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AbstratWe derive dispersive stability results for osillator hains like the FPUhain or the disrete Klein-Gordon hain. If the nonlinearity is of degreehigher than 4, then small loalized initial data deay like in the linear ase.For this, we provide sharp deay estimates for the linearized problem us-ing osillatory integrals and avoiding the nonoptimal interpolation betweendi�erent ℓp spaes.1 IntrodutionThe phenomenon of dispersive stability is well-studied for partial di�erential equa-tions. Usually one onsiders a Hamiltonian system where energy onservationprevents strit spetral stability giving rise to exponential deay. Typially thebehavior of small solutions is suh that the energy norm is bounded from aboveand below by onstants while the L∞ norm deays with an algebrai rate of thetype (1+t)−α. This rate is generated from the fat that initially loalized solutionsare dispersed by the di�erent group veloities assoiated with the di�erent wavenumbers θ. The fundamental e�ets derive from the dispersion relation ω̂ = ω(θ)of the linear di�erential operator, where ω̂ is the frequeny and c(θ) = ∇θω(θ)the group veloity. The dispersion is now related to the fat that c still dependsnontrivially on θ, i.e. the seond derivative of ω should be nontrivial. We refer to[Seg68, Str74, Ree76, Str78℄ for results treating the sine-Gordon, the Klein-Gordon,the nonlinear Shrödinger, or the relativisti wave equations. Sometimes the the-ory is developed under the name sattering theory for small data. In [CW91℄ areent improvement was made on the lowest order of nonlinearity for the gen-eralized Korteweg-de Vries equation by a areful ombination of sharp estimatesfor the linear part, obtained via deep harmoni analysis, and areful hain-ruleestimates for frational derivatives of the nonlinearity.The same dispersive e�ets are to be expeted in disrete systems, whih arein�nite ODEs on a lattie Z
d. The di�erene is now that the dispersion relationis now a periodi funtion in θ, i.e. ω is de�ned on the torus T

d := R
d/(2πZ)d .Thus, in ontrast to PDEs, where ω is an algebrai funtion on R

d, the dispersionrelation has neessarily a riher degeneray struture. As a result, the linear deayestimates for periodi latties need a more areful analysis, and it is the aim ofthis work to establish a more general approah to this �eld.
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To desribe the work done so far and our ontributions we start by highlighting thethree major equations treated in this �eld, namely the Fermi-Pasta-Ulam hain(FPU), the Klein-Gordon hain (dKG) and the disrete nonlinear Shrödingerequation (dNLS):
ẍj = V ′(xj+1 − xj) − V ′(xj − xj−1), j ∈ Z; (FPU)
ẍj = xj+1 − 2xj + xj−1 +W ′(xj), j ∈ Z; (dKG)
iu̇j = uj+1 − 2uj + uj−1 + a|uj|β−1uj, j ∈ Z. (dNLS)Here the potentials V and W are assumed to be suh that V ′(r) = r + O(|r|β)and W ′(x) = x + O(|x|β). In general, β > 1 is used to measure the order of thenonlinearity.A very areful study of the linear FPU equation was given in [Fri03℄, whih high-lights the synhronization phenomena in ompat domains. In [Mie06℄ generalmultidimensional linear lattie systems were studied on the shorter hyperbolisale, where energy transport along the rays dominates but dispersion is not yetseen. Disrete lattie systems as �nite-di�erene approximations of wave equa-tions are analyzed in [Zua05, IZ09℄, where the proper approximation of dispersionrelations is an important point.Dispersive stability results in the diretion of this work are obtained in [SK05,GHM06℄. The latter work provides the dispersive stability of FPU under theassumption that the nonlinearity satis�es β > 5. In this work, we will improvethis result to the ase β > 4. In [SK05℄ dKG and dNLS are studied analytiallyand numerially; we omment on the result of this paper below.To desribe our result we �rst restrit to FPU, whih will be disussed in full detailin Setion 3. There we will also treat a generalized FPU hain whih allows forany �nite number of interations. Our main result will be that under a suitablestability and nonresonane ondition we have dispersive stability if the nonlinearityis of order β > 4. In partiular we will show that the deay of the solution of thenonlinear problem is the same as that of the linear one. The main point in theanalysis is that we obtain an improved estimate for the dispersive deay of thelinear semigroup. Writing FPU abstratly in the form

ż(t) = L z + KN (z)and using the the Banah spaes ℓp = ℓp(Z; R2) we �nd, for eah p ∈ [2, 4)∪ (4,∞]a onstant Cp suh that
‖eL tz0‖ℓp ≤ Cp

(1 + t)αp
‖z0‖ℓ1, ‖eL tK z0‖ℓp ≤ Cp

(1 + t)α̃p
‖z0‖ℓ1 for t > 0, (1.1)where the deay rates are given by

αp =











p− 2

2p
for p ∈ [2, 4),

p− 1

3p
for p ∈ (4,∞],

and α̃p =
p− 2

2p
.
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The operator K arises from the di�erene struture of the right-hand side in FPU.The ase p = 4 is exluded in (1.1), sine the �rst estimate holds only with alogarithmi orretion, see (3.9b).The key observation is that the deay rates for p ∈ (2,∞) are stritly better thanthe ones obtained by interpolating the deay α2 = 0 and α∞ = 1/3, whih wouldlead to α̂p = (p − 2)/(3p) < αp. The main work of Setion 3 will be devoted toestablish the deay estimates (1.1), whih are obtained by analyzing the dispersionrelation and estimating the resulting osillatory integrals. The nonlinear stabilityresult is then obtained using standard arguments, whih we have olleted in anabstrat setting in Setion 2. We emphasize that all nonlinear deay estimates areof the form that the nonlinear deay is exatly of the order as the linear deay,whih is also found numerially, see Figure 1.1. We also show that our deay rates
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Figure 1.1: Double-logarithmi plot of ℓp norms of the solution to the linear FPU(�) and the nonlinear FPU with V (r) = r + |r|4 (- -) as funtion of t.are optimal in the sense, that the dispersive deay of the nonlinear system annotbe better than for the linear system.In Setion 4 we will disuss the usage of our method in more general settingssuh as dKG, dNLS, and a two-dimensional lattie. In partiular, we ompareour results for dKG with those obtained in [SK05℄. There, for β > 5 dispersivedeay in ℓp was proved with the rate α̂p = (p−2)/(3p), while numerially the values
0.226, 0.267, and 0.292 were obtained for p = 4, 5, and 6, respetively. We improvethe results in a twofold manner: �rst we redue the possible order of nonlinearityto the regime β > 4, and seond we establish the better (and sharp) deay rate
αp = (p− 1)/(3p), whih mathes muh better with the numerial values.
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We onlude with remarking that there is a rih literature on persistent loalizedsolutions in latties, suh as modulated pulses, solitons, and breathers, see e.g.[FW94, FP99, IJ05, GHM06℄. From this, it is possible to show that the generalizedFPU admits families of solitary waves of KdV type, whih for β < 5 may havearbitrary small energy. However, these solitary waves are the broader the smallerthe amplitude is. For the ase β < 3 it follows that dispersive stability annothold, see Remark 3.3. It remains open what happens in the ase β ∈ [3, 4].2 General stability resultIn this setion we present the general method to prove dispersive stability of non-linear systems, whih are based on weak deay estimates of its linearization. Theideas are lassial and were established for dispersive stability in PDE theory, seefor instane [Seg68℄ and [Str74℄. See also [MSU01℄ for a survey in the related the-ory of di�usive stability in paraboli systems. In the ontext of lattie models theauthors of [GHM06℄ illustrate the ideas in an abstrat setting and in [SK05℄ thesearguments are applied to dKG systems and dNLS equations.To emphasize the general struture we use again an abstrat setting in generalBanah spaes, whih will be speialized to the spaes ℓp(Zd,Rn) in the followingsetions. The general aim is to establish onditions that guarantee that the non-linear system still has the same dispersive deay as the linear one. This will be our�rst result. In the seond result we even go beyond by showing that the di�erentbetween the solution of the linear systems and the nonlinear systems deays fasterthan the linear one.We start with the general system on a Banah spae Z given in the form
ż = L z + KN (z) , (2.1)where L, K linear and bounded and N is a nonlinear operator. The operator

