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Abstract. Laser-induced electron detachment or ionization of atoms and
negative ions is considered. In the context of the saddle-point evaluation of
the strong-field approximation (SFA), the velocity maps of the direct electrons
(those that do not undergo rescattering) exhibit a characteristic structure due
to the constructive and destructive interference of electrons liberated from their
parent atoms/ions within certain windows of time. This structure is defined by
the above-threshold ionization rings at fixed electron energy and by two sets of
curves in momentum space on which destructive interference occurs. The spectra
obtained with the SFA are compared with those obtained by numerical solution
of the time-dependent Schrödinger equation. For detachment, the agreement is
excellent. For ionization, the effect of the Coulomb field is most pronounced
for electrons emitted in a direction close to laser polarization, while for near-
perpendicular emission the qualitative appearance of the spectrum is unaffected.
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1. Introduction

Multiphoton ionization or detachment is the basic process that occurs if an atom or negative
ion is exposed to an intense laser field. The resulting electron spectrum, represented in the form
of an angle-resolved energy spectrum or as a velocity map, has been the challenging object
of various approaches to the description of the laser–matter interaction, especially since the
first observation of above-threshold ionization (ATI) [1]. The spectrum strongly depends on the
wavelength and intensity of the driving laser field. Ever since the seminal work of Keldysh [2]
and Perelomov et al [3], two limiting cases have been distinguished. For comparatively low
intensity and/or high frequency, the electron reaches its final state by absorbing just the
minimum number of laser photons possible (the so-called multi-photon limit). In this case,
the resulting angular distribution is given by the superposition of a few eigenstates of angular
momentum. In the opposite limit of high intensity and/or low frequency (the so-called tunneling
limit), the electron can be envisioned to tunnel into the continuum through the effective-potential
barrier generated by the laser–electron potential and the atomic or ionic binding potential. In
this case, the final electron state is the superposition of a large number of angular-momentum
states. These two cases should not be considered as different mechanisms (multi-photon versus
tunneling) but rather as two different perspectives of the same physical process—ionization
by an approximately monochromatic field. In this paper, we will be concerned with the high-
intensity case. We also restrict ourselves to ‘direct’ electrons, which are defined as those that,
after ionization, do not rescatter off the potential that bound them [4, 5].

As the longest-known multi-photon process in laser–atom physics, ATI has attracted much
attention over the years, and a large number of data have been accumulated; for a more
recent review, see [6]. The presentation of the data in the form of velocity maps has become
standard [7–10], since these display many features of the data, especially for low energy and in
the rescattering regime [11], more clearly than the usual angle-resolved energy spectra.

The theoretical complexity of the ionization process is due to the interplay of the
binding potential and the laser field. Either field by itself provides a straightforward problem,
analytically solvable in many cases, but the combined action of both fields does not allow such
a solution. The strong-field approximation (SFA) [2, 3, 12–15] cuts through this complexity by,
in effect, defining an instant of ionization such that before this time the electron is assumed only
to feel the binding potential, while thereafter its motion is governed by the laser field alone.
New Journal of Physics 14 (2012) 055019 (http://www.njp.org/)
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The corresponding ionization amplitude is an integral over this time. For a given final (outside
the field) momentum p of the electron, the integral can be evaluated by the method of steepest
descent, which determines the corresponding ionization times ti(p). These times are the start
times of electron orbits in the presence of the laser field—the so-called quantum orbits [16].
Arguably, the analysis of the data in terms of these quantum orbits provides the best way of
intuitively understanding the quantum process of ionization [10, 17–19].

For direct electrons and a monochromatic laser field, which depends sinusoidally on time,
there are exactly two such ionization times per laser period and therefore two quantum orbits
for any given final momentum. Their contributions add coherently to the ionization amplitude
or, more physically formulated, the corresponding wave packets interfere [20]. The resulting
angle-resolved spectrum or velocity map is dominated by this interference pattern [19, 21]. The
analytical calculation of this pattern on the basis of the SFA and the comparison with ab initio
solutions obtained by solving the time-dependent Schrödinger equation (TDSE) are the theme
of this paper. We expect major differences between the ionization of an atom and the detachment
of a negative ion, owing to the absence of the long-range (Coulombic) binding potential in the
latter case.

