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Abstra
tWe study the almost reversible storage pro
ess of 
harging and dis
hargingof lithium-ion batteries. That pro
ess is a

ompanied by a phase transitionand 
harging and dis
harging run along di�erent paths, so that hystereti
behavior is observed.We are interested in the storage problem of the 
athode of a lithium-ion bat-tery 
onsisting of a system of many iron phosphate (FePO4) parti
les. Thereare mathemati
al models, see [2℄, [3℄ and [4℄, that des
ribe phase transitionsand hysteresis ex
lusively in a single storage parti
le and they 
an des
ribethe observed hystereti
 voltage-
harge plots with almost horizontal plateaus.Interestingly the models predi
t that the 
oexisten
e of a 2-phase system inan individual parti
le disappears, if its size is below a 
riti
al value. The dis-appearan
e of the phase transition in the single parti
le model implies thedisappearan
e of the hysteresis. However, in the experiment hystereti
 behav-ior survives. In other words: The behavior of a storage system 
onsisting ofmany parti
les is qualitatively independent of the fa
t whether the individualparti
les itself develop a 2-phase system or if they remain in a single phasestate.This apparent paradoxi
al observation will be resolved in this arti
le by amany parti
le model. It will be shown that if ea
h of the individual parti
lesis in a homogeneous state, nevertheless the many parti
le ensemble exhibitsphase transition and hysteresis, be
ause one of the two phases is realized insome part of the parti
les while the remaining parti
les are in the other phase.Mathemati
ally speaking this phenomenon is due to the non-monotoni
ity ofthe relation between the 
hemi
al potential and the lithium mole fra
tion.The pressure-radius relation of a spheri
al elasti
 rubber balloon also ex-hibits non-monotone behavior. In fa
t, a system of many inter
onne
ted bal-loons behaves 
orrespondingly to a 
athode 
onsisting of many storage par-ti
les. This analogy between the two systems is important, be
ause the pre-di
tions of the many parti
le model 
an easier be tested with rubber balloonsof ma
ros
opi
 size than with an ensemble of mi
ros
opi
ally small (FePO4)parti
les.1 Introdu
tion and basi
 fun
tionality of re
harge-able lithium-ion batteriesCurrently re
hargeable lithium-ion batteries are the most promising storage systemsfor ele
tri
al energy. 1



The 
harging and dis
harging pro
ess is a

ompanied by a phase transition andit exhibits hystereti
 behavior, whi
h is des
ribed in a 
hara
teristi
 diagram, seeFigure 1, that gives the voltage of the battery 
ell versus its total 
harge.

Figure 1: Voltage versus 
harge per mass of a FePO4 
athode [2℄The 
athode of lithium-ion batteries is designed as a storage system for lithiumatoms, whi
h 
onsists of many small iron phosphate (FePO4) 
rystalline parti
lesforming a layer on a substrate. The interstitial latti
e sites of FePO4 serve to storethe lithium atoms. In the fully 
harged state of the battery, there is no lithium inthe storage system while it 
ontains the maximal possible number of lithium atomswhen the battery is fully dis
harged.We 
onsider two versions of a simpli�ed battery 
ell as they are sket
hed in Figure 2.The devi
e on the left hand side of Figure 2 
ontains a many-parti
le storage system,whereas on its right hand side the 
athode 
onsists of a single storage parti
le. Bothversions 
onsider the storage parti
les as small spheres of about 50 nm diameter,thus these are not of ma
ros
opi
 size. Figure 2 also indi
ates the pro
esses in a

Figure 2: FePO4 parti
les against an metalli
 Li anode within an ele
trolyte.lithium battery during dis
harging and 
harging. During dis
harging ele
trons leavethe anode to travel through an outer 
ir
uit. The remaining positive lithium ions2



leave the anode and move through the ele
trolyte towards the 
athode, where theyre
ombine with the in
oming ele
tron at the 
arbon 
oated surfa
e of the storageparti
les.In a single storage parti
le we have the following situation. For small lithium 
ontent,the lithium atoms form a single phase that we 
all α-phase. However, if the lithium
ontent of the storage parti
le ex
eeds a 
ertain value and if the parti
le is nottoo small, the formation of a se
ond phase, β-phase, sets in. The single parti
lemodel predi
ts that the voltage remains 
onstant in the 
oexisten
e region of thetwo phases, see Figure 1.A further phenomenon that o

urs is a reversible and elasti
 
hange of the parti
levolume during 
harging and dis
harging, whi
h is due to the fa
t that the lithiumatoms need more spa
e as is available by the interstitial latti
e sites in FePO4.During lithium storage the volume typi
ally 
hanges up to 6%.The mathemati
al model, that were proposed in [2℄, [3℄ and [4℄, des
ribe phasetransitions and hysteresis ex
lusively in a single parti
le. On that basis they areable to show that the observed horizontal plateaus 
an be a 
onsequen
e of the
oexisten
e of two phases whi
h di�er by high and small lithium 
on
entrations ina single parti
le. Further theoreti
al studies on the evolution of lithium atoms in asingle parti
le system by Han et al. [7℄, Srinivasan and Newman [15℄ also rely onthis phenomenon, whi
h is experimentally investigated by Yamada et al. [18℄.Surprisingly there is the following observation. When the size of an individualparti
le be
omes too small the 
oexisten
e region vanishes and the parti
le remainsin a single phase state. This fa
t is observed in experiments, see Wagemaker et al.[17℄, and it also results from the model equations in [2℄, [3℄ and [4℄.However, in the experiment hystereti
 behavior survives. The key idea to explainthis strange behavior relies on the fa
t that in the experiment we always meet amany parti
le 
athode.Delmas et al. [5℄ report on detailed experimental observations 
on
erning the state-ment of Wagemaker et al. [17℄. They study an ensemble of storage parti
les withsizes within the range from 80 nm to 150 nm. Here they ex
lusively found parti
leseither in α- or in β- phase. This fa
t lead them to the 
onje
ture that only few par-ti
les are in the state of two 
oexistent phases. They develop an interesting model,that des
ribes the me
hanism of the phase transition in a many storage parti
lesystem. In the 
urrent study we propose a mathemati
al model that is 
apable topredi
t the observations by Delmas et.al. in a very natural way.We will show that the non-monotoni
ity of the 
hemi
al potential fun
tion withrespe
t to the lithium 
on
entration of a single storage parti
le implies the hystereti
behavior of a many parti
le system, where its members are single phase storageparti
les.A similar non-monotoni
ity o

