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Abstract. We consider the parabolic Anderson model (PAM) which is given by
the equation ∂u/∂ t = κ∆u + ξ u with u : Zd × [0,∞)→ R, where κ ∈ [0,∞) is the
diffusion constant, ∆ is the discrete Laplacian, and ξ : Zd × [0,∞)→ R is a space-
time random environment. The solution of this equation describes the evolution of
the density u of a “reactant” u under the influence of a “catalyst” ξ .

In the present paper we focus on the case where ξ is a system of n indepen-
dent simple random walks each with step rate 2dρ and starting from the origin. We
study the annealed Lyapunov exponents, i.e., the exponential growth rates of the
successive moments of u w.r.t. ξ and show that these exponents, as a function of
the diffusion constant κ and the rate constant ρ , behave differently depending on
the dimension d. In particular, we give a description of the intermittent behavior of
the system in terms of the annealed Lyapunov exponents, depicting how the total
mass of u concentrates as t → ∞. Our results are both a generalization and an ex-
tension of the work of Gärtner and Heydenreich [3], where only the case n = 1 was
investigated.

1 Introduction

1.1 Model

The parabolic Anderson model (PAM) is the partial differential equation
∂

∂ t
u(x, t) = κ∆u(x, t)+ξ (x, t)u(x, t),

u(x,0) = 1,
x ∈ Zd , t ≥ 0 . (1)

Here, the u-field is R-valued, κ ∈ [0,∞) is the diffusion constant, ∆ is the discrete
Laplacian acting on u as

∆u(x, t) = ∑
y∈Zd
y∼x

[u(y, t)−u(x, t)]

(y∼ x meaning that y is nearest neighbor of x), and

ξ = (ξt)t≥0 with ξt = {ξ (x, t) : x ∈ Zd}

is an R-valued random field that evolves with time and that drives the equation.
One interpretation of (1) comes from population dynamics by considering a sys-

tem of two types of particles A and B. A particles represent “catalysts”, B particles
represent “reactants” and the dynamics is subject to the following rules:

• A-particles evolve independently of B-particles according to a prescribed dynam-
ics with ξ (x, t) denoting the number of A-particles at site x at time t;
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• B-particles perform independent simple random walks at rate 2dκ and split into
two at a rate that is equal to the number of A-particles present at the same loca-
tion;

• the initial configuration of B-particles is that there is exactly one particle at each
lattice site.

Then, under the above rules, u(x, t) represents the average number of B-particles at
site x at time t conditioned on the evolution of the A-particles.

It is possible to add that B-particles die at rate δ ∈ [0,∞). This leads to the trivial
transformation u(x, t)→ u(x, t)e−δ t . We will hereafter assume that δ = 0. It is also
possible to add a coupling constant γ ∈ (0,∞) in front of the ξ -term in (1), but this
can be reduced to γ = 1 by a scaling argument.

In what follows, we focus on the case where

ξ (x, t) =
n

∑
k=1

δx
(
Y ρ

k (t)
)

(2)

with {Y ρ

k : 1≤ k≤ n} is a family of n independent simple random walks, where for
each k ∈ {1, . . . ,n}, Y ρ

k = (Y ρ

k (t))t≥0 is a simple random walk with step rate 2dρ

starting from the origin. We write P⊗n
0 and E⊗n

0 to denote respectively the law and the
expectation of the family of n independent simple random walks {Y ρ

k : 1 ≤ k ≤ n}
where initially all of the walkers are located at 0.

Under this choice of catalysts, we will prove existence and derive both qualitative
and quantitative properties of the annealed Lyapunov exponents (defined in Section
1.2). After that, we will discuss the intermittent behavior of the solution u of the
PAM in terms of the Lyapunov exponents.

1.2 Lyapunov exponents and intermittency

Our focus will be on the annealed Lyapunov exponents that describes the exponen-
tial growth rate of the successive moments of the solution of (1).

By the Feynman-Kac formula, the solution of (1) reads

u(x, t) = Ex

(
exp
[∫ t

0
ξ (Xκ(s), t− s) ds

])
, (3)

where Xκ = (Xκ(t))t≥0 is the simple random walk on Zd with step rate 2dκ and Ex
denotes expectation with respect to Xκ given Xκ(0) = x. The connection between
the parabolic Anderson equation (1) with random time-independent potential ξ and
the Feyman-Kac functional (3) is well understood (see e.g. Gärtner and Molchanov
[10]) and can be easily extended to the time-dependent potential setting. Taking into
account our choice of catalytic medium in (2) we define Λp(t) as
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Λp(t) =
1
t

logE⊗n
0
(
[u(x, t)]p)1/p

=
1
pt

log
(
E⊗n

0 ⊗E⊗p
x
)(

exp

[
p

∑
j=1

n

∑
k=1

∫ t

0
δ0
(
Xκ

j (s)−Y ρ

k (t− s)
)

ds

])
, (4)

where {Xκ
j , j = 1, . . . , p} is a family of p independent copies of Xκ and E⊗p

x stands
for the expectation of this family with Xκ

j (0) = x for all j.
If the last quantity admits a limit as t→ ∞ we define

λp := lim
t→∞

Λp(t) (5)

to be the p-th (annealed) Lyapunov exponent of the solution u of the parabolic An-
derson problem (1).

We will see in Theorem 1.1 that the limit in (5) exists and is independent of x.
Hence, we suppress x in the notation. However, λp is clearly a function of n, d, κ

and ρ . In what follows, our main focus will be to analyze the dependence of λp on
the parameters n, p, κ and ρ , therefore we will often write λ

(n)
p (κ,ρ).

In particular, our main subject of interest will be to draw the qualitative picture of
intermittency for these systems. First, note that by the moment inequality we have

λ
(n)
p ≥ λ

(n)
p−1, (6)

for all p ∈ N \ {1}. The system (or the solution of the system) (1) is said to be
p-intermittent if the above inequality is strict, namely,

λ
(n)
p > λ

(n)
p−1. (7)

The system is fully intermittent if (7) holds for all p ∈ N\{1}. We will sometimes
say that the system is partially intermittent if it is p-intermittent for some p ∈ N \
{1}.

Also note that, using Hölder’s inequality, p-intermittency implies q-intermittency
for all q ≥ p (see e.g. [3], Lemma 3.1). Thus, for any fixed n ∈ N, p-intermittency
in fact implies that

λ
(n)
q > λ

(n)
q−1 ∀q≥ p ,

and 2-intermittency means full intermittency.
Geometrically, intermittency corresponds to the solution being asymptotically

concentrated on a thin set, which is expected to consist of “islands” located far from
each other (see [9], Section 1 and references therein for more details). Here, due to
the lack of ergodicity, such a geometric picture of intermittency is not available.
Nevertheless, (7) can still be interpreted as the pth moment of u being generated by
some exponentially rare event (see [3], Section 1.2 for a more detailed analysis).
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1.3 Literature

The behavior of the annealed Lyapunov exponents and particularly the problem
of intermittency for the PAM in a space-time random environment was subject to
various studies. Carmona and Molchanov [2] obtained an essentially complete qual-
itative description of the annealed Lyapunov exponents and intermittency when ξ is
white noise, i.e.,

ξ (x, t) =
∂

∂ t
W (x, t) ,

where W = (Wt)t≥0 with Wt = {W (x, t) : x∈Zd} is a field of independent Brownian
motions. Further refinements on the behavior of the Lyapunov exponents were ob-
tained in Greven and den Hollander [11]. In particular, it was shown that λ1 = 1/2
for all d ≥ 1 and, λp > 1/2 for p ∈ N \ {1} in d = 1,2. It is also proved that for
d ≥ 3 there exist 0 < κ2 ≤ κ3 ≤ . . . satisfying

λp(κ)− 1
2

{
> 0, for κ ∈

[
0,κp

)
,

= 0, for κ ∈
[
κp,∞

)
,

p ∈ N\{1} .

