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There is a growing recognition that the interrelations between agriculture, food, bioenergy,

and climate change have to be better understood in order to derive more realistic estimates

of future bioenergy potentials. This article estimates global bioenergy potentials in the year

2050, following a “food first” approach. It presents integrated food, livestock, agriculture,

and bioenergy scenarios for the year 2050 based on a consistent representation of FAO

projections of future agricultural development in a global biomass balance model. The

model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggre-

gates. It incorporates detailed accounts of land use, global net primary production (NPP)

and its human appropriation as well as socioeconomic biomass flow balances for the year

2000 that are modified according to a set of scenario assumptions to derive the biomass

potential for 2050. We calculate the amount of biomass required to feed humans and

livestock, considering losses between biomass supply and provision of final products.

Based on this biomass balance as well as on global land-use data, we evaluate the potential

to grow bioenergy crops and estimate the residue potentials from cropland (forestry is

outside the scope of this study). We assess the sensitivity of the biomass potential to

assumptions on diets, agricultural yields, cropland expansion and climate change. We use

the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in

temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross

(primary) bioenergy potential ranges from 64 to 161 EJ y�1, depending on climate impact,

yields and diet, while the dependency on cropland expansion is weak. We conclude that

food requirements for a growing world population, in particular feed required for livestock,

strongly influence bioenergy potentials, and that integrated approaches are needed to

optimize food and bioenergy supply.
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1. Introduction ecological material and energy flows, in particular of biomass
The surging demand of a growing and increasingly affluent

world population for food, fibre, and energy is confronting the

earth’s terrestrial ecosystems with mounting pressures.

Already today, land use is degrading the ability of ecosystems

to deliver vital services to humanity [1]. Changes in the global

land system are a pervasive driver of global environmental

change [2,3]. Land-use change often leads to biodiversity loss,

changes in runoff, buffering capacities of ecosystems, green-

house gas (GHG) emissions, soil and ecosystem degradation,

and other adverse effects [4]. Moreover, climate change is

confronting ecosystems globally with the challenge of adapt-

ing to changes in precipitation and temperature [5], while the

effects of changes in atmospheric composition, in particular

increased CO2 concentration, are currently only incompletely

understood [6,7]. Climate change may in particular affect

agro-ecosystems and is currently thought to have positive as

well as negative effects on yields in different regions of the

world [8].

The use of biomass for energy production as a substitute

for fossil energy is often seen as an attractive option to reduce

fossil-fuel dependency and help reduce greenhouse gas (GHG)

emissions [9,10]. It has been argued that biomass combustion

with consequent carbon capture and storage (CCS) on a grand

scale [11e13] might be an important option to achieve nega-

tive GHG emissions required to limit global warming to

2�Celsius until 2100, a goal thought to be required to reduce

the risk of catastrophic runaway events as the earth system

could reach certain “tipping points” [14,15]. The question of

the magnitude and spatial patterns of global bioenergy

potentials has therefore gained increased urgency in the last

years [16e21].

Discussions aboutwhetherUSandEuropeanbiofuel policies

contributed to surging prices of agricultural products and food

in 2007 and 2008 [22,23] have drawn attention to another issue:

Abetter understanding of the interrelationsbetween the supply

of food, fibre, andbioenergy is required in order to derive better-

informed estimates of global bioenergy potentials and to forge

strategies of bioenergy utilization that avoid unintended

consequences such as strong increases in food prices or envi-

ronmental pressures [24e26]. Existing studies of global bio-

energy potentials did so far not, or not sufficiently, consider

interrelations between food and bioenergy [10,19,27e29].

The interrelations between food and bioenergy depend on

a host of factors, including economic factors (e.g., prices and

trade), agricultural technology (e.g., crop yields, conversion

efficiencies), changes in demand (e.g., diets, population

numbers), as well as patterns and trajectories of global land

use. This article aims to presents a first step towards the

analysis of this complex system from the perspective of global

socioeconomic metabolism. Studies of socioeconomic

metabolism analyze the biophysical (e.g., material, energy)

flows associatedwith human activities [30e34]. This approach

is based on thermodynamic principles (first and second law of

thermodynamics) that allow constructing mass balances for

many economic activities which complement monetary

economic accounts (e.g., the System of National Accounts).

Material flow analysis (MFA) can be linked with inventories of
flows, through an approach that has been called the “human

appropriation of net primary production” or HANPP [35e37].

Net primary production (NPP) denotes the amount of biomass

produced by green plants through photosynthesis. HANPP

records changes in the biomass balance of terrestrial ecosys-

tems resulting from (1) human-induced changes in NPP,

denoted as DNPPLC (NPP change resulting from land conver-

sion) and (2) human harvest of biomass, including biomass

destroyed during harvest (NPP harvested or NPPh) [38].

Here, we use the socioeconomic metabolism approach to

develop a biomass balance model to consistently link supply

and demand of agricultural biomass (forestry is excluded). The

model is based on a complex, data-rich representation of global

supply and demand of biomass in the year 2000. We then use

the model to establish a consistent biomass balance for the

year 2050 based on FAO projections [39]. All biomass flows are

traced from production (agriculture and grasslands) to

consumption via conversion processes, in particular those

related to livestock. By comparing the production potential on

cropland identified by the FAO, and the production potential of

grazing lands based on calculations of their primary produc-

tivity, with the biomass demand resulting from projected

global food and fibre consumption, we calculate potentials to

produce bioenergy on the cropland area as projected by FAO for

2050 aswell as on additional cropland that could be established

on grazing areas. In estimating the latter, we explicitly

considered biomass demand of livestock to be satisfied from

grazing land according to the projected final demand in 2050.

As the model calculates mass balances for agricultural activi-

ties, it also provides data to estimate the bioenergy potential

from agricultural biomass residues. We also use the biomass

model to evaluate the consequences of possible effects of

climate change on crop yields e as assessed by the dynamic

global vegetation model LPJmL [40] e on biomass supply and

bioenergy potentials.
2. Materials and methods

2.1. Definition of study regions and biomass aggregates

The regional grouping underlying this study was based on the

classification of the macro-geographical (continental) regions

and geographical sub-regions as defined by the United

Nations Statistical Division [41]. The 11 world regions are

defined in Table S1 in the supplementary online material and

characterized in Table 1. Population density varies consider-

ably between the study regions, which is important because

land availability has strong effects on land-use systems [42].

Whether a region is a net exporter or net importer of land-

based products is determined by population density rather

than development status [43]. Fertilizer use and livestock

density are indicators of land-use intensity and differ strongly

with population density aswell as with per-capita income (see

Table 1). The percentage of the total land area in each region

used as cropland or grazing area is also indicative of land-use

intensity and shows considerable differences among world

regions.
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Table 1 e Description of the study regions in terms of area, population density and land use.