urs in the paper on rate independent hysteresis byTruskinovski and Puglisi in a di�erent 
ontext. They aim to explain hystereti
phenomena in shape memory alloys on a mi
ros
opi
 basis, [14℄. Their mi
ros
opi
3



model is a one-dimensional 
hain of N os
illators, where ea
h os
illator is equippedwith a non-monotone stress-strain relation. Further di�eren
es to the study of thispaper are boundary 
onditions during the 
y
ling of the hysteresis loop and themathemati
al treatment.The same subje
t is 
urrently under investigation by Mielke and Truskinovski, [11℄.In order to redu
e the ne
essary assumptions whi
h are needed in a quasi-stati
treatment of the problem. The authors rely their new reasoning of the behavior ofthe 
hain model a

ording to an evolution law, and in addition to the non-monotonestress-strain relation they provide the os
illators with vis
ous elements and sto
has-ti
 behavior.The analysis of a many parti
le system, where ea
h parti
le is equipped with un-stable states between two stable states, has already been started in 1982 by Dreyer,Müller and Strehlow, [6℄, where the equilibria of two inter
onne
ted spheri
al andelasti
 rubber balloons were studied. That problem was generalized to N > 2 inter-
onne
ted balloons by Kits
he, [8℄ in his diploma thesis, and the results, whi
h forma 
omplete analogy to the 
urrent problem and to Truskinovski and Puglisi, werepublished in [9℄ in 1987, see also Chapter 5 for a detailed dis
ussion of the analogybetween the behavior of the many parti
le 
athode of a lithium-ion battery and alarge number of inter
onne
ted rubber balloons.The paper is organized as follows: In Chapter 2 we introdu
e the basi
 properties ofthe storage parti
les. Chapter 3 introdu
es the thermodynami
 model. Chapter 4 isaddressed to the detailed exploitation of a simpli�ed model for lithium storage. Herewe numeri
ally illustrate the various phenomena and 
arry out the mathemati
alanalysis. Finally we have added a small Chapter 5, where we explain the intimateanalogy between the many parti
le storage problems and the problem of the in�ationof many 
onne
ted rubber balloons.2 Crystal stru
ture and basi
 variables of the hostsystemsIn this 
hapter we des
ribe the 
rystal stru
ture of the FePO4 and identify the basi
variables that are needed to des
ribe the thermodynami
 state of the storage system.However, for the purposes of the 
urrent study we will end up with a simpli�eddes
ription, and we refer the reader to the given 
itations for the 
omplete and morepre
ise details.2.1 Crystal stru
ture of FePO4 for lithium storageThe 
rystal latti
e of an FePO4 parti
le is illustrated in Figure 3. The FePO4 unitsare indi
ated by yellow (Fe), pink (P), red (O) and the green balls are the interstitiallatti
e sites that 
an be o

upied by the lithium atoms. The deformation of the4



Figure 3: FePO4 stru
ture. Yellow: Fe, pink: P, red: O, green: interstitial sites.From [10℄latti
e during the loading of the storage system with lithium atoms is des
ribed indetail by T. Maxis
h and G. Ceder in [10℄. The undeformed 
rystal has orthorhombi
olivine symmetry. In this state the sublatti
e, formed by the interstitial latti
e sites,is 
ompletely empty. To ea
h unit of FePO4 there 
orresponds one single site in thesublatti
e. The olivine stru
ture does not 
hange during the o

upation of thesublatti
e sites by lithium atoms. When these are supplied or removed throughthe external boundary, there is a deformation of the olivine stru
ture, be
ause thelithium atoms need more spa
e as is available by the sublatti
e sites. Thus the
rystal volume 
hanges if the number of lithium atoms is 
hanged. Moreover thesti�ness 
oe�
ients 
hange.2.2 Basi
 variables for lithium storageThe number NM of FePO4 units, whi
h form the matrix latti
e, is �xed. Thus weassume that there is no di�usion in the matrix latti
e but it is deformed, and forsimpli
ity we only take the 
hange of its volume V into a

ount and ignore deviatori
stresses, see [2℄ 
on
erning the 
omplete me
hani
al des
ription.On the sublatti
e of a parti
le we have NLi lithium atoms and NV va
an
ies. Thelatter indi
ate the empty latti
e sites, whi
h do not have mass or momentum butthey are 
arrier of energy and entropy. Sin
e there is a single sublatti
e site to ea
hFePO4 unit, we have the side 
ondition
NM = NLi +NV. (1)Thus for given temperature T , the basi
 variables of the lithium storage problemare V , NM and NLi. For the lo
al des
ription we introdu
e the mole densities nM,

nLi and nV whi
h have units mole/m3. Note that nM 
hanges be
ause the volume
V may 
hange, whereas NM is 
onstant.

5



3 A pie
e of thermodynami
s of the storage parti-
lesIn this 
hapter we introdu
e those basi
 fa
ts of thermodynami
s that are needed.3.1 Thermodynami
s of a single storage parti
leGlobal inequality. We 
onsider a single FePO4 parti
le, see Figure 2. For 
onstanttemperature and �xed external pressure or �xed volume the 1st and 2nd law ofthermodynami
s imply for a system, that does not ex
hange lithium atoms with thesurrounding, the temporal inequality
dA

dt
≤ 0 with A = Ψ + p0V. (2)The quantity A is the available free energy of the storage parti
le, whi
h o

upiesa spatial domain Ω(t), and it is given by the (Helmholtz) free energy Ψ plus outerpressure p0 times the total volume V of the parti
le, provided that the kineti
 energyis ignored.In equilibrium the equality sign holds, whereas the available free energy must ex
lu-sively de
rease in non-equilibrium. Possible equilibria are thus determined by theminima of A.The appli
ation of the inequality (2) to the 
ases at hand requires some dis
ussion inadvan
e. Whatever the initial state of the storage parti
le is, the inequality des
ribesthe evolution of that state to equilibrium, provided, that the given side 
onditions aresatis�ed. In this study we are interested in pro
esses that are indu
ed by loadingand unloading of the storage parti
le with lithium atoms. Thus the 
onsideredsystem does ex
hange matter with the surrounding. In this 
ase the form (2) of thethermodynami
 inequality is only appli
able for quasi-stati
 loading and unloading.This means that the interior pro
esses run on a mu
h faster time s
ale than theevolution of NLi(t).Free energy density, 
hemi
al potentials, pressure, Gibbs equation andGibbs-Duhem equation. The total free energy Ψ of a storage parti
le is anadditive quantity that 
an be written as

