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Abstract. In the present work, we apply semi-discretization proposed by the �rst author in [13] to Lavrentiev-
regularized state constrained elliptic control problems. We extend the results of [17] and prove weak convergence of the
adjoint states and multipliers of the regularized problems to their counterparts of the original problem. Further, we prove
error estimates for �nite element discretizations of the regularized problem and investigate the overall error imposed by the
�nite element discretization of the regularized problem compared to the continuous solution of the original problem. Finally
we present numerical results which con�rm our analytical �ndings.

1. Introduction. In the present work, we apply semi-discretization proposed by the �rst author
in [13] to Lavrentiev-regularized state-constrained elliptic control problems. Let Ω ⊂ Rn(n = 2, 3)
denote an open, bounded domain with C0,1-boundary Γ. As model problem we consider for states
y ∈ Y := H1(Ω) ∩ C(Ω̄) and controls u ∈ L2(Ω)

(P)





minimize J(y, u) :=
1
2

∫

Ω

|y − yd|2 dx +
α

2

∫

Ω

u2 dx

subject to y = S u and y(x) ≤ yc(x) a.e. in Ω,

where yd ∈ L2(Ω), yc ∈ C(Ω̄) denote given functions, and S : L2(Ω) → Y denotes the control-to-state
mapping, i.e. the solution operator of the Neumann problem

−∆ y + y = u in Ω and ∂ny = 0 on Γ.

Associated to (P) is the Lavrentiev-regularized control problem

(P)





minimize J(y, u) :=
1
2

∫

Ω

|y − yd|2 dx +
α

2

∫

Ω

u2 dx

subject to y = S u and λu(x) + y(x) ≤ yc(x) a.e. in Ω,

where λ > 0 denotes the regularization parameter. Since the constraints in (P) and (Pλ), respectively,
de�ne closed convex sets, both problems admit unique solutions (y∗, u∗) and (ȳλ, ūλ).
The numerical treatment of problem (P) causes di�culties through the presence of the pointwise state
constraints, since the corresponding Lagrange multiplier in general only represents a regular Borel measure
(see Casas [6] or Alibert and Raymond [1]). In [17], Rösch, Tröltzsch, and the second author propose to
circumvent these di�culties through approximating problem (P) by the family of problems (Pλ) (λ > 0).
Among other things, they prove convergence of (ȳλ, ūλ) → (y∗, u∗) in L2(Ω) for λ → 0. Furthermore,
they show that the Lagrange multiplier assciated to the mixed control�state constriant in (Pλ) is an
L2-function for every λ > 0. The development of numerical approaches to tackle problem (P) is ongoing
[3, 16, 18]. An excellent overview can be found in [11, 12], where also further references are given.
Numerical analysis for problem (P) is presented by the �rst author and Deckelnick in [9]. Among other
things, they prove convergence of �nite element approximations to the control and to the state of order
1− ε in two-dimensions, and of order 1/2− ε in three dimensions, in L2 and H1, respectively. In [15], the
second author obtains the same convergence order for piecewise constant approximations of the controls,
and also extends these results to problems with additional box constraints on the control. A general
framework for numerical analysis of problems with pointwise state together with general constraints on
the control is presented by Deckelnick and the �rst author in [10]. Error analysis for a full �nite element
discretization of problem (Pλ) with additional box constraints on the control is carried out in a very
recent paper by Cherednichenko and Rösch [7].
In the present paper, we extend the results of [17] for problem (Pλ) and in Theorem 2.5 prove weak
convergence for λ tending to zero of the adjoint states pλ in L2 and of the multipliers µλ in C(Ω̄)∗ to their
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counterparts of problem (P). In Theorem 3.6, we prove error estimates for semi-discrete approximations
to problem (Pλ) for λ > 0 �xed. More precisely, we show

λ ‖ūλ − ūλ,h‖+ ‖ȳλ − ȳλ,h‖ ≤ C
1
λ2

(
h2 +

1
λ

h3 +
1
λ2

h4
)

with C denoting a positive constant independent of the �nite element grid size h and of λ. The key idea
of the proof consists in the fact that the substitution

v(x) = λu(x) + y(x) (1.1)

transforms (Pλ) into the purely control constrained optimal control problem

(PV)





minimize J̃(y, v) :=
1
2
‖y − yd‖2 +

α

2 λ2
‖v − y‖2

subject to −∆ y + cλ y =
1
λ

v in Ω

∂n y = 0 on Γ

and v(x) ≤ yc(x) a.e. in Ω.

Here, cλ := 1 + 1/λ. Since (PV) is a purely control-constrained problem, it admits a unique Lagrange
multiplier in L2(Ω) associated to the inequality constraint. Moreover, the discretization techniques de-
veloped in [13] are directly applicable to (PV). Furthermore, in Theorem 3.8 we also relate the �nite
element solution (ȳλ,h, ūλ,h) to (y∗, u∗). We prove

‖u∗ − ūλ,h‖ ≤ C
(√

λ +
1
λ3

(
h2 +

1
λ

h3 +
1
λ2

h4
))

and

‖y∗ − ȳλ,h‖ ≤ C
(√

λ +
1
λ2

(
h2 +

1
λ

h3 +
1
λ2

h4
))

.

We conclude that for �xed regularization parameter λ, the semi-discrete controls admit quadratic con-
vergence to the optimal control of the regularized problem. This clearly forms a signi�cant improvement
compared to the convergence of �nite element approximations to problem (P) reported above. Neverthe-
less, arguing from the numerical point of view, the overall error introduced by the Lavrentiev regulariza-
tion consists of two di�erent contributions: one arising from the regularization and another one caused
by the discretization. This fact has to be considered when comparing the Lavrentiev regularization with
a discretization of the original problem (P). Indeed, our numerical investigations indicate that the overall
errors in case with and without regularization have the same order of magnitude for su�ciently small
regularization parameters. Nevertheless, the numerical performance, i.e. the ratio of computational com-
plexity and accuracy, is sometimes signi�cantly improved by the Lavrentiev regularization (see Section
4 below). However, it should be noted that, in general, one can not guarantee that the corresponding
states of the Lavrentiev�regularized problem (Pλ) are feasible for problem (P).
The paper is organized as follows. In Section 2 we prove that, beside control and state, also the adjoint
state and the Lagrange multipliers converge in some weaker sense to the solution of the original problem.
Section 3 addresses the error analysis for the regularized problems. In Section 4, these theoretical �ndings
are con�rmed by a numerical example that demonstrates how the regularization a�ects the numerical
performance of an active set method.