Upper and lower bounds on κp were derived, and the asymptotics of κp as p→ ∞

was computed. In addition, it was proved that the κp’s are distinct for d large enough.
More recently various models where ξ is non-Gaussian were investigated. Kesten

and Sidoravicius [13] and Gärtner and den Hollander [4] considered the case where
ξ is given by a Poisson field of independent simple random walks. In [13], the sur-
vival versus extinction of the system is studied. In [4], the moment asymptotics were
studied and a partial picture of intermittency, depending on the parameters d and κ ,
was obtained. The case where ξ is a single random walk –corresponding to n = 1
case in our setting– was studied by Gärtner and Heydenreich [3]. Analogous results
to those contained in Theorems 1.1, 1.2 and Corollary 1.1(i) were obtained.

The investigation of annealed Lyapunov behavior and intermittency was extented
to non-Gaussian and space correlated potentials in Gärtner, den Hollander and Mail-
lard, in [5] and [7], for the case where ξ is an exclusion process with symmetric
random walk transition kernel, starting form a Bernoulli product measure. Later in
Gärtner, den Hollander and Maillard [8], the case where ξ is a voter model starting
either from Bernoulli product measure or from equilibrium was studied (see Gärtner,
den Hollander and Maillard [6], for an overview).

1.4 Main results

Our first theorem states that the Lyapunov exponents exist and behave nicely as a
function of κ and ρ . It will be proved in Section 2.

Theorem 1.1 (Existence and first properties). Let d ≥ 1 and n, p ∈ N.
(i) For all κ,ρ ∈ [0,∞), the limit in (5) exists, is finite, and is independent of x if
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(κ,ρ) 6= (0,0).
(ii) On [0,∞)2, (κ,ρ) 7→ λ

(n)
p (κ,ρ) is continuous, convex and non-increasing in

both κ and ρ .

Let Gd(x) be the Green function at lattice site x of simple random walk stepping at
rate 2d and

µ(κ) = supSp(κ∆ +δ0) (8)

be the supremum of the spectrum of the operator κ∆ +δ0 in l2(Zd). It is well-known
that (see e.g. [4], Lemma 1.3) Sp(κ∆ +δ0) = [−4dκ,0]∪{µ(κ)} with

µ(κ)
{

= 0, if κ ≥ Gd(0),
> 0, if κ < Gd(0). (9)

Furthermore, κ 7→ µ(κ) is continuous, non-increasing and convex on [0,∞), and
strictly decreasing on [0,Gd(0)].

The next theorem gives the limiting behavior of λ
(n)
p as κ ↓ 0 and κ → ∞,

and describes a region of κ where λ
(n)
p = 0. Note that by symmetry, λ

(n)
p (κ,ρ) =

n
p λ

(p)
n (ρ,κ), for all n, p ∈ N and κ,ρ ∈ [0,∞). Therefore, the κ-dependence de-

scribed below can be transcribed in terms of ρ-dependence.

Theorem 1.2 (κ- ρ-dependence). Let n, p ∈ N and ρ ∈ [0,∞).
(i) For all d ≥ 1, limκ↓0 λ

(n)
p (κ,ρ) = λ

(n)
p (0,ρ) = nµ(ρ/p).

(ii) If 1≤ d ≤ 2, then λ
(n)
p (κ,ρ) > 0 for all κ ∈ [0,∞). Moreover, κ 7→ λ

(n)
p (κ,ρ) is

strictly decreasing with limκ→∞ λ
(n)
p (κ,ρ) = 0 (see Fig. 1).

(iii) If d ≥ 3, then λ
(n)
p (κ,ρ) = 0 for all κ ∈ [nGd(0),∞) (see Fig. 2).

Our next result describes the limiting behavior of λ
(n)
p as p→ ∞ and n→ ∞.

Theorem 1.3 (n- p-dependence). Let d ≥ 1 and κ,ρ ∈ [0,∞).
(i) For all n ∈ N, limp→∞ λ

(n)
p (κ,ρ) = nµ(κ/n) (see Fig. 1–2);

(ii) For all p > ρ/Gd(0), limn→∞ λ
(n)
p (κ,ρ) = +∞;

(iii) For all p≤ ρ/Gd(0) and n ∈ N, λ
(n)
p (κ,ρ) = 0.

By part (ii) of Theorem 1.1, λ
(n)
p (κ,ρ) is non-increasing in κ . Hence, we can

define
{

κ
(n)
p (ρ) : p ∈ N

}
as the non-decreasing sequence of critical κ’s for which

λ
(n)
p (κ,ρ)

{
> 0, for κ ∈

[
0,κ

(n)
p (ρ)

)
,

= 0, for κ ∈
[
κ

(n)
p (ρ),∞

)
,

p ∈ N . (10)

As a consequence of Theorems 1.1 and 1.2 we have,
κ

(n)
p (ρ) = ∞, if 1≤ d ≤ 2,

0 < κ
(n)
p (ρ) < ∞, if d ≥ 3 and p > ρ/Gd(0),

κ
(n)
p (ρ) = 0, if d ≥ 3 and p≤ ρ/Gd(0).

(11)
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Our fourth theorem, which gives bounds on κ
(n)
p (ρ) for d ≥ 3, will be proved in

Section 4. For this theorem we need to define the inverse of the function µ(κ).
Note that by (8) and (9) we have µ(0) = 1 and µ(Gd(0)) = 0. It is easy to see
that µ(κ) restricted to the domain [0,Gd(0)] is invertible with an inverse function
µ−1 : [0,1]→ [0,Gd(0)]. We extend µ−1 to [0,∞) by declaring µ−1(t) = 0 for t > 1.
Denote

αd =
Gd(0)

2d‖Gd‖2
2
∈ [0,∞) , (12)

where ‖Gd‖2 is the l2 norm of Gd . Since ‖Gd‖2 < ∞ if and only if d ≥ 5, αd = 0 for
d ∈ {3,4}.

Theorem 1.4 (Critical κ’s). Let n, p ∈ N.
(i) If d ≥ 3, then ρ ∈ [0,∞) 7→ κ

(n)
p (ρ) is a continuous, non-increasing and convex

function such that

max
(

n
4d

µ(ρ/p),nµ
−1(4dρ/p)

)
≤ κ

(n)
p (ρ)≤ nGd(0)

(
1− ρ

pGd(0)

)
+
. (13)

(ii) If d ≥ 5, then

κ
(n)
p (ρ)≥

(
nGd(0)−ρ

n
pαd

)
+
. (14)

(iii) If d ≥ 5 and p ∈ N\{1} are such that αd > p−1
p , then

κ
(n)
p−1(ρ) < κ

(n)
p (ρ) ∀ρ ∈ (0, pGd(0)). (15)

Note that the condition αd > p−1
p is always true if d is large enough by the

following lemma, whose proof is given in the appendix.

