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Abstract
Stability assessmentmethods for dynamical systems have recently been complemented by basin
stability and derivedmeasures, i.e. probabilistic statements whether systems remain in a basin of
attraction given a distribution of perturbations. Their application requires numerical estimation via
MonteCarlo sampling and integration of differential equations.Here, we analyse the applicability of
basin stability to systemswith basin geometries that are challenging for this numericalmethod, having
fractal basin boundaries and riddled or intermingled basins of attraction.Wefind that numerical basin
stability estimation is stillmeaningful for fractal boundaries but reaches its limits for riddled basins
with holes.

1. Introduction

Going back to the path-breaking ideas of AleksandrMLyapunov, dynamical systems are said to be stable if small
variations of the initial conditions lead to small reactions of a system, i.e. small perturbations cannot
substantially alter the system’s time-asymptotic behaviour. This is commonly a statement about the asymptotic
behaviour, allowing for large transient deviations if only the system eventually returns to the initial
configuration.Multistable systemswith several attractors add another subtlety to the problem: perturbations
may lead to switching fromone attractor to another, substantially altering asymptotic behaviour [37].While
infinitesimal perturbations on an attractor have local effects well-studied in the theory of asymptotic stability,
finite (including large) perturbations can be critical by causing non-local effects like the transition to another
attractor.

A directmethod for assessing stability against large perturbations are Lyapunov functions [14, 27, 28], which
decrease along trajectories and have localminima on attractors. There are recent approaches to determine them
numerically e.g. from radial basis functions [7] or sumof squares decomposition (see e.g. [6] for a comparison of
differentmethods). From an analytic perspective, themethod of nonequlibriumpotentials [9, 10]determines a
special case of Lyapunov functions, namely potentials. This has the additional benefit of yielding transition
probabilities between attractors, which is not possible for Lyapunov functions in general. It has further been
shown, that nonequilibriumpotentials can be constructed for systemswith fractal basin boundaries [8, 15].
However, directmethods have in common that Lyapunov functions are typically difficult tofind, especially in
high dimensions. Furthermore, they return lower bounds on an attractor’s basin of attraction, hence it is not
possible in general to determinewhether a basin shrinks or growswith a parameter change.

Here, we put to test a recent alternative approach to consider non-local perturbations termed basin stability

S . The central idea [31, 32] is to use a kind of volume of the basin of attraction to quantify the stability of
attractors inmultistable systems subject to a given distribution of perturbations. An advantage of basin stability
is that it can be efficiently estimated even in high-dimensional systems and has an intuitive interpretation as a
probability to return to an attractor, but it relies on the correct identification of the asymptotic behaviour for a
Monte Carlo sample of initial conditions. Basin stability and derived concepts have been successfully applied

OPEN ACCESS

RECEIVED

5August 2016

REVISED

18November 2016

ACCEPTED FOR PUBLICATION

19 January 2017

PUBLISHED

2 February 2017

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2017 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aa5a7b
mailto:pschultz@pik-potsdam.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa5a7b&domain=pdf&date_stamp=2017-02-02
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa5a7b&domain=pdf&date_stamp=2017-02-02
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


recently [39], e.g. for power grids [19, 31, 40, 41], chimera states [29], explosive synchronisation [48] delayed
dynamics [25] and resiliencemeasures [34].

The idea of estimating a basin of attraction’s area already appears in earlier work, e.g. on the erosion of basin
boundaries under parameter variation [38, 43] termed global integritymeasureGτ. It is defined as the fraction
froma regular grid of initial conditions that don’t approach a neighbourhood of an attractor within a given time τ
[43]. Hence, the estimate of S ( ̂S ) andGτ are linked by ̂= -¥G S1 and our following discussion on
numerical estimation uncertainty also applies to the use case of basin integrity studies.