1.1. Notation. Throughout this article, we use the following notation. Given an open, bounded
set Ω ⊂ Rn, n = 2, 3, we denote by (. , .) the natural inner product of in L2(Ω). The corresponding norm
is denoted by ‖.‖. Moreover, for the dual pairing between C(Ω̄) and C(Ω̄)∗, we write 〈. , .〉.

2. Weak convergence of the Lagrange multipliers. In the present section we prove convergence
of the adjoint states and of the Lagrange multipliers of problem (Pλ) to their counterparts of problem
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(P). For this purpose it is convenient to introduce the reduced objective functional by f(u) = J(S u, u)
and the Lagrange functional L : L2(Ω)× C(Ω̄)∗ → R by

L(u, µ) := f(u) + 〈S u− yc , µ〉.
Lagrange multipliers associated to the state constraint in (P) then are de�ned as follows:
Definition 2.1. Let u∗ denote the solution of (P). Then, µ ∈ C(Ω̄)∗ is called Lagrange multiplier, if it
satis�es the following conditions:

∂L
∂u

(u∗, µ) = f ′(u∗) + S∗µ = 0 (2.1)

〈S u∗ − yc , µ〉 = 0 (2.2)
〈y , µ〉 ≥ 0 ∀ y ∈ C(Ω̄)+, (2.3)

where C(Ω̄)+ is de�ned by C(Ω̄)+ = {y ∈ C(Ω̄) | y(x) ≥ 0 ∀x ∈ Ω̄}.
By means of the generalized Karush-Kuhn-Tucker theory, it can be proven that, under a certain Slater
condition, problem (P) admits a Lagrange multiplier in C∗(Ω̄) that satis�es the conditions in De�nition
2.1 (see for instance Casas [6] or Alibert and Raymond [1]). This Slater condition in the present setting
is equivalent to the existence of a û ∈ L2(Ω) with (S û)(x) < yc(x) for all x ∈ Ω̄. Due to the special
structure of the state equation, this is trivially ful�lled in our case, since every constant k with k < yc(x)
everywhere in Ω̄, satis�es (S k)(x) ≡ k < yc(x) for all x ∈ Ω̄. Next, de�ne G : L2(Ω) → L2(Ω) by the
operator that arises if one considers the control-to-state operator as an operator with range in L2(Ω),
and set p∗ = G∗(G u∗ − yd) + S∗ µ such that p∗ ∈ L2(Ω). Casas [6] and Alibert and Raymond [1] proved
that p∗ is the unique very weak solution of

−∆ p∗ + p∗ = y∗ − yd + µ|Ω in Ω
∂n p∗ = µ|Γ on Γ,

(2.4)

that belongs to W 1,s(Ω), 1 ≤ s < n/(n− 1). With the de�nition of p∗, (2.1) is equivalent to

p∗ + α u∗ = 0. (2.5)

Notice that, together with the state equation and the pointwise state constraint, (2.2), (2.3), (2.4), and
(2.5) are equivalent to the following optimality system

−∆ y∗ + y∗ = u∗ in Ω
∂n y∗ = 0 on Γ

−∆ p∗ + p∗ = y∗ − yd + µΩ in Ω
∂n p∗ = µΓ on Γ

α u∗ + p∗ = 0
∫

Ω̄

(y∗ − yc) dµ = 0 , y∗(x) ≤ yc(x) ∀ x ∈ Ω̄

∫

Ω̄

y dµ ≥ 0 ∀ y ∈ C(Ω̄)+,





(2.6)

where µΩ and µΓ denote the restrictions of µ on Ω and Γ, respectively (cf. also [6] and [1]).
Based on the �rst-order necessary conditions for the auxiliary problem (PV) that was introduced in the
introduction, it is straightforward to derive the optimality system for (Pλ). The latter is given by

−∆ ȳ + ȳ = ū in Ω
∂n ȳ = 0 on Γ

−∆ p + p = ȳ − yd + µ in Ω
∂n p = 0 on Γ

α ū(x) + p(x) + λµ(x) = 0 a.e. in Ω

(µ , λ ū + ȳ − yc) = 0

µ(x) ≥ 0 a.e. in Ω
λ ū(x) + ȳ(x) ≤ yc(x) a.e. in Ω,





(2.7)
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where (ȳ, ū) denotes the unique optimal solution to (Pλ). Now, let us consider a sequence of positive real
numbers {λn} tending to zero for n →∞. The associated regularized problems are denoted by (Pn) and
their solutions will be referred to as (ȳn, ūn) ∈ Y × L2(Ω) with an adjoint state pn ∈ Y and Lagrange
multiplier µn ∈ L2(Ω). In [17] and [16], it is proven that the control and the state converge strongly to
the solution of (P), i.e.

ūn → u∗ in L2(Ω), ȳn → y∗ in Y. (2.8)

In the following, we establish corresponding convergence results for µn and pn. It is clear that one cannot
expect a result similar to (2.8) for µn as the multiplier in the limit is only an element of C∗(Ω̄). We start
with the following lemma.
Lemma 2.2. The sequence of Lagrange multipliers associated to the mixed constraint in (Pn), denoted
by {µn}, is uniformly bounded in L1(Ω).
Proof. The variational formulation of the adjoint equation is given by

∫

Ω

∇pn · ∇w dx +
∫

Ω

pn w dx =
∫

Ω

(ȳn − yd + µn)w dx ∀ w ∈ H1(Ω).

If we insert w ≡ 1 as test function, then
∫

Ω

µn dx =
∫

Ω

(pn − ȳn + yd) dx =
∫

Ω

(−α ūn − λn µn − ȳn + yd) dx

follows due to the gradient equation in (2.7). Together with the positivity of the Lagrange multiplier,
this implies

‖µn‖L1(Ω) ≤ (1 + λn) ‖µn‖L1(Ω) ≤ α ‖ūn‖+ ‖ȳn‖+ ‖yd‖ ≤ Cµ

with a constant Cµ independent of n since the optimality of (ȳn, ūn) implies their uniform boundedness
in L2(Ω).
Lemma 2.3. The sequence of Lagrange multipliers {µn} converges weakly-∗ in C(Ω̄)∗ to a weak-∗ limit
µ̃ ∈ C(Ω̄)∗, i.e.