L : Z → Z generates a bounded semi-group (eL t)t≥0, that is there exists a CL > 0with ‖eL tz‖Z ≤ CL‖z‖Z for all t ≥ 0 and z ∈ Z. Typially the spae Z is hosensuh that the solution z = 0	 is a stable solution of (2.1), i.e.
∃CE > 0 ∀ sln. z(t)with ‖z0‖ℓ2 ≤ ε ∀ t > 0 : ‖z(t)‖ℓ2 ≤ CE‖z0‖ℓ2. (2.2)This ondition is in partiular satis�ed if the system is Hamiltonian and the energyfuntional serves as a Liapunov funtion. That is, if the energy is bounded fromabove and below.However, for proving dispersive stability we need to hoose di�erent spaes and donot rely on (2.2). We onsider a sale of Banah spaes Z0 ⊂ Z ⊂ X and a spae

ZN ⊂ Z where the embeddings are assumed to be ontinuous. The spae X isused for the estimation of the solutions, Z0 is taken for the initial onditions, and4



ZN measures the nonlinearity. We assume that positive onstants C1, C2, C3, α, γ,and β > 1 exist suh that the following estimates hold for all z and all t ≥ 0:
‖eL tz‖X ≤ C1

(1 + t)α
‖z‖Z0

, (2.3a)
‖eL tK z‖X ≤ C2

(1 + t)γ
‖z‖ZN

, (2.3b)
‖N (z)‖ZN

≤ C3‖z‖βX . (2.3)The following result is the �rst simple deay estimate, whih we state for reasonsof larity. It is in fat a speial ase of the more involved result given below. Henewe do not provide an independent proof.Theorem 2.1:Let the onditions (2.3) hold with min{γ, αβ, αβ+γ−1} ≥ α and γ 6= 1 6= βα.Then, there exist positive onstants C and ε suh that for eah z0 ∈ Z0 with
‖z0‖Z0

≤ ε the unique solution z of (2.1) with z(0) = z0 satis�es
‖z(t)‖X ≤ C

(1 + t)α
‖z(0)‖Z0

for t ≥ 0.This and the following result rely on the following lemma that is used to estimatethe onvolution integral ourring in the variation-of-onstants formula. The lowerbound in the following result is only given to indiate that the provided exponent
γ is optimal.Lemma 2.2:For onstants α1, α2 ∈ [0, 1) ∪ (1,∞) there exists a onstant C > 0 suh that

t

C(1 + t)γ+1
≤
∫ t

0

1

(1 + t− s)α1

1

(1 + s)α2
ds ≤ C

(1 + t)γ
for all t > 0, (2.4)where γ = min{α1, α2, α1+α2−1}.Proof. To obtain the estimate we split the integral into the two domains [0, t/2]and [t/2, t]. In the �rst interval we estimate (1 + t)/2 ≤ 1 + t − s ≤ 1 + t andobtain

1

(1 + t)α1
M2(t/2) ≤

∫ t/2

0

1

(1 + t− s)α1

1

(1 + s)α2
ds ≤ 2α1

(1 + t)α1
M2(t/2)where M2(r) =

∫ r

0
(1 + s)−α2 ds. Evaluating the integral M2 expliitly, we �nda deay estimate with exponent γ2 = min{α1, α1+α2−1}. Treating the interval

[t/2, t] similarly, the assertion follows by taking γ = min{γ1, γ2}.
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The following result gives a re�nement of the above result. It is based on anadditional Banah spae V whih satis�es Z0 ⊂ V ⊂ X with ontinuous embed-dings. It will play the role of an intermediate spae in whih we have already someinformation, namely
∃C, β1, β2 > 0 with β1+β2 > 1 ∀ z ∈ Z : ‖N (z)‖ZN

≤ C‖z‖β1

V ‖z‖β2

X . (2.5)Suh estimates our naturally by interpolation, see (3.5).Theorem 2.3:Let the system (2.1) satisfy (2.3) and (2.5). Assume further that there exist positive
δ, CV , ν suh that for all z0 ∈ Z0 with ‖z0‖Z0

≤ δ the unique solution z of (2.1)satis�es the estimate
‖z(t)‖V ≤ CV

(1 + t)ν
‖z(0)‖Z0

for all t ≥ 0. (2.6)Let ρ = min{γ, β1ν+β2α, γ+β1ν+β2α−1} and assume ρ ≥ α, β1ν+β2α 6= 1 6= γ,then there exist positive ε and CX suh that for ‖z(0)‖Z0
≤ ε the solutions satisfy

‖z(t)‖X ≤ CX
(1 + t)α

‖z(0)‖Z0
and

‖z(t) − eL tz(0)‖X ≤ CX
(1 + t)ρ

‖z(0)‖β1+β2

Z0

for all t ≥ 0. (2.7)Proof. We give the proof in suh a way that the ase β1 = 0 is inluded, whihprovides the proof of Theorem 2.1. Then, (2.5) redues to (2.3).We use the variations-of-onstants formula
z(t) = eL tz(0) +

∫ t

0

eL(t−s) KN (z(s)) dsand estimate the solution in the spae X. Using the assumptions we obtain
‖z(t)‖X ≤ C1

(1 + t)α
‖z(0)‖Z0

+

∫ t

0

C2

(1 + t− s)γ
C(CV ‖z(0)‖Z0

)β1

(1 + s)νβ1
‖z(s)‖β2

X ds.Assuming ζ = ‖z(0)‖Z0
≤ δ and introduing R(t) = maxs∈[0,t](1 + s)α‖z(s)‖X and

µ = β1ν + β2α we �nd the estimate
R(t) ≤ C1ζ + (1 + t)α

∫ t

0

1

(1 + t− s)γ
1

(1 + s)µ
ds C∗ζ

β1R(t)β2 .Employing Lemma 2.2 we have derived the estimate R(t) ≤ C1ζ+C∗ζβ1R(t)β2 . Itis now easy to �nd ε > 0 suh that for ζ ≤ ε we have R(t) ≤ 2C1ζ , whih is the�rst inequality in (2.7).
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Reonsidering the variations-of-onstants formula one again gives
‖z(t) − eL tz(0)‖X ≤

∫ t

0

1

(1 + t− s)γ
1

(1 + s)µ
ds C∗ζ

β1R(t)β2 ,and the seond estimate in (2.7) follows by employing Lemma 2.2 and the previousestimate for R(t).3 Dispersive deay for generalized FPU systemsWe now apply the general result presented in setion 2 to Hamiltonian systemson a one-dimensional lattie, also alled osillator hain. Here, we only disuss ageneralization of the elebrated Fermi-Past-Ulam hain in detail, while in setion 4we outline how to treat disrete Klein-Gordon systems and nonlinear Shrödingerequations.3.1 The generalized FPU systemWe onsider an in�nite number of equal partiles with unit mass and interat-ing with a �nite number K of neighbors via potentials V1, . . . , VK . Aording toNewton's law the equations of motion are
ẍj =