Ψ =

∫

Ω

ρψ dx. (3)Here ρ is the mass density and ψ denotes the spe
i�
 free energy of the parti
le.We have ρ = mMnM + mLinLi = nM(mM + mLiy), where mM and mLi are themole
ular masses of FePO4 and Li, respe
tively, and y = nLi/nM gives the lithiummole fra
tion.The spe
i�
 free energy is given by a 
onstitutive fun
tion that relates ψ to thetemperature T , whi
h is a 
onstant in this study, and to the mole densities nLi, nV6



of lithium and va
an
ies. Sin
e we have nM = nLi + nV, the latter dependen
e 
analso be des
ribed by the lithium mole fra
tion y and the mole density of the matrixunits nM:
ψ = ψ(T, nLi, nV) = ψ̃(T, y, nM). (4)The representation via the fun
tion ψ̃ simply results from a transformation of thevariables.The free energy density satis�es the Gibbs equation and the Gibbs-Duhem equations,see [1℄ and [12℄. These read

dρψ = −ρsdT +
∑

a∈(Li,V)

µadna and p = −ρψ +
∑

a∈(Li,V)

µana, (5)where the newly introdu
ed quantities are the 
hemi
al potentials µa and the pres-sure p. From (5) and by an easy 
al
ulation we obtain the 
onstitutive relations
µa =

∂ρψ

∂na

, µLi − µV = mLiψ̃ + (mM +mLiy)∂ψ̃
∂y

, p = −ρψ̃ + nM ∂ρψ̃
∂nM . (6)The representations (6) are of 
entral importan
e in the following.3.2 The available free energy of a many parti
le systemNow we 
onsider the many parti
le problem as indi
ated in Figure 2left. The 
on-sidered system 
ontains N storage parti
les, indexed by l ∈ 1, 2, ..., N . A storageparti
le l has the volume V l, N lM FePO4 units forming the matrix latti
e and N lLilithium atoms on the interstitial latti
e. The further 
hara
terization of the manyparti
le ensemble relies on three 
onditions.(i) We assume that ea
h parti
le is in a homogeneous state.(ii) The number N lM of matrix mole
ules (FePO4) is 
onstant and the same forea
h storage parti
le N lM = N1M, l = 1, . . . , N .(iii) The unloaded parti
les all have the same volume V l = V̄ , l = 1, . . . , N andthus the same mole density n̄M.The available free energy for the N parti
le system is given by

A =
N
∑

l=1

∫

Ωl

ρlψl dx+ V p0 =
N
∑

l=1

V l(ρlψl + p0) (7)where V =
∑N

l=1 V
l is the total volume of the system.

7



Furthermore we introdu
e the total numbers of matrix units and of lithium 
ontentof the ensemble.
N lM = nlMV l = n̄MV̄ , N lLi = nlLiV l, (8)
NM =

N
∑

l=1

N lM = Nn̄MV̄ , NLi =

N
∑

l=1

N lLi (9)The ma
ros
opi
 �lling degree q = NLi/NM denotes the overall loading state of thesystem, whi
h 
an be written as
q =

∑N
l=1N

lLi
NM =

1

N

N
∑

l=1

yl . (10)Ne
essary 
onditions for equilibria. A

ording to (4), (7) and (8)1 the availablefree energy A depends on the variables (yl, nlM)l∈{1,2,...,N}. Re
all that we study thequasi-stati
 
ase. We thus seek for equilibria at given �lling degree q. We get ridof the 
ondition (10) by the introdu
tion of a Lagrange multiplier λ. There are twokinds of ne
essary 
onditions for equilibrium:
∂A∗

∂nlM = 0 ,
∂A∗

∂yl
= 0 with A∗ = A− λ(

N
∑

i=1

yi −Nq) . (11)The 
onditions (11)1 and (11)2 determine me
hani
al equilibrium respe
tively 
hem-i
al equilibrium, and by means of (7) and (6) we obtain for me
hani
al equilibrium
p(yl, nlM) = p0 for all l = 1, . . . , N , (12)where p0 is the external pressure on the parti
le surfa
es, and for 
hemi
al equilib-rium

µLi(yl, nlM) − µV(yl, nlM) = µLi(yN , nNM) − µV(yN , nNM) (13)for all l = 1, . . . , (N − 1). Later, we will see that this 
ondition implies that thevoltage of all parti
les is the same.The expli
it evaluation of the ne
essary 
onditions for equilibrium requires 
onsti-tutive equations for the spe
i�
 free energies.3.3 Simpli�ed version of expli
it 
onstitutive equationsSe
tion 3.1 reveals that the expli
it knowledge of the spe
i�
 free energy allows to
al
ulate the 
hemi
al potentials and the pressure as well. The strategy to deter-mine the spe
i�
 free energy, i.e. ψ = ψ(T, nLi, nV) = ψ̃(T, y, nM), relies on theobservation that we may additively de
ompose ρψ into a 
hemi
al and a me
hani
alpart:
ρψ = ρψ̃
hem(T, y, nM) + ρψ̃me
h(T, y, nM) with ψ̃me
h(T, y = 0, n̄M) = 0. (14)8



The motivation of that de
omposition relies on the fa
t, that our knowledge on thetwo 
ontributions to the free energy originates from di�erent sour
es.Constitutive fun
tions for the pressure. The storage parti
les are assumed tobe elasti
 with mis�t strain, whi
h is due to the variation of their volume duringloading and unloading. The mis�t strain is given by h(y) = 1/(1 + δy) with δ =
(Vmax−V̄ )/V̄ , and a simple 
onstitutive law for the pressure p of a parti
le is assumedto be given by

p = p̄+K(y)

(

nM
n̄M − h(y)

)

. (15)We have δ ≈ 0.067 for lithium storage. p̄ is the referen
e pressure, Vmax denotesthe volume of a storage parti
le with maximal loading and V̄ denotes the referen
evolume, whi
h is assumed by an unloaded parti
le. Finally K(y) denotes the 
on-
entration dependent bulk modulus. However, that dependen
e will be ignored hereand so K is a 
onstant.Me
hani
al part of the free energy. By integration of (6)3 we obtain theme
hani
al part of the free energy density of the parti
les
ρψ̃me
h = (pR −Kh(y))

