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AbstratWe study the almost reversible storage proess of harging and dishargingof lithium-ion batteries. That proess is aompanied by a phase transitionand harging and disharging run along di�erent paths, so that hysteretibehavior is observed.We are interested in the storage problem of the athode of a lithium-ion bat-tery onsisting of a system of many iron phosphate (FePO4) partiles. Thereare mathematial models, see [2℄, [3℄ and [4℄, that desribe phase transitionsand hysteresis exlusively in a single storage partile and they an desribethe observed hystereti voltage-harge plots with almost horizontal plateaus.Interestingly the models predit that the oexistene of a 2-phase system inan individual partile disappears, if its size is below a ritial value. The dis-appearane of the phase transition in the single partile model implies thedisappearane of the hysteresis. However, in the experiment hystereti behav-ior survives. In other words: The behavior of a storage system onsisting ofmany partiles is qualitatively independent of the fat whether the individualpartiles itself develop a 2-phase system or if they remain in a single phasestate.This apparent paradoxial observation will be resolved in this artile by amany partile model. It will be shown that if eah of the individual partilesis in a homogeneous state, nevertheless the many partile ensemble exhibitsphase transition and hysteresis, beause one of the two phases is realized insome part of the partiles while the remaining partiles are in the other phase.Mathematially speaking this phenomenon is due to the non-monotoniity ofthe relation between the hemial potential and the lithium mole fration.The pressure-radius relation of a spherial elasti rubber balloon also ex-hibits non-monotone behavior. In fat, a system of many interonneted bal-loons behaves orrespondingly to a athode onsisting of many storage par-tiles. This analogy between the two systems is important, beause the pre-ditions of the many partile model an easier be tested with rubber balloonsof marosopi size than with an ensemble of mirosopially small (FePO4)partiles.1 Introdution and basi funtionality of reharge-able lithium-ion batteriesCurrently rehargeable lithium-ion batteries are the most promising storage systemsfor eletrial energy. 1



The harging and disharging proess is aompanied by a phase transition andit exhibits hystereti behavior, whih is desribed in a harateristi diagram, seeFigure 1, that gives the voltage of the battery ell versus its total harge.

Figure 1: Voltage versus harge per mass of a FePO4 athode [2℄The athode of lithium-ion batteries is designed as a storage system for lithiumatoms, whih onsists of many small iron phosphate (FePO4) rystalline partilesforming a layer on a substrate. The interstitial lattie sites of FePO4 serve to storethe lithium atoms. In the fully harged state of the battery, there is no lithium inthe storage system while it ontains the maximal possible number of lithium atomswhen the battery is fully disharged.We onsider two versions of a simpli�ed battery ell as they are skethed in Figure 2.The devie on the left hand side of Figure 2 ontains a many-partile storage system,whereas on its right hand side the athode onsists of a single storage partile. Bothversions onsider the storage partiles as small spheres of about 50 nm diameter,thus these are not of marosopi size. Figure 2 also indiates the proesses in a

Figure 2: FePO4 partiles against an metalli Li anode within an eletrolyte.lithium battery during disharging and harging. During disharging eletrons leavethe anode to travel through an outer iruit. The remaining positive lithium ions2



leave the anode and move through the eletrolyte towards the athode, where theyreombine with the inoming eletron at the arbon oated surfae of the storagepartiles.In a single storage partile we have the following situation. For small lithium ontent,the lithium atoms form a single phase that we all α-phase. However, if the lithiumontent of the storage partile exeeds a ertain value and if the partile is nottoo small, the formation of a seond phase, β-phase, sets in. The single partilemodel predits that the voltage remains onstant in the oexistene region of thetwo phases, see Figure 1.A further phenomenon that ours is a reversible and elasti hange of the partilevolume during harging and disharging, whih is due to the fat that the lithiumatoms need more spae as is available by the interstitial lattie sites in FePO4.During lithium storage the volume typially hanges up to 6%.The mathematial model, that were proposed in [2℄, [3℄ and [4℄, desribe phasetransitions and hysteresis exlusively in a single partile. On that basis they areable to show that the observed horizontal plateaus an be a onsequene of theoexistene of two phases whih di�er by high and small lithium onentrations ina single partile. Further theoretial studies on the evolution of lithium atoms in asingle partile system by Han et al. [7℄, Srinivasan and Newman [15℄ also rely onthis phenomenon, whih is experimentally investigated by Yamada et al. [18℄.Surprisingly there is the following observation. When the size of an individualpartile beomes too small the oexistene region vanishes and the partile remainsin a single phase state. This fat is observed in experiments, see Wagemaker et al.[17℄, and it also results from the model equations in [2℄, [3℄ and [4℄.However, in the experiment hystereti behavior survives. The key idea to explainthis strange behavior relies on the fat that in the experiment we always meet amany partile athode.Delmas et al. [5℄ report on detailed experimental observations onerning the state-ment of Wagemaker et al. [17℄. They study an ensemble of storage partiles withsizes within the range from 80 nm to 150 nm. Here they exlusively found partileseither in α- or in β- phase. This fat lead them to the onjeture that only few par-tiles are in the state of two oexistent phases. They develop an interesting model,that desribes the mehanism of the phase transition in a many storage partilesystem. In the urrent study we propose a mathematial model that is apable topredit the observations by Delmas et.al. in a very natural way.We will show that the non-monotoniity of the hemial potential funtion withrespet to the lithium onentration of a single storage partile implies the hysteretibehavior of a many partile system, where its members are single phase storagepartiles.A similar non-monotoniity ours in the paper on rate independent hysteresis byTruskinovski and Puglisi in a di�erent ontext. They aim to explain hysteretiphenomena in shape memory alloys on a mirosopi basis, [14℄. Their mirosopi3