∑

1≤k≤K

(V ′
k(xj+k − xj) − V ′

k(xj − xj−k)) , j ∈ Z. (3.1)Here xj ∈ R denotes the displaements. We write x := (xj)j∈Z. For the timebeing we only assume that V ′
k(r) = akr + V ′

nl,k(r), V ′
nl,k(r) = O(|r|β)|r|→0 with

β > 1. System (3.1) is Hamiltonian, i.e. (ẋ, ṗ)T = J can dHx(ẋ, ṗ) with momen-tum p := ẋ, J can the Poisson tensor orresponding to the anonial sympletistruture de�ned by 〈(x,p),J can(x̃, p̃)〉ℓ2⊕ℓ2 = 〈x, p̃〉ℓ2 −〈x̃,p〉ℓ2 and Hamiltonian
Hx(x,p) =

∑

j∈Z

(

1

2
p2
j +

∑

1≤k≤K

Vk(xj+k − xj)

)

.The dispersive deay is driven by the linearized system
ẍj =

∑

1≤k≤K

ak
(

xj+k − 2xj + xj−k
)

.The dispersion relation is obtained by looking for plane waves in the form xj(t) =
ei(θj+ω̂t). We �nd the relation

ω̂2 = Λ(θ) :=
∑

1≤k≤K

ak2
(

1− cos(kθ)
)

. (3.2)
7



Obviously, we have Λ(0) = 0, whih is a onsequene of Galilean invariane. Byperiodiity, it su�es to take θ ∈ [−π, π] and by re�etion symmetry we may take
θ ∈ [0, π] only. Throughout, we make the following stability ondition

Λ(θ) > 0 for all θ ∈ (0, π], (3.3)whih ertainly holds if all ak are positive, however more general ases are possible.An essential feature of the onsidered model is its Galilean invariane, i.e for all
ξ, c ∈ R the transformation (x,p) 7→ (xj + ξ + ct, xj + c)j∈Z leaves (3.1) invariant.Therefore it is onvenient to use distanes r := (∂+ − 1)x = (xj+1 − xj)j∈Z as newvariables instead of the displaements. Introduing z := (r,p)T the Hamiltonianturns into

Hr(z) =
1

2
〈z,Ar z〉ℓ2 + Vnl(z)with

〈z,Ar z〉ℓ2 =
∑

j∈Z

(

p2
j +

∑

1≤k≤K

ak

∣

∣

∣

∑

0≤l≤k

rj+l

∣

∣

∣

2
)and

Vnl(z) =
∑

j∈Z

∑

1≤k≤K

Vnl,k

(

∑

0≤l≤k

rj+l

)

.The transformed Hamiltonian system (3.1) reads as
ż = Jr dHr(z) = L z + Jr N (z) (3.4a)where L = Jr Ar with Jr, Ar, and N given by

Jr :=

(

0 ∂+ − 1

1 − ∂− 0

)

, Ar :=

(∑

|l|<K

∑

|l|<k≤K(k − |l|)ak∂l 0

0 1

)

, (3.4b)
N (z) := dVnl(z) =

(

0
(

∑

1≤k≤K

∑

0≤m<k V
′
k,nl

(
∑

|l+m|≤k rj+l
)

)

j∈Z

)

, (3.4)where (∂lz)j = zj+l and ∂± = ∂±1. Clearly, L z = Jr Ar z gives the linear foresand Jr N (z) the nonlinear interation fores. Here the operator Jr refers to thepush-forward of the Poisson tensor J can, i.e. Jr = T J can T ∗ where T is the linearmap de�ned by (r,p)T = T (x,p)T . Note that now Jr is a non-anonial Poissonstruture.3.2 Nonlinear dispersive stabilityTo study the nonlinear system we use the Banah spaes
ℓp(Zd; Rm) with norm ‖z‖ℓp :=

(

∑

J∈Zd
|zJ |p

)1/p

8



where p ∈ [1,∞]. We frequently write ℓp to denote ℓp(Zd; Rm), if the lattie Z
dand the spae R

m are either irrelevant or lear from the ontext.For 1 ≤ p1 < p2 ≤ ∞ we have the ontinuous embedding ℓp1 ⊂ ℓp2 with ‖z‖ℓp2 ≤
‖z‖ℓp1 . An essential tool is the interpolation estimate

‖z‖ℓpϑ ≤ ‖z‖1−ϑ
ℓp0

‖z‖ϑℓp1 , where 1

pϑ
=

1 − ϑ

p0

+
ϑ

p1

, (3.5)and p0, p1 ∈ [1,∞] and ϑ ∈ [0, 1]. This is an easy onsequene of Hölder's inequalityand plays a ruial role in many estimates onerning dispersive deay. Moreover,we use Young's inequality for onvolutions a ∗ b with (a ∗ b)J =
∑

I∈Zd aJ−IbI . For
r, p, q ∈ [1,∞] with 1

p
+ 1

q
= 1 + 1

r
we have

‖a ∗ b‖ℓr ≤ ‖a‖ℓp‖b‖ℓq for all a ∈ ℓp, b ∈ ℓq. (3.6)To apply the general result of setion 2 we �rst provide the a priori estimate (2.2).The theory in setion 3.3 shows that (3.3) is equivalent to the existene of a positiveonstant C suh that
1

C
‖z‖2

ℓ2 ≤ 〈z,Ar z〉ℓ2 ≤ C‖z‖2
ℓ2 for all z ∈ ℓ2(Z; R2).Using this it is easy to obtain the lassial energy stability in ℓ2(Z; R2): there are

C2 > 0 and ε0 > 0 suh that for all z0 ∈ ℓ2 with ‖z0‖ℓ2 ≤ ε0 the solution z of (3.4)with z(0) = z0 exists globally in time and satis�es
‖z(t)‖ℓ2 ≤ C‖z(0)‖ℓ2 for all t ∈ R. (3.7)To state the linear deay result we de�ne the relevant branh ω̂ = ω(θ) of thedispersion relation via

ω(θ) :=
√

Λ(θ) ≥ 0.With a slight abuse of notation we simply all ω the dispersion relation. Underthe stability assumptions (3.3) we have ω ∈ C∞([0, π]) and we are able to de�nethe set of ritial wave numbers as
Θr := {θ ∈ [0, π] | ω′′(θ) = 0} .Sine K in (3.2) is �nite, Θr is disrete and ontains θ = 0. Thus, we have

Θr = {θ0, . . . , θM} with θ0 = 0 < θ1 < ... < θM ≤ π for some M ∈ N.The following linear deay results will be proved in setion 3.3.Theorem 3.1:Consider the group (eL t)t∈R for L = Jr Ar de�ned in (3.4b). Assume that thedispersion relation ω satis�es (3.3) and the non-degeneray ondition
ω′(0) > 0 and ∀ θ ∈ Θr : ω′′′(θ) 6= 0. (3.8)9



Then, for p ∈ [2, 4) ∪ (4,∞] there exists Cp suh that, for all t ≥ 0, we have
‖eL t‖ℓ1,ℓp ≤ Cp

(1 + t)αp
, where αp =











p− 2

2p
for p ∈ [2, 4),

p− 1

3p
for p ∈ (4,∞].