In this paper, we will not be concerned with the contribution of rescattering processes. For
above-threshold detachment (ATD) and the relatively low energies which we are considering
here, these are completely inessential. Of course, they dominate the spectrum for higher
energies where the direct electrons do not contribute [22]. For ATI, the same statements
essentially hold. However, for very low energies and parameters such that the so-called low-
energy structure (LES) appears [23–25], the distinction between direct and rescattered electrons
becomes questionable, owing to the behavior of the Coulomb scattering cross-section. There
is also a rescattering contribution with very short travel time which is still unexplored (the
so-called L orbits in high-order harmonic generation [26]).

This paper is organized as follows. In section 2, we recall the SFA in the saddle-point
approximation and proceed to derive the geometrical curves on which the two relevant quantum
orbits interfere destructively. We also obtain a formula that specifies the number of interference
minima on a given ATI ring. In section 3, we present our results. We choose the negative F
and H ions as illustrations for ATD and the H atom for ATI and compare in each case the SFA
spectra with those obtained by numerical solution of the TDSE. The agreement is excellent for
ATD, which establishes the SFA as a completely reliable calculational method in this case. This
is not so in the presence of the long-range Coulomb potential where, however, some features
predicted by the SFA do survive. We present the conclusions in section 4. We use atomic units
so that h̄ = 1,m = 1, |e| = 1 and 4πε0 = 1 throughout the paper.

2. Matrix element in the strong-field approximation

The transition amplitude from the atomic or ionic ground state |ψ`(t)〉 = |ψ`〉 exp(iIpt), having
the parity (−1)` and the ionization potential Ip, to the final continuum state |p〉, both in the
absence of the laser field, is [2, 3, 5, 12, 13]

Mp =

∫
∞

−∞

dt〈ψ (V)
p (t)|V (r)|ψ`(t)〉

=

∫
∞

−∞

dtV (p, t)eiS(p,t), (1)
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where

|ψ (V)
p (t)〉 = |p + A(t)〉e−i

∫ t dτ [p+A(τ )]2/2 (2)

is the Volkov solution in length gauge with 〈r|p〉 = (2π)−3/2 exp(ip · r) a plane wave,

S(p, t)=
1

2

∫ t

dτ [p + A(τ )]2 + Ipt (3)

is the action and

V (p, t)= (2π)−3/2

∫
d3r e−i[p+A(t)]·rV (r)ψ`(r). (4)

For sufficiently high intensity and low frequency, temporal integration in the matrix
element (1) is conveniently carried out with the help of the method of steepest descent. This
yields

Mp =

∑
i

ai(p) exp[iSi(p)] (5)

with Si(p)≡ S(p, ti), and ti ≡ ti(p) being a solution to the saddle-point equation

1
2

{
p2

⊥
+ [p‖ + A(t)]2

}
= −Ip. (6)

We assume a linearly polarized laser field with the vector potential A(t), and p‖ and p⊥ denote
the components of the final momentum p parallel and perpendicular to A(t). The prefactor of
the exponential in equation (5) is

ai(p)=

{
2π

i[p + A(ti)] · E(ti)

}1/2

V (p, ti). (7)

For the linearly polarized monochromatic field

A(t)= A0 cosωt, (8)

with the ponderomotive potential Up = A2
0/4, there are two solution times t1 and t2 (Re t2 >

Re t1, Im ti > 0) per cycle of the saddle-point equation (6), which satisfy

Reωt2 = 2π − Reωt1, Imωt1 = Imωt2. (9)

An example of such solutions is shown in figure 1.
The electron spectrum has the form of concentric rings in the momentum plane. These rings

are centered at zero momentum and correspond to the characteristic ATI peaks. Each ring can be
envisioned as due to the net absorption of a specific number N of photons from the laser field.
The minimum number of absorbed photons necessary for ionization is Nmin = [(Ip + Up)/ω] + 1,
where [x] denotes the integer part of x . The electron energy on the (N − Nmin + 1)th ring is

E = (p2
⊥

+ p2
‖
)/2 = Nω− Ip − Up. (10)

For the two saddle-point times (9), the first factor of equation (7) is real and identical up to
the small imaginary part of E(ti), which we neglect. The second factors are equal for an even-
parity ground state |ψ`〉 and equal in magnitude but opposite in sign for an odd-parity ground
state, i.e. V (p, t2)= (−1)`V (p, t1) (for p‖ = 0) [28].

