saturated patterns, see Fig. 2.

Interfaces between left and right travelling waves are categorized with respect to the directions of
the associated group velocities: Interfaces at which group velocities of the two patterns are pointing
outwards of the interface are called sources, interfaces at which group velocities are pointing inwards
are called sinks [37]. It turns out that the interfaces can be distinguished by the sum of amplitudes, see
Fig. 4(b). Sinks exhibit a higher sum of amplitudes as they are pushed together by the group velocities,
while sources are pulled apart.

As for Eqs. (1) the definition of sources and sinks coincides with phase sources and sinks, respectively.
This is because group and phase velocity point in the same direction (which has not to be true in
general [37]). Fig. 4(a) therefore displays a sink on the left and a source on the right. In numerical
simulations sources and sinks were always found to be reflection symmetric with respect to space and
therefore stationary.

The second type of interface that can be found near the codimension-two point of Eqs. (1) is the wave-
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Figure 5: A Turing pattern and a left traveling wave separated by wave-Turing interfaces. (a) Space
time plot of u2 obtained by numerical integration of the SHEs (1) at parameter values η = ηc + 0.1,
α = αc − 0.1 and µ = 0.5. (b) Results from the amplitude equations (6) at parameter values
η = ηc + 0.05, α = αc − 0.05 and µ = 0.5. u1

W|AL| as solid blue and u1
T|AT| as dashed red line.

The arrow indicates the direction of the group velocity of the left traveling wave.

Turing interface, see Fig. 5. Wave-Turing interfaces are naturally asymmetric and thus not stationary.
Instead, they move at constant speed. Because this movement is on the scale of the group veloci-
ties and therefore way slower than the phase velocities of the wave patterns, this behavior is hardly
recognizable in Fig. 5(a).

Similarly to the wave-wave case, we can categorize wave-Turing interfaces depending on the wave’s
group velocity into inward interfaces for which the wave’s group velocity points into the direction of
the interfaces and outward interfaces where it points outwards, see Fig. 5(b) with an inward interface
on the left and an outward interface on the right. In weakly nonlinear regimes, inward and outward
interfaces will typically move in the direction of the wave’s group velocity, but with different velocities,
resulting in shrinking and growing wave or Turing patches. In strongly nonlinear regimes, the patch
widths can stabilize by phase locking [25].

4 Position control of interface solutions

In the last section we showed that the competition of different patterns in regimes of bistability of the
SHEs (1) can be governed by interfaces separating different patterns. As they can occur by chance
due to random initial perturbations of the homogeneous state, one can actually be sure to find different
patterns in one system, if the domain size is chosen large enough. Movement of the interfaces can
lead to shrinking up to vanishing of certain pattern patches. Thus by controlling the position of the
interfaces we can select between different patterns in one system. For example if we moved the
source in Fig. 4(b) to the right, letting it annihilate with the sink, the whole domain would be governed
by left traveling waves. If there was another source to the right of the sink (or we simply use periodicity
of the simulation domain) and we move it to the left we would end up with right traveling waves. To
establish such position control we introduce space and time dependent parameters

α(t, x) = αc + ε2αp(t, x)

η(t, x) = ηc + ε2ηp(t, x) .
(18)

Under the assumption that the parameters change slowly in time and space, the amplitude equations
stay as they are, while κW and κT inherit the space and time dependence. They can be computed
by inserting the space and time dependant αp and ηp into Eq. (45). In particular we observe that
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Figure 6: Space time plot of position control of the amplitude equations with one source and one sink
at η̂p = 0.1 and α = αc. The control parameters are η̂c = −0.014, bη = 4 and vc = 0.01. The
control signal, whose position is indicated by the dashed line, moves through the domain. While the
position of the source (solid line) is only manipulated slightly, the sink (dash dotted line) pins to the
control and follows it. Arrows indicate the direction of the group velocities of the wave patches.

Re[κW](t, x) ∝ ηp(t, x) and Im[κW](t, x) ∝ αp(t, x), while κT is linear in both ηp and αp. If the
parameters change rapidly, nonadiabatic corrections to the amplitude equations have to be taken into
account, cf. [27].

Throughout this paper we use Gaussian control in η of the kind

ηp(t, x) = η̂p + η̂conte
− (x−vcontt)2

bη (19)

with constant control velocity vc. Fig. 8 shows that different control shapes lead qualitatively to the
same effects.

4.1 Control of sources and sinks

The above considerations lead us to the most straightforward way for position control of interfaces. We
use pinning of sources and sinks to the control signal in Eq. (19), see Fig. 6. In the displayed simulation
the control signal is moved through the domain first hitting the source. Although the source follows the
control for some time, it is not completely pinned. Stronger control is necessary for that. The sink on
the other hand gets pinned and follows the control the whole way. The reasons and consequences of
the different affinity of sources and sinks to control in η are explained in the following.