∫

Ω

µn w dx → 〈w , µ̃〉 ∀w ∈ C(Ω̄)

Proof. First, let us identify the function µn ∈ L2(Ω) with an element µ̃n in C(Ω̄)∗ by de�ning

〈w , µ̃n〉 =
∫

Ω̄

w dµ̃n :=
∫

Ω

w µn dx ∀ w ∈ C(Ω̄).

Using Lemma 2.2, we obtain

‖µ̃n‖C(Ω̄)∗ = sup
g∈C(Ω̄)

g 6=0

|〈g , µ̃n〉|
‖g‖C(Ω̄)

= sup
g∈C(Ω̄)

g 6=0

∣∣ ∫
Ω

g µn dx
∣∣

‖g‖C(Ω̄)

≤ ‖µn‖L1(Ω) ≤ Cµ,

i.e. the uniform boundedness of {µ̃n} in C(Ω̄)∗. Hence, since the closed unit ball in C(Ω̄)∗ is weakly-∗
compact, we are allowed to select a subsequence, converging weakly-∗ in C(Ω̄)∗ to a weak limit denoted
by µ̃. Because everything what follows is also valid for any other weakly-∗ converging subsequence, a
known argument yields the assertion.
Based on the previous lemma, we are now in the position to discuss the convergence of {pn}. We will
see that it converges weakly in L2(Ω) which is also important for the �nite element error analysis in the
subsequent section (see the proof of Lemma 3.4 below).
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Lemma 2.4. The sequence of adjoint states associated to (Pn), denoted by {pn}, converges weakly in
L2(Ω) to the solution of

−∆ p + p = y∗ − yd + µ̃|Ω in Ω
∂n p = µ̃|Γ on Γ,

(2.9)

which is denoted by p̃ in all what follows.
Proof. Using again the identi�cation of µn ∈ L2(Ω) with µ̃n ∈ C(Ω̄)∗, one obtains for a �xed, but
arbitrary w ∈ L2(Ω)

(w , pn) =
(
w , G∗(ȳn − yd + µn)

)

=
(
w , G∗(ȳn − yd)

)
+ (w , S∗ µ̃n)

= (Gw , ȳn − yd) + 〈S w , µn〉 → (G w , y∗ − yd) + 〈S w , µ̃〉
=

(
w , G∗(y∗ − yd) + S∗ µ̃

)
= (w , p̃),

where we used Lemma 2.3 and ȳn → y∗ in L2(Ω). Since w ∈ L2(Ω) was chosen arbitrarily, this is
equivalent to pn ⇀ p̃.
Next, it is shown that the weak-∗ limit µ̃ indeed represents a Lagrange multiplier for problem (P).
Theorem 2.5. The sequence of Lagrange multipliers associated to the regularized pointwise state con-
straints in (Pλ), denoted by {µn}, converges weakly-∗ in C(Ω̄)∗ to µ̃ if n → ∞. Moreover, the weak-∗
limit µ̃ is a Lagrange multiplier for the unregularized problem (P) according to De�nition 2.1.
Proof. The weak-∗ convergence is stated in Lemma 2.3. It remains to show that the weak-∗ limit satis�es
the conditions in De�nition 2.1, i.e. (2.1)�(2.3). Using Lemma 2.3, the positivity of µ̃ is straightforward
to show: the positivity property of µn in (2.7) implies

∫

Ω

µn w dx ≥ 0 ∀w ∈ C(Ω̄)+

with C(Ω̄)+ as de�ned in De�nition 2.1. Hence for every �xed, but arbitrary w ∈ C(Ω̄)+, Lemma 2.3
yields

0 ≤
∫

Ω

µn w dx → 〈w , µ̃〉

and thus (2.3).
To verify (2.1), we multiply the gradient equation in (2.7) with a �xed but arbitrary function w ∈ C(Ω̄)
and integrate over Ω:

∫

Ω

(α ūn + pn) w dx + λn

∫

Ω

µn w dx = 0 ∀w ∈ C(Ω̄). (2.10)

In view of Lemma 2.3, we have
∫
Ω

µn w dx → 〈w , µ̃〉, and hence

λn

∫

Ω

µn w dx → 0, (2.11)

for every �xed, but arbitrary w ∈ C(Ω̄), because of λn → 0 for n → ∞. Due to ūn → u∗ in L2(Ω) and
pn ⇀ p̃ in L2(Ω), (2.11) implies for (2.10), when passing to the limit,

0 =
∫

Ω

(α ūn + pn)w dx + λn

∫

Ω

µn w dx →
∫

Ω

(α u∗ + p̃)w dx ∀w ∈ C(Ω̄),

and hence, α u∗+ p̃ = 0, where p̃ solves (2.9). However, as already stated in context of (2.5), this equation
is equivalent to (2.1) in De�nition 2.1, i.e. f ′(u∗) + S∗µ̃ = 0.
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It remains to prove the complementary slackness condition (2.2). The slackness conditions in (2.7) read
∫

Ω

λn µn ūn dx +
∫

Ω

(ȳn − yc)µn dx = 0,

where the second addend converges to 〈y∗ − yc , µ̃〉 thanks to Lemma 2.3 and ȳn → y∗ in Y . Notice
that one can of course not apply (2.11) to the �rst addend since {ūn} does clearly not converge in C(Ω̄).
However, the gradient equation in (2.7) implies

∫

Ω

λn µn ūn dx = −
∫

Ω

ūn (α ūn + pn) dx → 0,

due to ūn → u∗ in L2(Ω) and (α ūn + pn) ⇀ (α u∗ + p̃) = 0 in L2(Ω) as derived above. Therefore, we
obtain

〈y∗ − yc , µ̃〉 = 0,

which is equivalent to (2.2).
Remark 2.6. In view of Lemma 2.5, p̃ is clearly an adjoint state associated to the original problem.

2.1. The homogeneous Dirichlet case. Similarly to (P), one can discuss an analogous optimal
control problem with homogeneous Dirichlet boundary conditions, i.e.

(Q)





minimize J(y, u) :=
1
2

∫

Ω

|y − yd|2 dx +
α

2

∫

Ω

u2 dx

subject to −∆ y = u in Ω
y = 0 on Γ

and y(x) ≤ yc(x) a.e. in Ω.