New Journal of Physics 14 (2012) 055019 (http://www.njp.org/)
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Figure 1. The saddle-point solutions ti , i = 1, . . . , 4, for the field (8) in the
complex plane as functions of the drift energy p2

‖
/2 for p⊥ = 0 and 06 p2

‖
/26

3Up. The value of the Keldysh parameter is c = 0.464. The physical solutions,
which enter equation (1), are those in the upper half-plane. The electric field E(t)
is shown by the dashed line. From [27].

2.1. Destructive interference curves

If we assume that the complex weights (7) of the two quantum orbits are equal, then the
interference of the two quantum orbits in the ionization amplitude will be destructive if

Re1S ≡ Re [S2(p)− S1(p)] = mπ, (11)

where m is odd for even ground-state parity and is even for odd parity. We have

1S =

[
1

2
(p2

‖
+ p2

⊥
)+ Ip

]
(t2 − t1)+ p‖

∫ t2

t1

dτA(τ )+
1

2

∫ t2

t1

dτA(τ )2. (12)

The condition (11) defines curves in the (p⊥, p‖) space, which we will now investigate in more
detail.

In order to stay on such a curve as we vary p‖ and p⊥, we demand that d(Re1S)= 0. With
E = (p2

‖
+ p2

⊥
)/2 we have

d1S = (p‖dp‖ + p⊥dp⊥)(t2 − t1)+ (E + Ip)(dt2 − dt1)+ dp‖

∫ t2

t1

dτ A(τ )

+p‖ [dt2 A(t2)− dt1 A(t1)] +
1

2

[
dt2 A(t2)

2
− dt1 A(t1)

2
]
. (13)

The coefficients of dt1 and dt2 are identically zero owing to the saddle-point equation (6). Hence
we obtain the first-order nonlinear differential equation

dE

dp‖

= −
1

t2 − t1

∫ t2

t1

dτ A(τ ), (14)

New Journal of Physics 14 (2012) 055019 (http://www.njp.org/)
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where the right-hand sides depend on p‖ and p⊥ via t2 and t1. For the field (8),∫ t2

t1

dτ A(τ )=
A0

ω
(sinωt2 − sinωt1)=

2A0

ω
sin(Reωt2) cosh(Imωt2), (15)

where we used the properties (9) of the saddle-point solutions. Note that the differential
equation (14) is actually real due to the reality of the integral (15).

For our field (8), the saddle-point times are given by (p‖ > 0)

cos2(Reωt2)=
α

2
−

1

2

√
α2 −

p2
‖

Up
, (16)

cosh(Imωt2)= −
p‖

2
√

Up cos(Reωt2)
, (17)

where

α = 1 + γ 2 +
E

2Up
(18)

and γ =
√

Ip/(2Up) is the Keldysh parameter. In the limit where p‖ → 0, we have
cosh(Imωt2)→

√
α. Given t2, the other solution t1 is specified by equation (9).

For p‖ = 0, we note that equation (16) implies that the two solutions t2 and t1 are half a
period apart. Therefore, we have from equations (11) and (12) for p‖ = 0 that

1S =
(

p2
⊥
/2 + Ip + Up

)
π/ω = mπ. (19)

For the ATI ring that corresponds to the absorption of N photons, c.f. equation (10), for p‖ = 0
we have

1
2 p2

⊥
+ Ip + Up = Nω, (20)

so that the destructive-interference condition reads

N = m. (21)

Hence, for emission perpendicular to the laser polarization, on every other ATI ring (with net
absorption of an odd (even) number of photons for even (odd) parity) we have a minimum.

Let us approximately solve the differential equation (14) with accuracy up to quadratic
terms in p‖ and p⊥. For p2

‖
� Up, the relevant quantities are (p‖ > 0)

sin(Reωt2)= −1 +
p2

‖

8Upα
, (22)

cosh(Imωt2)=
√
α−

p2
‖

8Upα3/2
, (23)

ω(t2 − t1)= π −
p‖√
Upα

+ O(p3
‖
). (24)

With these approximations, the differential equation becomes (p‖ > 0)

p⊥

dp⊥

dp‖

−βp2
⊥

=
2

π 2β
−

(
1 −

4

π 2

)
p‖ +

(
8

π 2
−

1

1 + γ 2

)
βp2

‖
+ O(p3

‖
) (25)

New Journal of Physics 14 (2012) 055019 (http://www.njp.org/)
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with

β =
1

2π
√

Up(1 + γ 2)
. (26)