model is a one-dimensional hain of N osillators, where eah osillator is equippedwith a non-monotone stress-strain relation. Further di�erenes to the study of thispaper are boundary onditions during the yling of the hysteresis loop and themathematial treatment.The same subjet is urrently under investigation by Mielke and Truskinovski, [11℄.In order to redue the neessary assumptions whih are needed in a quasi-statitreatment of the problem. The authors rely their new reasoning of the behavior ofthe hain model aording to an evolution law, and in addition to the non-monotonestress-strain relation they provide the osillators with visous elements and stohas-ti behavior.The analysis of a many partile system, where eah partile is equipped with un-stable states between two stable states, has already been started in 1982 by Dreyer,Müller and Strehlow, [6℄, where the equilibria of two interonneted spherial andelasti rubber balloons were studied. That problem was generalized to N > 2 inter-onneted balloons by Kitshe, [8℄ in his diploma thesis, and the results, whih forma omplete analogy to the urrent problem and to Truskinovski and Puglisi, werepublished in [9℄ in 1987, see also Chapter 5 for a detailed disussion of the analogybetween the behavior of the many partile athode of a lithium-ion battery and alarge number of interonneted rubber balloons.The paper is organized as follows: In Chapter 2 we introdue the basi properties ofthe storage partiles. Chapter 3 introdues the thermodynami model. Chapter 4 isaddressed to the detailed exploitation of a simpli�ed model for lithium storage. Herewe numerially illustrate the various phenomena and arry out the mathematialanalysis. Finally we have added a small Chapter 5, where we explain the intimateanalogy between the many partile storage problems and the problem of the in�ationof many onneted rubber balloons.2 Crystal struture and basi variables of the hostsystemsIn this hapter we desribe the rystal struture of the FePO4 and identify the basivariables that are needed to desribe the thermodynami state of the storage system.However, for the purposes of the urrent study we will end up with a simpli�eddesription, and we refer the reader to the given itations for the omplete and morepreise details.2.1 Crystal struture of FePO4 for lithium storageThe rystal lattie of an FePO4 partile is illustrated in Figure 3. The FePO4 unitsare indiated by yellow (Fe), pink (P), red (O) and the green balls are the interstitiallattie sites that an be oupied by the lithium atoms. The deformation of the4



Figure 3: FePO4 struture. Yellow: Fe, pink: P, red: O, green: interstitial sites.From [10℄lattie during the loading of the storage system with lithium atoms is desribed indetail by T. Maxish and G. Ceder in [10℄. The undeformed rystal has orthorhombiolivine symmetry. In this state the sublattie, formed by the interstitial lattie sites,is ompletely empty. To eah unit of FePO4 there orresponds one single site in thesublattie. The olivine struture does not hange during the oupation of thesublattie sites by lithium atoms. When these are supplied or removed throughthe external boundary, there is a deformation of the olivine struture, beause thelithium atoms need more spae as is available by the sublattie sites. Thus therystal volume hanges if the number of lithium atoms is hanged. Moreover thesti�ness oe�ients hange.2.2 Basi variables for lithium storageThe number NM of FePO4 units, whih form the matrix lattie, is �xed. Thus weassume that there is no di�usion in the matrix lattie but it is deformed, and forsimpliity we only take the hange of its volume V into aount and ignore deviatoristresses, see [2℄ onerning the omplete mehanial desription.On the sublattie of a partile we have NLi lithium atoms and NV vaanies. Thelatter indiate the empty lattie sites, whih do not have mass or momentum butthey are arrier of energy and entropy. Sine there is a single sublattie site to eahFePO4 unit, we have the side ondition
NM = NLi +NV. (1)Thus for given temperature T , the basi variables of the lithium storage problemare V , NM and NLi. For the loal desription we introdue the mole densities nM,

nLi and nV whih have units mole/m3. Note that nM hanges beause the volume
V may hange, whereas NM is onstant.
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3 A piee of thermodynamis of the storage parti-lesIn this hapter we introdue those basi fats of thermodynamis that are needed.3.1 Thermodynamis of a single storage partileGlobal inequality. We onsider a single FePO4 partile, see Figure 2. For onstanttemperature and �xed external pressure or �xed volume the 1st and 2nd law ofthermodynamis imply for a system, that does not exhange lithium atoms with thesurrounding, the temporal inequality
dA

dt
≤ 0 with A = Ψ + p0V. (2)The quantity A is the available free energy of the storage partile, whih oupiesa spatial domain Ω(t), and it is given by the (Helmholtz) free energy Ψ plus outerpressure p0 times the total volume V of the partile, provided that the kineti energyis ignored.In equilibrium the equality sign holds, whereas the available free energy must exlu-sively derease in non-equilibrium. Possible equilibria are thus determined by theminima of A.The appliation of the inequality (2) to the ases at hand requires some disussion inadvane. Whatever the initial state of the storage partile is, the inequality desribesthe evolution of that state to equilibrium, provided, that the given side onditions aresatis�ed. In this study we are interested in proesses that are indued by loadingand unloading of the storage partile with lithium atoms. Thus the onsideredsystem does exhange matter with the surrounding. In this ase the form (2) of thethermodynami inequality is only appliable for quasi-stati loading and unloading.This means that the interior proesses run on a muh faster time sale than theevolution of NLi(t).Free energy density, hemial potentials, pressure, Gibbs equation andGibbs-Duhem equation. The total free energy Ψ of a storage partile is anadditive quantity that an be written as

Ψ =

∫

Ω

ρψ dx. (3)Here ρ is the mass density and ψ denotes the spei� free energy of the partile.We have ρ = mMnM + mLinLi = nM(mM + mLiy), where mM and mLi are themoleular masses of FePO4 and Li, respetively, and y = nLi/nM gives the lithiummole fration.The spei� free energy is given by a onstitutive funtion that relates ψ to thetemperature T , whih is a onstant in this study, and to the mole densities nLi, nV6



of lithium and vaanies. Sine we have nM = nLi + nV, the latter dependene analso be desribed by the lithium mole fration y and the mole density of the matrixunits nM:
ψ = ψ(T, nLi, nV) = ψ̃(T, y, nM). (4)The representation via the funtion ψ̃ simply results from a transformation of thevariables.The free energy density satis�es the Gibbs equation and the Gibbs-Duhem equations,see [1℄ and [12℄. These read

dρψ = −ρsdT +
∑

a∈(Li,V)

µadna and p = −ρψ +
∑

a∈(Li,V)

µana, (5)where the newly introdued quantities are the hemial potentials µa and the pres-sure p. From (5) and by an easy alulation we obtain the onstitutive relations
µa =