Pinning of localized structures to inhomogeneities is a well known effect, see [7, 38] and references
therein. In this work we do not investigate fully nonlinear pinning effects, as most works deal with, but
weakly nonlinear ones, which can be explained in terms of amplitude equations.

In Fig. 7 the pinning mechanism of a sink to a negative Gaussian inhomogeneity is displayed. Moving
with constant speed vcont to the right, it enters the sink until it hits the left traveling wave front slightly
right to the sink’s center. Since η is locally lower at this point, also κW, which is related to the fact
that linear driving of the amplitude equations is lower. Thus the amplitudes are locally suppressed (or
less enhanced to be more precise). Right from the sinks center the effect on the left traveling wave
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Figure 7: Pinning mechanism of a sink to a dip in the parameter η. Right (left) traveling wave in red
(blue) solid line, ηp in dotted black line.

is stronger, since it possesses a larger amplitude. The suppression of the left traveling wave makes
room for the right traveling wave to advance. If the control signal is strong and moving slow enough,
the sink will thus follow it. This pinning mechanism is also applicable to sources.

From the above mechanism it follows that sinks are easier to pin than sources. In the case of a
sink, once one amplitude gets suppressed by the control, the other front is faster to move into the
freed space, because its group velocity is pointing inside the sink. In the case of sources it is slower,
because the group velocity is pointing outwards of the source. See also video 2 from supplementary
for an example with different pinning strengths.

We investigate the pinning behavior by numerically integrating the amplitude equations with two dif-
ferent control signal shapes (Gaussian and rectangular) and different width to height ratios, as well
as with varying control velocities at constant widths. From the scaling behavior of the pinning strength
depicted in Fig. 8 we can deduce further insights about the pinning mechanisms. First of all, a smaller
control signal is sufficient to pin sinks than to pin sources. In this context for equal control width and
velocity, the respective height parameter (η̂cont for gaussian signal, signal height for rectangular sig-
nal) is lower at pinning onset. This effect is independent of control shape and velocity. Moreover, for
small signal widths the area under the control signal is a constant at the pinning threshold, seemingly
independent from the signal shape. From some characteristic width upwards, larger control signals
are needed. Similar behavior can be observed for the pinning of fronts to inhomogeneities, cf. [16].
There the pinning is governed by the convolution of the parameter inhomogeneity with the Goldstone
mode of the front.

The fact that sinks are easier to pin than sources gives us a mechanism at hand to select between left
and right traveling waves. Using a control signal in the intermediate regime which is pinning sinks but
not sources, we can select between left and right traveling waves by choosing the movement direction
of the control signal. Starting the signal at the left side of the domain, moving it to the right, it will ignore
sources and pin the first sink. Thus the right traveling front is pulled through the system. In case of
a periodic system, it will be governed by right traveling waves completely afterwards. Choosing a left
moving control selects left traveling waves. See video 3 from supplementary material for an illustration.

The described protocol allows for global pattern selection with a local control, without knowledge of the
exact locations of sources and sinks, they only have to exist. The main result of this section, namely
that there is a certain interval in which control works for sinks but not for sources was confirmed by
direct numerical integration of the coupled SHEs (1).
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Figure 8: Effectiveness of pinning. Squares refer to the pinning of sources, circles to the pinning of
sinks. Solid blue lines denote Gaussian control and red dashed lines rectangular shaped control.
Results were obtained by numerically integrating Eqs. (6) at parameters η̂p = 0.05, α = αc and
µ = 0.5. (a) At constant vcont = 0.01 and different constant widths (full width for rectangular control,
full width at half height for Gaussian) the control signal height was varied until onset of pinning. (b)
At constant width bη of 4 and 3.33 for rectangular and Gaussian control, respectively, for different
constant control velocities the control height was varied until pinning onset.

4.2 Control of wave-Turing interfaces

Again, we use the signals in Eq. (18) to control the wave-Turing interfaces, as we did for the wave-
wave interfaces. The mechanisms work slightly different though. In contrast to left and right traveling
waves, which only differ with respect to the sign of their phase and group velocity, but not their stability
behavior, Turing and wave patterns are reacting differently to changes in η. We showed before, that
weakly nonlinear pinning to parameter inhomogeneities can be explained with changes in the real
parts of linear driving coefficients κW and κT. We can interpret those real parts geometrically in terms
of the perpendicular distance of a parameter point to the bifurcation line in parameter space. Fig. 1
thus shows, that the sensitivity of the real part of κW is larger than that of κT with respect to η.