Lemma 1.1. If d ≥ 3, then αd ≤ 1 and limd→∞ αd = 1.

As a consequence of the previous statements, our next result gives some general
intermittency properties for all dimensions, and describes several regimes in the
intermittent behavior of the system.

Corollary 1.1 (Intermittency). Let n ∈ N.
(i) If d ≥ 1, then (see Fig. 2)

- for κ ∈ [0,nGd(0)) there exists p≥ 2 such that the system is p-intermittent;
- for κ ∈ [nGd(0),∞) the system is not intermittent.

(ii) Fix p ∈ N \ {1}. If d is large enough (such that αd > (p− 1)/p ), then (see
Fig. 3):

- for ρ ∈ (0,2Gd(0)) and κ ∈ [κ(n)
1 (ρ),κ(n)

2 (ρ)), the system is 2-intermittent;

- for ρ ∈ [0,3Gd(0)) and κ ∈ (κ(n)
2 (ρ),κ(n)

3 (ρ)), the system is 3-intermittent;
- · · · ;
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- for ρ ∈ [0, pGd(0)) and κ ∈ (κ(n)
p−1(ρ),κ(n)

p (ρ)) the system is p-intermittent.

Note that since Gd(0) = ∞ for d = 1,2 Corollary 1.1(i) implies that for dimensions
1 and 2 the system is always p-intermittent for some p. Some other partial results
about intermittency are given in section 1.5 (see also figures).

-

6

0
κ

1≤ d ≤ 2

λ
(n)
p (κ,ρ)

p = 1

p = 2

p = 3

p = ∞

qq
q
q

Fig. 1 For 1 ≤ d ≤ 2, the system is partially intermittent. Full intermittency is conjectured, and
proved for n = 1,2.

-

6

0
κ

λ
(n)
p (κ,ρ)

d ≥ 3, ρ < Gd(0)

p = 1

p = 2

p = 3

p = ∞

qq
q
q

q q q q
κ

(n)
1 κ

(n)
2 κ

(n)
3 nGd(0)

| ←− A −→ | ←− B −→ | ←− C −→

Fig. 2 For d ≥ 3 and ρ < Gd(0), the system is partially intermittent on A∪B and not intermittent
on C. Full intermittency on A is conjectured, and proved for n = 1,2.
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-

6

0
ρ

κ

nGd(0) q

q q q q
Gd(0) 2Gd(0) · · · (p−1)Gd(0) pGd(0)

? 2-int. · · · p-int. · · ·

no intermittency

Fig. 3 Phase diagram of intermittency when d is large enough. The bold curves represent ρ ∈
[0,∞) 7→ κ

(n)
q (ρ), q = 1, · · · , p. In the “?” region, full intermittency is proved in a small neighbor-

hood of 0.

1.5 Discussion

Our results can be extended to various different random medium. For example, con-
sider the system of catalysts given by a collection of independent random walks
where there is one walker starting from each site of a large box. More precisely, let
DR denote the box in Zd with side length R. Consider the random medium

ξ (x, t) = ∑
k∈DR

δx(Y
ρ

k (t))

with {Y ρ

k : k ∈ DR} a familiy of Rd simple random walks, where for each k ∈ DR,
Y ρ

k is a simple random walk with step rate 2dρ starting from Y ρ

k (0) = k. For a fixed
size box, there is a positive probability that all the random walks meet at the origin
in finite time. Then, it is easy to see that the Lyapunov exponents are the same as
in the case of n independent random walks starting from the origin where n = Rd .
An interesting set up would be case where the length of the inital box grows with
time. A natural question arises as whether the large time limit would be related to
the case of Poisson field of simple random walks, considered in [4], or it would have
different behavior depending on how fast the size of the box grows with time.

Let us now discuss some facts about the intermittent picture. First of all, as one
can easily guess from (4), λ

(n)
p (κ,ρ) is the top of the spectrum of the operator Lp

where for f (x1, · · · ,xp,y1, · · · ,yn) in l2(Zd(p+n)) Lp, is defined by:

Lp( f ) = κ

p

∑
k=1

∆xk f +ρ

n

∑
j=1

∆y j f + Ip f . (16)
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Here

Ip f (x1, · · · ,xp,y1, · · · ,yn) =
n

∑
k=1

p

∑
j=1

δ0(x j− yk) f (x1, · · · ,xp,y1, · · · ,yn).

This is the meaning of equation (20) of Section 2 from which most of our results
are derived. The following proposition links full intermittency and existence of an
eigenfunction corresponding to λ

(n)
1 (κ,ρ).

Proposition 1.1. If there exists f ∈ l2(Zd(1+n)) with || f ||2 = 1, such that L1( f ) =
λ

(n)
1 (κ,ρ) f then λ

(n)
2 (κ,ρ) > λ

(n)
1 (κ,ρ), and the system is fully intermittent.

Proposition 1.1 is proved in the appendix. The existence of an eigenfunction corre-
sponding to λ

(n)
1 (κ,ρ) (and therefore full intermittency) was proved in the following

cases:

• n = 1,2 and κ +ρ < nGd(0). This is done in [3] for n = 1, and in [14] for n = 2.
• n≥ 3 and 4d(ρn+κ) < 1 in [14].

To prove these results, the papers [3] and [14] express λ
(n)
1 (κ,ρ) as the top of the

spectrum of the operator H = B + ∑
n
j=1 δ0(z j), where B is the generator of the

Markov process Z(t) = (Xκ
1 (t)−Y ρ

1 (t), · · · ,Xκ
1 (t)−Y ρ

n (t)) (see (4)). For n = 1,
H is just (κ + ρ)4+ δ0, which is a compact perturbation of (κ + ρ)4. This
fact easily implies the existence of an eigenfunction corresponding to λ

(1)
1 (κ,ρ)

easily. However, this is no more the case as soon as n ≥ 2. In [14], the authors
consider B as a perturbation of ∑

n
j=1 δ0(z j), leading to the results for n ≥ 2. Ex-

pressing λ
(n)
p (κ,ρ) in terms of the process (Z(t), t ≥ 0) does not seem very fruit-

ful in cases others than the ones treated in [3] and [14]. Therefore, it appeared to
us more tractable and more natural to express λ

(n)
p (κ,ρ) in terms of the process

(Xκ
1 (t), · · · ,Xκ

p (t),Y ρ

1 (t), · · · ,Y ρ
n (t)).

We complete the intermittent picture by the following conjecture

Conjecture 1.1 (Intermittency). Fix n ∈ N. Then (see Fig. 1–2),
(i) for 1≤ d ≤ 2, the system is full intermittent (proved for n = 1,2);
(ii) for d ≥ 3, the intermittency vanishes as κ increases. More precisely, for d ≥ 3,
there are three different regimes:

A: for κ ∈ [0,κ
(n)
2 ), the system is full intermittent (proved in a small neighborhood

of 0);
B: for κ ∈ [κ(n)

2 ,nGd(0)), there exists p = p(κ) ≥ 3 such that the system is q-
intermittent for all q≥ p;

C: for κ ∈ [nGd(0),∞), the system is not p-intermittent for any p≥ 2.