Population Territory Popul. density Per-capita GDP Livestock
density

Fertilizer
use

Cropland Grazing
land

Unit [million] [1000 km2] [cap km�2] [US$ cap�1 y�1]a [LU/ha]b [kg ha�1 y�1]c [%]d [%]d

Source [99] [99] [99] [100] [99] [99] [48] [48]

N. Africa & W. Asia 311 10,381 29.9 2753 2.43 73.3 7% 17%

Sub-Saharan Africa 650 24,291 26.8 594 2.19 10.8 7% 49%

Central Asia & Russ. Fed. 287 22,251 12.9 1762 0.89 18.7 10% 33%

E. Asia 1481 11,762 125.9 3377 4.57 229.0 14% 45%

S. Asia 1424 6787 209.8 585 9.30 98.5 35% 41%

S.-E. Asia 518 4494 115.3 935 3.15 90.8 21% 30%

N. America 314 19,600 16.0 27 818 2.00 94.8 12% 25%

Latin America, Carribean 517 20,563 25.2 2930 4.39 73.0 8% 39%

W. Europe 389 3711 104.8 23,325 6.84 185.2 24% 31%

E. & S.-E. Europe 125 1201 104.3 2401 4.47 72.3 41% 23%

Oceania & Australia 30 8559 3.5 17,223 1.56 57.7 6% 42%

World 6046 133,602 45.3 4665 3.33 88.8 12% 36%

a Constant 1990 US$.

b Livestock units (LU) per hectare of agricultural area.

c Kilograms of pure nitrogen (kg N) per hectare of cropland and year.

d Per cent of total land area.
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We used the following aggregates when working with

biomass production and consumption flows. We distin-

guished 11 food aggregates (cereals; roots and tubers; sugar

crops; pulses; oil crops; vegetables and fruits; meat of rumi-

nants (grazers); milk, butter and other dairy products; meat of

pigs, poultry, and eggs; fish; other crops). We defined seven

food crop aggregates (cereals; oil-bearing crops; sugar crops;

pulses; roots and tubers; vegetables and fruits; others). We

distinguished two groups of livestock: all animals capable of

digesting roughage were aggregated into the “grazers” group

(cattle, sheep, goats, etc.). All other animals (above all pigs and

poultry) were included in the “non-grazers” group. Data

reported in fresh weight or air-dry weight were converted into

dry matter using specific data on water content according to

standard tables of food and feed composition [44e47].
2.2. Data on land use and global biomass flows in the
year 2000

Our analysis is based on a global database for the year 2000

that consistently integrates global land-use and socioeco-

nomic data with NPP data across a range of spatial scales,

from the grid level to the country level (w160 countries). Most

of these data are available over the internet (http://www.uni-

klu.ac.at/socec/inhalt/1088.htm). The data have been dis-

cussed extensively in previous papers [38,48,49]; here we only

provide a brief overview. The main strength of the database is

that it covers three large domains of data that were cross-

checked against one another and are consistent between

scales (grid- and country-level) and domains (NPP, biomass

harvest, by-products, livestock, biomass processing and use).

The three main accounts are:

� A geographically explicit (50 geographic resolution, i.e.

approximately 10 � 10 km at the equator) land-use dataset

[48]. Cropland area and forest area are consistent with FAO
data on cropland [50] and the forest resource assessments

FRA and TBFRA [50,51] on the country level.

� A geographically explicit (50 geographic resolution) assess-

ment of global HANPP [38]. The database includes, for each

grid cell, NPP0 (NPP of potential vegetation), NPPact (NPP of

the currently prevailing vegetation), and NPPh (biomass

harvested by humans, grazed by their livestock or destroyed

during harvest or by human-induced fires [52]).

� A country-level assessment of socioeconomic biomass use

that traces biomass flows fromharvest to final consumption

[49], based on FAO statistics. Flows not covered in statistics

(e.g., grazing of livestock) were estimated based on country-

level feed balances of all major livestock species. Livestock

feed balanceswere cross-checked against the NPP of grazing

areas [38]. Biomass harvest from cropland and permanent

cultures, including primary crops, used and unused crop

residues was calculated from the FAO agricultural produc-

tion database [50].

Land-usedata for theyear2000arepresented inTable 2. This

dataset was cross-checked against statistical data and data

derived from remote sensing [48]. 75.5% of the earth’s land

(excluding Greenland and Antarctica) is under human use

which, however, ranges from very intensive to very extensive

use. Approximately 1% of the land is used as infrastructure and

urban area, 11.7% as cropland, 26.8% as forestry land, 36.0% as

grazing land.Note that all landnot classifiedasurban, cropland,

forestry or unused land is included in the “grazing land” class,

i.e. the land-use classes included in Table 2 cover the earth’s

entire land area. Grazing land is characterized by four quality

classes (1e4, with 1 denoting the best grazing land and 4 the

worst; for definitions see [48]). Landdenotedas “grazing land” in

our dataset therefore includes a large variety of ecosystem

types: It comprises intensively cultivated meadows as well as

barely productive semi-natural landscapes that often have

http://www.uni-klu.ac.at/socec/inhalt/1088.htm
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Table 2 e Land use in the 11 study regions in the year 2000. Data source [48].

Infra-structure Cropland Forestry Grazing land
[1000 km2]

Non-productive
land

Unused
productive land

Totala

N. Africa and W. Asia 42 763 268 1738 7421 47 10,279

Sub-Saharan Africa 111 1781 5828 11,867 3443 945 23,975

Central Asia and

Russian Fed.

189 1572 7155 6742 280 4494 20,432

E. Asia 140 1604 2121 5146 2075 448 11,533

S. Asia 113 2305 850 2554 824 024 6670

S.-E. Asia 039 931 2098 1331 0 83 4483

N. America 337 2240 4741 4473 1549 5169 18,508

Latin America &

the Carribean

64 1685 8733 7932 256 1624 20,295

W. Europe 198 862 1318 1130 11 136 3655

E. & S.-E. Europe 103 941 630 482 0 2 2158

Oceania and Australia 23 540 1216 3484 305 2817 8385

World 1360 15,225 34,958 46,881 16,163 15,788 130,375

a The total refers to territorial surface area without inland water bodies.
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a very high ecological value and may be used very extensively.

Of the remaining 24.5%, about one half is completely unpro-

ductive, often covered by rocks and snow or deserts with an

aboveground NPP below 20 g C m�2 y�1 (“non-productive land”

in Table 2). The other half (“unused productive land”) includes

pristine forests (c.6 Mm2; 1 Mm2 ¼ 106 m � 106 m ¼ 1012 m2 ¼ 1

million square kilometers; 6Mm2 are approximately 4.6%of the

earth’s land area excluding Greenland and Antarctica),

including tropical rainforests as well as all other forests with

(almost) no signs of human use [53] (most of the latter in boreal

regions). This category also includes rather unproductive

ecosystems such as arctic or alpine tundra and grasslands.
2.3. Matching supply and demand: the biomass balance
model

The biomass balance model (for reference see [54]) allows to

calculate scenarios of the supply and demand of biomass in

2050, based on a consistent set of assumptions discussed in

section 2.4. The databases described in section 2.2 were used

to construct a model of biomass flows in the year 2000 in

which the demand for final products is matched with gross

agricultural production and land-use data (Fig. 1). We used

factors derived from data for 2000 to characterize the

conversion of biomass from primary harvest to final products

(food and fibre), in particular through the livestock system.