As will be seen subsequently, the weak-∗ convergence of the Lagrange multipliers associated to the
pointwise state constraints in (Q) can be proven similarly to the theory above. The main di�erence is
the unifrom L1(Ω)-boundedness of the multipliers which is established by Lemma 2.8 above. It is well
known that the state equation in (Q) admits a unique solution y in the state space Y := H1

0 (Ω)∩C(Ω̄) for
every u ∈ L2(Ω). Again, we denote the associated control-to-state operator with range in C(Ω̄) by S and
with range in L2(Ω) by G. In view of the homogeneous Dirichlet boundary conditions, (Q) is naturally
only reasonable if yc(x) ≥ 0 everywhere on Γ. To satisfy the Slater condition for (Q), we further have to
require yc(x) > 0 for all x ∈ Γ. The Slater condition then reads
Assumption 2.7. There exists a û ∈ L2(Ω) such that

(S û)(x) < yc(x) for all x ∈ Ω̄.

Notice that this condition need not be automatically ful�lled as in case of (P). However, if for instance
yc(x) > 0 everywhere in Ω̄, then the Slater condition is satis�ed with û ≡ 0. Based on Assumption 2.7,
one can verify that the optimal control u∗ satis�es the following optimality system (cf. for instance Casas
[5]):

−∆ y∗ = u∗ in Ω
y∗ = 0 on Γ

−∆ p∗ = y∗ − yd + µ in Ω
p∗ = 0 on Γ

α u∗ + p∗ = 0
∫

Ω̄

(y∗ − yc) dµ = 0 , y∗(x) ≤ yc(x) ∀ x ∈ Ω̄

∫

Ω̄

y dµ ≥ 0 ∀ y ∈ C(Ω̄)+,





(2.12)
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where the Lagrange multiplier µ is again an element of C(Ω̄)∗. In [5], it is shown that the adjoint equation
admits a solution p∗ ∈ W 1,s, 1 ≤ s < n/(n− 1). Notice that the adjoint equation exhibits homogeneous
Dirichlet boundary conditions, i.e. the multiplier does not generate a measure on Γ. This is due to the
fact that the singular part of µ is concentrated on the boundary of the active set which was proven by
Bergounioux and Kunisch in [4]. Hence, thanks to the Slater condition which ensures that the state
constraint is inactive on the boundary, we have µΓ = 0 (see also [5]).
As above, we introduce the regularized counterpart of (Q) by

(Qλ)





minimize J(y, u) :=
1
2
‖y − yd‖2 +

α

2
‖u‖2

subject to −∆ y = u in Ω
y = 0 on Γ

and λu(x) + y(x) ≤ yc(x) a.e. in Ω.

By the same arguments as in case of (Pλ), this problem exhibits a regular Lagrange multiplier in L2(Ω).
Similarly to (2.7), the optimality system, satis�ed by the unique optimal solution (ȳ, ū), is given by

−∆ ȳ = ū in Ω
ȳ = 0 on Γ

−∆ p = ȳ − yd + µ in Ω
p = 0 on Γ

α ū(x) + p(x) + λµ(x) = 0 a.e. in Ω

(µ , λ ū + ȳ − yc) = 0

µ(x) ≥ 0 a.e. in Ω
λ ū(x) + ȳ(x) ≤ yc(x) a.e. in Ω.





(2.13)

As in the section above, we consider a sequence of regularization parameters tending to zero, i.e. {λn}
with λn → 0 for n → ∞. The associated regularized control problems as well as their solutions and the
corresponding adjoint states and Lagrange multipliers are again referred to by the subscript n. It is easy
to see that the analysis in [16] that yields the strong convergence of ūn to u∗ in L2(Ω) and ȳn to y∗

in Y , respectively, can be adapted to the case with homogeneous Dirichlet boundary conditions. To be
more precise, the theory in [16] is mainly based on the fact that G : L2(Ω) → L2(Ω) is compact and self
adjoint, which is clearly also ful�lled in case of (Q). For the adjoint state and the Lagrange multiplier,
we derive a result analogous to Lemma 2.5 and Remark 2.6. We again start with the boundedness of the
multipliers that follows from the Slater condition in assumption 2.7.
Lemma 2.8. Under Assumption 2.7, the sequence of Lagrange multipliers {µn} is uniformly bounded in
L1(Ω).
Proof. Together with the maximum principle for the state equation, Assumption 2.7 yields the existence
of a function u0 ∈ L2(Ω) with u0(x) ≤ 0 a.e. in Ω and (S u0)(x) < yc(x) for all x ∈ Ω̄. Thus, there is a
τ > 0 such that, for all λ ≥ 0,

λu0(x) + (S u0)(x) ≤ yc(x)− τ a.e. in Ω, (2.14)

i.e. u0 is a Slater point for the regularized problem (Qλ), λ ≥ 0. Next, let us de�ne an auxiliary sequence
{ûn} by

ûn = u0 − ūn.

Together with (2.14), this de�nition immediately implies

−(
λnûn(x) + (S ûn)(x)

) ≥ τ + λnūn(x) + (S ūn)(x)− b(x) a.e. in Ω. (2.15)

The gradient equation in (2.13) is equivalent to
∫

Ω

(α ūn + G∗(Gūn − yd + µn) + λnµn)u dx = 0 for all u ∈ L2(Ω).
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If we now choose u = û, we obtain
∫

Ω

−(λn ûn + G ûn)µn dx =
∫

Ω

(α ūn + G∗(Gūn − yd))û dx.

Together with the complementary slackness condition, i.e.
∫

Ω

(λnūn + G ūn − b)µn dx = 0

and (2.15), this gives in turn
∫

Ω

τ µn dx ≤
((

α + ‖G‖2)‖ūn‖+ ‖G‖ ‖yd‖
) (‖u0‖+ ‖ūn‖

)
.