(

nM
n̄Mh(y) − 1

)

+K
nM
n̄M log

(

nM
n̄Mh(y)), (16)where the integration 
onstant is 
hosen so that ρψme
h(y = 0, nM = n̄M) = 0.Chemi
al part of free energies. We use here the same non-
onvex 
onstitutivelaw as in [2℄, whi
h takes entropy of mixing and the heat of solution into a

ount.It reads

ρψ̃
hem = nMLf(y) (17)with
f(y) = y(1 − y) +

RT

L
(y log y + (1 − y) log (1 − y)), (18)where L > 0 is the 
onstant heat of solution.Chemi
al potentials. In order to 
al
ulate the 
hemi
al potentials we 
onstru
tfrom the above at �rst the fun
tion ψ(T, nLi, nV), and then we use (61) to obtain

1

L
µLi = f(y) + (1 − y)f ′(y)+

b1

(

log
( nM
n̄Mh)− h′

h

(

1 −
n̄Mh
nM )(1 − y)

)

+ b2

(

1 −
h′

h
(1 − y)

)

1

h
, (19)

1

L
µV = f(y)− yf ′(y)+ b1

(

log
( nM
n̄Mh)+

h′

h

(

1 −
n̄Mh
nM )y)+ b2

(

1 +
h′

h
y

)

1

h
. (20)The newly introdu
ed 
onstants b1 = K/(n̄ML) and b2 = p̄/(n̄ML) 
ontrol thestrength of me
hani
al in 
omparison to 
hemi
al 
ontributions.Voltage of the battery 
ell in terms of 
hemi
al potentials. The simplebattery 
ell that is studied here 
ontains an anode made from metalli
 lithium.9



This fa
t and the additional assumption that the ele
trolyte has in�nite lithium ion
ondu
tivity implies a simple relation between the 
ell voltage U and the di�eren
e
µ = µLi − µV of the involved 
hemi
al potentials. It reads

U = −
µ

e
+ U0 , with the useful identity µ =

1

nM ∂ρψ̃∂y . (21)where e denotes the 
harge of an ele
tron, U0 is the basi
 
ell voltage, and (21)2follows from (6)2 by a simple 
al
ulation.3.4 Exploitation of me
hani
al equilibriumIn 
omparison with 
hemi
al pro
esses, me
hani
al equilibrium is mu
h faster es-tablished, so that it is reasonable to assume that the storage system is in me
hani
alequilibrium at any time. This assumption implies a large simpli�
ation of the avail-able free energy, and we shall thus exploit me
hani
al equilibrium in advan
e beforewe dis
uss the 
hemi
al equilibria in detail.For ea
h single FePO4 parti
le with index l ∈ 1, 2, .., N we have a

ording to (12)and (15)
p(yl, nlM) = p0 implying K

(

nlM
n̄M − h(yl)

)

= p0 − p̄, (22)whi
h gives the fun
tion nlM = n̂M(yl).4 The many parti
le system in detail4.1 Chara
terization of equilibriaFor instantaneous me
hani
al equilibrium, exploited in 3.4, the available free energy(7) redu
es to
A(y1, . . . , yN−1, q) =

NM
N

N
∑

l=1

(

1

n̂lMρlψ̃l +
p0

n̂lM) =
NM
N

N
∑

l=1

F (yl) (23)with the side 
ondition
yN = Nq −

N−1
∑

l=1

yl . (24)The abbreviation F (y) = 1
nM (ρψ̃ + p0) simpli�es the further dis
ussion.The available free energy has a lo
al minimum at any equilibrium point. If the �llingdegree q is �xed, the ne
essary 
onditions for equilibria are now ex
lusively given by

0 =
∂A

∂yl
=
NM
N

(

µ̂(yl) − µ̂(yN)
) for all l = 1, . . . , N − 1 . (25)10



Here the 
hemi
al potential fun
tion µ̂ is given by µ̂(y) = µ(y, n̂M(y)) = dF
dy
.A

ording to (21) we 
on
lude from (25) that ea
h parti
le has the same voltage.In order to sele
t only solutions of (25) that are equilibria, the Hessian H

Hlk :=
∂2A

∂yl∂yk
=

NM
N

(

∂µ̂

∂y

∣

∣

∣

y=yl
δlk +

∂µ̂

∂y

∣

∣

∣

y=yN

)

. (26)must be positive de�nite. The Hessian of A(·, q) 
an also be positiv semi de�nite,and then further investigations must be made.The 
ru
ial point now is, that the 
hemi
al potential µ̂ is a smooth non-monotonefun
tion. We assume that F and the 
hemi
al potential µ̂ satis�es the assumptions:(A1) F ∈ C2((0, 1); R) ∩ C([0, 1]; R)(A2) There exist y∗, y∗ ∈ (0, 1) with y∗ < y∗, so that µ̂ is stri
tly de
reasing in theinterval [y∗, y
∗] and stri
tly in
reasing else.(A3) lim

yց0
µ̂(y) = −∞ and lim

yր1
µ̂(y) = +∞ .(A4) µ̂′ is stri
tly 
onvex.The assumption (A4) 
an be repla
ed by the weaker assumption(A4') For all y ∈ (0, 1) we have µ′(z) = 0 ⇔ z ∈ {y∗, y

∗}.We only use assumption (A4) to keep the proofs simple. Note that a

ording to (21)2the 
hemi
al potential µ̂ satis�es the assumptions, and its stru
ture is illustrated inFigure 4.