In numerical simulations, it can be difficult to correctly identify the asymptotic behaviour and determine the
attractors. The basin of attraction can practically be defined as the set of all initial conditionswhose trajectories
enter and stay in some trapping region [35]. Problemsmay arise if transients are long and chaotic or trajectories
stay close to basin boundaries for long, so that numerical errors canmove the simulated trajectory across a
boundary into awrong basin andmake the simulation converge to awrong attractor. Principally, three aspects
contribute to the overall estimation error: the standard error due to sampling initial conditions, approximation
errors in function evaluations or integration of differential equations, and rounding errors due to limited
precision.While sampling and approximation errors are controlled by increasing the sample size and the order
of approximating polynomials as well as by decreasing step size, rounding errors are typically hard to reduce,
which becomes a problem if they are of the same order ofmagnitude as the other error types. Stochastic systems
are additionally subject to the contribution of noise, with intricate effects on the evaluation of trajectories,
especially in fractal phase space geometries [22, 44].

Our study thus focuses on the critical case of systemswhere rounding errors cannot be neglected andmay
even dominate the overall error due to an intricate state space geometry highly sensitive to numerical
imprecision.We put basin stability estimation here to the test by applying it to systemswith fractal basin
boundaries and riddled or intermingled basins of attraction.

2.Methods

2.1. Basin stability
Consider a systemof ordinary differential equations

˙ ( ) ( )=x F x t, 1

that hasmore than one attractor in its state space X . Here, we define an attractor as aminimal compact invariant
set ÍA X whose basin of attraction has positive Lebesguemeasure [33]. The basin of attraction of A is the set

( ) ÍB A X of all states fromwhich the system converges to A. Note that in this definition byMilnor, we do not
require A to posess an attracting neighbourhood, i.e. to be asymptotically stable. In this sense, also unstable
attractors [46] that are separated from their basins of attraction fall into this definition.

Assume the systemmoves on an attractor A, yet at t=0 a randomand not necessarily small perturbation
pushes the system to a state x(0) outside A. Assume that x(0) is drawn froma probability distributionwith
measureμ on X that encodes our knowledge about the frequency of relevant perturbations. E.g.,μmay be a
uniformdistribution on some bounded region ÉR A. Note thatμ is generally not invariant under a change to
the coordinate system.

Will the system converge back to A after the perturbation?To address this, the recent concept of basin stability
[31, 32] computes the probabilitymeasure of B,

( ) ( ( ))

[ ] ( )( )
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i.e., the probability that the systemwill return to A. The indicator function ( )( ) x1B A yields 1 if ( )Îx B A and 0
otherwise.We use ( )S A to quantify just how stable the attractor A is against non-infinitesimal perturbations.

The estimation of volume integrals such as equation (2) in high dimensions is awell-knownproblem, andwe
assume this is done by simpleMonte Carlo sampling [5, 47]. If for each initial state x(0), one can numerically
integrate the system x(t)with sufficient precision to decide towhich attractor it converges (orwhether it
diverges), the S estimation procedure is thus:

(i) Draw a sample of >N 0 independent initial states from the distributionμ.

(ii) For each, numerically integrate the systemuntil it is clear whether andwhere it converges.

(iii) Count the numberM of times the systemhas converged to A.

(iv) Use the estimate ̂ =S M

N
.
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Since this is anN-times repeated Bernoulli experiment with success probability S , the absolute standard
error of the estimate ̂S due to sampling is ( )( ( )) -S A S A N1 , independently of the system’s dimension.
Thus, the procedure can be applied to high-dimensional systemswithout necessarily increasing the sample size
N, although itmay take longer to assess convergence. This is of course sincewe are not interested in the basin of
attraction’s geometry but only in its volumew.r.t. themeasureμ.

Note that when the relative std. err. of ̂S ismore relevant than the absolute std. err., smaller values of ( )S A
require larger sample sizes, of the order ( )~N S A1 , since for small ( )S A , the rel. std. err. is ( )~ NS A1 .
The divergence of the sample size for very small probabilities to be estimated (i.e. rare attractors with a small
basin of attraction and SB (A)<<1) is a commonproblemwhere (simple)MonteCarlomethods are likely to fail
[5]. However, even if ( )S A is not small, the geometries of themultiple basins of attractionmay stillmake the
estimation of S difficult for another reason: for some initial conditions x(0) itmay be quite difficult to decide
where x(t) converges to, since the trajectorymay start or come quite close to the boundary between the different
basins. Consequently, approximation and rounding errors (rather than sampling errors) in the integrationmay
become relevant andmaymake the simulated trajectory hop across a basin border, leading to awrong
assessment of where x(t) actually converges to.