Themodel consists of two process pathways, a food crop path

for the demand for cereals, roots and tubers, sugar crops,

pulses, oil crops, vegetables and fruits, and other crops, and

also for the demand for pig meat, poultry, eggs, and fish from

aquaculture (“non-grazers”), and a roughage path for the

demand for products derived from grazers (meat, milk, butter,

and other dairy products).

In the food crop path, the regional demand for final

biomass products (e.g. flour, vegetable oils, refined sugar) is

converted to the amount of gross primary crop demand (i.e.,

primary products such as cereals, oil crops, sugar crops, etc.).

Using global factors derived from the databases described in

section 2.2, the by-products accruing from the production of

final products (e.g. brans in flour production from cereals, oil-
cakes in vegetable oil production from oil-bearing crops), seed

requirements and the losses in the agricultural system are

calculated (Fig. 1). Non-grazers (pigs, poultry) are dealt with in

the food crop path as well, because they are fed (mainly) from

primary or secondary cropland products. For the demand for

final products (i.e. meat from pigs and poultry, eggs, and fish

from aquaculture), the market feed requirement (e.g., brans,

oil cakes, cereals) is calculated by applying regional input-

output ratios of the monogastric livestock systems [49,55].

The resulting amount of market feed demand of non-grazers

is added to the market feed demand of grazers calculated in

the roughage path (see next paragraph), resulting in total

regional market feed demand. This is then balanced with the

regional supply of market feed from food processing and

industrial processing of cereals, oil-bearing crops, and sugar

crops; i.e., the supply of brans, oil-cakes, molasse, and

bagasse. Usage factors for these categories were derived from

the 2000 database and used to calculate the amount of market

feed fed to animals. From the difference betweenmarket feed

demand and the amount of by-products from processing fed

to animals, the additional demand for feed grain (cereals) is

calculated and added to the regional demand for cereals,

taking seed demand and losses into account.

The roughage pathway refers to the demand for ruminant

meat andmilk, i.e. to the grazing livestock system. The grazing

livestock system is characterized by a demand formarket feed

and a demand for non-market feed (roughage demand; i.e., the

sum of fodder, crop residues fed to grazers, and grazing). The

amount of feeddemandperunit of output (meat ormilk) varies

between world regions by factors of up to 10, due to the

differences in animal husbandry systems [49]. These factors

depend particularly on the regional share of subsistence live-

stock systems (with high input-output ratios for roughage and

low input-output ratios for market feed) and industrial meat

and milk production (with the opposite patterns and a much

higher overall efficiency due to the higher nutritional value of

market feed and a production system optimized for high

outputs). We calculated the regional production of ruminant

meat and milk (and subsequently regional feed demand) as

a function of regional roughage supply. Crop residue flows and

http://dx.doi.org/10.1016/j.biombioe.2011.04.035
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Fig. 1 e Flow chart of the biomass-balance model used to

integrate supply and demand of biomass. For reference see

[54].
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the fractions used as feed were derived from the databases for

2000 using data on harvest indices (the ratio of grain to total

plant biomass) and the usage of harvest residues as well as

data on the fraction of available crop residues used for feed

[38,49,56]. Fodder supply is given in FAO statistics and was

converted to dry matter using standard tables, as described in

section 2.1. The amount of grazed biomass was calculated

from grazing land statistics [48], the actual NPP of grazing

systems, and grazing intensity, i.e. the ratio of grazed biomass

and actual NPP in a region [38]. The amount of total regional

roughage supply was used to calculate the amount of rumi-

nant meat and milk production in each region based on the

input-output ratio of the livestock systems. From regional

ruminant meat andmilk production, the regional market feed

demand of ruminants was derived and added to the total

market feed demand.

The gap between regional supply and demand in 2000, for

meat as well as for cropland products, was assumed to be
balanced by international trade: for example, regions where

the demand for primary products (e.g., cereals) exceeded

regional supply were assumed to import; regions, where

biomass supply was larger than regional demand were

assumed to export. Overall, the level of uncertainty of the

biomass flow model is at a satisfactory level: extrapolated

global demand for gross primary crops is at 98% of the 2000

cropland production, and modelled grazing is at 99% of the

grazing amount from the HANPP assessment in the year 2000

[38]. Discrepancies result from the usage of global average

factors. In order to use the model to calculate bioenergy

potentials for the year 2050, we modified the original model

for the year 2000 as described in section 2.4.

2.4. Assumptions for changes until 2050 compared to
2000

With respect to population growth, we used the UN medium

variant in which world population is forecast to be 9.16 billion

in 2050 [57]. Total food demand was derived from forecast

population numbers assuming “business-as-usual” changes

in regional diets which we derived as follows. For the year

2000 we used data on food supply as compiled by the FAO [58],

averaged over the period 1999e2001 in order to avoid climate

or other fluctuations, and aggregated to the food categories

described in section 2.1. By 2050, every regionwas projected to

attain the diet level of the country which was “richest” (in

terms of food intake) in 2000 in the respective region. The

composition of the richest country’s diet was adapted to the

regional pattern in order tomaintain appropriate fractions (for

instance for porkmeat in the Islamic countries of North Africa

and Western Asia). The diet projected for 2050 is compared to

that of 2000 in Table 3. This business-as-usual (BAU) scenario

is quite similar to the business-as-usual demand growth

scenarios of the FAO for 2050 [39], despite the difference in

methodology [59].

In order to test the sensitivity of the bioenergy potential in

2050 to diets, we performed an alternative model run,

assuming a global food supply of 11.72 MJ cap�1 d�1 (i.e. the

current global average) with only 7e10% of the calorific energy

animal products (see Table 3). While this “fair and frugal” diet

was designed to be nutritionally sufficient in terms of calorie

and protein supply, it would require equitable distribution of

food in order to avoid malnutrition and imply a quite signifi-

cant reduction in terms of calorie supply as well as

consumption of animal products in some parts of the world. It

is included here to demonstrate the dependency of bioenergy

potentials on future changes in diets.

We used the UN population forecast [57] to derive an esti-

mate of the additional area needed for urban areas and

infrastructure as follows. We assumed that rural infrastruc-

ture areas are mostly driven by the need to transport agri-

cultural inputs and produce and by the need to house

agricultural population and machinery. We therefore calcu-

lated the area of rural infrastructure as a percentage of crop-

land area in each region, using factors derived fromprior work

[48]. Urban areas are much smaller than rural infrastructure.