We note that the left-hand side can be written as

e2βp‖
d

dp‖

(
1

2
p2

⊥
e−2βp‖

)
, (27)

while the right-hand side depends only on p‖. Hence, we can carry out the integration over p‖.
The constant of integration, which occurs in the process, is fixed so that for p‖ = 0 the curve
starts on an ATI ring, which means that p2

⊥
|p‖=0/2 = Nω− Ip − Up. The resulting destructive-

interference curve is an ellipse,

(p‖ − p)2

a‖
2

+
p2

⊥

a2
⊥

= 1 (28)

with

p =
2β

A

[
Nω− Ip − Up + 4Up(1 + γ 2)

]
, (29)

A = 1 −
8

π 2
− 4β2(Nω− Ip − Up), (30)

B = Nω− Ip − Up +
A

2
p2 (31)

and

a2
⊥

= 2B, a2
‖
= 2B/A. (32)

Where the curves intersect the p⊥ axis, the slope is given by

p‖ =

√
2(Nω− Ip − Up)

2β
[
Nω− Ip − Up + 4Up(1 + γ 2)

] [
p⊥ −

√
2(Nω− Ip − Up)

]
. (33)

These approximate destructive-interference curves only make sense as long as p < a‖, so that
the curves intersect the p⊥ axis. This is not the case for very large N when A < 0. Even before
this limit is reached, the neglect of higher than quadratic terms may already become invalid. We
will refer to the ellipses (28) as the set S1. Below, we will compare these curves with the full
SFA.

There is a different class of solutions to equation (14), namely those that do not intersect
the p⊥ axis. Rather, they intersect the p‖ axis at values p‖n with n given by equation (11). In the
solution to equation (25) (or of equation (14) as long as p‖ is no longer small), the constant of
integration must be chosen accordingly. Note that the momenta (0, p‖n) do not, in general, lie on
ATI rings. Since obtaining an analogue of the solution (28) is cumbersome, we do not attempt
it and will be satisfied with the numerical determination. We will refer to the set of these curves
as S2.

The curves S1 and S2, along with the ATI rings, dominate the velocity maps for negative
ions. As we will show below, they are differently affected by the Coulomb potential: the set S1
is distorted, but remains very prominent, especially near the p⊥ axis. In contrast, the set S2 no
longer plays a role in the Coulomb regime.
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2.2. Zeros on an above-threshold ionization ring

A conspicuous feature is the number of interference nodes on a given ATI ring E = const. On
top of any structure caused by V (p, t) (equation (4)), this is given by the difference of1S/(2p)
at p = (p⊥ = 0, p‖ =

√
2E) and at p = (p⊥ =

√
2E, p‖ = 0):

δ1S ≡1S|
p‖=

√
2E

p‖=0 =

∫
d1S. (34)

From equations (13), (16) and (17), this is

δ1S =

∫ √
2E

0
dp‖

∫ t2

t1

dτ A(τ )=
2

ω

∫ √
2E

0
p‖dp‖ tan(Reωt2)

=
2

ω

∫ √
2E

0
p‖dp‖

√√√√√√2 −α +
√
α2 − p2

‖
/Up

α−

√
α2 − p2

‖
/Up

, (35)

where α2
− p2

‖
/Up > 0. The integration is elementary and yields

δ1S =
Up

ω
[(1 +β+)

√
β−(2 −β−)+ (2α− 1) arccos(1 −β−)] (36)

with

β± = α±

√
α2 − 2E/Up. (37)

If Mp is calculated to lowest-order perturbation theory so that absorption of exactly N
photons is required to overcome the ionization potential, then the resulting angular distribution
will be a superposition of spherical harmonics with angular momenta up to `+ N , where `
denotes the angular momentum of the ground state. Chen et al [29] analysed the angular
distribution for very low electron energy and found that in TDSE solutions the dominant angular
momentum—the one that determines the observed angular pattern, i.e. the number of radial
lobes in two-dimensional spectra—is roughly N/2 or slightly smaller, depending on the laser
intensity. The SFA produces a smaller number of minima on an ATI ring with very low energy.

3. Numerical results

In order to illustrate the validity of the results obtained in the previous section and, for atoms,
their limitation due to the effect of the Coulomb potential, in this section we present numerical
results obtained by calculating the ionization (detachment) amplitude (1) (the direct SFA) and
by solving the TDSE.