2.2. Challenging types of basins
Particularly, a correct convergence assessment becomes difficult if the basins have fractal boundaries,
influencing the predictability of a system’s behaviour in the long run [13, 30, 35]. Imaginewe randomly draw
initial states from a box throughwhich the boundary between the basins of two attractors runs. Suppose each
initial state is specified up to a certain numerical error e. Then for an initial state that is closer to the boundary
than e, it is uncertain towhich of the two attractors the systemwill converge. Denote by ( )ef the fraction of
initial states for which the outcome is uncertain subject to an initial error e, i.e. the uncertainty fraction [11, 30]. If
the boundary is a smooth curve, then these states are all located inside a strip of width e2 along this curve, and

( )ef is just proportional to e. However, if the boundary is fractal, then ( )e eµ af . If a < 1, the system exhibits
final state sensitivity, i.e., to decrease the uncertainty one needs a substantial improvement in the knowledge of
initial conditions. In away, this power law scaling leads to an obstruction of predictability [11] very similar to the
sensitive dependence on initial conditions in chaotic systems.

Predicting the long-termbehaviour—the essence of estimating ( )S A —of systemswith fractal basin
boundariesmay be hard [30] although generally, formost initial conditions, thefinal state sensitivity ismuch
smaller than the unpredictability of the actual trajectory.

Another extreme case are attractors whose basins are not open as formost systems [33] but rather have an
empty interior. The complement of such a riddled basin intersects every disk in a set of positivemeasure
[1, 21, 23, 36]. Thismeans that all points in its basin of attraction have pieces of another attractor basin arbitrarily
closely nearby [36]. Physical systems exhibiting riddled basins are the damped, periodically-driven particle
moving in a special potential landscape [45] or coupled time-delayed systems [2, 4, 16]. There are also
experimental observations for laser-cooled ions in a Paul trap [42] indicating a riddled phase space structure. It
has been shown that riddled basins of attraction can also be induced by the addition of noise to the dynamics
[22]. For an extensive discussion on riddled/intermingled basins of attraction and fractal basin boundaries, a
review appeared in [24].

To investigate the behaviour of the estimation procedure, we study two quite different exemplary systems,
the continuous-timeWada pendulumwith fractal basin boundaries and the discrete-time quadraticmap on the
complex planewith riddled/intermingled basins of attraction.

3. Results

Let usfirst investigate how fractal basin boundaries impact the accuracy of ̂S by studying theWada pendulum
[3, 12]. Consider a damped, driven pendulum that is subject to a time-dependent forcing:

( )



f w
w aw f
=
= - -X t K

,

cos sin . 3

For a = =K0.1, 1and =X 7 4, this systemhas several attractors [18]. The four dominant of them, all
limit cycles with period p2 , are shown infigure 1(a): the black and red attractors correspond to rotations of the
pendulum, and the orange and yellow attractors are librations. Their respective basins of attraction at t=0 are
shown infigure 1(b). Certain regions in this figure appear sprinkledwith dots belonging to the different basins,
i.e. the boundary between the basins is not easily discernible and remains sowhen zooming in (figure 1(c)). It is a
fractal, resulting in this case from the so-calledWada property of the basins.
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Figure 1.Damped pendulumwith fractal basin boundaries. Damped pendulumwith fractal basin boundaries. (a)Attractors of the
damped pendulumwith time-dependent forcing from equation (3). (b) State space of the pendulum at t=0. Black/red/orange/
yellow colouring indicates convergence to the black/red/orange/yellow attractor. Convergence to other attractors is indicated by
white colouring. (c)Detail of dashed square from (b).