0 0.5 1
−0.1

0

0.1

y
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ription of 
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al potential µ11



Next we de�ne the set of equilibria onMq := {z ∈ [0, 1]N−1 | 0 ≤ Nq−
∑N−1

l=1 zl ≤ 1}as
ΛN

q :=
{

y ∈ [0, 1]N | (y1, . . . , yN−1) lo
al minimum of A(., q) on Mq,

yN = Nq −
N−1
∑

l=1

yl and yi ≤ yi+1
}

.
(27)In order to ignore permutations the parti
les of equilibrium states are sorted a

ord-ing to the mole fra
tions.The assumption (A3) implies that no lo
al minimum of A(·, q) lies on the boundaryof [0, 1]N for q 6∈ {0; 1}. Let q ∈ (0, 1) be �xed and y ∈ ΛN

q . Then there must beparti
le indi
es i, j ∈ {1, . . . , N} so that yi < 1 and yj > 0. Let us assume, thereexists an index k ∈ {1, . . . , N} so that yk = 1. The assumptions (A1),(A3) implythat the fun
tion f ∈ C1((0, δ); R) ∩ C([0, δ]; R), de�ned by
f(ε) := F (yi + ε) + F (yk − ε) for ε ∈ [0, δ] , (28)is stri
tly monotone de
reasing on [0, δ], where δ > 0 is su�
iently small. Thereforethe state ỹε

ỹl
ε :=







yi + ε if l = i
yk − ε if l = k
yl otherwise for l = 1, . . . , N . (29)satis�es the side 
ondition (24), and using (28) we obtain

A(ỹ1
ε , . . . , ỹ

N−1
ε , q) < A(y1, . . . , yN−1, q) for all ε ∈ (0, δ] (30)This 
ontradi
ts the assumption that y is a lo
al minimum of A on Mq. The 
aseof an index k with yk = 0 
an be ex
luded by a similar reasoning. It follows, thatthe set of equilibria redu
e to

ΛN
q =

{

y ∈ (0, 1)N | (y1, . . . , yN−1) lo
al minimum of A(., q) on Mq,

yN = Nq +
∑N−1

l=1
yl and yi ≤ yi+1

}

,
(31)and for ea
h equilibrium state y ∈ ΛN

q , there must hold the ne
essary 
ondition (25).In the 
ase q ∈ (0, y∗∗] ∪ [y∗∗, 1), see Figure 4, the set of equilibria redu
es to
ΛN

q =
{

y ∈ (0, 1)N | yl = q for all l = 1, . . . , N
}

. (32)A 
ru
ial behavior of the many parti
le system is des
ribed by the following lemma.Lemma 1. Let q ∈ (0, 1) be �xed. 12



1. Based on the assumptions (A1)-(A4), there exists a sequen
e {δN}N∈N with
lim

N→∞
δN = 0 so that for all N ∈ N:

yl ∈ (0, y∗ + δN) ∪ (y∗ − δN , 1) for all y = (y1, . . . , yN) ∈ ΛN
q . (33)2. Furthermore at most one mole fra
tion is in the intermediate region (y∗, y

∗).Proof. The 
ase q ∈ (0, y∗∗] ∪ [y∗∗, 1) is trivial due to the 
hara
terization (32).We denote by ei ∈ R
N−1 the i-th unit ve
tor, whi
h has an entry 1 at the i-thposition and zero entries otherwise.Let q ∈ (y∗∗, y

∗∗) and N ∈ N. For any y = (y1, . . . , yN) ∈ ΛN
q the equations (24),(25) imply yl ∈ [y∗∗, y

∗∗] (l = 1, . . . , N) and it follows from the 
ontinuity
|µ̂′(y)| ≤ c0 for all y ∈ ΛN

q . (34)Let l∗ ∈ {1, . . . , N) and yl∗ ∈ (y∗, y
∗), whi
h implies µ̂′(yl∗) ≤ 0. Next, we de�ne(a) if l∗ < N , x := el∗ −

1
N−1

∑N−1
i=1,i6=l∗

ei,(b) if l∗ = N , x := 1
N−1

∑N−1
i=1 ei.In both 
ases, we 
on
lude from the Hessian (26)

0 ≤ xTH(y)x = µ̂′(yl∗) +
1

(N − 1)2

N−1
∑

i=1,i6=l∗

µ̂′(yi) . (35)Thus due to (34) we have
0 ≤ |µ̂′(yl∗)| ≤

1
N−1

∑N−1
i=1,i6=l∗

µ̂′(yi)

N − 1
≤

c0
N − 1

. (36)This means for su�
iently large N , that µ̂′(yl∗) is 
lose to zero. The stri
t 
onvexityof µ′ implies that there exist only two values y1
N < y2

N (N su�
iently large) with
µ̂′(y1

N) = µ̂′(y2
N) = −

c0
N − 1

. (37)From µ̂(y∗) = µ̂(y∗) = 0 follows y∗ < y1
N < y2

N < y∗ and yl∗ ∈ (y∗, y
1
N ] ∪ [y2

N , y
∗).The 
onvexity of µ′ also implies y1

N > y1
N+1, y2

N < y2
N+1 and we de�ne δN :=

max{|y1
N − y∗|, |y

∗ − y2
N |} so that the assertion holds.Next we prove that only one mole fra
tion yj ∈ ΛN

q for j ∈ 1, ..., N is in theintermediate region (y∗, y
∗). The 
ase q ∈ (0, y∗∗]∪[y∗∗, 1) is trivial. Let q ∈ (y∗∗, y

∗∗)and yl, yk ∈ (y∗, y
∗), this implies µ̂′(yl), µ̂′(yk) < 0 and(a) if k, l < N de�ne x := ek − el then we have xTH(y)x < 013



(b) if l < N, k = N de�ne x := el then we have xTH(y)x < 0so that that we do not have a minimum for two mole fra
tions yl, yN ∈ (y∗, y
∗).The lemma shows, that the individual storage parti
les of a many parti
le systemmay not behave identi
al. In equilibrium they may form two phases, denoted by α-and β-phase, with mole fra
tions in (0, y∗ + δN), respe
tively in (y∗ − δN , 1). For

y = (y1, . . . , yN) ∈ ΛN
q the lemma implies the existen
e of a unique number M ofparti
les in the β-phase. This leads to the following de�nition.De�nition 1. For given y ∈ ΛN

q we de�ne the fra
tion of parti
les in the β-phase
λ̂(y) :=

M

N
. (38)We may say that λ des
ribes an internal state of the many parti
le system, whereasits ma
ros
opi
 state is 
hara
terized by the �lling degree q.A system state that satis�es (25) and (24) attains the same 
hemi
al potential µ̂ forall parti
les. This allows to plot ea
h system state in a (µ, q)-diagram, see Figure 5.Therefore we write for all y = (y1, . . . , yN) ∈ (0, 1)N that satisfy (24) and (25).