We estimated urban areas in 2050 by assuming that the per-

capita amount of urban area would stay constant from 2000

to 2050. Globally, urban population is forecast to increase from

http://dx.doi.org/10.1016/j.biombioe.2011.04.035
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Table 3 e Food supply in 2000 and two assumptions for the year 2050: A “business-as-usual” forecast (BAU) as well as
a “fair and frugal” diet (“fair”) assuming a switch to equitable food distribution and less meat consumption. Absolute
numbers are kilocalories per capita per day [MJ capL1 dL1].

Total
food

supply
2000

Share
of animal
products

2000

Total
food
BAU
2050

Change in total,
BAU 2050/2000
[MJ cap�1 d�1]
or per cent [%]

Share
animal
products

BAU

Total
food
“fair”
2050

Change
in total,
“fair”

2050/2000

Share
animal
products
“fair“

N. Africa and W. Asia 12.38 10% 13.37 8% 12% 11.72 �5% 8%

Sub-Saharan Africa 9.41 7% 11.73 25% 8% 11.72 25% 8%

Central Asia, Russ. Fed. 11.66 22% 12.87 10% 23% 11.72 1% 8%

E. Asia 12.29 19% 13.16 7% 21% 11.72 �5% 8%

S. Asia 10.15 9% 11.52 13% 13% 11.72 15% 10%

S. -E. Asia 11.21 8% 11.98 7% 11% 11.72 5% 8%

N. America 15.69 27% 15.70 0% 27% 11.72 �25% 7%

Latin America, Carrib. 11.87 20% 12.82 8% 21% 11.72 �1% 8%

W. Europe 14.36 31% 14.75 3% 32% 11.72 �18% 7%

E. & S.-E. Europe 12.86 25% 13.62 6% 27% 11.72 �9% 9%

Oceania and Australia 12.63 28% 13.46 7% 29% 11.72 �7% 7%

World 11.67 16% 12.53 7% 16% 11.72 0% 8%
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2.84 to 6.37 billion [57]. For East and South-East Europe, the UN

forecasts a shrinking urban population; in this region we kept

the urban areas constant. We are aware that such simple

assumptions can only serve to derive first-order approxima-

tions that might be too low; that is, the results are likely to be

conservative. According to our calculation, urban areas grow

from 279,180 km2 to 532,880 km2. This is not much when

compared with existing cropland areas (Table 2), so the

ensuing errors introduced by our estimation method will also

be small.

We used FAO forecasts [39,60] to derive estimates for crop-

land area change and crop yields until 2050 (for reference see

[54]). The FAO provides projections of crop production and its

drivers (yields, area, cropping intensity) for selected important

food crops (cereals, oil crops, sugar crops) for industrialized

countries and five regional groups of developing countries

[39,60]. FAO projections are not based on a formal model, but

use expert judgements, mostly of FAO in-house experts, to

derive estimates of demand for food, feed, non-fooduses, seeds

and wastes as well as regionally specific projections of yields

and cropped areas. Balances between supply and demand are

closed using so-called “supply-utilization accounts” (SUA’s).

The projections have to fulfil consistency criteria and are

improved in an iterative process that involves several stages of

revision, ensuring that sectoral and regional knowledge can be

incorporated [60].

When these were available, we applied annual growth rates

of crop production and its drivers (area, yield, cropping inten-

sity) as reported by the FAO to our data [48,49] to derive total

production volumes and area changes for crops and regions

explicitly covered in the relevant reports [39,60] (yields were

cross-checked, and slightly modified, using GAEZ data [61]). In

order toavoidcomplicationsarising fromworkingwith “harvest

yields” (i.e., yields per harvest event; areas with multicropping

are countedeach time theyare harvested, fallow is omitted),we

use the concept of “land-use yields” (derived by dividing the

total amount of crops produced per unit of cropland area,

including fallow). Land-use yields are calculated bymultiplying

harvest yields and cropping intensity; i.e., the number of

harvests per year. Results are shown in Fig. 2. The FAO does not
report projections for fodder cropproduction.Tofill this gap,we

assumed that the share of fodder crops to the overall area of

arable land remains constant and that the yields of fodder crops

growwith the same rate as the aggregate “other crops”.

The results are plausible compared with current crop

yields at the national scale [50] and alternative yield forecasts

[62]. Our assumptions deviate from FAO projections only

marginally, especially when compared to the level of uncer-

tainty in such a projection. Overall, we assumed that cropland

area will grow by 9% (Table 4) and yields by 54% (Fig. 2). Our

assumptions are in line with other studies: IIASA scenarios

suggest that global cropland area will grow by þ6% in scenario

B1, þ9% in Scenario B2 and þ12% in scenario A1 until 2050

(http://www.iiasa.ac.at/Research/GGI/). Most global agricul-

tural scenarios assume that growth in agricultural production

will dependmostly on increases of yields and only to a smaller

extent on a growth of cropland areas [63,64].

In order to test the sensitivity of our calculations to

assumptions on yields and cropland expansion, we also ran

the model with the following assumptions: According to the

scenario report of the “Millennium Ecosystem Assessment”

(MEA) [1], the “TechnoGarden” scenario is comparable with

FAO forecasts. The highest and the lowest yield scenarios in

MEA span a range of þ9% to �19% around that scenario; we

used this range for our sensitivity analysis. With respect to

cropland area, we also ran a scenario in which growth of

cropland area was doubled in all regions and held constant in

all regions where FAO forecasts shrinking cropland areas. In

this expansion scenario, cropland area is assumed to grow by

þ19% until 2050 compared to the year 2000 (Table 4).

As this study focuses on agriculture and excludes forestry,

wemade the conservative assumption that growth in cropland

and urban/infrastructure area reduces the area of grazing lands

only, while forest areas remain constant. We assumed that the

area expansion of cropland and infrastructure consumes the

best grazing areas, i.e. that of class 1 and in regions where

sufficientgrazing landof thatquality class isavailable, andclass

2where this is not the case (i.e. North Africa andWestern Asia).

The biomass-balance model calculates grazing intensity on

grazing land (i.e. the ratioofbiomass grazed toNPPact ongrazing

http://www.iiasa.ac.at/Research/GGI/
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Fig. 2 e Cropland production scenario until 2050. Trajectory of (A) production, (B) land-use yields ([ harvest yield times

cropping intensity) and (C) cropland area 1960e2050 of food crops, break-down to major crop groups. Material flow data are

reported in metric tons of dry-matter biomass. For sources and details, see text.
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land) as discussed in section 2.2 (the allocation to grazing land

quality classes is described in [38]). Our pattern of cropland

expansion (Table 3) is comparable to other studies on global

cropland potentials [65] and cropland suitability maps [66].