∂ρψ

∂na

, µLi − µV = mLiψ̃ + (mM +mLiy)∂ψ̃
∂y

, p = −ρψ̃ + nM ∂ρψ̃
∂nM . (6)The representations (6) are of entral importane in the following.3.2 The available free energy of a many partile systemNow we onsider the many partile problem as indiated in Figure 2left. The on-sidered system ontains N storage partiles, indexed by l ∈ 1, 2, ..., N . A storagepartile l has the volume V l, N lM FePO4 units forming the matrix lattie and N lLilithium atoms on the interstitial lattie. The further haraterization of the manypartile ensemble relies on three onditions.(i) We assume that eah partile is in a homogeneous state.(ii) The number N lM of matrix moleules (FePO4) is onstant and the same foreah storage partile N lM = N1M, l = 1, . . . , N .(iii) The unloaded partiles all have the same volume V l = V̄ , l = 1, . . . , N andthus the same mole density n̄M.The available free energy for the N partile system is given by

A =
N
∑

l=1

∫

Ωl

ρlψl dx+ V p0 =
N
∑

l=1

V l(ρlψl + p0) (7)where V =
∑N

l=1 V
l is the total volume of the system.

7



Furthermore we introdue the total numbers of matrix units and of lithium ontentof the ensemble.
N lM = nlMV l = n̄MV̄ , N lLi = nlLiV l, (8)
NM =

N
∑

l=1

N lM = Nn̄MV̄ , NLi =

N
∑

l=1

N lLi (9)The marosopi �lling degree q = NLi/NM denotes the overall loading state of thesystem, whih an be written as
q =

∑N
l=1N

lLi
NM =

1

N

N
∑

l=1

yl . (10)Neessary onditions for equilibria. Aording to (4), (7) and (8)1 the availablefree energy A depends on the variables (yl, nlM)l∈{1,2,...,N}. Reall that we study thequasi-stati ase. We thus seek for equilibria at given �lling degree q. We get ridof the ondition (10) by the introdution of a Lagrange multiplier λ. There are twokinds of neessary onditions for equilibrium:
∂A∗

∂nlM = 0 ,
∂A∗

∂yl
= 0 with A∗ = A− λ(

N
∑

i=1

yi −Nq) . (11)The onditions (11)1 and (11)2 determine mehanial equilibrium respetively hem-ial equilibrium, and by means of (7) and (6) we obtain for mehanial equilibrium
p(yl, nlM) = p0 for all l = 1, . . . , N , (12)where p0 is the external pressure on the partile surfaes, and for hemial equilib-rium

µLi(yl, nlM) − µV(yl, nlM) = µLi(yN , nNM) − µV(yN , nNM) (13)for all l = 1, . . . , (N − 1). Later, we will see that this ondition implies that thevoltage of all partiles is the same.The expliit evaluation of the neessary onditions for equilibrium requires onsti-tutive equations for the spei� free energies.3.3 Simpli�ed version of expliit onstitutive equationsSetion 3.1 reveals that the expliit knowledge of the spei� free energy allows toalulate the hemial potentials and the pressure as well. The strategy to deter-mine the spei� free energy, i.e. ψ = ψ(T, nLi, nV) = ψ̃(T, y, nM), relies on theobservation that we may additively deompose ρψ into a hemial and a mehanialpart:
ρψ = ρψ̃hem(T, y, nM) + ρψ̃meh(T, y, nM) with ψ̃meh(T, y = 0, n̄M) = 0. (14)8



The motivation of that deomposition relies on the fat, that our knowledge on thetwo ontributions to the free energy originates from di�erent soures.Constitutive funtions for the pressure. The storage partiles are assumed tobe elasti with mis�t strain, whih is due to the variation of their volume duringloading and unloading. The mis�t strain is given by h(y) = 1/(1 + δy) with δ =
(Vmax−V̄ )/V̄ , and a simple onstitutive law for the pressure p of a partile is assumedto be given by

p = p̄+K(y)

(

nM
n̄M − h(y)

)

. (15)We have δ ≈ 0.067 for lithium storage. p̄ is the referene pressure, Vmax denotesthe volume of a storage partile with maximal loading and V̄ denotes the referenevolume, whih is assumed by an unloaded partile. Finally K(y) denotes the on-entration dependent bulk modulus. However, that dependene will be ignored hereand so K is a onstant.Mehanial part of the free energy. By integration of (6)3 we obtain themehanial part of the free energy density of the partiles
ρψ̃meh = (pR −Kh(y))

(

nM
n̄Mh(y) − 1

)

+K
nM
n̄M log

(

nM
n̄Mh(y)), (16)where the integration onstant is hosen so that ρψmeh(y = 0, nM = n̄M) = 0.Chemial part of free energies. We use here the same non-onvex onstitutivelaw as in [2℄, whih takes entropy of mixing and the heat of solution into aount.It reads

ρψ̃hem = nMLf(y) (17)with
f(y) = y(1 − y) +

RT

L
(y log y + (1 − y) log (1 − y)), (18)where L > 0 is the onstant heat of solution.Chemial potentials. In order to alulate the hemial potentials we onstrutfrom the above at �rst the funtion ψ(T, nLi, nV), and then we use (61) to obtain

1

L
µLi = f(y) + (1 − y)f ′(y)+

b1

(

log
( nM
n̄Mh)− h′

h

(

1 −
n̄Mh
nM )(1 − y)

)

+ b2

(

1 −
h′

h
(1 − y)

)

1

h
, (19)

1

L
µV = f(y)− yf ′(y)+ b1

(

log
( nM
n̄Mh)+

h′

h

(

1 −
n̄Mh
nM )y)+ b2

(

1 +
h′

h
y

)

1

h
. (20)The newly introdued onstants b1 = K/(n̄ML) and b2 = p̄/(n̄ML) ontrol thestrength of mehanial in omparison to hemial ontributions.Voltage of the battery ell in terms of hemial potentials. The simplebattery ell that is studied here ontains an anode made from metalli lithium.9



This fat and the additional assumption that the eletrolyte has in�nite lithium ionondutivity implies a simple relation between the ell voltage U and the di�erene
µ = µLi − µV of the involved hemial potentials. It reads