Figure 2.Basin stability in the pendulumwith fractal basin boundaries. (a)Numerical integrations for a fixed set of fifty initial states at
different values of the numerical precision p. The squares in each column correspond to the same initial state, and their respective
colours indicate which state the system converges to from there at given precision p. Black/red/orange/yellow colouring indicates
convergence to the black/red/orange/yellow attractor. The arrows highlight a selection of initial conditions forwhich ̂S is rather
uncertain. (b)Estimated basin stability ̂S of the four attractors at different levels of p usingN=1000. The basin stability of the black/
red/orange/yellow attractor is shown by the height of the black/red/orange/yellow bar. The grey shadows indicate the standard error
of ˆ ( ) =S p 16 .
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Three (ormore) subsets of a space are said to have theWada property if any point on the boundary of one
subset is also on the boundary of the two others [18, 35]. For the pendulum, the black basin, the red basin and the
union of the orange and yellow basins have theWada property [18, 35]. Thismeans that starting within the
rounding error e of the boundary, a trajectory could in principle converge to any of the four attractors.

To verify this empirically, wewrite e = -10 p with p denoting precision, and discard all information after the
pth significant decimal digit in the floating point variables used in all individual operations of the numerical
integration.We use 64 bit double precision to allow for amaximumof p=16, while using untruncated 32 bit
single precisionwould correspond to »p 7. For different values of p, we integrate afixed set of 50 initial states
x(0), drawn uniformly at random from the rectangle [ ] [ ]p p= - ´ -R , 2, 4 . The integration stopswhen a
trajectory is close to an attractorwithin the given precision.

Figure 2(a), reveals that some initial states, particularly those indicated by arrows, indeed lead to different
outcomes for different values of p. To investigate how ̂S depends on p, we letμ be the uniformdistribution on R
yielding a sample ofN= 1000 random initial states which are integratedwith different precision p, leading to
estimates ˆ ( )S p . As depicted infigure 2(b), there seems to be no systematic influence of p on ˆ ( )S p . Indeed,

most of the individual values of ˆ ( )S p are within one standard error of themost precise value ˆ ( )S 16 . This

suggests that, in contrast to long-termprediction for individual initial states (seefigure 2(a)), ̂S is robust under
variation of p.

In the following, we investigate the impact of riddled basins of attraction on ̂S using a conceptual example
[1, 26], i.e. the following quadraticmap on the complex plane:

( ) ( ) ¯ ( )l= - +lF z z z1 i . 42

Following the treatment in [1], we study themap for l = 1.02871376822. Thismap has three different
attractors on the complex planewhich are shown infigure 3; for simplicity they are referred to as the red/blue/

Figure 3. Intermingled basins of the quadraticmap. (a)Phase space portrait of the three attractors (red/blue/purple line segments) of
themap (equation (4))with their intermingled basins of attraction coloured alike. The black area corresponds to initial conditions for
which the dynamics diverge. Below are zoom-ins of two regions, (b) and (c). The locations of the attractors (line segments, see [1] are
highlighted by red/blue/purple bars (not in scale).
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purple attractors with their respective basin of attraction in the following. Interestingly, the three basins of
attraction are not just riddled, they are intermingled. A basin of attraction is called intermingled if any open set
which intersects one basin in a set of positivemeasure also intersects each of the other basins in a set of positive
measure [17, 20].

The fact that there is a positive probability to end up in a different attractor around each initial condition
inside a riddled/intermingled basin of attraction renders these systems effectively non-deterministic [45]. As in
the case ofWada boundaries, slight variations of initial conditions or numerical imprecisionwill affect any
forecast of the system’s long-term behaviour.

Again, we investigate the effect of limited numerical precision on the significance of ̂S . Infigure 4(a)we
depict the result of estimating S for varying p using [ ] [ ]= - ´ -R 1.8, 2.4 2.4, 1.8 , i.e. the region pictured in
figure 3(a).We observe a large variation of ̂S of up to 50% compared to themost precise estimation ˆ ( )S 16 and
no systematic dependence on p.