Based on statistical data reported by the FAO and stan-

dardized according to methods described elsewhere [49], we

derived trajectories of the input-output ratios of livestock for

the time period from 1961 to 2000 at the regional level which

we projected until 2050 based on data on feeding efficiencies

of different livestock rearing systems (see [54]). These input-

output ratios reflect an assumed reduction of the respective

regional subsistence fractions by 50% in favour of industrial,

indoor-housed, or extensive, market-oriented production

systems, depending on area availability (Table 1). Data for

1961e2000 and our projection for 2050 are shown in Fig. 3.
2.5. Calculation of bioenergy potentials

We calculated bioenergy potentials by distinguishing three

fundamentally different production pathways: (1) bioenergy

crops on cropland, (2) bioenergy crops on other lands (i.e.

grazing land according to the land-use dataset used in this

study), and (3) residue potentials on cropland. We calculated

gross potentials for bioenergy supply by assuming that the

entire aboveground NPP of bioenergy crops can be used to

produce bioenergy, assuming a gross calorific value of dry-

matter biomass of 18.5 MJ kg�1 [67]. The calculation did not

take conversion or production losses into account.

In order to calculate the area available for producing bio-

energy on cropland, we subtracted the area required for food,

feed, and fibre calculated with the biomass-balance model

http://dx.doi.org/10.1016/j.biombioe.2011.04.035
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Table 4 e Cropland areas and changes in 2000 and 2050, according to our recalculation of the FAO scenario “World
agriculture towards 2030/50” (FAO/BAU) and an alternative “massive expansion” assumption.

Cropland in
the year 2000

Cropland
in 2050 FAO/BAU

Cropland in year
2050 massive expansion

[1000 km2] [1000 km2] [change] [1000 km2] [change]

Northern Africa and Western Asia 763 819 þ7.2% 874 þ14.5%

Sub-Saharan Africa 1781 2283 þ28.2% 2785 þ56.3%

Central Asia and Russian Federation 1572 1635 þ4.0% 1699 þ8.1%

Eastern Asia 1604 1694 þ5.7% 1785 þ11.3%

Southern Asia 2305 2428 þ5.3% 2550 þ10.6%

South-Eastern Asia 931 930 �0.1% 931 0.0%

Northern America 2240 2335 þ4.3% 2430 þ8.5%

Latin America & the Carribean 1685 2037 þ20.9% 2388 þ41.7%

Western Europe 862 880 þ2.1% 899 þ4.2%

Eastern & South-Eastern Europe 941 890 �5.4% 941 0.0%

Oceania and Australia 540 696 þ28.8% 851 þ57.7%

World 15,225 16,627 þ9.2% 18,134 þ19.1%
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described in section 2.3 in each region from each region’s

cropland area (section 2.4). We calculated the bioenergy

potential by assuming that the NPP of bioenergy crops is equal

to potential NPP [68,69] and that the entire aboveground

biomass can beharvested andused to produce bioenergy. Data

on potential NPP (NPP0) were taken from previous work [38].

To calculate the potential to grow bioenergy crops on other

land (i.e. grazing areas, see section 2.2), we assume that

grazing land in the quality class 1 is also suitable for producing

of bioenergy crops such as switchgrass (Panicum virgatum),

Miscanthus sp, short-rotation coppice or similar bioenergy

crops. This seems justified as a cross-check of the regional

distribution of grazing areas in quality class 1 with the

regional distribution of cropland potentials/suitability [65,66]

revealed that regions with large cropland potentials also

have large areas of high-quality grazing land and vice versa.

We assume that grazing on land in grazing quality class 1 can

be intensified, assuming an increase of the exploitation rate of

NPPact to a maximum of 67% in developing and 75% in

industrialized regions. This allows using a significant fraction

of the area in grazing land of quality class 1 for bioenergy

crops without reducing regional roughage supply. On the area

that becomes available for bioenergy crops through intensifi-

cation, the bioenergy potential is estimated to be equal to

aboveground NPPact (taken from [38]); that is, we assume that

bioenergy crops produce the same amount of aboveground

biomass per year as the current vegetation [69,68].

The energy potential from unused residues on cropland

was calculated by applying harvest indices and usage factors

described in section 2.3. Crop residues are used as feed and for

bedding. The bedding requirement was estimated by calcu-

lating the amount of manure produced by livestock and

applying factors to estimate bedding demand from indoor

manure production derived from [49].We assumed that 50% of

the remaining residues are required to maintain soil fertility

and are therefore not available to produce bioenergy [16]. We

are aware that this is a crude assumption and that higher or

lower shares of the residues might be required to maintain

soil fertility in different regions, depending on soil and climate

conditions [70].
2.6. Modelling of climate change effects with LPJmL

We employed the LPJmL model [40] to estimate the effects of

changes in temperature, precipitation and CO2 fertilization on

yields of major crops globally at a spatial resolution of

0.5� � 0.5�. Yield calculations were based on process-based

simulations of 11 agricultural crops in a mechanistic coupled

plant growth and water-balance model (for reference, see [40]).

We calculated percent changes in agricultural productivity

between two 10-year periods: 1996e2005 and 2046e2055,

representing the average productivity of the years 2000 and

2050. Management intensity was calibrated to match national

yield levels as reported by FAO statistics for the 1990s [71].

National and regional agricultural productivities were based

on calorie- and area-weighted mean crop productivity of

wheat, rice, maize, millet, field pea, sugar beet, sweet potato,

soybean, groundnut, sunflower, and rapeseed. LPJmL simu-

lations were used only to estimate the possible magnitude of

the climate-change effect on agricultural yields. In these

simulations we assumed constant management intensities

and cropping patterns as of the year 2000. Changes in

management, breeding and cropping area were covered by

other data and assumptions as described in sections 2.3 and

2.4. We did not consider feedbacks between climate change,

CO2 fertilization, and management. Still, our results provide

a sound estimate of possible impacts of climate change on

agricultural yields with and without CO2 fertilization effects.

We assumed three different emission scenarios from the

Special Report on Emission Scenarios (SRES): A1b, A2, B1 [72].

Each emission scenario was implemented in five different

general circulation models (GCMs): CCSM3 [73], ECHAM5 [74],

ECHO-G [75], GFDL [76], andHadCM3 [77]. Climate data for these

GCM-projections were generated by downscaling the change

ratesofmonthlymean temperaturesandmonthlyprecipitation

to 0.5� resolution by bi-linear interpolation and superimposing

these monthly climate anomalies (absolute for temperature,

relative for precipitation and cloudiness) on the 1961e1990

average of the observed climate [78,79]. Since there is no infor-

mation about the number of wet days in the future, we kept

these constant after 2003 at the 30-year average of 1971e2000.

http://dx.doi.org/10.1016/j.biombioe.2011.04.035
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Fig. 3 e Development of livestock input-output ratios 1962e2050. Feed demand of A) Grazers (cattle and buffalo, sheep,

goats), B) Non-grazers (pigs, poultry). These input-output ratios refer to the overall regional feed demand of the entire

livestock population in each region (“top down”). Dots indicate the weighted global average, whiskers the ranges between

regions. For details, see text.
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Considerable uncertainty exists how CO2 fertilization

might influence future crop yields. This is due to both model-

ling uncertainties and to the fact that it seems likely that there

are interrelations between management (e.g., nutrient and

water availability) and the CO2 fertilization effect. To assess

the range of CO2 fertilization uncertainty [6,7], each of the 15

scenarios was calculated twice: first, taking into account full

CO2 fertilization effects according to the prescribed SRES

atmospheric CO2 concentrations, and second, keeping atmo-

spheric CO2 concentrations constant at 370 ppm after 2000. In

the latter case, yield changes are only driven by the modelled

changes in precipitation and temperature (and the limited

adaptation of management as described below), whereas in

the first case the full effect of changes in temperature,

precipitation, and atmospheric CO2 levels is taken into

account. Relative management levels were kept static, but

sowingdateswere assumed to be adapted to climate changeas
described by [40] and for wheat, maize, sunflower, and rape-

seed (butnot for all other crops)wealso assumedadaptation in

selecting suitable varieties.