Due to the uniform boundedness of {ūn} in L2(Ω) that follows from the optimality of ūn, this and the
positivity property of µn imply the assertion.
For the rest of the proof, we can proceed as in case of the homogeneous Neumann boundary conditions,
since the underlying analysis does not depend on the concrete structure of the state equation. In this
way, one obtains the following result:
Theorem 2.9. Suppose that Assumption 2.7 holds true and let {µn} denote the sequence of Lagrange
multipliers associated to the regularized pointwise state constraints in (Qλ), while {pn} is the sequence of
adjoint states. Then

µn
∗
⇀ µ̃ in C(Ω̄)∗ and pn ⇀ p̃ in L2(Ω)

hold true, where µ̃ ∈ C(Ω̄)∗ is a Lagrange multiplier for (Q) in the sense of De�nition 2.1 and p̃ ∈
W 1,s(Ω), 1 ≤ s < n/(n− 1), solves the adjoint equation in (2.12) with µ̃ on the right-hand side.
Now, we turn to the impact of the Lavrentiev regularization on the numerical treatment of state-
constrained optimal control problems. To be more precise, we discuss the semi-discretization of the
regularized problem in the spirit of Hinze [13]. The analysis is carried out for problem (P), i.e. the prob-
lem with homogeneous Neumann boundary conditions. Nevertheless, it is easy to verify that the same
arguments apply in case of (Q) such that the error estimates in Theorem 3.6 and Remark 3.7 also hold
for homogeneous Dirichlet boundary conditions.

3. Error analysis for the regularized problem. In the following, we discuss a semi-discretization
of problem (Pλ) according to the approach proposed in [13]. To that end, let us introduce a family of
regular triangulations {Th}h>0 of Ω, i.e. Ω̄ =

⋃
T∈Th

T̄ . With each element T ∈ Th, we associate two
parameters ρ(T ) and R(T ), where ρ(T ) denotes the diameter of the set T and R(T ) is the diameter of
the largest ball contained in T . The mesh size of Th is de�ned by h = maxT∈Th

ρ(T ). For the upcoming
error analysis, we have to require some additional conditions on Th and the domain.
Assumption 3.1. The domain Ω is a open bounded and convex subset of Rn, n = 2, 3 and its boundary
Γ is a polygon (n = 2) or a polyhedron (n = 3). Moreover, there exist two positive constants ρ and R
such that

ρ(T )
R(T )

≤ R ,
h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0. Furthermore, the regularization parameter is bounded from above by
by a constant λmax < ∞.
Notice that the last assumption on the values for λ is not really restrictive, since our aim is to approximate
the original state-constrained problem (P). For domains satisfying Assumption 3.1, one �nds the following
result (cf. for instance Dauge [8]):
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Lemma 3.2. Suppose that Ω ful�lls the condition in Assumption 3.1 and let f be a given function in
L2(Ω), while w solves

−∆ w + w = f in Ω
∂n w = 0 on Γ.

(3.1)

Then, w ∈ H2(Ω) and the estimate

‖w‖H2(Ω) ≤ c ‖f‖
holds true with a constant c independent of f and h.
The overall error analysis is based on a consideration of the transformed problem (PV) with the auxiliary
control v. In a standard way, one deduces the optimality conditions for (PV) that read

(∇ȳ , ∇w) + cλ (ȳ , w) = (v̄ , w) ∀ w ∈ H1(Ω) (3.2)

(∇p , ∇w) + cλ (p , w) =
(
ȳ − yd +

α

λ2
(ȳ − v̄) , w

) ∀ w ∈ H1(Ω) (3.3)
(
v̄ − ȳ +

λ

α
p , v − v̄

) ≥ 0 ∀ v ∈ Vad (3.4)

with Vad := {v ∈ L2(Ω) | v(x) ≤ yc(x) a.e. in Ω}. As in the section before, the optimal solution of the
regularized problem is indicated by a bar. Following [13], the semi-discretized version of (PV) is given by

(PVh,s)





minimize J̃(yh, v) :=
1
2
‖yh − yd‖2 +

α

2 λ2
‖v − yh‖2

subject to (∇yh , ∇wh) + cλ (yh , wh) =
1
λ

(v , wh)

∀ wh ∈ Wh ⊂ H1(Ω)

and v(x) ≤ yc(x) a.e. in Ω,

i.e. we do not discretize the control v. Here, Wh denotes the space of linear �nite elements, i.e. Wh =
{w ∈ C(Ω̄) | w|T ∈ P1 ∀ T ∈ Th}, where Th is a regular triangulation of Ω. For the optimality system of
(PVh,s), we �nd

(∇ȳh , ∇wh) + cλ (ȳh , wh) = (v̄h , wh) ∀ wh ∈ Wh (3.5)

(∇ph , ∇wh) + cλ (ph , wh) =
(
ȳh − yd +

α

λ2
(ȳh − v̄h) , wh

) ∀ wh ∈ Wh (3.6)
(
v̄h − ȳh +

λ

α
ph , v − v̄h

) ≥ 0 ∀ v ∈ Vad. (3.7)

Notice that v̄h /∈ Wh. Due to the semi-discrete approach, the solution v̄ of (PV) is feasible for (PVh,s)
and therefore, we are allowed to insert v̄ in the variational inequality (3.7). On the other hand, we insert
v̄h in (3.4). Adding both inequalities then yields

(
v̄ − v̄h − (ȳ − ȳh) +

λ

α
(p− ph) , v̄h − v̄

) ≥ 0,

which in turn gives

‖v̄ − v̄h‖2 ≤
(λ

α
(p− ph)− (ȳ − ȳh) , v̄h − v̄

)

≤ (
yh(v̄)− ȳ , v̄h − v̄

)
+

λ

α

(
p− ph(v̄) , v̄h − v̄

)

+
λ

α

(
ph(v̄)− phh(v̄) , v̄h − v̄

)
︸ ︷︷ ︸

=: A

+
(
ȳh − yh(v̄) , v̄h − v̄

)
︸ ︷︷ ︸

=: B

+
λ

α

(
phh(v̄)− ph , v̄h − v̄

)
︸ ︷︷ ︸

=: C

.