µ̂(y) := µ̂(y1) = · · · = µ̂(yN) . (39)The last lemma shows, that at most one parti
le has a mole fra
tion yl∗ in theintermediate region (y∗, y
∗) and for large N we have yl∗ either 
lose to y∗ or to y∗.We are ex
lusively interested in systems with many storage parti
les, so that fromnow on we will ignore equilibria with individual parti
les in the region (y∗, y

∗). Thisfa
t motivates the following model assumption:(A5) There is no index k ∈ {1, 2, ..., N} so that the mole fra
tion yk is in theintermediate region (y∗, y
∗).Thus from now on we 
onsider equilibria that are 
ontained in the set

Λ̃N
q := {y ∈ ΛN

q | y satis�es (A5)} . (40)Figure 6 shows the equilibria for 10 and for 30 parti
les under the assumption (A5)in (µ, q)-plot.We revisit now Figures 5 and 6 and observe that the points indi
ating equilibriaseparate into di�erent bran
hes for in
reasing N. Later on, we shall show that equi-librium points of the same bran
h have the same internal state λ ∈ {0, 1/N, . . . , 1}.Therefore, for a �xed λ ∈ {0, 1/N, . . . , 1} we 
all the set
Bλ := {y ∈ (0, 1)N |∃q ∈ (0, 1) : y ∈ Λ̃N

q with λ̂(y) = λ} (41)14
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Figure 5: Chemi
al potentials for system states y ∈ (0, 1)N that satis�es (24) and(25) for 2, 3, 5 and 6 parti
les. The equilibria are indi
ated by the bla
k 
olor.
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a bran
h of equilibrium states. In other words Bλ 
ontains those equilibria thathave the same number of parti
les in the β-phase.Exploitation of the ne
essary 
onditions (25) for equilibria yields: The mole fra
-tions y = (y1, . . . , yN) ∈ Λ̃N
q of the storage parti
les 
an assume only two valueswith low and high mole fra
tion, whi
h are indi
ated by Y − respe
tively Y +. Theside 
ondition (24) 
an then be written as q = λ̂(y)Y + +(1− λ̂(y))Y −, and Assump-tion (A5) implies Y − ≤ y∗ and Y + ≥ y∗. The next lemma proves existen
e anduniqueness of the pair Y ± and their 
ontinuous dependen
e on the �lling degree q.The 
ontinuity yields that the bran
hes Bλ de�ne 
onne
ted sets in (0, 1)N .Lemma 2. Let λ ∈ {1/N, 2/N, . . . , (N −1)/N} be �xed and assume that (A1)-(A3)are satis�ed. We de�ne the interval Qλ :=

(

q−λ , q
+
λ

) with q−λ := λy∗ + (1− λ)y∗∗ and
q+
λ := λy∗∗ + (1 − λ)y∗. There exist unique fun
tions

Y −
λ ∈ C(Qλ, (y∗∗, y∗)) and Y +

λ ∈ C(Qλ, (y
∗, y∗∗)) , (42)whi
h satisfy

q = λY +
λ (q) + (1 − λ)Y −

λ (q) (43)
µ̂(Y +

λ (q)) = µ̂(Y −
λ (q)) (44)for all q ∈ Qλ.Proof. In order to show the existen
e, we de�ne the fun
tions

g0 :(µ∗, µ
∗) → (y∗∗, y∗) g0 : = (µ̂|(y∗∗,y∗))

−1 (45)
g1 :(µ∗, µ

∗) → (y∗, y∗∗) g1 : = (µ̂|(y∗,y∗∗))
−1 (46)whi
h are the inverses of the two monotone in
reasing bran
hes of µ̂ and furthermorewe de�ne

gλ :(µ∗, µ
∗) → (y∗∗, y

∗∗) gλ : = λg1 + (1 − λ)g0. (47)Re
all that the fun
tions g0,1 are stri
tly monotone in
reasing and this implies gλ isstri
tly monotone in
reasing. Therefor gλ(µ∗, µ
∗) = Qλ and the fun
tion

µλ := g−1
λ (48)is well de�ned and 
ontinuous on Qλ. Now we de�ne y−λ , y+

λ as
y−λ (q) := g0(µλ(q)) y+

λ := g1(µλ(q)) , (49)whi
h are 
ontinuous and de�ned on Qλ. Note that (43) and (44) are valid by
onstru
tion.The uniqueness dire
tly follows from (43) and (44). If we solve equation (43) for y−and insert the result into (44), we may de�ne
G(y+) := µ̂(y+

λ ) − µ̂
(q − λy+

λ

1 − λ

)

. (50)The fun
tion G is stri
tly monotone, so that its root y+
λ is unique.16



Remark 1. We 
on
lude from Lemma 2 that we 
an 
onstru
t, for �xed λ ∈
{0, 1/N, . . . , (N −1)/N, 1}, 
ontinuous mole fra
tions yλ of the �lling degree q ∈ Qλwith values in Λ̃N

q .
yi

λ(q) :=

{

Y −
λ (q) i ≤ (1 − λ)N
Y +

λ (q) i > (1 − λ)N
(51)so that yλ(q) ∈ Λ̃N

q for all q ∈ Qλ.In the 
ase λ ∈ {1/N, . . . , (N − 1)/N} the fun
tions Y −
λ , Y +

λ and the set Qλ arede�ned in Lemma 2.In the 
ase λ ∈ {0, 1} the fun
tions are de�ned as Y +
λ (q) = Y −

λ (q) := q for q ∈ Qλ,where Q0 := (0, y∗) and Q1 := (y∗, 1).The fun
tions y±λ are 
ontinuously expandable to Qλ.Remark 2. For ea
h equilibrium state of Λ̃N
q there exists Y − and Y + whi
h satisfy(43),(44) and as a result of the uniqueness in Lemma 2 every equilibrium statebelonging to Λ̃N

q 
an be rea
hed by a fun
tion yλ.As a 
onsequen
e we have
Bλ = {yλ(q)|q ∈ Qλ} λ ∈ {0, 1/N, . . . , 1} . (52)This means that ea
h bran
h Bλ 
an be 
hara
terized by the fun
tion yλ, and ea
hbran
h in the (µ, q) plot, see Figure 6, is de�ned by {µ̂(yλ(q)) | q ∈ Q̄λ}.At last, we state that the verti
al distan
e between the 
hemi
al potential of twobran
hes in the (µ, q)-plot de
reases if the number of storage parti
les in
reases.This fa
t 
an be observed in Figure 6 and additionally follows from the following
orollary.Corollary 1. Let yλ ∈ C(Qλ; (0, 1)N) be de�ned as in Remark 1. For ε > 0 existsa numberN∗ ∈ N so that