To complete Theorem 1.4, we close with a conjecture about critical κ’s, whose
analogue for white noise potential was conjectured in Carmona and Molchanov [2]
and partially proved in Greven and den Hollander [11]:

Conjecture 1.2 (Critical κ’s). For all fixed n ≥ 1 and d large enough the κ
(n)
p ’s are

distinct (see Fig. 2).
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2 Proof of Theorem 1.1

Step 1: We first prove that if the limit in (5) exists for x = 0, then it exists for all
x ∈ Zd and does not depend on x as soon as (κ,ρ) 6= (0,0). To this end, let us
introduce some notations. For any t > 0, we denote

Yt = (Y ρ

1 (t), · · · ,Y ρ
n (t)) ∈ Zdn , Xt = (Xκ

1 (t), · · · ,Xκ
p (t)) ∈ Zd p .

For (x,y) ∈ Zd p ×Zdn, EX ,Y
x,y denote the expectation under the law of (Xt ,Yt)t≥0

starting from (x,y). The same notation is used for x ∈ Zd and y ∈ Zd . In that case,
it means that X0 = (x, · · · ,x), Y0 = (y, · · · ,y) and EX ,Y

x,y = E⊗n
y ⊗E⊗p

x . Finally, for
x = (x1, · · · ,xp) ∈ Zd p and y = (y1, · · · ,yn) ∈ Zdn, set

Ip(x,y) =
p

∑
j=1

n

∑
k=1

δ0(x j− yk) . (17)

Then, by time reversal for Y in (4), for all x ∈ Zd and t > 0,

E⊗n
0 [u(x, t)p] = ∑

z∈Zdn

EX ,Y
x,z

[
exp
(∫ t

0
Ip(Xs,Ys)ds

)
δ0(Yt)

]
. (18)

Using the Markov property at time 1 and the fact that 1≤ exp
(∫ 1

0 Ip(Xs,Ys)ds
)

, we

get for x1 and x2 any fixed points in Zd ,

E⊗n
0 [u(x1, t)p] ≥ ∑

z∈Zdn

EX ,Y
x1,z

[
δ(x2,··· ,x2)(X1)δz(Y1)exp

(∫ t

1
Ip(Xs,Ys)ds

)
δ0(Yt)

]
= (pκ

1 (x1,x2))p(pρ

1 (0,0))nE⊗n
0 ([u(x2, t−1)]p) ,

where pν
t is the transition kernel of a simple random walk on Zd with step rate 2dν .

This proves the independence of λp w.r.t. x as soon as κ > 0, since in this case for
all x1,x2 ∈ Zd , pκ

1 (x1,x2) > 0.
For κ = 0, since the X-particles do not move, we have

E⊗n
0 [u(x1, t)p] = E0

[
exp
(

p
∫ t

0
δx1(Y

ρ

1 (s))ds
)]n

. (19)

The same reasoning leads now to

E⊗n
0 [u(x1, t)p]≥ pρ

1 (0,x1− x2)nE⊗n
0 ([u(x2, t−1)]p) .

Step 2: Variational representation. From now on, we restrict our attention to the
case x = 0. The aim of this step is to give a variational representation of λ

(n)
p (κ,ρ).

To this end, we introduce further notations. Let (e1, · · · ,ed) be the canonical basis
of Rd . For x = (x1, · · · ,xp) ∈ Zd p, and f : (x,y) ∈ Zd p×Zdn 7→ R, we set
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∇x f (x,y) =
(
∇x1 f (x,y), · · · ,∇xp f (x,y)

)
∈ Rd p ,

where for j ∈ {1, · · · , p}, and i ∈ {1, · · · ,d},〈
∇x j f (x,y),ei

〉
= f (x1, · · · ,x j + ei, · · · ,xp,y)− f (x,y) .

The same notation is used for the y-coordinates, so that ∇y f (x,y) ∈ Rdn. We also
define

∆x f (x,y) =
p

∑
j=1

∆x j f (x,y)

=
p

∑
j=1

∑
z j∈Zd
z j∼x j

[
f (x1, · · · ,z j, · · · ,xp,y)− f (x1, · · · ,x j, · · · ,xp,y)

]
.

Proposition 2.1. Let d ≥ 1 and n, p ∈ N. For all κ,ρ ∈ [0,∞),

λ
(n)
p (κ,ρ) = lim

t→∞

1
pt

logE⊗n
0 [u(0, t)p]

=
1
p

sup
f∈l2(Zd p×Zdn)
‖ f‖2=1

{
−κ ‖∇x f‖2

2−ρ
∥∥∇y f

∥∥2
2 + ∑

(x,y)
Ip(x,y) f 2(x,y)

}
.(20)

Proof. Upper bound. For a positive integer m, let Bm
R denote the ball in Zdm of

radius R = t log(t) centered at the origin. We first prove the following lemma which
states we can restrict (18) to X paths being in Bp

R at time t and Y paths starting from
Bn

R.

Lemma 2.1. As t→ ∞,

E⊗n
0 [u(x, t)p] = (1+o(1)) ∑

z∈Bn
R

EX ,Y
0,z

[
exp
(∫ t

0
Ip(Xs,Ys)ds

)
δ0(Yt) 1I(Bp

R)(Xt)
]

.

(21)

Proof. It is enough to prove that

r(t) :=

E⊗n
0 [u(x, t)p]− ∑

z∈Bn
R

EX ,Y
0,z

[
exp
(∫ t

0
Ip(Xs,Ys)ds

)
δ0(Yt) 1I(Bp

R)(Xt)
]

E⊗n
0 [u(x, t)p]

(22)

converges to 0 as t→ ∞. Using the trivial bounds

1≤ exp
(∫ t

0
Ip(Xs,Ys)ds

)
≤ exp(tnp) (23)

and splitting the sum in (18), we get
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r(t)≤ etnp

∑
z∈Zdn

EX ,Y
0,z [δ0(Yt)]

(
∑

z/∈Bn
R

EX ,Y
0,z [δ0(Yt)]+ ∑

z∈Bn
R

EX ,Y
0,z

[
δ0(Yt) 1I(Bp

R)c(Xt)
])

≤ etnp

∑
z∈Zdn

Pz(Yt = 0)

(
∑

z/∈Bn
R

Pz(Yt = 0)+P0(Xt /∈ Bp
R) ∑

z∈Bn
R

Pz(Yt = 0)

)

≤ etnp(P0(Yt /∈ Bn
R)+P0(Xt /∈ Bp

R)),

where for the last two inequalities we used the time-reversal of Y . We have for
R = t log(t) and large enough t

P0(Y
ρ

1 (t) /∈ B1
R)≤ exp[−C(d,ρ)t log(t)],

P0(Xκ
1 (t) /∈ B1

R)≤ exp[−C(d,κ)t log(t)]
(24)

for some positive constants C(d,ρ) and C(d,κ) (see for instance Lemma 4.3 in
[10]). Using this we get

r(t)≤ etnp
(

ne−C(d,ρ)t log t + pe−C(d,κ)t log t
)

t→∞−→ 0.