Infigure 3(c)we zoomed into the neighbourhood of the red attractor, where the share of the corresponding
red basin is increasing in proximity of the attractor. In particular, themeasure of this basin of attraction,
restricted to an ò-neighbourhood of the attractor, approaches unit probability for   0 [1]. This apparent
behaviour provides an explanation forfigure 4(c)wherewe determined ˆ ( )S p forfigure 3(c). In contrast to our
previous observation, the fluctuations of ˆ ( )S p almost stay within one standard error and the estimation

appears to bemore robust. For reference, figure 4(b) depicts ˆ ( )S p forfigure 3(b)not containing any (part of) an
attractor. On the one hand, the variation of ˆ ( )S p exceeds one standard error, up to about 20% compared to
ˆ ( )S 16 , such that our estimation ismore sensitive to numerical imprecision than infigure 4(b); on the other
hand the variations are smaller than in ourfirst experiment.

4.Discussion

Weapplied theMonte Carlo estimation procedure of basin stability in two cases, basinswith fractal boundaries
and riddled/intermingled basins of attraction. In the fractal boundaries case, wefind that while the asymptotic
properties of individual trajectories still cannot be determined robustly, the converse is true for the basin stability
estimation. It remains an open question for future research, how exactly (in a quantitative sense) the numerical
estimation uncertaintymight be derived from the actual basin geometry. In the riddled/intermingled case,

Figure 4.Basin stability estimation for the quadraticmap. (a) ̂S of the the red/blue/purple attractors at different levels of p, using
[ ] [ ]= - ´ -R 1.8, 2.4 2.4, 1.8 . (b) ̂S with R corresponding tofigure 3 inset (1), (c) ̂S with R corresponding to figure 3 inset (2).

The basin stability is shown by the height of the red/blue/purple bar, the grey shadows indicate the standard error of ˆ ( )S 16 .
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however, we find that the results can vary drastically with the chosen precision. The effect of rounding errors is
comparable or even larger than the standard error of the sampling. Only if the sample region R is chosen in some
sense ‘close enough’ to the actual attractor of interest, the foliated structure of the surrounding basins allows for
ameaningful numerical estimation.

While we here study the effect of small numerical errors on the asymptotics in deterministic systems, a
somewhat complementary work [44] considers the effect of noise on transient properties, i.e. the escape
probability from a constrained region. As this example shows, it is an interesting aspect for further research to
combine these approaches and study the additional effect of noise onfinal state determination.

In our two prototypical examples, the phase space dimension is low, i.e. two and three, while basin stability
estimation is especially advantegous in high-dimensional systems compared to complementarymethods (e.g.
Lyapunov functions). Given that the phase space dimension does not affect the standard error of the estimation
process, we have no reason to assume a different behaviour between low andhigh dimensions. Conversely, we
expect that estimation problems inherent to our examples and strategies to copewith them equally apply to
high-dimensional systems and are important to be considered in future research.

5. Conclusion

What are practical implications for the application of basin stability? In general, it is sufficient if the rounding
error of an estimation is smaller than its sampling error to get a significant result. However, any numerical
procedure is subject to afinite numerical precision andwe have to assume that in practice it will not be high
enough to reach this goal in dynamical systemswith intricate basin geometries. If there is no prior knowledge
available, a good starting point is to actually visualise the interesting part of the phase space to get afirst idea of
the appearance of, e.g., fractal sets. If any are detected, it is necessary to use the highest available numerical
precision ph to get ˆ ( )S ph , potentially avoiding artefacts respectively insignificant estimations.We suggest to

repeat the S estimation at a lower numerical precision pl and take the difference ˆ ∣ ˆ ( ) ˆ ( )∣ = -e S p S pp h l as a

straight-forward (rough) estimator of the variability of ˆ ( )S p with p and, byway of extrapolation, as a rough

estimate of the remaining standard error of ˆ ( )S ph as an estimate of S due tofinite numerical precision. To

assess the influence of rounding errors on ̂S then compare êp with the standard error of ˆ ( )S ph as an estimate of

( )S ph due to sampling, which can be estimated as ˆ ˆ ( )( ˆ ( )) = -s S p S p N1p h h . If ˆ ˆ<e sp p, rounding has no
significant effect on the estimation quality. For instance, this could be implemented by comparing the results at
double and single precision computations.
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