The direct ATD of negative ions can be described well using the SFA. The amplitude of
direct ATD is obtained by calculating the integral over time t in equation (1). As examples, we
will consider the negative hydrogen ion H− and the negative fluorine ion F−. The corresponding
initial wave functions are modeled in accordance with [22] for H− and with [30] for F−. In the
case of H−, we model the initial wave functions by

ψ`(r)= (A/r) exp(−κr)Y`0(r̂), (38)
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with `= 0, A = 0.75, κ = 0.235 and Ip = κ2/2. Similarly to [30, 31], we have checked that this
ground state energy can be obtained using the potential

V (r)= −

(
1

√
α2 + r 2

+
1

β

)
e−2r/β, (39)

with α = 0.5 au and β = 1.8469 au. We used this potential to solve the TDSE for H−. For the
initial wave function of F− we choose the Hartree–Fock-type wave function, which is given in
analytical form as a series expansion in atomic Slater-type orbitals, while for the potential V (r)
we choose

V (r)= −a1
e−α1r

r
− a2

e−α2r

r
. (40)

The parameters of the Slater-type orbitals and the potential V (r) are given in [30]. The electron
affinity of F− is Ip = 3.4 eV. The potential (40) gives the correct ground-state energy, and
its lowest p-orbital (`= 1) eigenfunction agrees well with our Hartree–Fock wave function.
The effect of the Coulomb potential we will consider by solving the TDSE for the potential
V (r)= −1/r and comparing the obtained spectra with the SFA spectra for the 1s ground state.

We assume a linearly polarized laser field. For the TDSE calculation, we use the electric
field vector with a cosine-square envelope and with a total pulse duration of np optical cycles,
i.e. Tp = npT , T = 2π/ω:

E(t)= E0 cos2(π t/Tp) cosωt (41)

for −Tp/26 t 6 Tp/2 and E(t)= 0 outside this interval. For the SFA calculations, we will use
the pulse (41) or an infinitely long flat pulse.

The TDSE is solved using velocity gauge in dipole approximation as described in [30].
The algorithm used is a version of the method introduced in [32, 33]. The wave function is
expanded in spherical harmonics and, after the operator splitting, the radial wave functions are
propagated in time using the Crank–Nicolson approximation for the time-evolution operator.
After propagation, angle-integrated and angle-resolved photoelectron spectra are obtained by
analysing the final wave function using the fourth-order window-operator method [34].

3.1. Detachment velocity maps

In figure 2, the SFA velocity map for ATD of F− is presented. The laser wavelength used
(1800 nm) and the intensity (1.3 × 1013 W cm−2) give Up/ω = 5.71, Nmin = 11 and γ = 0.6575.
Inspection of figure 2 shows that the SFA velocity map is dominated by the combined effect of
the three sets of curves mentioned above: the ATD rings and the curves 1S = mπ that connect
the interference minima and intersect the former. The set S1 of the 1S = mπ curves intersects
the p⊥ axis at the values p⊥N =

√
2(Nω− Up − Ip) on either the even-order (for odd ground-

state parity) or the odd-order (for even ground-state parity) ATD rings. Since the parity of the F−

ground state is odd, these curves start at even-order ATD rings. In the first quadrant of figure 2
the curves S1 are represented by the white lines, which start at the ATD rings N = 12, 14, 16
and 18. It is obvious that these lines, given by the analytical results (28)–(32), are in excellent
agreement with our numerical SFA results. The intersections of these curves with the ATD rings
define a carpet-like pattern near perpendicular emission, which was experimentally observed
in [35].

Finally, the curves of the second set (S2) do not intersect the p⊥ axis. These curves can be
obtained as solutions to the differential equation (14) with the initial condition that 1S = mπ
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Figure 2. The logarithm of the differential detachment probability of F−,
presented in false colors, as a function of the detached electron momentum
p = (p⊥, p‖) (in au). The wavelength and intensity of the linearly polarized laser
field are 1800 nm and 1.3 × 1013 W cm−2, respectively. The results are obtained
using the direct SFA for an infinitely long flat pulse. The S1 curves (28) are
entered as white lines in the first quadrant of the figure. Similarly, the S2 curves
are entered as magenta lines.

at values p‖m and p⊥ = 0. They are presented by the magenta lines in figure 2. The velocity
map shown in figure 2 very distinctly displays these curves. Off the p‖ and p⊥ axes, they are
almost parallel to the curves S1. On the p‖ axis, the set S2 specifies the destructive interference
of the two intra-cycle quantum orbits, commonly known as the long and the short orbit, which
are analogous to the ‘ballistic interferences’ in a constant force field; see, e.g., [36, 37]. The
start times of these two orbits are closer together than half a period (ω(t2 − t1) < π ) so that
the corresponding spacing in energy is larger than 2ω and increases with increasing p‖ since
ω(t2 − t1) is becoming smaller, as can be seen in figure 1.