(3.8)
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Here, the notation y(v) with an arbitrary v ∈ L2(Ω) corresponds to the solution of

(∇y , ∇w) + cλ (y , w) =
1
λ

(v , w) ∀ w ∈ H1(Ω), (3.9)

while yh(v) solves

(∇yh , ∇wh) + cλ (yh , wh) =
1
λ

(v , wh) ∀ wh ∈ Wh. (3.10)

Moreover, ph(v) is de�ned as solution of

(∇ph , ∇wh) + cλ (ph , wh) =
(
y(v)− yd +

α

λ2
(y(v)− v) , wh

) ∀ wh ∈ Wh (3.11)

and similarly, phh(v) denotes the solution to

(∇phh , ∇wh)+cλ (phh , wh) =
(
yh(v)− yd +

α

λ2
(yh(v)− v) , wh

) ∀ wh ∈ Wh

(3.12)

Notice that, with these notations at hand, we have ȳ = y(v̄), ȳh = yh(v̄h), p = p(v̄), and ph = phh(v̄h).
Now, let us consider a slightly more general equation given by

(∇z , ∇w) + cλ (z , w) = (g , w) ∀ w ∈ H1(Ω) (3.13)

with some g ∈ L2(Ω). Similarly to above, we introduce the discrete version of (3.13) by

(∇zh , ∇wh) + cλ (zh , wh) = (g , wh) ∀ w ∈ Wh

and denote the associated solution by zh(g).
Lemma 3.3. Under Assumption 3.1, there exists a constant C(Ω) independent of λ such that

‖zh(g)− z(g)‖L2(Ω) ≤ C(Ω)
(
h2 +

1
λ

h3 +
1
λ2

h4
) ‖z(g)‖H2(Ω)

holds true.
Proof. The proof follows standard arguments. Using the Galerkin orthogonality and standard interpola-
tion error estimates, one obtains

‖zh(g)− z(g)‖H1(Ω) ≤ ‖z(g)− Ihz(g)‖H1(Ω) +
1
λ
‖z(g)− Ihz(g)‖

≤ C(Ω)
(
h +

1
λ

h2
) ‖z(g)‖H2(Ω)

where Ih denotes the linear interpolation operator. Applying the well known argument according to
Nitsche then gives the assertion.
Lemma 3.4. Suppose that Assumption 3.1 is ful�lled. Then there exists a constant C(Ω) independent of
λ such that the following estimate is valid

‖yh(v̄)− ȳ‖ ≤ C(Ω)
(
h2 +

1
λ

h3 +
1
λ2

h4
)
. (3.14)

In addition

λ ‖ph(v̄)− p‖ ≤ C(α, Ω)
(
h2 +

1
λ

h3 +
1
λ2

h4
)

(3.15)

holds true with a constant C(α, Ω) independent of λ.
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Proof. By construction, ȳ = y(v̄) is also the solution of the state equation in (Pλ) with ū = 1/λ (v̄ − ȳ)
on the right hand side, i.e. it solves (3.1) with ū as inhomogeneity. Therefore, Lemma 3.2 together with
(2.8) yields

‖ȳ‖H2(Ω) ≤ c ‖ū‖ ≤ c,

where the optimality of ū guarantees its uniform boundedness w.r.t. λ in L2(Ω). Together with Lemma
3.3, this implies (3.14).
Moreover, again due to (1.1), i.e. ū = 1/λ (v̄ − ȳ), the adjoint state solves

−∆ p + p = ȳ − yd − 1
λ

p +
α

λ
ū in Ω

∂n p = 0 on Γ,

and hence, again by Lemma 3.2,

λ ‖p‖H2(Ω) ≤ c
(
λ ‖ȳ‖+ λ ‖yd‖+ α ‖ū‖+ ‖p‖)

follows with a constant c independent of λ. Thanks to their optimality, ū and ȳ are uniformly bounded
in L2(Ω) independent of λ. Moreover, consider again an arbitrary sequence {λn} tending to zero for
n →∞. Then, from Lemma 2.4, we know that the associated sequence of adjoint states converges weakly
in L2(Ω), giving in turn its uniform boundedness such that ‖p‖ ≤ c independent of λ. Thus, we obtain
λ ‖p‖H2(Ω) ≤ c and consequently, Lemma 3.3 gives the assertion.
Lemma 3.5. The solution operator associated to the discrete equation (3.10) is Lipschitz continuous with
Lipschitz constant 1, i.e.

‖yh(v1)− yh(v2)‖ ≤ ‖v1 − v2‖
for all v1, v2 ∈ L2(Ω).
Proof. Let us consider the di�erence of the equations associated to y(v1) and y(v2), respectively. If one
inserts yh(v1)− yh(v2) itself as test function into the arising equation, then

‖yh(v1)− yh(v2)‖2 ≤ ‖yh(v1)− yh(v2)‖2 + λ ‖yh(v1)− yh(v2)‖2H1(Ω)

=
(
v1 − v2 , yh(v1)− yh(v2)

)

is obtained, which gives the assertion.
Theorem 3.6. Suppose that Assumption 3.1 is ful�lled. Then, there is a constant C(α, Ω) independent
of λ such that

‖v̄ − v̄h‖ ≤ C(α, Ω)
1
λ2

(
h2 +

1
λ

h3 +
1
λ2

h4
)

(3.16)

is satis�ed.
Proof. The result will be obtained by estimating the addends on the right hand side of (3.8). We start
with (3.12) with v̄ as inhomogeneity and substract the analogous equation for v̄h on the right hand side
such that

(
∇[

phh(v̄)− phh(v̄h)
]
, ∇wh

)
+ cλ

(
phh(v̄)− phh(v̄h) , wh

)
=

(
yh(v̄)− yh(v̄h) +

α

λ2

(
yh(v̄)− yh(v̄h)− v̄ + v̄h

)
, wh

)
∀ wh ∈ Wh

(3.17)

is obtained. Notice that, by de�nition, ȳh = yh(v̄h) and phh(v̄h) = ph. If we now consider (3.10) with
v̄h − v̄ on the right hand side, insert phh(v̄)− ph as test function, and choose ȳh − yh(v̄) as test function
in (3.17), then subtracting the arising equations from each other yields

1
λ

(
phh(v̄)− ph , v̄h − v̄

)

=
(
yh(v̄)− ȳh +

α

λ2

(
yh(v̄)− ȳh − v̄ + v̄h

)
, ȳh − yh(v̄)

)
.

(3.18)



12 M. HINZE, C. MEYER

Thus, we obtain for C as de�ned in (3.8)

C = −
(
1 +

λ2

α

)
‖yh(v̄)− ȳh‖2 +

(
ȳh − yh(v̄) , v̄h − v̄

)
.