(3.9a)In the ase p = 4 there exists C4 > 0 suh that
‖eL t‖ℓ1,ℓ4 ≤ C4

( log(2 + t)

1 + t

)1/4 for all t > 0. (3.9b)If furthermore Θr = {0}, then for p ∈ [2,∞] there exists C̃p suh that
‖eL t Jr ‖ℓ1,ℓp ≤ C̃p

(1 + t)α̃p
for all t > 0, where α̃p =

p− 2

2p
. (3.10)The philosophy of the deay estimate is that osillations with wave numbers θtravel along rays j = c(θ)t, where the group veloity is given by c(θ) = ω′(θ). Thedeay along these rays is like t−1/2 if ω′′(θ) 6= 0 and like t−1/3 if θ ∈ Θr. In Figure3.1 we plot the dispersion relations ω and the assoiated solution rj(t) to displaythe in�uene of the ritial wave numbers θj ∈ Θr. Thus, the deay like t−1/3 in

ℓ∞ is easily obtained. However, for θ ≈ θn ∈ Θr there is a ross-over betweenthe two di�erent deay rates, whih needs to be estimated arefully to obtain thedeay rate αp for p ∈ (2,∞).
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jFigure 3.1: Dispersion relations and time evolutions. Left: lassial FPU (K = 1:
a1 = −1). Right: generalized FPU (K = 2: a1 = 0.08, a2 = 0.23) with two wavefronts. The upper �gures show ω(θ) and ω′(θ), respetively, and the lower �gureshows rj(t) for t = 800 and initial ondition (rj(0), ẋj(0)) = (δj,0, 0).Beause the operator Jr is related to the di�erene operators ∂1 − 1 and ∂−1 − 1,it redues the amplitudes of very long waves. Thus, in eL t Jr the bad deay10



assoiated with θ0 = 0 ∈ Θr is redued but not for any other θn ∈ Θr. Hene, thelast statement needs the requirement Θr = {0}. In this onnetion it is interestingto mention that in ase Θr = {0} the solutions of ż = L z globally deay like t−1/2if we restrit the initial onditions to a suitable subspae. Indeed, if we hoose
z0 ∈ Jr ℓ

1 this follows from (3.10) and the fat that the operators Jr and eL tommute.The following deay result is a diret ombination of the abstrat results of setion2 and the above linear deay estimates.Theorem 3.2:Consider the generalized FPU system satisfying the linearized stability ondition(3.3) and the non-degeneray ondition (3.8). Assume that eah potential Vk sat-is�es Vk(r) = akr + O(|r|β) for β > 4. Then, for eah p ∈ [2, 4) ∪ (4,∞] thereexist Cp and ε > 0 suh that all solutions z of (3.4) with ‖z(0)‖ℓ1 ≤ ε satisfy theestimate
‖z(t)‖ℓp ≤ Cp

(1 + t)αp
‖z(0)‖ℓ1 for all t ≥ 0, (3.11)where the deay rate αp is given in (3.9). If additionally Θr = {0}, then

‖z(t) − eL tz(0)‖ℓp ≤ C̃p
(1 + t)α̃p

‖z(0)‖βℓ1 for all t ≥ 0, (3.12)where the deay rate α̃p is given in (3.10).We have omitted the ase p = 4 to avoid a lumsy presentation. For p = 4 onean easily obtain algebrai deay for any α < 1/4 by interpolation or a deay asin (3.9b), after generalizing the results in Setion 2 to inlude logarithmi terms.Proof. In a �rst step we apply Theorem 2.1 with Z0 = ZN = ℓ1 ⊂ X = ℓp1with 4 > p1 > 2β/(β−2), where we used β > 4. Beause of β > p1 we have
‖N (z)‖ℓ1 ≤ C‖z‖βℓp1 . We estimate K = Jr by a onstant and use α = γ = αp1.The hoie of p1 gives α < 1 < αβ and min{γ, αβ, αβ+γ−1} = α, whih allowsus to apply the theorem. We obtain positive Cp1 and ε0 suh that (3.11) holds for
p = p1. Sine the result holds for p = 2 by the nonlinear stability estimate (3.7),the interpolation (3.5) shows that the result holds for p ∈ [2, p1]. Sine p1 an behosen as lose to p = 4 as we like, estimate (3.11) is established for all p ∈ [2, 4).Next we onsider p ∈ (4, β] and see that Theorem 2.3 is appliable with ν = β1 = 0,
α = αp < γ = α̃p, and Z0 = ZN = ℓ1 ⊂ X = ℓp. Thus, (3.11) and (3.12) hold for
p ∈ (4, β].Finally, we treat the ase p = ∞ by hoosing p2 ∈ (2, 4) with p2 ≥ 12−2β < 4.Using ‖N (z)‖ℓ1 ≤ C‖z‖p2ℓp2

‖z‖β−p2ℓ∞ we are able to employ Theorem 2.3 with Z0 =
ZN = ℓ1 ⊂ V = ℓp2 ⊂ X = ℓ∞, and ν = αp2 < α = 1/3 ≤ γ, where γ = 1/3 in thegeneral ase and γ = 1/2 if the additional ondition Θr = {0} holds, see Theorem11



3.1. Using β1 = p2 and β2 = β − p2 we �nd νβ1 + αβ2 > 1. Hene ρ = γ ≥ αand the desired estimate (3.11) follows for p = ∞. Again, the remaining range
p ∈ [β,∞] follows from interpolation.If the additional ondition Θr = {0} holds, we an apply the last assertion inTheorem 2.3 and obtain (3.12).So far, we have only derived estimates for ZN = ℓ1. It is however straight forwardto obtain results for ZN = ℓq for q ∈ (1, 2), however the deay rates will be lowerand one may need higher order of nonlinearity β. To see this, we simply note thatthe appliation of the operator eL t is in fat a onvolution with a matrix-valuedGreen's funtion G(t) ∈ ℓ1(Z; R2×2), f. (3.20). Hene, using Young's inequality(3.6) the operator norm ‖eL t‖ℓq,ℓp an be estimated by ‖G‖ℓs where 1+ 1

p
= 1

s
+ 1

q
.In fat, the estimates stated above and proved below are obtained by estimatingthe ℓp norm of G(t).We emphasize that for q = 1 the formula ‖eL t‖ℓ1,ℓp = ‖G(t)‖ℓp holds, sine theupper bound follows from Young's inequality and the lower bound is obtained byusing the initial ondition z = (δj)j∈Z. Our estimates for Gj(t) will be sharpenough to establish also lower bounds ‖G(t)‖ℓp ≥ c/(1+ t)αp, thus that we annothope for better estimates for the linear terms. In fat, using that the deay rates

α2 = 0 and α∞ = 1/3 are optimal, it su�es to show that the deay rate α4 annotbe better than 1/4 (up to the logarithmi term). Then, for no p ∈ (2,∞) the deayrate an be better than αp, beause an interpolation would lead to a better deayrate for p = 4. Below we will show that estimate (3.9b) is indeed optimal.Figure 3.2 displays numerially estimated deay rates, the exat urve αp, and theurve α̂p = (p − 2)/(3p), whih is obtained by interpolation between p = 2 and
p = ∞ and hene is not optimal. The numerial urves agrees well with αp awayfrom p = 4. This e�et may be due to the logarithmi orretion whih spoils theonvergene.In the following remark we argue that the above dispersive deay annot hold for
β < 3, beause of existene of solitary waves with arbitrary small ℓ1 norm.Remark 3.3 (Solitary waves):From [FW94, FP99℄ the existene of solitary waves for generalized FPU systemsan be dedued under additional global onditions on the interation potentials
Vk. Suh waves satisfy zj(t) = Z(j−ct) for a �xed pro�le Z : R → R

2 and a givenwave speed c. In partiular, [FW94℄ provides for the ase 1 < β < 5 the existeneof solitary waves with arbitrarily small energy, i.e. ‖zδsoli‖ℓ2 = δ ∈ (0, δ0). Ourstability result implies that for β > 4 these solution annot be small in ℓ1.In [FP99℄ the ase β = 2 is investigated, and it is shown that c = ω′(0) + O(ε2).The onstrutions there an be generalized to our ase to provide small-energysolitary waves of assoiated with the generalized KdV limit. Moreover, in [SW00℄it was shown that solutions of the form rεj (t) = ε2/(β−1)R(ε3t, ε(j+ω′(0)t)) + h.o.t.
12
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Figure 3.2: Exat deay rate αp, interpolation rate α̂p, ℓ2-ℓ∞ interpolation rateand numerially estimated rates as funtions of 1/p.exist, where R : [0, T ] × R → R satis�es the generalized KdV equation
∂τR+ b1∂