According to equation (36), for the number of zeros on ATD rings in the first quadrant,
viz δ1S/(2π), we obtain: 1.54, 3.05, 4.07, 4.93, 5.69, 6.39, 7.05, 7.68 and 8.29 for the 1st,
2nd, 3rd, 4th, 5th, 6th, 7th, 8th and 9th rings (N = 11, 12, . . . , 19), respectively. These numbers
agree very well with the results presented in figure 2 (the corresponding numbers are 2, 3, 4, 5,
6, 6, 7, 8 and 9), which confirms the validity of the analytical result (36).

In figure 3 we present numerical results for a cosine-square pulse with a pulse duration of
18 cycles. It is obvious that the SFA and TDSE results agree very well. Also, in all cases the
ATD rings and the structures S1 and S2 are well developed and confirm the results presented
and commented on above. Comparison of the SFA and the TDSE velocity maps confirms that,
in the momentum region covered by the figure, rescattering, which is not part of the SFA as
formulated by equation (1), makes no significant contribution.

For H− we first present the SFA results for an infinitely long flat pulse (figure 4) and then
compare the SFA and TDSE results for a 6-cycle cosine-square pulse (figure 5). For the chosen
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Figure 3. The same as in figure 2, but for a cosine-square pulse with total
duration of 18 optical cycles. The results are obtained by using the direct SFA
(left panel [38, 39]) and solving the TDSE (right panel).

Figure 4. The logarithm of the differential detachment probability of H−,
presented in false colors, as a function of the detached electron momentum
p = (p⊥, p‖) (in au). The wavelength and intensity of the linearly polarized laser
field are 10 600 nm and 1011 W cm−2, respectively. The results are obtained using
the direct SFA for an infinitely long flat pulse. The curves (28) are entered as
white lines in the first quadrant of the figure.

laser parameters we have Up/ω = 8.97, Nmin = 16 and γ = 0.5984. Since the ground state of
H− has even parity, the presented S1 curves start at the ATD rings that correspond to absorption
of 17, 19, 21 and 23 photons. According to equation (36), for the number of zeros on the ATD
rings in the first quadrant δ1S/(2π), we obtain: 2.46, 4.04, 5.19, 6.16, 7.02, 7.81 and 8.55 for
the 1st, 2nd, 3rd, 4th, 5th, 6th and 7th rings, respectively. These results again agree very well
with the outcome of counting maxima on the ATI rings in figure 4.
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Figure 5. The same as in figure 4, but for a cosine-square pulse having total
duration of six optical cycles. The results are obtained by using the direct SFA
(left panel [38, 39]) and solving the TDSE (right panel).

Figure 5 demonstrates excellent agreement between the TDSE and the SFA results. The
only difference that can be found is in the outer region where the yield is already very low. Here
the TDSE does not resolve the interference structures quite as well as the SFA. It should be
kept in mind that the TDSE, in contrast to the direct SFA, automatically includes rescattered
electrons. For H− and the current parameters, at the given accuracy there is no qualitative
evidence of rescattering.

3.2. Ionization velocity maps for the hydrogen atom

In order to assess the consequences of the Coulomb potential, we turn to the hydrogen atom.
In figure 6, we compare the velocity maps calculated from the TDSE (right-hand panels) with
those from the SFA, where the Coulomb potential only enters via the ground-state wave function
and, of course, the ionization potential. We present the results for three different intensities:
9 × 1013 W cm−2 (Up/x = 3.47, Nmin = 13 and c = 1.125), 2.44 × 1014 W cm−2 (Up/ω = 9.41,
Nmin = 19 and γ = 0.683) and 4.55 × 1014 W cm−2 (Up/ω = 17.5, Nmin = 27 and γ = 0.5).

As a general feature, we notice that the dependence on the transverse momentum is very
different: the high-yield part of the TDSE spectra is narrower in the transverse direction,
but rests on a more extended shelf, which is absent in the SFA, while it extends to quite
high transverse momenta in the TDSE map. The former effect is clearly caused by Coulomb
refocusing. The curves S1 and the carpet-like pattern around the transverse-momentum axis are
present in both the SFA and the TDSE maps, but the curves as they turn away from the p⊥ axis
become steeper more quickly in the TDSE than in the SFA. The carpet-like pattern develops
especially nicely in the TDSE for transverse momenta exceeding approximately 0.5 au.