This finishes the proof of the lemma. ut

Using Lemma 2.1 it is enough to study the existence of

lim
t→∞

1
t

log ∑
z∈Bn

R

EX ,Y
0,z

[
exp
(∫ t

0
Ip(Xs,Ys)ds

)
δ0(Yt) 1IBp

R
(Xt)

]
= lim

t→∞

1
t

log
〈

f1,e tLp f2

〉
,

where f1 : (x,y)∈Zd p×Zdn 7→ δ0(x) 1IBn
R
(y), f2 : (x,y)∈Zd p×Zdn 7→ 1IBp

R
(x)δ0(y),

and Lp is the bounded self-adjoint operator in l2(Zd p×Zdn) defined by

Lp f (x,y) = κ∆x f (x,y)+ρ∆y f (x,y)+ Ip(x,y) f (x,y), (x,y) ∈ Zd p×Zdn .

For a linear operator L on l2(Zd p×Zdn) we define

‖L ‖2,2 := sup
f∈l2(Zd p×Zdn)
‖ f‖2=1

〈 f ,L f 〉 .

Note that we have〈
f1,etLp f2

〉
≤ ‖ f1‖2

∥∥∥etLp
∥∥∥

2,2
‖ f2‖2 = C(d,n, p)Rd(n+p)/2

∥∥∥etLp
∥∥∥

2,2
,

for some constant C(d,n, p) > 0. Thus,
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lim
t→∞

1
t

log
〈

f1,e tLp f2

〉
≤
∥∥Lp

∥∥
2,2 = sup

f∈l2(Zd p×Zdn)
‖ f‖2=1

〈
f ,Lp f

〉
,

which is the upper bound in (20).

Lower bound. By (18) with x = 0, it follows that

E⊗n
0 [u(0, t)p] ≥ EX ,Y

0,0

[
exp
(∫ t

0
Ip(Xs,Ys)ds

)
δ0(Xt)δ0(Yt)

]
=
〈

δ0⊗δ0,etLp(δ0⊗δ0)
〉

=
∥∥∥e

t
2 Lp(δ0⊗δ0)

∥∥∥2

2

= ∑
x∈Zd p

∑
y∈Zdn

(
e

t
2 Lp(δ0⊗δ0)(x,y)

)2
.

Restricting the sum over Bp
R×Bn

R, and applying Jensen’s inequality, we get

E⊗n
0 [u(0, t)p]

≥ ∑
x∈Bp

R

∑
y∈Bn

R

(
e

t
2 Lp(δ0⊗δ0)(x,y)

)2

≥ 1
|Bn

R|
1
|Bp

R|

 ∑
x∈Bp

R

∑
y∈Bn

R

e
t
2 Lp(δ0⊗δ0)(x,y)

2

=
C(d,n, p)
Rd(n+p)

 ∑
x∈Bp

R

∑
y∈Bn

R

EX ,Y
x,y

[
exp
(∫ t/2

0
Ip(Xs,Ys)ds

)
δ0(Xt/2)δ0(Yt/2)

]2

=
C(d,n, p)
Rd(n+p)

(
EX ,Y

0,0

[
exp
(∫ t/2

0
Ip(Xs,Ys)ds

)
1IBp

R
(Xt/2) 1IBn

R
(Yt/2)

])2

.

Taking R = t log(t), we obtain that

liminf
t→∞

1
t

logE⊗n
0 [u(0, t)p]

≥ liminf
t→∞

2
t

logEX ,Y
0,0

[
exp
(∫ t/2

0
Ip(Xs,Ys)ds

)
1IBp

R
(Xt/2) 1IBn

R
(Yt/2)

]
.

On the other hand, by (23), (24) and our choice of R, we have

EX ,Y
0,0

[
exp
(∫ t/2

0
Ip(Xs,Ys)ds

)
1I(Bp

R×Bn
R)c(Xt/2,Yt/2)

]
≤ exp

( tnp
2

)
P0(Xt/2 /∈ Bp

R)P0(Yt/2 /∈ Bn
R)

≤ npexp
[ tnp

2
−
(
C(d,ρ)+C(d,κ)

)
t log(t)

]
,
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and therefore, with a similary reasoning as in the proof of Lemma 2.1 we get

liminf
t→∞

1
t

logE⊗n
0 [u(0, t)p]≥ liminf

t→∞

2
t

logEX ,Y
0,0

[
exp
(∫ t/2

0
Ip(Xs,Ys)ds

)]
.

Now, the occupation measure 1
t
∫ t

0 δ(Xs,Ys) ds satisfies a weak large deviations prin-
ciple (LDP) in the space M1(Zd p ×Zdn) of probability measures on Zd p ×Zdn,
endowed with the weak topology. The speed of this LDP is t and the rate function
is given for all ν ∈M1(Zd p×Zdn) by

J(ν) = κ
∥∥∇x
√

ν
∥∥2

2 +ρ
∥∥∇y
√

ν
∥∥2

2 ,

(see e.g. den Hollander [12], Section IV.4). Since I is bounded, the lower bound in
Varadhan’s integral lemma (see e.g. den Hollander [12], Section III.3) yields

liminf
t→∞

1
t

logE⊗n
0 [u(0, t)p]≥ sup

ν∈M1(Zd p×Zdn)

{
∑
(x,y)

Ip(x,y)ν(x,y)− J(ν)

}
.

Setting f (x,y) =
√

ν(x,y) gives then the lower bound in (20). ut

Step 3: Properties of λ
(n)
p . Since 0 ≤ Ip(x,y) ≤ np, we clearly have 0 ≤ λ

(n)
p ≤ n.

Using representation (20), we can conclude that the function (κ,ρ) 7→ λ
(n)
p (κ,ρ)

is convex and nonincreasing in κ and ρ . Moreover, λ
(n)
p (κ,ρ) is lower semi-

continuous since it is supremum of functions that are linear in κ and ρ . Finally,
since every finite convex function is also upper semi-continuous, λ

(n)
p is upper semi-

continuous. Hence, λ
(n)
p (κ,ρ) is continuous.

3 Proof of Theorems 1.2–1.3

By symmetry, note that for all n, p ∈ N and κ,ρ ∈ [0,∞),

λ
(n)
p (κ,ρ) =

n
p

λ
(p)
n (ρ,κ) . (25)

3.1 Proof of Theorem 1.2

Proof of (i): By continuity, limκ→0 λ
(n)
p (κ,ρ) = λ

(n)
p (0,ρ). Now for κ = 0, the X

particles do not move so that E⊗n
0 [u(0, t)p] = E0

(
exp
(

pLY
t (0)

))n (see (19)), where
LY

t (0) is the local time at 0 of a simple random walk in Zd with rate 2dρ . Using the
LDP for LY

t , we obtain



15

λ
(n)
p (0,ρ) =

n
p

sup
f∈l2(Zd )
‖ f‖2=1

〈 f ,(ρ∆ + pδ0) f 〉= nµ(ρ/p) .