U = −
µ

e
+ U0 , with the useful identity µ =

1

nM ∂ρψ̃∂y . (21)where e denotes the harge of an eletron, U0 is the basi ell voltage, and (21)2follows from (6)2 by a simple alulation.3.4 Exploitation of mehanial equilibriumIn omparison with hemial proesses, mehanial equilibrium is muh faster es-tablished, so that it is reasonable to assume that the storage system is in mehanialequilibrium at any time. This assumption implies a large simpli�ation of the avail-able free energy, and we shall thus exploit mehanial equilibrium in advane beforewe disuss the hemial equilibria in detail.For eah single FePO4 partile with index l ∈ 1, 2, .., N we have aording to (12)and (15)
p(yl, nlM) = p0 implying K

(

nlM
n̄M − h(yl)

)

= p0 − p̄, (22)whih gives the funtion nlM = n̂M(yl).4 The many partile system in detail4.1 Charaterization of equilibriaFor instantaneous mehanial equilibrium, exploited in 3.4, the available free energy(7) redues to
A(y1, . . . , yN−1, q) =

NM
N

N
∑

l=1

(

1

n̂lMρlψ̃l +
p0

n̂lM) =
NM
N

N
∑

l=1

F (yl) (23)with the side ondition
yN = Nq −

N−1
∑

l=1

yl . (24)The abbreviation F (y) = 1
nM (ρψ̃ + p0) simpli�es the further disussion.The available free energy has a loal minimum at any equilibrium point. If the �llingdegree q is �xed, the neessary onditions for equilibria are now exlusively given by

0 =
∂A

∂yl
=
NM
N

(

µ̂(yl) − µ̂(yN)
) for all l = 1, . . . , N − 1 . (25)10



Here the hemial potential funtion µ̂ is given by µ̂(y) = µ(y, n̂M(y)) = dF
dy
.Aording to (21) we onlude from (25) that eah partile has the same voltage.In order to selet only solutions of (25) that are equilibria, the Hessian H

Hlk :=
∂2A

∂yl∂yk
=

NM
N

(

∂µ̂

∂y

∣

∣

∣

y=yl
δlk +

∂µ̂

∂y

∣

∣

∣

y=yN

)

. (26)must be positive de�nite. The Hessian of A(·, q) an also be positiv semi de�nite,and then further investigations must be made.The ruial point now is, that the hemial potential µ̂ is a smooth non-monotonefuntion. We assume that F and the hemial potential µ̂ satis�es the assumptions:(A1) F ∈ C2((0, 1); R) ∩ C([0, 1]; R)(A2) There exist y∗, y∗ ∈ (0, 1) with y∗ < y∗, so that µ̂ is stritly dereasing in theinterval [y∗, y
∗] and stritly inreasing else.(A3) lim

yց0
µ̂(y) = −∞ and lim

yր1
µ̂(y) = +∞ .(A4) µ̂′ is stritly onvex.The assumption (A4) an be replaed by the weaker assumption(A4') For all y ∈ (0, 1) we have µ′(z) = 0 ⇔ z ∈ {y∗, y

∗}.We only use assumption (A4) to keep the proofs simple. Note that aording to (21)2the hemial potential µ̂ satis�es the assumptions, and its struture is illustrated inFigure 4.
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Next we de�ne the set of equilibria onMq := {z ∈ [0, 1]N−1 | 0 ≤ Nq−
∑N−1

l=1 zl ≤ 1}as
ΛN

q :=
{

y ∈ [0, 1]N | (y1, . . . , yN−1) loal minimum of A(., q) on Mq,

yN = Nq −
N−1
∑

l=1

yl and yi ≤ yi+1
}

.
(27)In order to ignore permutations the partiles of equilibrium states are sorted aord-ing to the mole frations.The assumption (A3) implies that no loal minimum of A(·, q) lies on the boundaryof [0, 1]N for q 6∈ {0; 1}. Let q ∈ (0, 1) be �xed and y ∈ ΛN

q . Then there must bepartile indies i, j ∈ {1, . . . , N} so that yi < 1 and yj > 0. Let us assume, thereexists an index k ∈ {1, . . . , N} so that yk = 1. The assumptions (A1),(A3) implythat the funtion f ∈ C1((0, δ); R) ∩ C([0, δ]; R), de�ned by
f(ε) := F (yi + ε) + F (yk − ε) for ε ∈ [0, δ] , (28)is stritly monotone dereasing on [0, δ], where δ > 0 is su�iently small. Thereforethe state ỹε

ỹl
ε :=







yi + ε if l = i
yk − ε if l = k
yl otherwise for l = 1, . . . , N . (29)satis�es the side ondition (24), and using (28) we obtain

A(ỹ1
ε , . . . , ỹ

N−1
ε , q) < A(y1, . . . , yN−1, q) for all ε ∈ (0, δ] (30)This ontradits the assumption that y is a loal minimum of A on Mq. The aseof an index k with yk = 0 an be exluded by a similar reasoning. It follows, thatthe set of equilibria redue to

ΛN
q =

{

y ∈ (0, 1)N | (y1, . . . , yN−1) loal minimum of A(., q) on Mq,

yN = Nq +
∑N−1

l=1
yl and yi ≤ yi+1

}

,
(31)and for eah equilibrium state y ∈ ΛN

q , there must hold the neessary ondition (25).In the ase q ∈ (0, y∗∗] ∪ [y∗∗, 1), see Figure 4, the set of equilibria redues to
ΛN

q =
{

y ∈ (0, 1)N | yl = q for all l = 1, . . . , N
}

. (32)A ruial behavior of the many partile system is desribed by the following lemma.Lemma 1. Let q ∈ (0, 1) be �xed. 12



1. Based on the assumptions (A1)-(A4), there exists a sequene {δN}N∈N with
lim

N→∞
δN = 0 so that for all N ∈ N:

yl ∈ (0, y∗ + δN) ∪ (y∗ − δN , 1) for all y = (y1, . . . , yN) ∈ ΛN
q . (33)2. Furthermore at most one mole fration is in the intermediate region (y∗, y

∗).Proof. The ase q ∈ (0, y∗∗] ∪ [y∗∗, 1) is trivial due to the haraterization (32).We denote by ei ∈ R
N−1 the i-th unit vetor, whih has an entry 1 at the i-thposition and zero entries otherwise.Let q ∈ (y∗∗, y

∗∗) and N ∈ N. For any y = (y1, . . . , yN) ∈ ΛN
q the equations (24),(25) imply yl ∈ [y∗∗, y