3
ηR + b2∂ηV

′(R) = 0where V ′(r) = r + O(|r|β). This equation possesses solitary wave solutions withexponentially deaying tales. In terms of the generalized FPU system these so-lutions satisfy ‖zεsoli(t)‖ℓ1 ∼ ε(3−β)/(β−1), whih shows that for 1 < β < 3 thereare solitary waves that are arbitrarily small in ℓ1. We onlude that the abovedispersive deay result annot hold for β < 3, while the ase β ∈ [3, 4] remainsopen.3.3 ℓp-estimates for the linearized systemWe onsider the linearization of (3.4) in z = 0, i.e. the ase N (z) ≡ 0. To solvethe system expliitly we use Fourier transform F : ℓ2(Z,R2) → L2(S1,R2) de�nedby ẑ(θ) =
∑

j∈Z
zje

−ijθ. Then ż = Jr Ar z turns into
(

˙̂r
˙̂p

)

=

(

0 eiθ − 1
1 − e−iθ 0

)(

ω2
r (θ) 0
0 1

)

·
(

r̂

p̂

)

, (3.13)where
ω2

r (θ) =
∑

|l|≤K−1

∑

|l|<k≤K

(k − |l|)akeil·θ

=
∑

0<k≤K

kak + 2
∑

0<l≤K−1

(

∑

l<k≤K

(k − l)ak

)

cos(l · θ).
(3.14)
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Sine (3.13) implies ¨̂r = 2(cos θ−1)ωr(θ)
2r̂ and sine the previous subsetion gives

¨̂r = −Λ(θ)r̂ we onlude
ω(θ) = 2

∣

∣

∣

∣

sin
θ

2

∣

∣

∣

∣

ωr(θ). (3.15)Using the linear stability ondition (3.3) we obtain
∃ cr > 0 ∀ θ ∈ S1 : ωr(θ) = ωr(−θ) ≥ cr. (3.16)The fundamental matrix of the linear system (3.13) is

Ĝr(θ, t) =

(

cos(ω(θ)t) eiθ−1
ω(θ)

sin(ω(θ)t)
−ω(θ)
e−iθ−1

sin(ω(θ)t) cos(ω(θ)t)

)

. (3.17)The Green's funtion of our original problem is given by G(t) = F−1 Ĝr(θ, t),that is Gj(t) = 1
2π

∫

S1 Ĝr(θ, t)e
ij θ dθ for j ∈ Z. Thus the long time behaviorof solutions to the linearized system is determined by osillatory integrals. Forinstane, for the lassial FPU, i.e. for ωr(θ) ≡ 1, the omponents of Gj turninto Bessel funtions, f. [Fri03℄. Below we apply tools from asymptoti analysisto obtain upper bounds on the solutions of the linearized system. To do so itturns out that an alternative representation of the above Green's funtion is moreonvenient. Using the symmetry of ωr we �nd that

Gj(t) =
1

2π

π
∫

0

(

h(θ, t, j
t
) 1

ωr(θ)
h
(

θ, t, j+1/2
t

)

ωr(θ)h
(

θ, t, j−1/2
t

)

h(θ, t, j
t
)

)

dθwith h(θ, t, c) = cos
(

t(ω(θ)+θc)
)

+ cos
(

t(ω(θ)−θc)
)

.

(3.18)The new variable c ∈ R roughly haraterizes the rays j = ct and is used to remindus to the group veloity c(θ) = ω′(θ).Thus, we obtained the following representation formula for the solution of thelinearized problem.Lemma 3.4 (Expliit solution):Given some initial onditions z0 = (r0,p0)T ∈ ℓ2(Z,R2), the unique solution of
ż = L z with L = Jr Lr de�ned in (3.4b) is determined by

z(t) = eL tz0 (3.19)where (eL t)t∈R is a di�erentiable group of bounded operators on ℓ2(Z,R2) de�nedby
(

eL tz
)

j
=
∑

k∈Z

Gk(t) · zj−k for j ∈ Z (3.20)with Gj(t) de�ned in (3.18).
14



The asymptoti behavior of (3.18) is determined by terms of the form
g(t, c) =

∫ π

0

ψ(θ)eitφ(θ,c) dθ with φ(θ, c) = ±(ω(θ) − cθ) (3.21)with ω de�ned in (3.15) and ψ(θ) standing for 1, 1/ωr(θ) or ωr(θ). In any ase ψis smooth on [0, π].The main result from asymptoti analysis we will use below is van der Corput'slemma, see e.g. [Ste93℄. It states that if φ is smooth and ∣∣φ(k)(θ)
∣

∣ ≥ λ > 0 for
θ ∈ (a, b) where either k ≥ 2, or k = 1 and φ′ is monotoni, then

∣

∣

∣

∣

∫ b

a

eitφ(θ) dθ

∣

∣

∣

∣

≤ Ck (λt)−
1

k with Ck = (5 · 2k−1 − 2). (3.22)Note that Ck does neither depend on a and b nor on φ expliitly. Writing F (θ) =
∫ θ

a
eitφ(ξ) dξ and applying integration by parts to ∫ b

a
ψ(θ)F ′(θ)dθ we obtain

∣

∣

∣

∣

∫ b

a

eitφ(z)ψ(z) dz

∣

∣

∣

∣

≤ Ck (λt)−
1

k

(

|ψ(b)| +
∫ b

a

|ψ′(θ)| dθ
)

. (3.23)In the following lemmas we provide the deay estimates on g(t, c) required to provethe sharp ℓp deay rate of the linear group eL t. We use the notation
Cψ := max

θ∈[0,π]
|ψ(θ)| +

∫ π

0

|ψ′(θ)| dθ.Sine van der Corput's Lemma only demands assumptions on ∣∣φ(k)(θ)
∣

∣ the followingonsiderations are indeed independent of the sign of φ in (3.21).The �rst lemma provides a global upper bound on g(t, c). Using the lassialmethod of stationary phase, f. [Won89℄ it is straight forward to hek that theresult is sharp.Lemma 3.5 (Global bound):Consider the osillatory integral (3.21) with dispersion relation ω satisfying (3.8)and ψ ∈ W 1,1([0, π]). Then there exists a onstant Cω > 0 depending only on ωsuh that
∀ t ≥ 0, c ∈ R : |g(t, c)| ≤ CωCψ

(1 + t)1/3
. (3.24)Proof. Due to φ(θ, c) = ω′′(θ) the following onsiderations are uniform with respetto the group veloity c.We write Uδ(θm) = {θ ∈ [0, π] | |θ − θm| < δ}. Due to the non-degenerayondition (3.8) it is possible to hoose δ > 0 suh small that |ω′′′(θ)| ≥ A for all
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θ ∈ ⋃M
m=0 Uδ(θm) for some onstant A > 0. Sine ω′′(θ) = 0 if and only if θ ∈ Θrthere exists B > 0 with |ω′′(θ)| ≥ B for all θ ∈ [0, π]\⋃M

m=0 Uδ(θm). Now we write
g(t, c) =

∫

SM
m=0 Uδ(θm)

ψ(θ)eitφ(θ,c) dθ +

∫

[0,π]\
SM

m=0 Uδ(θm)

ψ(θ)eitφ(θ,c) dθand apply (3.23). Thus
|g(t, c)| ≤ (M + 1)

(

18A−1/3 + 8B−1/2
)