Proof of (ii): For all n, p ∈ N and κ,ρ ∈ [0,∞), we have

λ
(n)
p (κ,ρ)≥ λ

(n)
1 (κ,ρ) = nλ

(1)
n (ρ,κ)≥ nλ

(1)
1 (ρ,κ) = nµ(κ +ρ) ,

where the last equality is proved in [3] and comes from the fact that X1
t −Y 1

t is a
simple random walk in Zd with jump rate 2d(κ +ρ). Since Gd(0) = ∞ for d = 1,2,
it follows from (9) that λ

(n)
p (κ,ρ) > 0 for d = 1,2.

Let us prove that limκ→∞ λ
(n)
p (κ,ρ) = 0. By monotonicity in ρ ,

λ
(n)
p (κ,ρ)≤ λ

(n)
p (κ,0) = nµ(κ/n) . (26)

Hence the only thing to prove is that limκ→∞ µ(κ) = 0. To this end, one can use the
discrete Gagliardo-Nirenberg inequality: there exists a constant C such that for all
f : Zd 7→ R,

for d = 1 , ‖ f‖2
∞
≤C‖ f‖2 ‖∇ f‖2 ; (27)

for d = 2 , ‖ f‖2
4 ≤C‖ f‖2 ‖∇ f‖2 . (28)

The proof of this inequality follows the same lines as the proof of the usual
Gagliardo-Nirenberg inequality (see Brezis [1]). Since we could not find a refer-
ence, we give a short proof of (27) and (28) in the appendix. From (27) and (28), we
get for all f ∈ l2(Zd) with ‖ f‖2 = 1,

−κ ‖∇ f‖2
2 + f (0)2 ≤

{
−κ ‖∇ f‖2

2 +‖ f‖2
∞

for d = 1
−κ ‖∇ f‖2

2 +‖ f‖2
4 for d = 2

≤ −κ ‖∇ f‖2
2 +C‖∇ f‖2 .

Taking the supremum over f yields

µ(κ)≤ sup
x≥0

(
−κx2 +Cx

)
=

C2

4κ
.

The strict monotonicity is now an easy consequence of the fact that κ 7→ λ
(n)
p (κ,ρ)

is convex, positive, non increasing, and tends to 0 as κ → ∞.

Proof of (iii): By (25) and (26), we get

λ
(n)
p (κ,ρ)≤ nmin(µ(κ/n),µ(ρ/p)) . (29)

Then the claim follows by (9).
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3.2 Proof of Theorem 1.3

Proof of (i): Fix ε > 0. Let f approaching the supremum in the variational repre-
sentation (20) of λ

(n)
p (κ,0), so that

pλ
(n)
p (κ,0)− ε ≤ −κ ‖∇x f‖2

2 + ∑
x∈Zd p

∑
y∈Zdn

Ip(x,y) f 2(x,y)

≤ pλ
(n)
p (κ,ρ)+ρ sup

f∈l2(Zd p×Zdn)
‖ f‖2=1

∥∥∇y f
∥∥2

2 .

For x ∈ Zd p, set fx : y ∈ Zdn 7→ f (x,y). Since the bottom of the spectrum of ∆ in
l2(Zdn) is −4dn,

∑
y∈Zdn

∥∥∇y fx(y)
∥∥2

2 ≤ 4dn ∑
y∈Zdn

f 2
x (y) ,

for all x ∈ Zd p. Hence,

∑
x∈Zd p

∑
y∈Zdn

∥∥∇y fx(y)
∥∥2

2 ≤ 4dn ∑
x∈Zd p

∑
y∈Zdn

f 2
x (y) = 4dn .

Therefore, for all ε > 0,

pλ
(n)
p (κ,0)− ε ≤ pλ

(n)
p (κ,ρ)+4dnρ .

Letting ε → 0 yields,

λ
(n)
p (κ,0)− 4dnρ

p
≤ λ

(n)
p (κ,ρ)≤ λ

(n)
p (κ,0) , (30)

which, after letting p→ ∞, gives the claim.

Proof of (ii): By (25), limn→∞ λ
(n)
p (κ,ρ) = limn→∞

n
p λ

(p)
n (ρ,κ) and by (i),

lim
n→∞

λ
(p)
n (ρ,κ)≥ λ

(p)
n (ρ,0) = pµ(ρ/p) > 0 , for p > ρ/Gd(0) .

Hence, for p > ρ/Gd(0), limn→∞ λ
(n)
p (κ,ρ) = +∞.

Proof of (iii): This is a direct consequence of Theorem 1.2(iii).

4 Proof of Theorem 1.4

Proof of (i): We first prove that
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κ
(n)
p (ρ) = sup

f∈l2(Zd p×Zdn)
‖ f‖2=1

∑x,y Ip(x,y) f 2(x,y)−ρ
∥∥∇y f

∥∥2
2

‖∇x f‖2
2

, (31)

with I defined as in (17). Indeed, let us denote by S the supremum in the right-hand
side of (31).

If κ ≥ κ
(n)
p (ρ), then λ

(n)
p (κ,ρ) = 0. Therefore, using (20), for all f ∈ l2(Zd p×

Zdn) such that ‖ f‖2 = 1,

∑
x∈Zd p

∑
y∈Zdn

Ip(x,y) f 2(x,y)−ρ
∥∥∇y f

∥∥2
2 ≤ κ ‖∇x f‖2

2 ,

so that κ ≥ S. Hence κ
(n)
p (ρ) ≥ S. On the opposite direction, we can assume that

S < ∞. Then, by definition of S, for all f ∈ l2(Zd p×Zdn) such that ‖ f‖2 = 1,

∑
x∈Zd p

∑
y∈Zdn

Ip(x,y) f 2(x,y)−ρ
∥∥∇y f

∥∥2
2 ≤ S‖∇x f‖2

2 .

Thus, for all f ∈ l2(Zd p×Zdn) such that ‖ f‖2 = 1, and all κ ≥ S,

∑
x∈Zd p

∑
y∈Zdn

Ip(x,y) f 2(x,y)−ρ
∥∥∇y f

∥∥2
2−κ ‖∇x f‖2

2 ≤ (S−κ)‖∇x f‖2
2 ≤ 0 .

Hence, for all κ ≥ S, λ
(n)
p (κ,ρ) = 0, i.e., κ ≥ κ

(n)
p (ρ). Hence, S ≥ κ

(n)
p (ρ). This

proves (31).
Since ρ 7→ κ

(n)
p (ρ) is a supremum of linear functions, it is lower semi-continuous

and convex. It is also obvious that ρ 7→ κ
(n)
p (ρ) is non increasing. The continuity

follows then from the finiteness of κ
(n)
p (ρ).

The lower bound in (13) is a direct consequence of (30). Indeed, since λ
(n)
p (κ,0)

= nµ(κ/n), it follows from (30) that if µ(κ/n) > 4dρ/p, then κ < κ
(n)
p (ρ). This

yields the bound:
κ

(n)
p (ρ)≥ nµ

−1(4dρ/p) .

Using the symmetry relation (25), we also get from (30) that

λ
(n)
p (κ,ρ)≥ nµ(ρ/p)−4dκ .