max
q∈Qλ∩Qλ+1/N

|µ̂(yλ(q)) − µ̂(yλ+1/N(q))| ≤ ε (53)for all N ≥ N∗ and for all λ ∈ {0, 1/N, . . . , (N − 1)/N} .Proof. Let λ ∈ {0, 1/N, . . . , (N − 1)/N} and q ∈ Qλ ∩ Qλ+1/N . The fun
tions yλand yλ+1/N are 
ontinuous so that the maximum is well de�ned on the 
losed set
Qλ ∩Qλ+1/N .In the following we ignore the argument q in yλ and yλ+1/N .The fun
tions yλ satisfy identity (43) and it therefor follows for q ∈ Qλ ∩Qλ+1/N

(1 − λ)
(

y−λ − y−λ+1/N

)

+ λ
(

y+
λ − y+

λ+1/N

)

=
1

N

(

y+
λ+1/N − y−λ+1/N

) (54)17



and from identity (44) they satisfy
µ̂(y−λ ) = µ̂(y+

λ ) and µ̂(y−λ+1/N ) = µ̂(y+
λ+1/N) . (55)

q ∈ Qλ ∩ Qλ+1/N implies that y−λ+1/N ≤ y∗ and y+
λ+1/N ≥ y∗, and furthermore with(54) we 
on
lude

(1 − λ)
(

y−λ − y−λ+1/N

)

+ λ
(

y+
λ − y+

λ+1/N

)

≥
1

N
(y∗ − y∗) > 0 . (56)The monotoni
ity of µ̂ implies via (55) and (56)

y+
λ − y+

λ+1/N ≥ 0 and y−λ − y−λ+1/N ≥ 0 . (57)Note, if q ∈ Qλ ∩Qλ+1/N then y+
λ+1/N , y

−
λ+1/N ∈ [y∗∗, y

∗∗], and from (54) we obtain
min{|y−λ − y−λ+1/N |, |y+

λ − y+
λ+1/N |}

≤(1 − λ)
(

y−λ − y−λ+1/N

)

+ λ
(

y+
λ − y+

λ+1/N

)

≤
1

N
(y∗∗ − y∗∗) .

(58)Finally the boundedness of µ̂ on [y∗∗, y
∗∗] and (55) implies

|µ̂(yλ) − µ̂(yλ+1/N )| = |µ̂(y+
λ ) − µ̂(y+

λ+1/N)| = |µ̂(y−λ ) − µ̂(y−λ+1/N)| (59)
≤ c0 min{|y−λ − y−λ+1/N |, |y

+
λ − y+

λ+1/N |} (60)
≤

c0
N

(y∗∗ − y∗∗) . (61)
4.2 Quasi-stati
 evolutionUp to now we have studied the behavior of the storage system for 
onstant �llingdegree q. In this se
tion we assume that the �lling degree q slowly depends on timeand therefore we study now a quasi-stati
 evolution of the system. Thus during thetime interval I = [t0, t1] its evolution y : I → (0, 1)N must satisfy y(t) ∈ Λ̃N

q(t) for all
t ∈ I.At �rst we dis
uss the expe
ted behavior. To this end we start from an equilibriumstate y0 ∈ Λ̃N

q with q ∈ (0, 1). Then Lemma 1 implies, that the storage parti
lesare separated in α- and β-phase, with 
orresponding mole fra
tions Y −, respe
tively
Y +. If the pro
ess is su�
iently slow, so that |q̇| ≪ 1, then we expe
t that thesystem does not 
hange signi�
antly, i.e. |y(t0)− y(t0 + ε)| ≪ 1, and we expe
t theevolution of the mole fra
tions y = (y1, ..., yN) to be 
ontinuous.18



Corollary 2. Let I = [t0, t1] be a time interval, y0 ∈ Λ̃N
q0

with phase fra
tion λ̂(y0)and q ∈ C(I;Qλ) with q0 = q(t0). Then there exists a unique 
ontinuous fun
tion
y : I → (0, 1)N satisfying

y(t0) = y0 and y(t) ∈ Λ̃N
q(t) for all t ∈ I. (62)Proof. We 
on
lude from Remark 1 that the fun
tion y(·) := yλ̂(y0)(q(·)) is 
ontinu-ous and we have y(t) ∈ Λ̃N

q(t) for all t ∈ I. Let us now assume, that there exist molefra
tions ȳ ∈ C(I; (0, 1)N) with ȳ(t) ∈ Λ̃N
q(t) and ȳ(t0) = y0. Starting from the initialvalue and applying the 
ontinuity property yields that for all t ∈ I the fun
tion ȳhas the same phase fra
tion λ̂(y0). The uniqueness follows from Lemma 2.So far we 
ould des
ribe the behavior of the system as long as the �lling degree qstays in an open set Qλ during the 
onsidered time interval.Now we pose the question, what happens if q runs over the boundary of Qλ =

(q−λ , q
+
λ ). For simpli
ity we only dis
uss the 
ase where q is in
reasing in time andex
eeds q+

λ = q(t∗) at a 
ertain time t∗. By assuming 
ontinuous (in time) molefra
tions y(t) = y1(t), ..., yN(t), one 
an uniquely determine the state y(t∗). Thepositive de�niteness of the Hessian matrix and therefore the requirement that thesystem runs through equilibria is not guaranteed at this limit state. However for
q(t) > q+

λ it is possible to 
ontinue the state y su
h that we have the ne
essary
ondition (25) for equilibrium with the phase fra
tion λ̂(y(t0)), though the extensiondo not minimize the energy A. For this reason we 
all the state that results for q(t∗)a 
riti
al point.Obviously within the setting of quasi-stati
 evolution we need a further model as-sumption in order to des
ribe how the storage parti
le system evolves if q ex
eeds
q+
λ . Motivated by an analogy with N inter
onne
ted rubber balloons, where weobserve a similar behavior, we state that the system state 
hanges dis
ontinuously.An α-phase parti
le 
hanges at q+