Cψt
−1/3holds for t > 1. Using |g(t, c)| ≤ πmaxθ∈[0,π] |ψ(θ)| in ase 0 ≤ t ≤ 1 proves theonlusion for Cω = 2 max{π, (M + 1)(18A−1/3 + 8B−1/2)}.The next result provides the deay rate t−1/2 along nonritial rays. The im-portane is to haraterize the width of the regions around the ritial rays withdeay rate t−1/3 that has to be exluded. This result provides sharp estimatesfor ross-over between the two deay rates. Exluding group veloities near theritial ones orresponding to the ritial wave numbers, i.e. allowing only for cwith |c| /∈ ⋃θn∈Θr[|ω′(θn)| − ε, |ω′(θn)| + ε] where ε > 0, (3.25) implies a uniformbound ∼ t−1/2 on g(t, c). In fat, the result shows that the exluded regions maybe taken smaller, namely of width growing like t2/3. Using a suitable Airy saling,it an be shown that this width annot be dereased, see (3.32) for more details.Lemma 3.6 (Envelope funtion):Consider the osillatory integral (3.21) with dispersion relation ω satisfying (3.8)and ψ ∈ W 1,1([0, π]). Then, there exists a onstant Cω > 0 depending only on ωsuh that for all t > 0 and all c ∈ R \ {c | ∃ θ ∈ Θr : ||ω′(θ)| − |c|| ≤ t−2/3} holds

∣

∣g(t, c)
∣

∣ ≤ CωCψ
(1 + t)1/2

(

1 +
∑

θ∈Θr 1

|ω′(θ)2 − c2|1/4

)

. (3.25)Proof. For 0 < t ≤ 1 we use |g(t, c)| ≤ Cψπ. Below we assume t > 1.To simplify the onsiderations let us �rst assume that there is only one ritialwave number θ0 = 0. For θ near 0 the phase funtion of (3.21) behaves like
φ(θ, c) = ±(c0 − c)θ ± ω′′′(0)

6
θ3 + O(θ5) with c0 = ω′(0). Now we write

g(t, c) =

∫ δ̃

0

ψ(θ)eitφ(θ,c) dθ +

∫ δ

δ̃

ψ(θ)eitφ(θ,c) dθ +

∫ π

δ

ψ(θ)eitφ(θ,c) dθ. (3.26)Due to ω′′′(0) 6= 0 there exists 0 < δ < 1 and onstants A, Ā > 0 suh that
∀ θ ∈ (0, δ) : |ω′′(θ)| ≥ Aθ and |ω′(θ) − c0| ≤ Āθ2. (3.27)
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Then we have in partiular |∂2
θφ(θ, c)| = |ω′′(θ)| ≥ Aδ̃ for all θ ∈ (δ̃, δ). Sine weassumed Θr = {0} there also exists B > 0 suh that we have |∂2

θφ(θ, c)| ≥ B forall θ ∈ (δ, π). Thus van der Corput's Lemma (3.23) implies
∣

∣

∣

∣

∫ δ

δ̃

ψ(θ)eitφ(θ,c) dθ

∣

∣

∣

∣

≤ 8Cψ

(Aδ̃t)1/2
and ∣

∣

∣

∣

∫ π

δ

ψ(θ)eitφ(θ,c) dθ

∣

∣

∣

∣

≤ 8Cψ
(Bt)1/2

. (3.28)Here δ,A, Ā and B do not depend on c but only on ω.If δ̃ with 0 < δ̃ ≤ δ is so small that δ̃2 ≤ 1
Ā+1

|c0 − |c||, then using (3.27) we obtain
|∂θφ(θ, c)| = |ω′(θ) − c| ≥ |c0 − |c|| − Āθ2 ≥ δ̃2 for all θ ∈ (0, δ̃). Hene, againaording to (3.23) we obtain

∣

∣

∣

∣

∣

∫ δ̃

0

ψ(θ)eitφ(θ,c) dθ

∣

∣

∣

∣

∣

≤ 3Cψ

δ̃2t
. (3.29)Now we distinguish two ases. If δ2 ≤ 1

Ā+1
|c0 − |c|| we hoose δ̃ := δ. Hene theright hand side of (3.29) is independent of c. Substituting this bound togetherwith the seond estimate in (3.28) in (3.26) gives

∣

∣g(t, c)
∣

∣ ≤ 8Cψ
(Bt)1/2

+
3Cψ
δ2t

≤ Cψ
t1/2

(

8√
B

+
3

δ2

)

. (3.30)In ase 1
Ā+1

|c0 − |c|| < δ2 we hoose δ̃2 := 1
Ā+1

|c0 − |c||. Then the assumption
|c0 − |c|| ≥ t−2/3 yields δ̃3/2t1/2 ≥ (Ā + 1)−3/4. Thus, ombining the upper bound(3.29) with the �rst estimate in (3.28) leads to
∣

∣

∣

∣

∫ δ

0

ψ(θ)eitφ(θ,c) dθ

∣

∣

∣

∣

≤ 8Cψ

(Aδ̃t)1/2
+

3Cψ

δ̃2t
≤ Cψ

|c0 − |c||1/4t1/2
(

8A1/2
+ 3(Ā+ 1)3/4

)

.Finally, using this together with the seond estimate in (3.28) and |g(t, c)| ≤ Cψπfor 0 < t ≤ 1 yields
∣

∣g(t, c)
∣

∣ ≤ CωCψ
(1 + t)1/2

(

1 +
1

|c20 − c2|1/4
)with Cω > 0 depending only on ω(θ). The last estimate also overs (3.30) if wehoose Cω su�iently large. This ompletes the proof for Θr = {0}.To prove the general ase assume we have Θr = {θ0, θ1, . . . , θM} with θ0 < θ1 <

. . . θM . We deompose the integral de�ning g(c, t) like
g(c, t) = · · · +

∫ θm+δ̃m

θm

...+

∫ θm+δm

θm+δ̃m

...+

∫ θm+1+δm+1

θm+δm

...+ . . .
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with δm and δm+1 su�iently small suh that ω′′′(θ) 6= 0 for θ ∈ (θm − δm, θm +
δm) ∪ (θm+1 − δm+1, θm+1 + δm+1). Then similar estimates like (3.27) hold and weuse the same arguments as above to get the upper bound

∣

∣

∣

∫ θm+1−δm+1

θm

ψ(θ)eitφ(θ,c) dθ
∣

∣

∣
≤ Cω,mCψ

(1 + t)1/2

(

1 +
1

|c2m − c2|1/4
)

.Sine Θr is �nite this implies the statement.Now we state a result that provides a global deay rate t−1/2 under the additionalassumption that only θ = 0 is a ritial wave number and that the funtion ψsatis�es ψ(0). It will be used to estimate eL t Jr, where the bad behavior of thefronts, whih relate to long waves (i.e. θ = 0) are �ltered out by the di�ereneoperators ∂± − 1 in Jr.Lemma 3.7:Consider the osillatory integral (3.21) with dispersion relation ω satisfying (3.8)and ψ ∈ W 1,1([0, π]). If additionally Θr = {0} and ψ(0) = 0, then there exists aonstant Cω > 0 depending only on ω(θ) suh that
∀t ≥ 0 :

∣

∣g(t, c)
∣

∣ ≤ CωCψ
(1 + t)1/2

. (3.31)The proof relies on an uniform asymptoti expansion of the osillatory integrals.Sine we think that the tehnial details would disloate the fous of the paper weforbear to give the full proof but only highlight the main idea. The detail an befound in [Pat09℄.To see the �lter e�et of the di�erene operators ∂± − 1 we apply the method ofstationary phase, f. [Won89℄, to g(t, c) for c = c0 := ω′(0) and �nd that it behaveslike t−2/3. Aording to [Hör90, 7.7.18℄ there is a generalization of the lassialmethod of stationary phase whih is uniform in terms of the group veloity c. Infat, for y ∈ [−ε, ε] with ε > 0 su�iently small and c0 := ω′(0) holds
g(t, c0 + y) ∼ t−1/3Ai