Yield data were originally calculated at a spatial resolution

of 0.5� � 0.5� and then aggregated to country-level change

rates. We then calculated the arithmetic mean of the change

rates in all 15 scenarios with and without CO2 fertilization

effect. These country-level results were then used to calculate

the area-weighted average deviation of the crop yields in each

region from the yield levels projected by the FAO.
3. Results

Our estimates of changes in crop yields resulting from climate

change are presented as region-specific percent change rates

in Table 5. We found that crop yields increase (compared to

http://dx.doi.org/10.1016/j.biombioe.2011.04.035
http://dx.doi.org/10.1016/j.biombioe.2011.04.035


Table 5 e Modeled climate impact on cropland yields in
2050 with and without CO2 fertilization.

Mean yield change
under climate change 2050

with CO2

fertilization
without CO2

fertilization

Northern Africa and Western Asia þ 4.44% �8.65%

Sub-Saharan Africa þ8.46% �6.17%

Central Asia and Russian

Federation

þ24.91% þ5.12%

Eastern Asia þ11.96% �3.90%

Southern Asia þ18.45% �15.61%

South-Eastern Asia þ28.22% �15.83%

Northern America þ12.45% �6.25%

Latin America & the Carribean þ12.39% �7.02%

Western Europe þ16.42% þ 2.04%

Eastern & South-Eastern Europe þ19.08% �0.66%

Oceania and Australia þ0.74% �16.02%
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the BAU scenario) in all 11 regions if full CO2 fertilization is

assumed, but the growth varies considerably between regions

from þ0.74% to þ28.22% (area-weighted average: þ14.76%). If

the CO2 fertilization effect is switched off, however, we find

considerable losses (compared to the BAU scenario) of up to

�16.02% in most regions, although some regions might still

benefit (up to þ5.12%); the average (area-weighted) loss of

cropland yields was �7.06%.

The calculated global bioenergy potential in the absence of

climate change (“business-as-usual” or BAU) is reported in

Table 6. We found that the global aggregate primary bioenergy

potential in the year 2050 without climate change amounts to

104.7 EJ y�1. More than half of that potential comes from

primary crops on other (grazing) land, i.e. from the intensifi-

cation of land use on the best available grazing areas. Residues

and primary crops on cropland assumed to exist in 2050

according to FAO projections (see Table 4) contribute less than

50%. Almost half of the potential comes from only two

regions, namely Sub-Saharan Africa and Latin America and

the Caribbean. Two other regions, Northern America and

South-Eastern Asia contribute another quarter, whereas the

other regions are only minor contributors.
Table 6 e Modeled bioenergy potentials in the “business-as-u
change).

Primary crops
on cropland [EJ y�1]

Northern Africa and Western Asia 0.02

Sub-Saharan Africa 0.75

Central Asia and Russian Federation 0.88

Eastern Asia 0.48

Southern Asia 0.65

South-Eastern Asia 1.94

Northern America 5.91

Latin America & the Carribean 4.91

Western Europe 0.34

Eastern & South-Eastern Europe 1.85

Oceania and Australia 0.24

World 17.97
Climate change could result in changes in cropland yields

(Table 5) and in the productivity of grazing areas that would

have a considerable effect on the modeled bioenergy poten-

tial, as shown in Fig. 4a: If the CO2 fertilization effect, as

modeled by LPJmL, is fully effective, the bioenergy potential

might rise by up to 45% to 151.7 EJ y�1, whereas it would

decrease by 1690 to 87.5 EJ y-1 if CO2 fertilization is assumed to

be completely ineffective. Fig. 4b shows that this is only partly

a result of increased yields on areas used for growing bio-

energy: Growth in yields compared to BAU makes more area

available for growing bioenergy, while any reduction in crop-

land yields results in less area availability. This implies that

the global bioenergy potential on cropland and grazing areas

is highly dependent on the (uncertain) effect of climate

change on future global yields on agricultural areas. We found

that the potential of primary bioenergy on cropland is most

sensitive to climate change, whereas the potential on grazing

areas and the residue potential is less affected by climate

change. Note, however, that the distinction between primary

bioenergy crops on cropland and grazing land is to some

extent arbitrary in the sense that assuming a larger extension

of cropland until 2050 increases the potential for primary

bioenergy crops on cropland at the expense of the potential for

primary bioenergy crops on grazing land, under ceteris paribus

conditions (see below).

Fig. 4 also shows that the higher growth in cropland areas

assumed in the “massive expansion” variant would have

a small effect on the bioenergy potential (which would rise by

about 6% to 110.5 EJ y�1 compared to BAU). The reason is the

following: Cropland expansion would allow to produce more

bioenergy on cropland, but less bioenergy on grazing land, as

the expansion of cropland would reduce the area of grazing

land and therefore the potential to grow bioenergy there

without jeopardizing feed demand.

A switch to a “fair and frugal” diet would have a major

impact on the bioenergy potential, however, which might be

as high as 160.8 EJ y�1 (þ54%) under these conditions. If we

assume higher yields (and a BAU diet), the bioenergy potential

rises to 121.6 EJ y�1 (þ16%). If yields were to be 19% lower than

assumed in the FAO/BAU scenario, it would not be possible to

produce enough biomass for the BAU diet. We therefore
sual” (BAU) scenario in the year 2050 (excluding climate

Residues on
cropland [EJ y�1]

Primary crops
on grazing land [EJ y�1]

Total
[EJ y�1]