∗∗] (l = 1, . . . , N) and it follows from the ontinuity
|µ̂′(y)| ≤ c0 for all y ∈ ΛN

q . (34)Let l∗ ∈ {1, . . . , N) and yl∗ ∈ (y∗, y
∗), whih implies µ̂′(yl∗) ≤ 0. Next, we de�ne(a) if l∗ < N , x := el∗ −

1
N−1

∑N−1
i=1,i6=l∗

ei,(b) if l∗ = N , x := 1
N−1

∑N−1
i=1 ei.In both ases, we onlude from the Hessian (26)

0 ≤ xTH(y)x = µ̂′(yl∗) +
1

(N − 1)2

N−1
∑

i=1,i6=l∗

µ̂′(yi) . (35)Thus due to (34) we have
0 ≤ |µ̂′(yl∗)| ≤

1
N−1

∑N−1
i=1,i6=l∗

µ̂′(yi)

N − 1
≤

c0
N − 1

. (36)This means for su�iently large N , that µ̂′(yl∗) is lose to zero. The strit onvexityof µ′ implies that there exist only two values y1
N < y2

N (N su�iently large) with
µ̂′(y1

N) = µ̂′(y2
N) = −

c0
N − 1

. (37)From µ̂(y∗) = µ̂(y∗) = 0 follows y∗ < y1
N < y2

N < y∗ and yl∗ ∈ (y∗, y
1
N ] ∪ [y2

N , y
∗).The onvexity of µ′ also implies y1

N > y1
N+1, y2

N < y2
N+1 and we de�ne δN :=

max{|y1
N − y∗|, |y

∗ − y2
N |} so that the assertion holds.Next we prove that only one mole fration yj ∈ ΛN

q for j ∈ 1, ..., N is in theintermediate region (y∗, y
∗). The ase q ∈ (0, y∗∗]∪[y∗∗, 1) is trivial. Let q ∈ (y∗∗, y

∗∗)and yl, yk ∈ (y∗, y
∗), this implies µ̂′(yl), µ̂′(yk) < 0 and(a) if k, l < N de�ne x := ek − el then we have xTH(y)x < 013



(b) if l < N, k = N de�ne x := el then we have xTH(y)x < 0so that that we do not have a minimum for two mole frations yl, yN ∈ (y∗, y
∗).The lemma shows, that the individual storage partiles of a many partile systemmay not behave idential. In equilibrium they may form two phases, denoted by α-and β-phase, with mole frations in (0, y∗ + δN), respetively in (y∗ − δN , 1). For

y = (y1, . . . , yN) ∈ ΛN
q the lemma implies the existene of a unique number M ofpartiles in the β-phase. This leads to the following de�nition.De�nition 1. For given y ∈ ΛN

q we de�ne the fration of partiles in the β-phase
λ̂(y) :=

M

N
. (38)We may say that λ desribes an internal state of the many partile system, whereasits marosopi state is haraterized by the �lling degree q.A system state that satis�es (25) and (24) attains the same hemial potential µ̂ forall partiles. This allows to plot eah system state in a (µ, q)-diagram, see Figure 5.Therefore we write for all y = (y1, . . . , yN) ∈ (0, 1)N that satisfy (24) and (25).

µ̂(y) := µ̂(y1) = · · · = µ̂(yN) . (39)The last lemma shows, that at most one partile has a mole fration yl∗ in theintermediate region (y∗, y
∗) and for large N we have yl∗ either lose to y∗ or to y∗.We are exlusively interested in systems with many storage partiles, so that fromnow on we will ignore equilibria with individual partiles in the region (y∗, y

∗). Thisfat motivates the following model assumption:(A5) There is no index k ∈ {1, 2, ..., N} so that the mole fration yk is in theintermediate region (y∗, y
∗).Thus from now on we onsider equilibria that are ontained in the set

Λ̃N
q := {y ∈ ΛN

q | y satis�es (A5)} . (40)Figure 6 shows the equilibria for 10 and for 30 partiles under the assumption (A5)in (µ, q)-plot.We revisit now Figures 5 and 6 and observe that the points indiating equilibriaseparate into di�erent branhes for inreasing N. Later on, we shall show that equi-librium points of the same branh have the same internal state λ ∈ {0, 1/N, . . . , 1}.Therefore, for a �xed λ ∈ {0, 1/N, . . . , 1} we all the set
Bλ := {y ∈ (0, 1)N |∃q ∈ (0, 1) : y ∈ Λ̃N

q with λ̂(y) = λ} (41)14
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Figure 5: Chemial potentials for system states y ∈ (0, 1)N that satis�es (24) and(25) for 2, 3, 5 and 6 partiles. The equilibria are indiated by the blak olor.
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Figure 6: Chemial potentials for equilibria satisfying assumption (A5). Left: 10storage partiles, right: 30 storage partiles.15



a branh of equilibrium states. In other words Bλ ontains those equilibria thathave the same number of partiles in the β-phase.Exploitation of the neessary onditions (25) for equilibria yields: The mole fra-tions y = (y1, . . . , yN) ∈ Λ̃N
q of the storage partiles an assume only two valueswith low and high mole fration, whih are indiated by Y − respetively Y +. Theside ondition (24) an then be written as q = λ̂(y)Y + +(1− λ̂(y))Y −, and Assump-tion (A5) implies Y − ≤ y∗ and Y + ≥ y∗. The next lemma proves existene anduniqueness of the pair Y ± and their ontinuous dependene on the �lling degree q.The ontinuity yields that the branhes Bλ de�ne onneted sets in (0, 1)N .Lemma 2. Let λ ∈ {1/N, 2/N, . . . , (N −1)/N} be �xed and assume that (A1)-(A3)are satis�ed. We de�ne the interval Qλ :=

(

q−λ , q
+
λ

) with q−λ := λy∗ + (1− λ)y∗∗ and
q+
λ := λy∗∗ + (1 − λ)y∗. There exist unique funtions