(

a(y)t2/3
)[

u0(y) + O(t−1)
]

+ t−2/3Ai′
(

a(y)t2/3
)[

u1(y) + O(t−1)
]

.
(3.32)Here Ai(·) refers to the Airy funtion, and a, u0 and u1 are smooth funtions with

a(0) = 0. Making these funtions expliit we �nd that the leading order termanels. Together with Lemma 3.6 this implies (3.31).In this onnetion one should note that there is a smooth ross-over between thedi�erent sales. Indeed, employing the asymptoti behavior of Airy's funtion,f. [Olv74℄, we obtain for y < 0 the asymptoti behavior t−1/3Ai
(

a(y)t2/3
)

∼
C1t

−1/2 and t−2/3Ai′
(

a(y)t2/3
)

∼ C2t
−1/2 as t → ∞. Furthermore, the asymptotiexpansion (3.32) implies that the width-saling of the fronts in Lemma 3.5 is
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sharp. This holds for θ = 0 as well as for general θ ∈ Θr, where in (3.32) oursan additional modulating fator eiω(θ)t, see again [Hör90℄ and [Pat09℄ for details.Up to now we provided the deay rates along ritial and nonritial rays but we didnot use that the e�etive propagation speed is �nite. The light one orresponds to
c ∈ [−c∗, c∗] where c∗ := maxθ∈Θr |ω′(θ)|. Outside of this region the deay is fasterthan algebrai in terms of t as well as in terms of the veloity c ∈ (−∞,−c∗) ∪
(c∗,∞).Applying partial integration, whih is the standard argument to see this, f. [Ste93℄,is not straight forward due to the ourring boundary terms. In [Fri03℄ the ex-ponential deay is proved, for the standard FPU ase, using a dilation-analytiargument with respet to Fourier frequeny. Using (3.32) and the asymptoti be-havior of Ai as t → ∞ it turn out that the deay is even faster. In any ase one�nds for eah δ > 0 a deay onstant κδ > 0 suh that

∀ t ≥ 0 ∀ c ∈ (−∞,−c∗−δ] ∪ [c∗+δ,∞) : |g(t, c)| ≤ e−κδ(|c|−c∗)t. (3.33)With the above lemmas we are now prepared to prove the ℓp deay rate of eL t.Proof of Theorem 3.1. Aording to Lemma 3.4 the group eL t ats as onvolutionwith the matrix-valued Green's funtion G(t) = (Gk,m(t))k,m=1,2. Using Young'sinequality (3.6) we obtain
‖eL tz0‖ℓp ≤ ‖G(t)‖ℓp‖z0‖ℓ1 .Thus, it is su�ient to prove the desired deay rates in (3.9) and (3.10), respe-tively, for the omponents of G(t).We only arry out the details of the proof for G1,1(t). Let us �rst onsider thease p 6= 4. We aim to prove
∥

∥G1,1(t)
∥

∥

ℓp
≤ Cp

(1 + t)αp
(3.34)whih aording to (3.18) and by introduing the veloity c = j/t as new variablefollows from
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∣

∣

∣
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2π

∫ π
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h(θ, t, c) dθ

∣

∣

∣

∣

p

dc = O(t−pαp) as t→ ∞.The left hand side is bounded by terms of the form
Bp(t) := t

∫ ∞

−∞

|g(t, c)|p dcwith g(t, c) de�ned in (3.21), φ(θ, c) = ±(ω(θ) ± cθ) and ψ(θ) standing for 1,
1/ωr(θ) or ωr(θ). Without loss of generality we only onsider φ(θ, c) = ω(θ) − cθand may assume t > 1. 19



To estimate the ontributions of eah θ ∈ Θr we hoose ε > 0 and onsider
c ∈ [ω′(θ)−ε, ω′(θ)+ε]. Using Lemma 3.5 and Lemma 3.6 we �nd
Bp(t) = t

(

∫ ω′(θ)−t−2/3

ω′(θ)−ε

+

∫ ω′(θ)+t−2/3

ω′(θ)−t−2/3

+

∫ ω′(θ)+ε

ω′(θ)+t−2/3

)

|g(t, c)|p dc

≤ CωCψ
(1 + t)p/3−1/3

+
2C̃ωCψ

(1 + t)p/2−1

(

1 +

∫ ω′(θ)+ε

ω′(θ)+t−2/3

dc

|ω′(θ)2 − c2|p/4

)

≤ CωCψ + 2C̃ωCψC

(1 + t)(p−1)/3
+

2C̃ωCψC

(1 + t)(p−2)/2

(3.35)
with C depending on ω′(θ), ε and p. Taking the leading order term we get thedeay rate pαp. Thus, using (3.33) and Lemma 3.6 for c /∈ [ω′(θ)−ε, ω′(θ)+ε] weobtain

Bp(t) ≤ 2M
CωCψ + 2C̃ωCψC

(1 + t)pαp
+ O(t−(p−2)/2) + O(e−κεεpt)whih implies (3.34). Hene, the ase p 6= 4 is established.In the ase p = 4 the additional fator log t ontributing to the leading order termappears on the right hand side of (3.35). Indeed, we obtain

B4(t) ≤
CωCψ + 2C̃ωCψC

1 + t
+

2C̃ωCψC

1 + t

(

log t+ log ε
)

.This is su�ient to see that ∥∥G1,1(t)
∥

∥

ℓp
≤ Cp

(

(1 + t) log(2 + t)
)1/4.For the other omponents of G(t) we may use exatly the same arguments. Thisproves the �rst statement of Theorem 3.1.To prove the seond statement we proeed like above but we use the global upperbound Lemma 3.7 instead of Lemma 3.5 and Lemma 3.6. Then, the leading orderterm behaves like t(2−p)/p.4 Outlook: Further appliations4.1 The disrete Klein-Gordon and nonlinear ShrödingerequationHere we outline how to apply the tools developed in Setions 2 and 3 to othermodels in one-dimensional hains, namely the disrete Klein-Gordon (dKG) andthe disrete nonlinear Shrödinger equation (dNLS), see Setion 1.For (dKG) we have an on-site potential with W ′(x) = bx + O(|x|β). Like in theFPU ase our results are not restrited to nearest neighbor interation. Indeed, wemay allow for any �nite range interation as long as the stability ondition (3.8)20



is satis�ed; but for simpliity we restrit ourselves to the simplest ase, where thedispersion relation reads
ω(θ) =

√
2 + b− 2 cos θ.The stability ondition immediately implies b ≤ 0. In Figure 4.1 we plot the dis-persion relation and the time evolution of a prototypial dKG hain. A major
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jFigure 4.1: Dispersion relation and time evolution for the prototypial dKGhain (a1 = −1, b = 0.5): ω(θ), ω′(θ) and xj(t) at t = 800 to initial ondition
(xj(0), ẋj(0)) = (δj,0, 0).di�erene to FPU is that the propagation fronts do not orrespond to the maro-sopi wave number θ ≈ 0. Hene, the fronts are not monotone but have an Airyexpansion as in (3.32) but multiplied with a fator eiω(θ∗)t, where ω′(θ∗) = c∗ andhene ω′′(θ∗) = 0. Now θ = 0 does not lie in Θr beause the on-site potential Wdestroyed the Galilean invariane.But apart from these two di�erene the results and the approahes to prove theseare the same like in the FPU ase. Using the expliit solution of the linearizedsystem, we may prove the analog to Theorem 3.1 with the same deay rates. Thisrelies on the fat that the key ingredients for its proof is the representation ofthe solutions in terms of osillatory integral of the form (3.21) and quite generalonditions on ω, namely (3.8).Theorem 4.1:Consider the disrete Klein-Gordon system (dKG) with W ′(x) = bx + O(|x|β),
b < 0 and β > 4. Then, for eah p ∈ [2, 4) ∪ (4,∞] there exist Cp and ε > 0 suhthat all solutions z = (x, ẋ) with ‖z(0)‖ℓ1 ≤ ε satisfy the estimate