In contrast, the curves S2 manifest themselves very differently in the SFA and the TDSE,
that is, for negative ions and for atoms, so much so that one may ask if their underlying
mechanism in the TDSE is still the same as in the SFA. In the SFA, the curves give the velocity
map the appearance of a lobster tail with segments that are well separated all the way down to
zero longitudinal momentum. In the TDSE, the map appears more like a candelabrum with arms
that become almost parallel to the polarization axis for higher momenta. For higher intensities
as shown in the middle and bottom panels of figure 6, the SFA and the TDSE maps become
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Figure 6. The logarithm of the differential ionization probability of H, presented
in false colors, as a function of the ionized electron momentum p = (p⊥, p‖)

(in au). The wavelength of the linearly polarized laser field is 800 nm and the
pulse shape is cosine square. The laser intensity and the total pulse duration,
respectively, are 9 × 1013 W cm−2 and eight optical cycles (upper panels), 2.44 ×

1014 W cm−2 and six cycles (middle panels) and 4.55 × 1014 W cm−2 and four
cycles (bottom panels). The results are obtained using the direct SFA for few-
cycle pulses (left panels) and solving the TDSE (right panels). Note that in the
middle and lower panels the scales of the longitudinal and the perpendicular
momentum are different. The red lines in the upper right panel represent the S1
curves (28).
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more similar but remain qualitatively different, especially the S2 curves. Their manifestation in
the TDSE is reminiscent of the patterns observed in [10, 40, 41], although in a very different
parameter region, which were suggested to carry a hologram of the electron–ion interaction.

The fact that on the laser-polarization axis the minima due to the S2 interference are
smoothed over by the action of a long-range potential is known [42]. On the other hand, for
a negative ion, the structures caused by the S2 curves should become very prominent, unless
they may be covered by rescattering contributions. A marked interference was observed for
F− in [43] at p‖ = 0.69 au. Figure 2, which is calculated at essentially the intensity of the
experiment although not focally averaged, displays a destructive interference at p‖ ≈ 0.75 au.
Figure 2 exhibits three additional S2 minima on the p‖ axis at lower momenta (on or near the
ATI rings 11, 12 and 14), which cannot be identified in the data, since they only affect single
ATI rings. The experimental angle-resolved energy spectra of [44] appear to reproduce the angle
dependence of this S2 curve but a closer analysis is required.

3.3. Coulomb effects

In the SFA the influence of the atom on the ionization amplitude is only via the ground-state
wave function. In the action (3), which mainly determines the shape of the spectrum, only the
term Ipt contains the ionization energy. The influence of the potential V (r) can be taken into
account in the semiclassical approximation in which the action takes the form

S(scl)(p, t)=

∫ t

dτ

{
V (rcl(τ ))+

1

2

[
p + A(τ )−

∫ τ

dt ′
∇V (rcl(t

′))

]2}
+ Ipt. (42)

For the Coulomb potential we have

V (r)= −1/r, ∇V (r)= r/r 3. (43)

Comparing equations (3) and (42) we see that there are two main modifications of the action.
The first contributes to the difference 1S via

∫ t dτ [1/|r(1)cl (τ )| − 1/|r(2)cl (τ )|], where the upper
index denotes orbits 1 and 2. The second modification is due to the change in the electron
velocity by the term

∫ τ dt ′∇V (rcl(t ′)), which is also different for different orbits. It was argued
that these two corrections have opposite signs so that the net effect is hard to assess [35]. The
concept of quantum orbits can be maintained, but their calculation becomes considerably more
complicated [24, 45]. The orbits that exist in the absence of the Coulomb field are modified and
new orbits emerge that do not exist without the Coulomb field. The recalculation of the orbits
is especially impeded by the fact that for a given final momentum the Coulomb-modified orbits
depart from the ion at times different from those of the simple-man orbits.

The uppermost right panel of figure 6 again exhibits the S1 curves (28). These curves
are depicted as red lines. It is clear that qualitatively they survive the Coulomb field, while
quantitatively they are severely distorted. The number of minima evaluated from the SFA and
the TDSE panels of figure 6 are roughly in agreement. On the lowest ATI ring, the SFA tends
to underestimate the number of minima [29], while on the higher-energy rings the opposite
tendency is found.