Y −
λ ∈ C(Qλ, (y∗∗, y∗)) and Y +

λ ∈ C(Qλ, (y
∗, y∗∗)) , (42)whih satisfy

q = λY +
λ (q) + (1 − λ)Y −

λ (q) (43)
µ̂(Y +

λ (q)) = µ̂(Y −
λ (q)) (44)for all q ∈ Qλ.Proof. In order to show the existene, we de�ne the funtions

g0 :(µ∗, µ
∗) → (y∗∗, y∗) g0 : = (µ̂|(y∗∗,y∗))

−1 (45)
g1 :(µ∗, µ

∗) → (y∗, y∗∗) g1 : = (µ̂|(y∗,y∗∗))
−1 (46)whih are the inverses of the two monotone inreasing branhes of µ̂ and furthermorewe de�ne

gλ :(µ∗, µ
∗) → (y∗∗, y

∗∗) gλ : = λg1 + (1 − λ)g0. (47)Reall that the funtions g0,1 are stritly monotone inreasing and this implies gλ isstritly monotone inreasing. Therefor gλ(µ∗, µ
∗) = Qλ and the funtion

µλ := g−1
λ (48)is well de�ned and ontinuous on Qλ. Now we de�ne y−λ , y+

λ as
y−λ (q) := g0(µλ(q)) y+

λ := g1(µλ(q)) , (49)whih are ontinuous and de�ned on Qλ. Note that (43) and (44) are valid byonstrution.The uniqueness diretly follows from (43) and (44). If we solve equation (43) for y−and insert the result into (44), we may de�ne
G(y+) := µ̂(y+

λ ) − µ̂
(q − λy+

λ

1 − λ

)

. (50)The funtion G is stritly monotone, so that its root y+
λ is unique.16



Remark 1. We onlude from Lemma 2 that we an onstrut, for �xed λ ∈
{0, 1/N, . . . , (N −1)/N, 1}, ontinuous mole frations yλ of the �lling degree q ∈ Qλwith values in Λ̃N

q .
yi

λ(q) :=

{

Y −
λ (q) i ≤ (1 − λ)N
Y +

λ (q) i > (1 − λ)N
(51)so that yλ(q) ∈ Λ̃N

q for all q ∈ Qλ.In the ase λ ∈ {1/N, . . . , (N − 1)/N} the funtions Y −
λ , Y +

λ and the set Qλ arede�ned in Lemma 2.In the ase λ ∈ {0, 1} the funtions are de�ned as Y +
λ (q) = Y −

λ (q) := q for q ∈ Qλ,where Q0 := (0, y∗) and Q1 := (y∗, 1).The funtions y±λ are ontinuously expandable to Qλ.Remark 2. For eah equilibrium state of Λ̃N
q there exists Y − and Y + whih satisfy(43),(44) and as a result of the uniqueness in Lemma 2 every equilibrium statebelonging to Λ̃N

q an be reahed by a funtion yλ.As a onsequene we have
Bλ = {yλ(q)|q ∈ Qλ} λ ∈ {0, 1/N, . . . , 1} . (52)This means that eah branh Bλ an be haraterized by the funtion yλ, and eahbranh in the (µ, q) plot, see Figure 6, is de�ned by {µ̂(yλ(q)) | q ∈ Q̄λ}.At last, we state that the vertial distane between the hemial potential of twobranhes in the (µ, q)-plot dereases if the number of storage partiles inreases.This fat an be observed in Figure 6 and additionally follows from the followingorollary.Corollary 1. Let yλ ∈ C(Qλ; (0, 1)N) be de�ned as in Remark 1. For ε > 0 existsa numberN∗ ∈ N so that

max
q∈Qλ∩Qλ+1/N

|µ̂(yλ(q)) − µ̂(yλ+1/N(q))| ≤ ε (53)for all N ≥ N∗ and for all λ ∈ {0, 1/N, . . . , (N − 1)/N} .Proof. Let λ ∈ {0, 1/N, . . . , (N − 1)/N} and q ∈ Qλ ∩ Qλ+1/N . The funtions yλand yλ+1/N are ontinuous so that the maximum is well de�ned on the losed set
Qλ ∩Qλ+1/N .In the following we ignore the argument q in yλ and yλ+1/N .The funtions yλ satisfy identity (43) and it therefor follows for q ∈ Qλ ∩Qλ+1/N

(1 − λ)
(

y−λ − y−λ+1/N

)

+ λ
(

y+
λ − y+

λ+1/N

)

=
1

N

(

y+
λ+1/N − y−λ+1/N

) (54)17



and from identity (44) they satisfy
µ̂(y−λ ) = µ̂(y+

λ ) and µ̂(y−λ+1/N ) = µ̂(y+
λ+1/N) . (55)

q ∈ Qλ ∩ Qλ+1/N implies that y−λ+1/N ≤ y∗ and y+
λ+1/N ≥ y∗, and furthermore with(54) we onlude

(1 − λ)
(

y−λ − y−λ+1/N

)

+ λ
(

y+
λ − y+

λ+1/N

)

≥
1

N
(y∗ − y∗) > 0 . (56)The monotoniity of µ̂ implies via (55) and (56)

y+
λ − y+

λ+1/N ≥ 0 and y−λ − y−λ+1/N ≥ 0 . (57)Note, if q ∈ Qλ ∩Qλ+1/N then y+
λ+1/N , y

−
λ+1/N ∈ [y∗∗, y

∗∗], and from (54) we obtain
min{|y−λ − y−λ+1/N |, |y+

λ − y+
λ+1/N |}

≤(1 − λ)
(

y−λ − y−λ+1/N

)

+ λ
(

y+
λ − y+

λ+1/N

)

≤
1

N
(y∗∗ − y∗∗) .