Positive or negative inhomogeneities in η thus locally support the wave or the Turing front, respec-
tively. This can stop the natural movement of the interface or impose an artificial one. In the part of
the bistable regime, where interfaces move in the same direction as the wave’s group velocity we
use stationary control signals either to stop the movement of the inward or the outward interface. As
shown and discussed in Fig. 9 outward interfaces can be pinned by positive and inward interfaces by
negative control signals. Having the knowledge whether left or right traveling waves are present in the
system, thus enables us to select between wave and Turing patterns, see also video 4 in the sup-
plementary material. Necessary for that is that the desired pattern does not vanish by natural pattern
patch shrinking before the relevant interfaces can be pinned.

Pinning of outward and inward interfaces with positive and negative control signals has been confirmed
by numerical integration of Eqs. (1).
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Figure 9: Pinning of wave-Turing interfaces in two simulations of Eq. (6) with identical initial conditions.
u1

W|AL| (u1
T|AT|) denoted by blue(red) line, ηp by black dotted line. Parameters are α = αc − 0.3,

µ = 0.5. (a) Pinning of an outward interface by positive control. Without control, the interface would
move to the left as a result from the left pointing group velocity. The local enhancement of the wave
stops the wave from retreating form the interface and pins it. (b) Pinning of an inward interface by
negative control. This time the pinning works by locally suppressing the wave front to advance to the
left.

5 Conclusion

We investigated the competition and control of patterns in a system of two anti-symmetrically coupled
Swift–Hohenberg equations. Linear stability analysis revealed the existence of a codimension-two bi-
furcation point, where wave and Turing patterns occur simultaneously. By performing weakly nonlinear
analysis in vicinity of this point, we derived coupled amplitude equations for the dynamics and inter-
action of these patterns. The mutual suppression of amplitudes of Turing and wave patterns results
in their bistability. Similarly, we find that right-traveling wave modes suppress left-traveling modes and
vice versa leading to traveling waves instead of standing waves. Consequently, different stable pat-
terns can appear in distinct spatial regions separated by localized interfaces. Rigorous justification
of complex Ginzburg–Landau equations as amplitude equations failed due to the oscillatory dynam-
ics of antisymmetrically coupled SHEs. Therefore we restrict ourselves to a formal derivation. How-
ever, we point out that the formal derivation may potentially be misleading as is shown in [32] for the
Newell–Whitehead equation. Therefore, we have performed extensive numerical simulations to verify
our findings.

Pinning of such interfaces to parameter inhomogeneities allows for efficient control of the interface
positions. Certain choices of the parameters of the control signals are found to yield a selective pinning
of interfaces. A particular size of the control signal pins for example only wave sinks but not sources.
In the Turing-wave case, the sign of the control determines whether inward or outward interfaces are
pinned. In the bistable parameter regime, a system always forms these interfaces, provided that the
domain size is large enough. Thus, the presented control method allows for global pattern selection
through local control.

While a single SHE is a model for the formation of stationary patterns in non-equilibrium systems, two
anti-symmetrically coupled SHEs may be considered as a simple generic model for competing Turing
and wave patterns. Therefore, our control scheme is rather general and applicable to a large variety
of systems.
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Supplementary material

Video 1 shows the numerical comparison of the SHEs (1) and the amplitude equations (6) with corre-
sponding initial condition. See Fig. 2 for the simulation parameters.

Video 2 shows pinning in a system with one source and one sink with different control strengths η̂c.
From top to bottom there is (i) no pinning at all, (ii) pinning of sink only and (iii) pinning of the first
interface that is hit by the control. Parameters are η̂p = 0.1, α = αc. Control is at vcont = 0.01 and
bη = 4. The amplitude of the left traveling waves is shown in blue, the amplitude of right traveling
waves in red, such that in the beginning there is a source at the left and a sink at the right.

Video 3 shows selection of right (top) marked by a red line and left (bottom) traveling waves marked
by a blue line with a right and left moving control, respectively. Pinning strength is chosen such that
only sinks are pinned. Parameters are η̂p = 0.1, α = αc. Control is at η̂cont = 0.014, vcont = 0.01
and bη = 4.

Video 4 shows selection of left traveling wave (top) and Turing (bottom) patterns by positive and neg-
ative stationary control. Parameters are η̂p = 0.1, α̂ = −0.3. Control is at η̂cont = ±0.04, vcont = 0
and bη = 15.