1.08 0.00 1.11

2.19 20.50 23.44

1.08 5.95 7.91

5.06 1.30 6.83

2.29 0.00 2.94

2.75 6.43 11.11

5.97 3.67 15.55

2.39 16.69 23.99

2.57 0.67 3.59

1.91 2.58 6.34

0.35 1.30 1.89

27.63 59.10 104.70
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Fig. 4 e Comparison of the bioenergy potential and area used in the “business-as-usual” (BAU) scenario compared to

variants in which one or two parameters were modified (all other assumptions are identical to BAU). (a) Bioenergy potential

from cropland, residues and grazing land; (b) area used to grow plants designated for bioenergy use: Cropland areas and

grazing areas converted to bioenergy plantations.
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modelled two alternative scenarios, one that combines lower

yields with a massive expansion of croplands, and one that

combines lower yields with a “fair and frugal” diet. In the first

case, the available cropland area is just about sufficient to

produce enough food, so bioenergy could in that case only be

derived from residues and grazing areas, and the potential

drops to 63.6 EJ y�1 (�39%). In the second case, the bioenergy

potential is even higher than under BAU conditions and

amounts to 116.5 EJ y�1 (þ11%).
4. Discussion and conclusions

4.1. How realistic is the FAO forecast underlying this
study?

The results of this study are based on the FAO projections

which describe a world of improved food supply and rapid

agricultural intensification. Overall production on cropland

increases by 68% (dry matter); maximum increases are fore-

cast for Sub-saharan Africa (þ154%) and for Latin America

(þ121%). In these regions, the FAO also assumes a consider-

able expansion of cropland, in line with studies of cropland

potentials/suitability [65,66]. Note, however, that such area

potential studies have been criticized [80] and that it might be

difficult to cultivate the soils prevailing in these regions with

currently prevailing technologies [64,81].

The largest part of the growth in total production is due to

growing yields, which were assumed to increase by 54% on

average for all cropland. In particular, in Western Europe and

North America, cropland yields reach very high levels. It is

difficult to judge whether such yield gains can be realized. It

has been argued that in some regions, most options to achieve

yield gains have already been implemented and yields are

therefore approaching physiological limits, that the best

agricultural lands are already in use and area expansionsmay

result in the use of less well-suited land, and that soil erosion

and depletion of nutrient stocks in soils may pose challenges

for future yield growth [82e84]. However, improved manage-

ment could help to sustain yield growth; e.g., due to improved

stress tolerance, avoidance of nutrient andwater shortages, or

improvements in pest control. Substantial investments will be

indispensable for maintaining growth in crop yields [85].

Lower rates of yield growth would result in a lower bioenergy

potential, as shown in Fig. 4, while higher yields would help to

increase the bioenergy potential. Achieving high yield gains

might, however, result in substantial detrimental environ-

mental impacts such as soil degradation, air and water

pollution, biodiversity loss and others [64]. Judging what

amount of agricultural intensification might be justified in

order to increase the bioenergy potential is a complex issue

that is beyond the scope of this article. Answers to this

question will, among others, also depend on future develop-

ment in agricultural technology [64].

Our alternative diet scenario has also shown that changes

in diets compared to often-expected trajectories (growth in

calorie supply and more animal products) might result in

considerably higher bioenergy potentials. It should be noted,

however, that the “fair and frugal” diet modelled here might

be considered to be near to the lower boundary of the
possibility space for that parameter, while food demandmight

also be thought to grow more strongly than modelled here (or

by the FAO), as the global average 2050 in the BAU scenario is

well below levels of food and animal product supply enjoyed

today in regions such as the US and Western Europe [54] (see

Table 3).

4.2. Uncertainties regarding climate change impacts

The climate change effect on crop yields is highly uncertain.

Depending on climate scenario (not shown) and the assump-

tions on the effectiveness of CO2 fertilization, most regions

may experience significant decreases in crop yields as well as

significant increases. The most important factor is the

uncertainty in CO2 fertilization which was explicitly analyzed

here. This effect can, in principle, increase crop yields

considerably due to enhanced carbon assimilation rates as

well as improved water-use efficiency. Whether or not

farmers will be able to attain increased crop yields under

elevated atmospheric CO2 concentrations will depend on the

availability of additional inputs, especially nitrogen [86].

Increased carbon assimilation rates can only be converted

into productive plant tissue or the harvested storage organs if

sufficient nutrients are available to sustain additional growth.

Where plant growth is constrained by nutrient limitations,

additional growth is limited. On top of that, there is some

likelihood that the quality of agricultural products decreases

under increased CO2 fertilization, as e.g. the protein content

diminishes [87]. There is also evidence that crops grown under

elevated CO2 concentrations might be more susceptible to

insect pests [88].

A positive climate-change effect on crop yields may be

expected in regions currently constrained by too low temper-

atures, as in the northern high latitudes and in mountainous

regions. Here, all 30model runs uniformly indicate increases in

crop yields by 2050. By contrast, there is hardly any location

where all model runs uniformly indicate decreases in crop

yields if CO2 fertilization is assumed to occur. If the CO2 fertil-

ization is switched off, however, many regions, especially

tropical croplands are uniformly projected to experience

decreases in crop yields in all 15 climate scenarios. It has to be

noted that the beneficial effects of CO2 fertilization are subject

to heavy debate [6,7]. Results presented here only indicate the

order of magnitude of climate-related impacts on crop yields.

Besides uncertainties in future development of drivers (climate

change, CO2 fertilization effect, management, technological

change), modelling of crop yields at large scales adds to the

overall uncertainty as many processes are necessarily imple-

mented only in a simplified manner. If farmers have access to

a broad selection of crop varieties, they are likely to select

varieties most suited for the local growing conditions, which

could not be fully considered here.

4.3. Interpretation of bioenergy potential calculations

When interpreting the calculated bioenergy potentials it is

essential to keep in mind that these are gross potentials for

bioenergy supply; that is, the gross calorific value (GCV) of the

entire aboveground plant material assumed to be available for

as feedstock for bioenergy production (section 2.5). If one
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assumes that the plantmaterial is directly used for combustion

for heat or combined heat and power (CHP) without much (or

any) conversion, this is a reasonable approximation of the

primary energy available. The production of liquid biofuels

with current (first-generation) technologies, however, can only

convert parts of the plants into fuels and entails substantial

losses due to the conversion process. On the other hand, first-

generation biofuel production would also deliver feed which

is not considered in our biomass balances. A considerable

fraction of the bioenergy potential calculated herewould not be

suitable for this utilization pathway, for example the residue

potential and an unknown part of the potential on grazing

areas. Even in areas where first-generation biofuel production

would be possible, the energy potential would be significantly

(50e75%) lower due to losses [16,68,69]. Second-generation

technologies for the production of liquid biofuels would be

capable of using a considerably larger fraction of the plant

materials available for bioenergy production, but would also

involve conversion losses. A recent assessment recommends

to favour direct use of solid plant materials over conversion to

liquids, primarily based on comparisons of the GHGbalances of

different technologies [16].

Our assumption to base our estimates of bioenergy poten-

tials on current (grazing areas) or potential (cropland) NPP

(section 2.5; other recent studies [68,69] used similar assump-

tions) is also a simplification that might result in over- or

underestimation of the potential. At present, the actual

abovegroundNPPoncropland andgrazing areas is considerably
Table 7e Current and projected future level of global biomass an
A compilation of estimates.