(58)Finally the boundedness of µ̂ on [y∗∗, y
∗∗] and (55) implies

|µ̂(yλ) − µ̂(yλ+1/N )| = |µ̂(y+
λ ) − µ̂(y+

λ+1/N)| = |µ̂(y−λ ) − µ̂(y−λ+1/N)| (59)
≤ c0 min{|y−λ − y−λ+1/N |, |y

+
λ − y+

λ+1/N |} (60)
≤

c0
N

(y∗∗ − y∗∗) . (61)
4.2 Quasi-stati evolutionUp to now we have studied the behavior of the storage system for onstant �llingdegree q. In this setion we assume that the �lling degree q slowly depends on timeand therefore we study now a quasi-stati evolution of the system. Thus during thetime interval I = [t0, t1] its evolution y : I → (0, 1)N must satisfy y(t) ∈ Λ̃N

q(t) for all
t ∈ I.At �rst we disuss the expeted behavior. To this end we start from an equilibriumstate y0 ∈ Λ̃N

q with q ∈ (0, 1). Then Lemma 1 implies, that the storage partilesare separated in α- and β-phase, with orresponding mole frations Y −, respetively
Y +. If the proess is su�iently slow, so that |q̇| ≪ 1, then we expet that thesystem does not hange signi�antly, i.e. |y(t0)− y(t0 + ε)| ≪ 1, and we expet theevolution of the mole frations y = (y1, ..., yN) to be ontinuous.18



Corollary 2. Let I = [t0, t1] be a time interval, y0 ∈ Λ̃N
q0

with phase fration λ̂(y0)and q ∈ C(I;Qλ) with q0 = q(t0). Then there exists a unique ontinuous funtion
y : I → (0, 1)N satisfying

y(t0) = y0 and y(t) ∈ Λ̃N
q(t) for all t ∈ I. (62)Proof. We onlude from Remark 1 that the funtion y(·) := yλ̂(y0)(q(·)) is ontinu-ous and we have y(t) ∈ Λ̃N

q(t) for all t ∈ I. Let us now assume, that there exist molefrations ȳ ∈ C(I; (0, 1)N) with ȳ(t) ∈ Λ̃N
q(t) and ȳ(t0) = y0. Starting from the initialvalue and applying the ontinuity property yields that for all t ∈ I the funtion ȳhas the same phase fration λ̂(y0). The uniqueness follows from Lemma 2.So far we ould desribe the behavior of the system as long as the �lling degree qstays in an open set Qλ during the onsidered time interval.Now we pose the question, what happens if q runs over the boundary of Qλ =

(q−λ , q
+
λ ). For simpliity we only disuss the ase where q is inreasing in time andexeeds q+

λ = q(t∗) at a ertain time t∗. By assuming ontinuous (in time) molefrations y(t) = y1(t), ..., yN(t), one an uniquely determine the state y(t∗). Thepositive de�niteness of the Hessian matrix and therefore the requirement that thesystem runs through equilibria is not guaranteed at this limit state. However for
q(t) > q+

λ it is possible to ontinue the state y suh that we have the neessaryondition (25) for equilibrium with the phase fration λ̂(y(t0)), though the extensiondo not minimize the energy A. For this reason we all the state that results for q(t∗)a ritial point.Obviously within the setting of quasi-stati evolution we need a further model as-sumption in order to desribe how the storage partile system evolves if q exeeds
q+
λ . Motivated by an analogy with N interonneted rubber balloons, where weobserve a similar behavior, we state that the system state hanges disontinuously.An α-phase partile hanges at q+

λ to the β-phase and the phase fration λ̂(y(t))aordingly hanges to λ̂(y(t∗ + ε)) = λ̂(y(t∗)) + 1/N for ε small enough.This behavior is represented in the (µ, q)-plot as follows. During the evolution, thepartile system follows the branh Bλ to its end, i.e. up to the ritial point q(t∗),and then drops to the next branh Bλ+ 1

N
if q exeeds q(t∗). Note that for su�ientlylarge N for λ ∈ {0, 1/N, . . . , 1} we have

q+
λ ∈ Qλ ∩Qλ+1/N for λ < 1 , q−λ ∈ Qλ ∩Qλ−1/N for λ > 0, (63)so that the above desribed behavior is allowed within the quasi-stati setting.Now we summarize the assumed behavior of the storage partile system in a slightlymore systemati way. Reall that the evolution I := [t0, t1] → (0, 1)N of the state ydepends on the �lling degree q ∈ C(I; (0, 1)) and on the initial value y0 ∈ Λ̃N

q(t0).(A5) (i) The evolution starts from y0 with phase fration λ̂(y0) and q(t0) ∈ Qλ̂(y0). 19



(ii) The evolution evolves along the funtion y(t) = yλ̂(y0)(q(t)), with y(t0) =
y0, where yλ̂(y0) is de�ned in Remark 1, until the system reahes a ritialstate where either q(t∗) = q−

λ̂(y0)
or q(t∗) = q+

λ̂(y0)
.(iii) If

{

q(t∗) = q−
λ̂(y0)

then y(t∗) := yλ̂(y0)−1/N (q(t∗))

q(t∗) = q+

λ̂(y0)
then y(t∗) := yλ̂(y0)+1/N (q(t∗))where the funtions yλ̂(y0)−1/N and yλ̂(y0)+1/N are de�ned in Remark 1.(iv) The evolution proeeds at (i) with t0 = t∗ and y0 = y(t∗).The Corollary 2 guarantees that the evolution of the mole frations y aording toassumption (A5) is well de�ned and unique. Furthermore the onstrution (A5)implies that the evolution is pieewise ontinuous. The disontinuities (jumps) areattributed to the passage of a storage partile from the α- to the β-phase or vieversa, see (A5)(iii).4.3 Asymptoti behavior and hysteresisIn this setion we disuss the asymptoti behavior that is indued by the quasi-stati evolution of the storage partile system. In partiular we will demonstratethat the introdued model is apable to predit the observed hystereti behaviorduring harging and disharging of a lithium-ion battery. We start from a fullyharged state and onsider the proess q : [t0, t1] → (0, 1) along the paths

q(t) =

{ t−t0
t1−t0

for t < t0+t1
2

(disharging)
t1−t
t1−t0

for t ≥ t0+t1
2

(harging) for t ∈ [t0, t1] . (64)The response of the storage system an at best be desribed in the plot that givesthe hemial potential µ̂ versus the �lling degree q of the storage system. Reall,that −µ̂ is proportional to the voltage and 1 − q is related to the apaity of thebattery, i.e. to the stored eletri harge. The Figure 7 shows the response of astorage system with 5 respetively with 10 storage partiles.We observe a path dependene during disharging and harging and moreover, foran inreasing number of storage partiles ours a hysteresis loop. This fat isthe ontent of the next orollary, whereupon the jumps of the hemial potentialderease for inreasing number of storage partiles. For 1000 partiles, see Figure 8,they are not visible anymore.Corollary 3. Let q ∈ C(I; (0, 1)) and yN the solution of the quasi stati modelwhih satis�es (A5) for N ∈ N. For ε > 0 exists a number N∗ ∈ N, whih dependson ε, so that
max
t∈I