‖z(t)‖ℓp ≤ Cp
(1 + t)αp

‖z(0)‖ℓ1 for all t ≥ 0, (4.1)where the deay rate αp is given in (3.9).Again the ase p = 4 an be inluded by adding a suitable logarithmi term.This theorem improves the result in [SK05℄ in a twofold manner, namely in terms of
β as well as in terms of the deay rate αp for p ∈ (2,∞). In partiular, Theorem 4.1explains the disrepany the numerial simulation and the theoretial deay rate
α̂p in [SK05℄. We see that our deay rate αp �ts the numeris muh better.21
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≈ 0.133numeris in [SK05℄ 0.226 0.267 0.292

α = p−1
3p

1
4

= 0.25 4
15

≈ 0.267 5
18

≈ 0.278The above theory an be easily transferred to the disrete nonlinear Shrödingerequation (dNLS), where the dispersion relation reads ω(θ) = 2−2 cos θ. Obviously
Θr = {π/2} and the non-degeneray ondition ω′′′(π) 6= 0 holds. In this ase the
ℓ2 norm is in fat a �rst integral, and hene is preserved exatly along solutions.Using this, it is not di�ult to show that for β > 4 we have dispersive stabilitywith the same deay rates as above.4.2 Appliations to systems in 2DHere we disuss the appliation of our general theory to a system on a two-dimensional lattie. The ruial point in higher spae dimensions are the estimatesfor the linear group. Here we only present a onjeture for the deay rates; therigorous proof being ongoing work, f. [Pat09℄. For methods to handle 2D osilla-tory integrals we refer to [Won89, BH86, Hör90℄ and [GWF81℄, whih is based ontehniques derived in [Dui74℄.We onsider the Hamiltonian system

ẍj = V ′(xj+e1 − xj) − V ′(xj − xj−e1) + V ′(xj+e2 − xj) − V ′(xj − xj−e2) (4.2)with j = (j1, j2) ∈ Z
2. Here e1 = (1, 0)T and e2 = (0, 1)T are the unit vetors,

x := (xj)j∈Z2 with xj ∈ R and V ′(r) = r+O(|r|β) with β > 1. To avoid di�ultiesby introduing an analog to the distanes r in one dimension we restrit ourselvesto initial onditions (x(0), ẋ(0)) = (x0, 0) ∈ ℓ1(Z2,R2).Like in the one-dimensional ase it is possible to solve the linearization of (4.2)expliitly and the behavior of the solutions relies on osillatory integrals of theform
g(t, c) =

1

(2π)2

∫

T2

ψ(θ)eitφ(θ,c) dθ (4.3)with φ(θ, c) = ±(ω(θ) − c · θ), where now θ = (θ1, θ2) ∈ T
2 and c ∈ R

2. For (4.2)the dispersion relation is given by
ω(θ) =

√

4 − 2 cos θ1 − 2 cos θ2.Although we do not state the formula note that in this ase it is possible alulatethe ritial set Θr = {θ ∈ T
2 | det D2ω(θ) = 0} expliitly. The mapping Dω :

T
2 → R

2 has the range {c ∈ R
2 | 0 < |c| < 1} of possible group veloities and maps

Θr into a losed urve with four verties, see Figure 4.2, left. The right-hand sideof Figure 4.2 displays the time evolution of the �rst omponent of the Green's22
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Figure 4.2: Left: The irle is the set of possible group veloities and the urvewith four verties denotes the ritial group veloities. Right: Time evolution ofthe linearization of (4.2) with initial ondition x0

j1jj
= δj1δj2 and ẋ0 = 0	.funtion, whih learly shows di�erent regimes at the ritial wave numbers. Wean roughly distinguish three regions: (i) four verties, (ii) four edges onnetingthese verties and (iii) the remaining region inside the light one, whih is a irleof radius t.To obtain the deay properties of ‖eL t‖ℓ1,ℓp, where L again stands for the linearpart of the operator on the right hand side of (4.2), we �rst determine the loalasymptoti behavior of (4.3). Then, assuming a reasonable width of the threedi�erent regions we infer the ℓp deay rate like in the proof of Theorem 3.1. Todo so we apply the loalization priniple: For c = Dω(θ), the main ontributionto g(t, c) is given by

Iθ(t) =

∫

T2

h(δ) eitϕ(δ) dδ where ϕ(δ) := φ(θ + δ,Dω(θ)). (4.4)Here h ∈ C∞, supph ⊂ Uε(0) for ε > 0 su�iently small, and h(0) = 1. Thefuntion h arises via partition of unity on T
2. The loal deay rate t−α(θ) of Iθ(t),and hene of g(t,Dω(θ)), is determined by the leading-order terms of the Taylorexpansion

ϕ(δ) = ϕ(0) +
1

2
δT · D2ω(θ) · δ + h.o.t., Dϕ(0) = 0. (4.5)For θ ∈ T

2\Θr a linear oordinate transformation δ = Aξ leads to ϕ(Aξ) = ϕ(0)+
ξ2
1 ± ξ2

2 +h.o.t. Thus, saling ξ with √
t leads to |Iθ(t)| ∼ 2π

|det D2ω(θ)|1/2 t
−1 +O(t−2).This deay rate orresponds to the region inside the light one, but away from thefronts.For θ ∈ Θr we have to distinguish two ases. The four verties orrespond to thedegenerated points (±π

2
,±π

2
). If θ ∈ Θr \ {(±π

2
,±π

2
)}, then, following the ideas23



in [GWF81℄ we �nd a loal oordinate transformation to get ϕ(Aξ) = ϕ(0) + ξ2
1 ±

ξ3
2 + h.o.t. Thus, |Iθ(t)| ∼ b(θ)t−5/6 +O(t−7/6), where b(θ) is singular in (±π

2
,±π

2
).Finally, for θ = (±π

2
,±π

2
) there exists a oordinate transform δ = b(ξ) suh that

φ(b(ξ)) = φ(0) − ξ2
1 − ξ4

2 . Saling ξ1 and ξ2 with t1/2 and t1/4, respetively, gives
|Iθ(t)| ∼ b(θ)t−3/4, whih is also the global ℓ∞ deay rate.The deay rate of ‖eL t‖ℓ1,ℓp is roughly determined by
∥
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∥
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t

)
∥
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ℓp(Z2,R)
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∫

|c|≤1

|g(t, c)|pdc =
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(2π)2p
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eitφ(θ,c) dθ

∣

∣

∣

∣

p

dc. (4.6)Using the normal forms given above we estimate the amount of the three regionson the right-hand side and obtain
∥

∥g(t, ·
t
)
∥

∥

p

ℓp
∼ t2

(

Conet−p + Curvet−βt−5p/6 + Cvertext−γt−3p/4
)

,where t−β gives area of the regions around the four urves and t−γ the area ofthe regions around the four verties measured relatively to the dis |c| < 1. Weonjeture that the orret values are β = 2/3 and γ = 3/4.This onjeture leads to the deay rates α2D
p = min{p−2

p
, 3p−5

4p
}, whih is obtainedfrom interpolating the three values α2 = 0, α3 = 1/3, and α∞ = 3/4. It seemsreasonably that the ase p = 3 needs a logarithmi orretion. The numerialsimulations shown in Figure 4.3 agree quite well with this rate for p ∈ [2, 3],however there are major disrepanies for larger p. In any ase, the numerislearly suggests that the optimal deay rates are better that the ones, whih anbe obtained by interpolating between α2 = 0 and α∞ = 3/4.
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