A Linear stability analysis

We carry out a linear stability analysis of the uniform fixed point (0, 0)> of Eqs. (1). Employing the
ansatz u = δ eikx+λt, we find the Jacobian

L(k) =

(
f1(k) −α
α f2(k)

)
, (20)

and the dispersion relation

λ(k) =
f1(k) + f2(k)

2
±
√(

f1(k)− f2(k)

2

)2

− α2 , (21)

where f1(k) = η− (1−k2)2 and f2(k) = η− (1−µ2k2)2. For α > 0, Turing and wave instabilities
exist in different regions of wave number k. We analyze the root term in Eq. (21) to distinguish these
cases which are independent of η. For α ≤ (1−µ2)/(2 (1+µ2)), waves may emerge for k for which
0 < k < kA or kB < k < kc hold, while Turing patterns may emerge for the other values of k > 0.
The separating wave numbers kA, kB and kc are given by

kA =

√√√√ 1

1 + µ2
−
√

1

(1 + µ2)2
− 2α

1− µ4
, (22)

kB =

√√√√ 1

1 + µ2
+

√
1

(1 + µ2)2
− 2α

1− µ4
, (23)

kc =

√√√√ 1

1 + µ2
+

√
1

(1 + µ2)2
+

2α

1− µ4
, (24)
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Figure 10: Wave and Turing instabilities of wavenumber k for different α and given µ = 1
2
. The

separating wave numbers kA, kB and kc are drawn as black, gray, and dashed line, respectively. For
α > α̃, the critical k of the wave instability is given by kW, drawn as dotted line.

and illustrated in Fig. 10. For α > (1 − µ2)/(2 (1 + µ2)), kA and kB cease and waves are possible
for all k with 0 < k < kc.

For a wave instability, the real part of λ(k) is given by (f1(k) + f2(k))/2. Its maximum is located at
k2

W = (1 + µ2)/(1 + µ4) and with Re[λ(kW)] = 0, we find the critical value

ηW =
(1− µ2)2

2 (1 + µ4)
, (25)

which is shown for µ = 1/2 as (solid and dashed) vertical red line in Fig. 1. This line only exists for
values of α which ensure that the root term of λ(kW) is imaginary, see Fig. 10, a condition which can
be expressed as

α > α̃ =
(1− µ2)2 (1− µ4)

2 (1 + µ4)2
. (26)

For α < α̃, the real part of λ takes its maximal value for k = kB. With λ(kB) = 0, we find

ηW(α) =
1 + µ4 − 2µ2

√
1− 2α 1+µ2

1−µ2

(1 + µ2)2
− 1 + µ4

1− µ4
α , (27)

which is displayed as bent and dashed red line in Fig. 1.

In case of a Turing instability, the root term in Eq. (21) is real. Without loss of generality, we set
λ1(k) = 0 and ∂kλ1(k) = 0 at the instability line, resulting in

0 = λ1(k) ∂kλ2(k) + ∂kλ1(k)λ2(k) = ∂k (λ1(k)λ2(k))

= ∂k detL(k) = ∂k (f1(k)f2(k)) . (28)

Taking advantage of the symmetry of the system, we introduceK = k2 and Fi(K) = fi(k) to obtain
a cubic equation in K :

∂K (F1(K)F2(K)) = 0 , (29)

for which analytic solutions K1(η), K2(η) and K3(η) exist for given η. The relation K1(η) > 1/µ2

corresponds to the Turing instability of small wavelength emerging out of Eq. (1b). The bifurcation line
of this instability (black solid and dashed line in Fig. 1) is computed by setting F1(K1)F2(K1)+α2

T =
0 and solving for αT(η) > 0:

αT(η) =
√
−F1(K1(η))F2(K1(η)) . (30)
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The solution K2(η) < 1 corresponds to the Turing instability of larger wavelength emerging from
Eq. (1a). Its bifurcation line is computed in an analogous manner and displayed as black dotted line in
Fig. 1. Finally, the third solution K3(η) does yield positive values of F1(K3)F2(K3) for η > 0 and
thus does not provide another instability.

At the codimension-two point, the maxima of λ(k) related to the small wavelength Turing instability
and the wave instability cross the real axis simultaneously, i.e. the corresponding bifurcation lines
intersect. In parameter space, this point is

ηc = ηW =
(1− µ2)2

2 (1 + µ4)
, (31)

αc = αT(ηc) (32)

=
√
−
(
ηc − (1−K1(ηc))

2) (ηc − (1− µ2K1(ηc))
2).

and the critical wave numbers for the wave and Turing instability are given by

k2
W =

1 + µ2

1 + µ4
(33)

and

k2
T = K1(ηc) (34)

respectively. The angular frequency ω of the wave is given by

ω2 = (Im [λ(kW)])2 = α2
c −

(1− µ2)4(1− µ4)2

4(1 + µ4)4
. (35)