1. Current global NPP and its use by humans (gross calorific value)

Total NPP of plants on earth’s land

Aboveground NPP of plants on earth’s land

Human harvest of NPP including by-flows, total

Human harvest of NPP including by-flows, aboveground

NPP harvested and actually used by humans

2. Global human technical energy use (physical energy content)

Fossil fuels (coal, oil, natural gas), gross calorific value

Nuclear heat (assumed efficiency of nuclear plants 33%)

Hydropower (assumed efficiency 100%)

Wind, solar and tidal energy (100% efficiency)

Geothermal (10% efficiency for electricity, 50% for heat)

Biomass, including biogenic wastes, gross calorific value

Total (physical energy content, gross calorific value)

3. Estimates of global bioenergy potentials or scenarios 2050 (calorific val

Bioenergy crops and residues, excluding forestry, this study

Mid-term potential according to the World Energy Assessment

Review of mid-term potentials according to Berndes et al.

Mid-term potential according to Fischer/Schrattenholzer

Potential according to Hoogwijk

IPCC-SRES scenarios mid-term

Bioenergy potential on abandoned farmland

Bioenergy potentials in forests

Surplus agricultural land (not needed for food & feed)

Bioenergy crops (second generation)

a BP reports energy data in tons of oil equivalent (toe) net calorific value (N

to gross calorific value (GCV) was based on the following multipliers (GCV

b The IEA reports biomass as NCV; we converted this to GCV using a mu
lower than thepotentialNPPof theseareas in theglobal average

[38]. However, it would probably be possible to raise the NPP of

bioenergy crops above the potential NPP of the areas on which

they are planted through irrigation, fertilization, and other

agricultural technologies, at least in many regions. While this

might increase the amount of plantmaterial produced, itwould

probably also result in a deterioration of the energy return on

investment (EROI) and could lead to reduced, if not negative net

energy gains [89,90]. Economic (agricultural investments) as

well as biophysical (soil degradation, water availability) factors

might also limit yield gains [64,85,91]. We conclude that our

bioenergy potential estimates could be regarded as a realistic to

conservative: while we assume increases over current produc-

tivity levels, we do not assumemassive intensification.

4.4. Comparison with other assessments of bioenergy
potentials

Our bioenergy potential calculations do not include bioenergy

potentials from forests. In the year 2000, the amount of wood

fuels harvested in forests had an energy value of approxi-

mately 22 EJ [50]. The IEA reports that the total amount of

“primary solid biomass” used for energy production globally

was 39.4 EJ [92,93]. No comprehensive data exist to identify

how much of the bioenergy currently used by humans comes

from forests, from wastes in production processes, and from

cropland and grazing areas. The potentials identified in this

study include the unknown amount of bioenergy produced
d energy use and global terrestrial net primary production:

Energy flow [EJ y�1] Year Sources

2191 2000 [38]

1241 2000 [38]

346 2000 [38,49]

310 2000 [38,49]

225 2000 [38,49]

453 2008 [101] a

30 2008 [101]

11 2008 [101]

1 2006 [102]

2 2006 [102]

54 2006 [102] b

551 2006e2008 [101,102]

ue not standardized)

64e161 2050

94e280 2050 [10]

35e450 2050 [27]

370e450 2050 [103]

33e1135 2050 [104]

52e193 2050 [72]

27e41 2050 [69,68]

0e71 2050 [18]

215e1272 2050 [19]

34e120 2050 [16]

CV). We assumed that 1 toe ¼ 41.868 GJ (NCV). Conversion from NCV

/NCV): coal 1.1, oil 1.06, natural gas 1.11 [105].

ltiplier of 1.1.

http://dx.doi.org/10.1016/j.biombioe.2011.04.035
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currently on cropland and grazing areas. The potential to

produce bioenergy from forests was recently quantified to

range from zero to 71 EJ y�1 in the year 2050: the global tech-

nical potential for forest bioenergy in 2050 was found to be

64 EJ y�1, the economic potential 15 EJ y�1, the ecological

potential 8 EJ y�1 and the combined economic-ecological

0 EJ y�1 [18].

Table 7 compares the results of this study on global bio-

energy potentials with current global biomass flows, with the

current level of energy use, and with other studies on global

bioenergy potentials. It shows that humans currently harvest

and use a total amount of biomass with an energy value (GCV)

of about 225 EJ y�1, and that the total amount of biomass

harvested, destroyed or burned due to human activities

currently is around 310 EJ y�1. This is a considerable fraction of

the current aboveground NPP which is approximately

1241 EJ y�1. These figures indicate that the primary bioenergy

potential identified in this study (64-161 EJ y�1) is considerable

when compared to the current levels of human harvest and

use of biomass or to current aboveground NPP.

The second part of Table 7 reveals, however, that the

potential contribution of bioenergy from cropland and grazing

areas is only a fraction of current fossil-fuel use. As shown in

the lower part of Table 7, our estimate is considerably lower

than the bioenergy potentials identified in many previous

studies. We note that our estimate of primary bioenergy

potential on cropland and grazing land is very similar to that

of the WBGU [16], despite the fact that the methodology used

by the WBGU was completely different from the one used

here, but significantly lower than that found in other studies

that did not consider links between food, feed and bioenergy.
5. Conclusions and recommendations

We conclude that the bioenergy potential on agricultural land

in 2050 is highly sensitive to climate change as well as to

changes in yields and diets. More research is required to better

understand feedbacks between management, changes in

precipitation, temperature, and the magnitude of the CO2

fertilization effect under field conditions, all of which have

a strong effect on the bioenergy potential. Our results suggest

that the magnitude of global bioenergy potentials in the year

2050 is strongly affected by the need to produce feed for

livestock, and that the careful consideration of biomass flows

in the food system, in particular in the livestock system, is

highly important in deriving realistic potentials for future

bioenergy supply. Our results suggest that the bioenergy

potential on agricultural areas in 2050 might be in the order of

magnitude of 100 EJ y�1 based on current diet trajectories and

a ‘food first’ approach; if ‘poorer’ diets are chosen, the

potential may rise by up to 60%. A considerable fraction of this

potential comes fromagricultural residues, suggesting that in-

depth assessments of options to combine bioenergy produc-

tion and soil fertility management (e.g., energy production

through biogas production that maintains a large proportion

of the nutrients and parts of the carbon) should be under-

taken. An integrated optimization of food and energy

production based on a “cascade utilization” of biomass is an

important option to produce and use bioenergy sustainably
[16,94,95]. Bioenergy potentials on grazing land, as calculated

in this study, are substantial, but realizing them might entail

massive investments in agricultural technology, such as irri-

gation infrastructure, andmight be associatedwith vast social

and ecological effects, such as a further pressure on pop-

ulations that practice low-input agriculture. Realizing this

potential might also trigger land-use change such as defor-

estation in far distant regions if not combined with robust

measures to prevent such effects [17,96,97]. At least at

present, growth in agricultural production is a strong driver of

deforestation [98].
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