4. Conclusions

We investigated the interference structure imposed on ATD and ATI spectra by the contribution
of the two distinct quantum orbits per field cycle that lead to the same final state. These orbits are
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an element of theory, of the SFA, and the question that is most important for their interpretation
is their physical reality. This can be answered by comparison of the spectra calculated via the
SFA with those from the TDSE, which in this paper substitute the experiment. For ATD, in the
absence of the long-range Coulomb potential, the agreement between the SFA and the TDSE is
excellent. This underlines the fact that the quantum orbits and the simple-man picture closely
capture the physical reality. All the destructive-interference curves predicted by the SFA and
its quantum-orbit representation are quantitatively retrieved in the TDSE spectra. For ATI, the
picture is more differentiated. We discriminated two types of destructive-interference curves:
those that intersect the transverse and those that intersect the longitudinal momentum axis.
The former remain clearly visible—in particular, the carpet-like pattern, which they produce
in the velocity map for small longitudinal momenta, remains very distinct—while the latter
all but disappear. We note that in some ways this carpet-like pattern can be thought of as an
open-ended quantum carpet [46, 47] generated by two time windows without the presence of a
bounding box.
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[44] Gazibegović-Busuladžić A, Milošević D B, Becker W, Bergues B, Hultgren H and Kiyan I Yu 2010 Phys.

Rev. Lett. 104 103004
[45] Popruzhenko S V and Bauer D 2008 J. Mod. Opt. 55 2573

Popruzhenko S V, Paulus G G and Bauer D 2008 Phys. Rev. A 77 053409
[46] Marzoli I, Saif F, Bialynicki-Birula I, Friesch O M, Kaplan A E and Schleich W P 1998 Acta Phys. Slovaca

48 323
[47] Kaplan A E, Marzoli I, Lamb W E Jr and Schleich W P 2000 Phys. Rev. A 61 032101

New Journal of Physics 14 (2012) 055019 (http://www.njp.org/)

http://dx.doi.org/10.1126/science.108836
http://dx.doi.org/10.1016/S0030-4018(99)00521-0
http://dx.doi.org/10.1103/PhysRevLett.84.3791
http://dx.doi.org/10.1103/PhysRevA.71.061404
http://dx.doi.org/10.1103/PhysRevLett.81.1207
http://dx.doi.org/10.1103/PhysRevA.81.021403
http://dx.doi.org/10.1103/PhysRevA.68.050702
http://dx.doi.org/10.1103/PhysRevA.70.053403
http://dx.doi.org/10.1038/nphys1228
http://dx.doi.org/10.1038/nphys1264
http://dx.doi.org/10.1103/PhysRevLett.105.253002
http://dx.doi.org/10.1103/PhysRevLett.108.033201
http://dx.doi.org/10.1103/PhysRevA.66.063417
http://dx.doi.org/10.1103/PhysRevA.72.023415
http://dx.doi.org/10.1103/PhysRevA.74.053405
http://dx.doi.org/10.1080/09500340.2011.583695
http://dx.doi.org/10.1134/S1054660X10050117
http://dx.doi.org/10.1103/PhysRevA.60.1341
http://dx.doi.org/10.1016/j.cpc.2005.11.001
http://dx.doi.org/10.1103/PhysRevA.42.5794
http://dx.doi.org/10.1016/0010-4655(91)90267-O
http://dx.doi.org/10.1119/1.18806
http://dx.doi.org/10.1088/0305-4470/35/40/301
http://dx.doi.org/10.1088/0953-4075/39/14/R01
http://dx.doi.org/10.1103/PhysRevA.84.043420
http://dx.doi.org/10.1103/PhysRevA.84.053427
http://dx.doi.org/10.1080/09500340500217258
http://dx.doi.org/10.1103/PhysRevLett.90.183001
http://dx.doi.org/10.1103/PhysRevLett.104.103004
http://dx.doi.org/10.1080/09500340802161881
http://dx.doi.org/10.1103/PhysRevA.77.053409
http://dx.doi.org/10.1103/PhysRevA.61.032101
http://www.njp.org/

	1. Introduction
	2. Matrix element in the strong-field approximation
	2.1. Destructive interference curves
	2.2. Zeros on an above-threshold ionization ring

	3. Numerical results
	3.1. Detachment velocity maps
	3.2. Ionization velocity maps for the hydrogen atom
	3.3. Coulomb effects

	4. Conclusions
	Acknowledgments
	References