B Derivation of the amplitude equations

For a formal derviation of the amplitude equations we adapt the scheme provided in [10]. Recall the
ansatz in Eq. (3) which reads

u(t, x) = εu1 + ε2u2 + ε3u3 +O(ε4), (36)

wherein each summand in the expansion is of the form

un(t, x) =
[
AnL(εt, ε2t, εx, ε2x)ei(kWx+ωt)uL

+ AnR(εt, ε2t, εx, ε2x)ei(kWx−ωt)uR

+AnT(εt, ε2t, εx, ε2x)ei(kTx)uT + c.c.
] (37)

with uk denoting the eigenvectors for k ∈ {L,R,T} of the eigenvalue problems in (40) below. We
can reformulate the SHEs in terms of

∂tu = L(u) +N (u) , (38)

where L denotes the linear part andN the nonlinear, cubic part. If one introduces the slow scales as
in Sec. 3.1, the derivatives transform via

∂t → ∂t + ε∂τ1 + ε2
τ2

∂x → ∂x + ε∂χ1 + ε2∂χ2 . (39)
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Inserting Eqs. (36)–(37) into Eq. (38) or rather Eq. (1) and expanding in orders of ε gives the following:
on the order ε1 we recover the eigenvalue problems for the critical modes

iωuL/R = ±L(kW)uL/R, 0 = L(kT)uT , (40)

where the matrix L is given in Eq. (20). On the order of ε2 we find for c = Im[λ′(kW)]

(∂τ1 ∓ c∂χ1)A
1
L/R = 0, ∂τ1A

1
T = 0 , (41)

while assuming L′(kW )uL/R = ±λ′(kW)uL/R, cf. Appendix A in [10]. For the group velocity c one
finds the expression

c =
2µ2 (1− µ2)

4
(1 + µ2)

3
2

(1 + µ4)
7
2

√
α2

c − (1−µ2)6(1+µ2)2

4(1+µ4)4

. (42)

Note that Re[λ′(kW)] = 0 and that the solvability condition forAT simply yieldsAT = AT(τ2, χ1, χ2).
The relevant equations on the order of ε3 are

(∂τ2 − c∂χ2)A
1
L + (∂τ1 − c∂χ1)A

2
L

= κWA
1
L +DW∂χ1χ1A

1
L + σW|A1

L|2A1
L

+ σWW|A1
R|2A1

L + σWT|A1
T|2A1

L ,

(∂τ2 − c∂χ2)A
1
R + (∂τ1 − c∂χ1)A

2
R

= κWA
1
R +DW∂χ1χ1A

1
R + σW|A1

R|2A1
R

+ σWW|A1
L|2A1

R + σWT|A1
T|2A1

R ,

∂τ2A
1
T + ∂τ1A

2
T

= κTA
1
T +DT∂χ1χ1A

1
T + σT|A1

T|2A1
T

+ σTW(|A1
L|2 + |A1

R|2)A1
T . (43)

By arguing that the amplitudes in the expansion in (36)–(37) must not contain any secular conditions,
i.e. terms that grow linearly in time, we obtain (∂τ1 − c∂χ1)A

2
L/R = 0, cf. Appendix B in [10], and,

therefore, system (4)–(5) follows immediately.

Moreover, let DW = −1
2
λ′′ (kW) and DT = −1

2
λ′′ (kT). For the wave diffusion constant DW the

real part has a simple analytic expression

DW = 2(1 + µ2) + i Im[DW] . (44)

The imaginary part of DW as well as DT can also be expressed analytically but in an intricate and
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uninstructive way. The remaining coefficients are

κW =
vL ·MuL

vL · uL

= ηp − i
αcαp

ω
, (45)

κT =
vT ·MuT

vT · uT

= ηp +
2αcαpaT

a2
T − α2

c

, (46)

σW = −3

4

vL · A(uL)uL

vL · uL

= −3

4
α2

c , (47)

σT = −3

4

vT · A(uT)uT

vT · uT

= −3

4
(a2

T + α2
c) , (48)

σWW = −3

2

vL · A(uR)uL

vL · uL

= −3

2
α2

c , (49)

σWT = −3

2

vL · A(uT)uL

vL · uL

(50)

= −3

4

(
a2

T + α2
c + i

aW

ω
(α2

c − a2
T)
)
, (51)

σTW = −3

2

vT · A(uL)uT

vT · uT

= −3

2
α2

c . (52)

For brevity, we introduced aW = f1(kW) and aT = f1(kT), as well as the matrix
A(v) = diag (|v1|2, |v2|2).
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