This leads to κ
(n)
p (ρ)≥ n

4d µ(ρ/p). Hence, if ρ/p < Gd(0), κ
(n)
p (ρ) > 0. We have al-

ready seen that κ
(n)
p (ρ) = 0 if ρ/p≥Gd(0). Since λ

(n)
p (κ,0) = nµ(κ/n), it follows

that κ
(n)
p (0) = nGd(0). Using convexity, we have, for all ρ ∈ [0, pGd(0)],

κ
(n)
p (ρ)≤ κ

(n)
p (pGd(0))−κ

(n)
p (0)

pGd(0)
ρ +κ

(n)
p (0) = n(Gd(0)−ρ/p) .
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Since κ
(n)
p (ρ) = 0 if ρ/p≥ Gd(0), then the upper bound in (13) is proved.

Proof of (ii): To prove (14), let f0 be the function

f0(x,y) =
p

∏
i=1

Gd(xi)
‖Gd‖2

n

∏
j=1

δ0(y j) .

Note that for d ≥ 5, ‖Gd‖2 < ∞, so that f0 is well-defined, and has l2-norm equal to
1. From (31), we get

κ
(n)
p (ρ)≥

∑x,y Ip(x,y) f 2
0 (x,y)−ρ

∥∥∇y f0
∥∥2

2

‖∇x f0‖2
2

.

An easy computation then gives

∑
x,y

Ip(x,y) f 2
0 (x,y) = np

G2
d(0)

‖Gd‖2
2

,

∥∥∇y f0
∥∥2

2 = n
∥∥∇y1δ0

∥∥2
2 = 2dn ,

and

‖∇x f0‖2
2 = p

‖∇x1Gd‖2
2

‖Gd‖2
2

= p
Gd(0)
‖Gd‖2

2

,

since ‖∇x1 Gd‖2
2 = 〈Gd ,−∆Gd〉= 〈Gd ,δ0〉= Gd(0). This gives (14).

Proof of (iii): The inequality (15) is clear if ρ ∈ [(p− 1)Gd(0), pGd(0)), since in
this case, κ

(n)
p−1(ρ) = 0 < κ

(n)
p (ρ). We assume therefore that ρ ∈ (0,(p−1)Gd(0)).

From (13), we have κ
(n)
p−1(ρ)≤ nGd(0)−ρn/(p−1), whereas, from (14), κ

(n)
p (ρ)≥

nGd(0)−ρn/(pαd). Hence κ
(n)
p−1(ρ) < κ

(n)
p (ρ) as soon as αd > p−1

p . This gives the
claim.

5 Proof of Corollary 1.1

Proof of (i): The function p 7→ λ
(n)
p (κ,ρ) increases from λ

(n)
1 (κ,ρ) to nµ(κ/n).

Hence, there exists p such that λ
(n)
p (κ,ρ) < λ

(n)
p+1(κ,ρ) as soon as λ

(n)
1 (κ,ρ) <

nµ(κ/n). But nµ(κ/n) = λ
(n)
1 (κ,0). Hence, if λ

(n)
1 (κ,ρ) = nµ(κ/n), the convex

decreasing function ρ 7→ λ
(n)
1 (κ,ρ) is constant. Being equal to 0 for ρ ≥Gd(0), we

get that nµ(κ/n) = 0, which can not be the case if κ < nGd(0). This ends the proof
of the first part.

If κ ≥ nGd(0), then λ
(n)
p (κ,ρ) = 0, for all p≥ 1, and the system is not intermit-

tent. This proves the second part.
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Proof of (ii): For all p ∈ N \ {1} by Lemma 1.1 for d large enough we have αd >
p−1

p . This implies that αd > q−1
q for all q ∈ N\{1} and q≤ p. Hence, by Theorem

1.4(iii), for all q ∈ N \ {1} with q ≤ p we have κ
(n)
q−1(ρ) < κ

(n)
q (ρ), for all ρ ∈

(0, pGd(0)). Hence, in the domain{
(κ,ρ) : ρ ∈ (0,qGd(0)) , κ

(n)
q−1(ρ)≤ κ < κ

(n)
q (ρ)

}
one has

λ
(n)
1 (κ,ρ) = · · ·= λ

(n)
q−1(κ,ρ) = 0 < λ

(n)
q (κ,ρ) ,

which proves the desired result.
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Appendix: Proof of lemma 1.1

For a function f : Zd 7→ R, let f̂ denote the Fourier transform of f :

f̂ (θ) = ∑
x∈Zd

ei〈θ ,x〉 f (x) ∀θ ∈ [0,2π]d .

Then, the inverse Fourier transform is given by

f (x) =
1

(2π)d

∫
[0,2π]d

e−i〈θ ,x〉 f̂ (θ)dθ ,

and the Plancherel’s formula reads

∑
x∈Zd

f 2(x) =
1

(2π)d

∫
[0,2π]d

| f̂ (θ)|2 dθ .

Using the equation ∆Gd =−δ0 we get that

Ĝd(θ) =
1

2∑
d
i=1(1− cos(θi))

.

Hence,
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Gd(0) =
1

(2π)d

∫
[0,2π]d

dθ

2∑
d
i=1(1− cos(θi))

=
1

πd

∫
[0,π]d

dθ

2∑
d
i=1(1− cos(θi))

= E
[

1
2∑

d
i=1(1− cos(Θi))

]
where the random variables (Θi) are i.i.d. with uniform distribution on [0,π]. More-
over, by Plancherel’s formula we have

‖Gd‖2
2 =

1
(2π)d

∫
[0,2π]d

dθ(
2∑

d
i=1(1− cos(θi))

)2 = E

[
1(

2∑
d
i=1(1− cos(Θi))

)2

]
.

Thus,

αd =
Gd(0)

2d ‖Gd‖2
2

=
E
[

1
S̄d

]
E
[

1
S̄2

d

] ,

where S̄d = 1
d ∑

d
i=1(1−cos(Θi)). Applying Hölder’s and Jensen’s inequality, we get

that
αd ≤

1√
E
[

1
S̄2

d

] ≤ E(S̄d) = 1 .

By the law of large numbers, S̄d converges almost surely to E [1− cos(Θ)] = 1 as
d tends to infinity. We are now going to prove that S̄−2

d is uniformly integrable by
showing that for all p > 2,

sup
d>2p

E
[
S̄−p

d

]
< ∞. (32)

Indeed, let ε ∈ (0,π) be a small positive number to be fixed later. Let

I = {i ∈ {1, · · · ,d} : 0≤Θi ≤ ε} .

S̄d ≥
1
d ∑

i/∈I
(1− cos(ε))+

cε

d ∑
i∈I

Θ
2
i ,

where cε = inf0≤θ≤ε
1−cos(θ)

θ 2 → 1/2 when ε → 0. Therefore,

E
[
S̄−p

d

]
≤ dp

d

∑
k=0

∑
I⊂{1,··· ,d}
|I|=k

E

[
1II =I(

(1− cos(ε))(d− k)+ cε ∑i∈I Θ 2
i

)p

]
.

Since the last expectation only depends on |I|, we get
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E
[
S̄−p

d

]
≤ dp

d

∑
k=0

(
d
k

)
a(k,ε,d) ,

with

a(k,ε,d) :=
1

πd

∫
0≤θ1,··· ,θk≤ε

ε≤θk+1,··· ,θd≤π

dθ1 · · ·dθd(
(1− cos(ε))(d− k)+ cε(θ 2

1 + · · ·+θ 2
k )
)p .