| lim
sրt

µ̂(yN(s)) − lim
sցt

µ̂(yN(s))| < ε for all N > N∗ . (65)20
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Figure 7: Hystereti behavior generated by a athode with 5 (left) and 10 (right)storage partiles.
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Figure 8: Hystereti behavior generated by a athode with 1000 storage partiles.
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Proof. The model implies that the solution yN for any N is pieewise ontinuous.It is only disontinuous if one partile hanges the phase. Aording to Corollary 1the jumps of µ̂ derease uniformly for inreasing N .4.4 Some seleted properties of the modelPath dependene. A harateristi observation in lithium-ion batteries onernsthe fat that the voltage of a ertain harge state depends on the harging history[16℄. In order to demonstrate that this path dependene an be explained withinthe model we onsider the following experiment:1. We fully harge a disharged battery, i.e. we start with q = 1 and end up with
q = 0. The resulting path is indiated in Figure 9left by the red arrows.2. We disharge now the fully harged battery from q = 0 and stop at q = 0.5.3. From here we fully harge the battery down to q = 0. The resulting path isindiated in Figure 9left by the blue arrows.We observe in this experiment that the history, how a given harge state of thebattery is reahed, is essential in order to predit its subsequent behavior duringfurther harging or disharging. The origin of this phenomenon is easily explainedwithin the setting of the proposed model. The system evolves along di�erent paths,beause the number of partiles in the β-phase is di�erent for the two hargingproesses.Likewise the model predits the ourrene of an inner hystereti loop, as it isrepresented in Figure 9right. The orresponding proess is1. We start with a disharged battery at q = 1.2. Then we harge down to q = 0.65.3. Starting here we disharge and stop at q = 0.35.4. Starting here we fully harge the battery to end up with q = 0.The traversed path is indiated by the blue arrows in Figure 9right.Mehanial interation of storage partiles. Up to now the disussion relieson the assumption that eah storage partile is subjeted to the onstant outerpressure p0. Now we take into aount that the volume of the partiles hanges, asit is desribed in Setions 3.3 and 3.4, leads to an elasti response of the eletrolyte.In this ase the outer pressure p0 is no longer a onstant but will now beome afuntion of the �lling degree q.Reall the simple onstitutive law for the pressure inside a storage partile from Se-tion 3.3. In an analogous manner we assume that the pressure within the eletrolyte22
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Figure 9: Path-dependene and hystereti behavior generated by a athode with1000 storage partiles. Left and right: Di�erent experiments, see text for the details.is given by a similar law. We write
p0 = pR +KE(V 0E

VE − 1

)

, (66)where KE is the bulk modulus of the eletrolyte and VE is its atual volume whihis related to the referene volume V 0E aording to VE = V 0E (1 − δq). Thus we have
p0 = pR +KE( q

1 − δq

)

. (67)The further treatment of this ase is the same as before, i.e. we evaluate the onditionof mehanial equilibrium and determine a new funtion nlM = n̂M(yl, q) to onstrutthe hemial potentials µ̂l of the partiles indexed by l. The previous horizontalplateaus, whih indiate the 2-phase region in the µ, q diagram now our with aertain slope as it is shown in Figure 10.5 An illustrative analogy: Simultaneous in�ation ofinteronneted rubber balloonsWe onsider N interonneted spherial rubber balloons indexed by l ∈ 1, 2, ..., N asindiated in Figure 12. Via the pressure vessel the balloons an be simultaneouslyin�ated by air.The pressure di�erene pl −p0 of eah balloon with respet to the outer pressure p0,is related to its atual radius r by
pl − p0 = α

(

R

rl
−

(

R

rl

)7
)(

1 + β

(

rl

R

)2
)

, (68)23
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Figure 10: Storage system with 250 partiles. Due to mehanial interations theprevious horizontal 2-phase plateaus ahieve a slope.where R is the radius of the undeformed balloon and α > 0 and β > 0 are relatedto the initial thikness of the balloon and to the elasti onstants of rubber, moredetails are found in [6℄ and [13℄. The funtion (68) is represented in Figure 11 and
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Figure 11: Non-monotone pressure-radius relation of a spherial elasti rubber bal-loonshows a non-monotone graph, whih qualitatively indues the same behavior as thehemial potentials of the storage partiles from above, ompare with Figure 4.In ase that a single balloon is in�ated by supply of air under �xed pressure, thedereasing part of the pressure-radius relation is an unstable branh.Now we onsider the proess that is illustrated by Figure 12. There is a onstantsupply of air into the pressure vessel and that air freely distributes among theballoons. The following happens: As long as the �lling of balloons is small, theyall have the same size until they reah with inreasing �lling the end of the �rstinreasing pressure-radius branh. Careful observation now reveals that only oneballoon will pass quikly through the dereasing branh to an apparent larger radius,24



Figure 12: Four di�erent states of onneted rubber balloons during loading withair via the pressure vessel.whereas the other balloons slightly derease at �rst their radii before all balloonsagain inrease their radii due to the onstant supply of air. In that time regime wethus have one large balloon and N−1 small ones. This regimes ends when the smallballoons again reah the end of the �rst inreasing pressure-radius branh, and herethe same event as before happens. One balloon passes to a larger radius, whereasnow N −2 balloons slightly fall bak, and we have now a state with 2 large balloonsand N−2 small ones. This proess is repeated until all balloons have the same largesize, whih is the last state of the sequene from Figure 12.The interpretation and in partiular the analogy to the behavior of the many storagepartile system from above is obvious. There is a regime of two oexisting phases,formed by small respetively large balloons. Eah balloon is a homogeneous andsingle phase objet, however, some balloons are in one phase and the others are inthe other phase. See [8℄, [9℄ and [13℄ for more details. The same happens in thestorage system during harging and disharging of the battery: There is a regimeof partiles with small respetively large lithium ontent. Eah storage partile is ahomogeneous and single phase objet, however, some partiles are in one phase andthe others are in the other phase.AknowledgmentsThis work was performed as part of Projet C26 �Storage of Hydrogen in Hydrides�of the DFG researh enter MATHEON, Berlin.25
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