For the sum B + C in (3.8), we therefore �nd by using Young's inequality

B + C = −
(
1 +

λ2

α

)
‖yh(v̄)− ȳh‖2 + 2

(
ȳh − yh(v̄) , v̄h − v̄

)

≤
( 1

κ
− 1− λ2

α

)
‖yh(v̄)− ȳh‖2 + κ ‖v̄h − v̄‖2

(3.19)

with some real number κ > 0 that will be speci�ed subsequently. With ȳ = y(v̄), a discussion, analogous
to (3.18), for the di�erence ph(v̄)− phh(v̄) implies for A as introduced in (3.8)

A =
(
1 +

λ2

α

) (
ȳ − yh(v̄) , yh(v̄h)− yh(v̄)

)

≤
(
1 +

λ2

α

)
C(Ω)

(
h2 +

1
λ

h3 +
1
λ2

h4
) ‖v̄h − v̄‖,

(3.20)

where we used Lemma 3.5 and (3.14) for the last inequality. Similarly, we apply (3.14) and (3.15),
respectively, to the �rst two addends on the right hand side of (3.8). Together with (3.19), we �nally end
up with

(1− κ) ‖v̄h − v̄‖2 ≤
(
2 +

λ2

α
+

1
α

)
C(Ω)

(
h2 +

1
λ

h3 +
1
λ2

h4
) ‖v̄h − v̄‖

+
( 1

κ
− 1− λ2

α

)
‖yh(v̄)− ȳh‖2.

(3.21)

To ensure the non-positivity of the coe�cient in front of the last addend, we have to choose κ ≥ α/(α+λ2).
Hence, 1− κ > 0 follows. Clearly, the best choice of κ is the smallest possible value, i.e. κ = α/(α + λ2)
such that (3.21) gives

‖v̄h − v̄‖ ≤ α + λ2

λ2

(
2 +

λ2

α
+

1
α

)
C(Ω)

(
h2 +

1
λ

h3 +
1
λ2

h4
)
.

For λ ≤ λmax, according to Assumption 3.1, this implies (3.16).
With Theorem 3.6 at hand, it is straightforward to derive an estimate for the error with respect to the
state: using Lemma 3.5, (3.14), and (3.16), we �nd

‖ȳ − ȳh‖ ≤ ‖ȳ − yh(v̄)‖+ ‖v̄ − v̄h‖
≤

(
C(Ω) +

1
λ2

C(α, Ω)
) (

h2 +
1
λ

h3 +
1
λ2

h4
)
.

(3.22)

Clearly, for small values of λ, the factor 1/λ2 also dominates this error. Now, let us turn to the original
control u. In view of the transformation formula (1.1), we de�ne the discrete optimal control by ūh =
(1/λ)(v̄h − ȳh) and hence ūh /∈ Wh. The optimality of v̄h for (PVh,s) clearly implies that ūh solves

(Pλ,h,s)





minimize J(yh, u) :=
1
2
‖yh − yd‖2 +

α

2
‖u‖2

subject to (∇yh , ∇wh) + (yh , wh) = (u , wh) ∀ wh ∈ Wh

and λu(x) + yh(x) ≤ yc(x) a.e. in Ω,

i.e. the semi-discrete counterpart of (Pλ). Due to ū− ūh = (1/λ)[(v̄ − v̄h) + (ȳh − ȳ)], (3.16) and (3.22)
immediately give the following result:
Corollary 3.7. Under Assumption 3.1, we �nd for the error in the original control

‖ū− ūh‖ ≤ C(α, Ω)
1
λ3

(
h2 +

1
λ

h3 +
1
λ2

h4
)
, (3.23)
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where ū denotes the solution of (Pλ), while ūh is the solution of the associated semi-discrete problem.
Thus, for a �xed λ, we obtain quadratic convergence of the control as in case of the purely control-
constrained case discussed in [13]. On the other hand, Corollary 3.7 already indicates that the approx-
imation behavior of the solution of (Pλ,h) strongly depends on the value of λ. As we would like to
approximate the purely state-constrained problem for λ = 0, we now investigate how to couple h and λ.
For the overall approximation error, we �nd

‖u∗ − ūλ,h‖ ≤ ‖u∗ − ūλ‖+ ‖ūλ − ūλ,h‖,

where, as before, u∗ denotes the solution of the original purely state-constrained problem (P). Moreover,
ūλ is the exact solution of (Pλ) for a given λ > 0 and ūλ,h denotes the associated discrete solution.
Assuming the rather strict condition that the sequence {ūλ}λ↓0 is uniformly bounded in L∞(Ω), it is
shown in [18] that

‖u∗ − ūλ‖ ≤ c
√

λ (3.24)

holds true with a constant c independent of λ. Using this together with (3.23), the continuity of the
control-to-state mapping, and (3.26) proves
Theorem 3.8. Let Assumption 3.1 be ful�lled and assume that the sequence of optimal solutions to (Pλ)
for λ ↓ 0, denoted by {ūλ}, is uniformly bounded in L∞(Ω). Then, with the notations introduced above
there holds

‖u∗ − ūλ,h‖ ≤ C(α, Ω)
(√

λ +
1
λ3

(
h2 +

1
λ

h3 +
1
λ2

h4
))

=: C(α, Ω) F (λ, h), (3.25)

and

‖y∗ − ȳλ,h‖ ≤ C(α, Ω)
(√

λ +
1
λ2

(
h2 +

1
λ

h3 +
1
λ2

h4
))

(3.26)

with a generic positive constant C(α, Ω) independent of λ and h.
From (3.25) and (3.26), we deduce two di�erent theoretical predictions concering the qualitative impact
of the Lavrentiev regularization on the numerical approximation of (P).
Remark 3.9. We observe that, for the minimization of ‖u∗ − ūλ‖ a small value of λ is favorable, while
the discretization error is increased by a reduction of λ. Hence, the two di�erent contributions to the
overall error behave contrarily. Secondly, in case of the state, the discretization error is less important
than in case of the control because of the coe�cient 1/λ2 instead of 1/λ3. This indicates that the overall
error with respet to the state might be dominated by the regularization error.