Let ωd denote the volume of the d-dimensional unit ball. For k = d,

a(d,ε,d) =
1

πd

∫
0≤θ1,··· ,θd≤ε

dθ1 · · ·dθd

cp
ε ‖θ‖2p

≤ 1
cp

ε πd ωd

∫ √dε

0
rd−2p−1dr

=
(

ε

π

)d 1
(cε ε2)p d

d
2−p ωd

d−2p
,

for d > 2p.

Note that for large d, ωd ' (2eπ)d/2
√

πddd/2 . Therefore, as d→ ∞

dp
(

d
d

)
a(d,ε,d) = O

(
d−3/2(ε22e/π)d/2

)
.

If ε is chosen so that ε2 ≤ π/(2e), we obtain that limd→∞ dp
(

d
d

)
a(d,ε,d) = 0.

For k ≤ d−1,

a(k,ε,d)≤ 1
(1− cos(ε))p

1
(d− k)p

(
ε

π

)k(
1− ε

π

)d−k
,

and dp
(

d
k

)
a(k,ε,d) ≤ 1

(1−cos(ε))p E [ 1IN=k(1−N/d)−p], where N is a Binomial

random variable with parameters d and ε/π . Hence, for ε < min(π,
√

π/(2e)),

E
[

1
S̄p

d

]
≤ 1

(1− cos(ε))p E
[

1IN≤d−1(1−N/d)−p]+O
(

d−3/2
)

≤ dp

(1− cos(ε))p P
[

d
2ε

π
≤ N ≤ d−1

]
+

1
(1− cos(ε))p(1− 2ε

π
)p

+O
(

d−3/2
)

.

Now, by the large deviations principle satisfied by N/d, there is an i(ε) > 0 such
that P [N ≥ d2ε/π]≤ exp(−di(ε)). This ends the proof of (32).

Using the uniform integrability (32), and the fact that S̄d converges a.s. to 1, we

obtain that E
[

1
S̄d

]
and E

[
1

S̄2
d

]
both converge to 1, when d goes to infinity.
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Appendix: Proof of proposition 1.1.

Let f (x,y1, · · · ,yn) be a function in l2(Zd(1+n)) with ‖ f‖2 = 1, such that L1 f =
λ

(n)
1 (κ,ρ) f . Set f̃ (x1,x2,y1, · · · ,yn)= f (x1,y1, · · · ,yn) f (x2,y1, · · · ,yn) and y =(y1, · · · ,yn).

Note that

∑
x1,x2,y

f̃ 2(x1,x2,y) = ∑
y

(
∑
x

f 2(x,y)
)2

≤
(

sup
y

∑
x

f 2(x,y)
)
‖ f‖2

2 ≤ ‖ f‖4
2 .

Hence, f̃ is in l2(Zd(2+n)). A simple computation yields

4x1 f̃ (x1,x2,y) = f (x2,y)4x f (x1,y) , 4x2 f̃ (x1,x2,y) = f (x1,y)4x f (x2,y) ,

4y f̃ (x1,x2,y) = f (x2,y)4y f (x1,y) + f (x1,y)4y f (x2,y)
+ ∑

z∼y
( f (x1,z)− f (x1,y))( f (x2,z)− f (x2,y)) .

Since I2(x1,x2,y) = I1(x1,y)+ I1(x2,y), this leads to

L2 f̃ (x1,x2,y)= 2λ
(n)
1 (κ,ρ) f̃ (x1,x2,y)+ρ ∑

z∼y
( f (x1,z)− f (x1,y))( f (x2,z)− f (x2,y)) .

Therefore

λ
(n)
2 (κ,ρ)

∥∥ f̃
∥∥2

2 ≥
1
2
〈

f̃ ,L2 f̃
〉

= λ
(n)
1 (κ,ρ)

∥∥ f̃
∥∥2

2 +
ρ

2 ∑
y,z∼y

(
∑
x

f (x,y)( f (x,z)− f (x,y))
)2

∑y,z∼y (∑x f (x,y)( f (x,z)− f (x,y)))2 ≥ 0 and is equal to 0 if and only if for all y
and z ∼ y, ∑x f (x,y)( f (x,z)− f (x,y)) = 0. Inverting the role of z and y yields
∑x( f (x,z)− f (x,y))2 = 0, so that for all x, for all y and z ∼ y, f (x,z) = f (x,y).
Hence, for all x, y, f (x,y) = f (x,0). This is impossible since ‖ f‖2 = 1. Thus,
λ

(n)
2 (κ,ρ) > λ

(n)
1 (κ,ρ). ut

Appendix: Proof of the discrete Gagliardo Nirenberg inequality.

Proof for d = 1. One can assume that ‖ f‖2 < ∞. Otherwise there is nothing to
prove. Since ‖ f‖2 < ∞ we have lim|x|→∞ | f (x)|= 0, and for all x ∈ Z,
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f 2(x) =
x

∑
j=−∞

f 2( j)− f 2( j−1)

≤
+∞

∑
j=−∞

| f ( j)− f ( j−1)|(| f ( j)|+ | f ( j−1)|)

≤ 2
√

∑
j
| f ( j)− f ( j−1)|2

√
∑

j
f 2( j)

= 2‖ f‖2 ‖∇ f‖2 .

This is (27) with a constant equal to 2.
Proof for d = 2. Here again, one can assume that ‖ f‖2 < ∞, so that lim|x1|→∞ | f (x1,x2)|=
0. For all x1,x2 ∈ Z,

f 2(x1,x2) =
x1

∑
j1=−∞

f 2( j1,x2)− f 2( j1−1,x2)

≤
+∞

∑
j1=−∞

| f ( j1,x2)− f ( j1−1,x2)|(| f ( j1,x2)|+ | f ( j1−1,x2)|)

≤ 2
√

∑
j1

| f ( j1,x2)− f ( j1−1,x2)|2
√

∑
j1

f 2( j1,x2)

= 2‖ f (•,x2)‖2

√
∑
j1

|∇x1 f ( j1,x2)|2 := 2 f̃1(x2)

Similarly we have

f 2(x1,x2)≤ 2‖ f (x1,•)‖2

√
∑
j2

|∇x2 f (x1, j2)|2 := 2 f̃2(x1).

Therefore,

∑
x1,x2

f 4(x1,x2)≤ 4

(
∑
x2

f̃1(x2)

)(
∑
x1

f̃2(x1)

)
.

But,

∑
x2

f̃1(x2) = ∑
x2

‖ f (•,x2)‖2

√
∑
j1

|∇x1 f ( j1,x2)|2

≤
√

∑
x2

‖ f (•,x2)‖2
2

√
∑
x2

∑
j1

|∇x1 f ( j1,x2)|2

≤ ‖ f‖2 ‖∇ f‖2 .

The same is true for ∑x1
f̃2(x1), so that
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‖ f‖4
4 ≤ 4‖ f‖2

2 ‖∇ f‖2
2 .

This proves (28) with a constant equal to 2.
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9. Gärtner J., König W.: The parabolic Anderson model. In: Deuschel J.-D., Greven A. (eds.)
Interacting Stochastic Systems, pp. 153-179, Springer, Berlin (2005)
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