4. Numerical investigation. Both theoretical predictions, stated by Remark 3.9, will be con�rmed
by the numerical example, presented below. Due to the opposite behavior of the two di�erent error
contributions, there should be an optimal value for λ. As a coarse indicator for the dependency of this
optimum on h, we compute the minimizer of F in (3.25), denoted by λ0(h), as solution of ∂F (λ, h)/∂λ = 0.
The result for di�erent values of h is displayed in Table 4.1, where δ is de�ned by

δ :=
log(λ0(h1))− log(λ0(h2))

log(h1)− log(h2)
.

As one can see, the values for λ0 approximately satisfy λ0 ∼ h0.6. This relation is also used for the choice
of λ in the following example. Moreover, we see from Table 4.1 that, in order to balance the di�erent
error contributions, one has to reduce the regularization parameter if h is decreased.
The test case, used for the following numerical investigation, is taken from [14]. It is constructed such that
the Lagrange multipliers associated to the pure state constraints are continuous. The considered control
problem coincides with (P) unless that there is an additional bound from below in the state constraint,
i.e. ya(x) ≤ y(x) ≤ yb(x) a.e. in Ω. It is easy to verify that this additional bound does not in�uence the
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Table 4.1
Dependency of the Lavrentiev parameter on h.

h = 0.04 h = 0.02 h = 0.01 h = 0.005

λ0(h) 0.5835 0.3843 0.2542 0.1688

δ � 0.6025 0.5962 0.5909

theory presented above. We choose Ω = (0, 1)2 as test domain and set α = 10−4. Moreover, the desired
state yd and the bounds ya and yb are de�ned by

ya(x) =

{
g(x) , if g(x) ≤ −0.7
−0.7 , if g(x) > −0.7

, yb(x) =

{
g(x) , if g(x) ≥ 0.7
0.7 , if g(x) < 0.7

yd(x) =

{(
(2π2α− 1)(2π2 + 1) + 11

)
g(x)− 7 , if g(x) ≥ 0.7(

(2π2α− 1)(2π2 + 1) + 11
)
g(x) + 7 , if g(x) < 0.7

with x = (x1, x2) and g(x) := cos(π x1) cos(π x2). It is straightforward to verify that the exact solution
for this problem is given by

y∗(x) = g(x) , u∗(x) = (2 π2 + 1) g(x) , p∗(x) = −α (2π2 + 1) g(x)

µa(x) =
{−10 g(x)− 7 , if g(x) ≤ −0.7

0 , if g(x) > −0.7 , µb(x) =
{

10 g(x)− 7 , if g(x) ≥ 0.7
0 , if g(x) < 0.7.

The aim of the following numerical investigation is to con�rm the conclusions, stated in Remark 3.9, on
the principle in�uence of the Lavrentiev regularization on the approximation behavior. As we will see in
the following, these e�ects are also visible in case of a full discretization of the control problems instead
of the semi-discrete approach, discussed above. The advantage of a full discretization, where the control
is also discretized by linear ansatz functions, is that the corresponding implementation is signi�cantly
less costly compared to the semi-discrete approach. The fully discretized problems read

(Ph)





min
uh∈Wh

J(yh, v) :=
1
2
‖yh − yd‖2 +

α

2
‖uh‖2

subject to (∇yh , ∇wh) + (yh , wh) = (uh , wh) ∀ wh ∈ Wh

and yh(x) ≤ yc(x) a.e. in Ω

and

(Pλ,h)





min
uh∈Wh

J(yh, v) :=
1
2
‖yh − yd‖2 +

α

2
‖uh‖2

subject to (∇yh , ∇wh) + (yh , wh) = (uh , wh) ∀ wh ∈ Wh

and λuh(x) + yh(x) ≤ yc(x) a.e. in Ω.

In [9], it is shown that, in case of the purely state-constrained problem, the fully discretized and the
semi-discrete approach coincide. The discrete problems (Ph) and (Pλ,h) are numerically solved by a
primal-dual active set strategy (cf. for instance [2] or [3]). Moreover, the overall systems of equations
for the unknowns uh, yh, ph, µa,h, and µb,h, arising in each active set step, are solved using a direct
sparse LU decomposition. Figure 4.1 and 4.2 show the L2-norms of the relative di�erence between the
discrete and the exact solutions for di�erence values for h and λ, in particular λ = 4 · 10−4 h0.6. Figure
4.1 illustrates that the most accurate approximation of u∗ is not achieved with λ = 0. This con�rms the
�rst statement of Remark 3.9, i.e. that the two di�erent error components behave contrarily, which leads
to an optimal value for λ depending on h. In fact, Figure 4.1 demonstrates that this optimal value is
indeed given by λ ∼ h0.6. If we further decrease the value for λ, then the error is increased again and
approaches the values for λ = 0, as exemplarily shown for λ = 10−6. Furthermore, from Figure 4.2, we
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notice that the best approximation of the state is realized with λ = 0. In addition to that, for λ = 10−4,
a reduction of h does not in�uence the overall error. This indicates that the error with respect to the
state is indeed dominated by the regularization error, as stated in the second part of Remark 3.9.
Assessing the overall impact of the regularization on the accuracy, one has to conclude that the di�erence
between the relative errors in the control is fairly small (cf. Figure 4.1), while the error in the state is
even increased by the regularization. Hence, this example indicates that the Lavrentiev regularization
only yields in parts a slight improvement of the accuracy. A more signi�cant reason for the regularization
is the improvement of the performance that is depicted in Figures 4.3�4.6. In particular, Figures 4.3
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Fig. 4.3. CPU-time in sec. and relative error of the
control for di�erent λ and h = 0.02.
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Fig. 4.4. CPU-time in sec. and relative error of the
state for di�erent λ and h = 0.02.
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Fig. 4.5. Number of active set iterations and rela-
tive error of the control for di�erent λ and h = 0.02.
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Fig. 4.6. CPU-time in sec. and relative error of the
state for di�erent λ and h = 0.00667.

and 4.6 show that the performance is indeed improved by the regularization, i.e. a smaller approximation
error is achieved with less computational e�ort. Moreover, for certain values of λ, the performance with
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respect to the approximation of the state is comparable to the case λ = 0 as Figure 4.4 illustrates. In
addition, Figure 4.5 demonstrates that the number of iteration required by the active set algorithm is
also reduced by the regularization. In summary, we conclude that a regularization of optimal control
problems with pointwise state constraints is reasonable, also from a numerical point of view. However,
the results strongly depend on the coupling of reagularization parameter and mesh size, and the optimal
value for λ is of course not known a priori.
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