λ to the β-phase and the phase fra
tion λ̂(y(t))a

ordingly 
hanges to λ̂(y(t∗ + ε)) = λ̂(y(t∗)) + 1/N for ε small enough.This behavior is represented in the (µ, q)-plot as follows. During the evolution, theparti
le system follows the bran
h Bλ to its end, i.e. up to the 
riti
al point q(t∗),and then drops to the next bran
h Bλ+ 1

N
if q ex
eeds q(t∗). Note that for su�
ientlylarge N for λ ∈ {0, 1/N, . . . , 1} we have

q+
λ ∈ Qλ ∩Qλ+1/N for λ < 1 , q−λ ∈ Qλ ∩Qλ−1/N for λ > 0, (63)so that the above des
ribed behavior is allowed within the quasi-stati
 setting.Now we summarize the assumed behavior of the storage parti
le system in a slightlymore systemati
 way. Re
all that the evolution I := [t0, t1] → (0, 1)N of the state ydepends on the �lling degree q ∈ C(I; (0, 1)) and on the initial value y0 ∈ Λ̃N

q(t0).(A5) (i) The evolution starts from y0 with phase fra
tion λ̂(y0) and q(t0) ∈ Qλ̂(y0). 19



(ii) The evolution evolves along the fun
tion y(t) = yλ̂(y0)(q(t)), with y(t0) =
y0, where yλ̂(y0) is de�ned in Remark 1, until the system rea
hes a 
riti
alstate where either q(t∗) = q−

λ̂(y0)
or q(t∗) = q+

λ̂(y0)
.(iii) If

{

q(t∗) = q−
λ̂(y0)

then y(t∗) := yλ̂(y0)−1/N (q(t∗))

q(t∗) = q+

λ̂(y0)
then y(t∗) := yλ̂(y0)+1/N (q(t∗))where the fun
tions yλ̂(y0)−1/N and yλ̂(y0)+1/N are de�ned in Remark 1.(iv) The evolution pro
eeds at (i) with t0 = t∗ and y0 = y(t∗).The Corollary 2 guarantees that the evolution of the mole fra
tions y a

ording toassumption (A5) is well de�ned and unique. Furthermore the 
onstru
tion (A5)implies that the evolution is pie
ewise 
ontinuous. The dis
ontinuities (jumps) areattributed to the passage of a storage parti
le from the α- to the β-phase or vi
eversa, see (A5)(iii).4.3 Asymptoti
 behavior and hysteresisIn this se
tion we dis
uss the asymptoti
 behavior that is indu
ed by the quasi-stati
 evolution of the storage parti
le system. In parti
ular we will demonstratethat the introdu
ed model is 
apable to predi
t the observed hystereti
 behaviorduring 
harging and dis
harging of a lithium-ion battery. We start from a fully
harged state and 
onsider the pro
ess q : [t0, t1] → (0, 1) along the paths

q(t) =

{ t−t0
t1−t0

for t < t0+t1
2

(dis
harging)
t1−t
t1−t0

for t ≥ t0+t1
2

(
harging) for t ∈ [t0, t1] . (64)The response of the storage system 
an at best be des
ribed in the plot that givesthe 
hemi
al potential µ̂ versus the �lling degree q of the storage system. Re
all,that −µ̂ is proportional to the voltage and 1 − q is related to the 
apa
ity of thebattery, i.e. to the stored ele
tri
 
harge. The Figure 7 shows the response of astorage system with 5 respe
tively with 10 storage parti
les.We observe a path dependen
e during dis
harging and 
harging and moreover, foran in
reasing number of storage parti
les o

urs a hysteresis loop. This fa
t isthe 
ontent of the next 
orollary, whereupon the jumps of the 
hemi
al potentialde
rease for in
reasing number of storage parti
les. For 1000 parti
les, see Figure 8,they are not visible anymore.Corollary 3. Let q ∈ C(I; (0, 1)) and yN the solution of the quasi stati
 modelwhi
h satis�es (A5) for N ∈ N. For ε > 0 exists a number N∗ ∈ N, whi
h dependson ε, so that
max
t∈I

| lim
sրt

µ̂(yN(s)) − lim
sցt

µ̂(yN(s))| < ε for all N > N∗ . (65)20
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 behavior generated by a 
athode with 5 (left) and 10 (right)storage parti
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athode with 1000 storage parti
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Proof. The model implies that the solution yN for any N is pie
ewise 
ontinuous.It is only dis
ontinuous if one parti
le 
hanges the phase. A

ording to Corollary 1the jumps of µ̂ de
rease uniformly for in
reasing N .4.4 Some sele
ted properties of the modelPath dependen
e. A 
hara
teristi
 observation in lithium-ion batteries 
on
ernsthe fa
t that the voltage of a 
ertain 
harge state depends on the 
harging history[16℄. In order to demonstrate that this path dependen
e 
an be explained withinthe model we 
onsider the following experiment:1. We fully 
harge a dis
harged battery, i.e. we start with q = 1 and end up with
q = 0. The resulting path is indi
ated in Figure 9left by the red arrows.2. We dis
harge now the fully 
harged battery from q = 0 and stop at q = 0.5.3. From here we fully 
harge the battery down to q = 0. The resulting path isindi
ated in Figure 9left by the blue arrows.We observe in this experiment that the history, how a given 
harge state of thebattery is rea
hed, is essential in order to predi
t its subsequent behavior duringfurther 
harging or dis
harging. The origin of this phenomenon is easily explainedwithin the setting of the proposed model. The system evolves along di�erent paths,be
ause the number of parti
les in the β-phase is di�erent for the two 
hargingpro
esses.Likewise the model predi
ts the o

urren
e of an inner hystereti
 loop, as it isrepresented in Figure 9right. The 
orresponding pro
ess is1. We start with a dis
harged battery at q = 1.2. Then we 
harge down to q = 0.65.3. Starting here we dis
harge and stop at q = 0.35.4. Starting here we fully 
harge the battery to end up with q = 0.The traversed path is indi
ated by the blue arrows in Figure 9right.Me
hani
al intera
tion of storage parti
les. Up to now the dis
ussion relieson the assumption that ea
h storage parti
le is subje
ted to the 
onstant outerpressure p0. Now we take into a

ount that the volume of the parti
les 
hanges, asit is des
ribed in Se
tions 3.3 and 3.4, leads to an elasti
 response of the ele
trolyte.In this 
ase the outer pressure p0 is no longer a 
onstant but will now be
ome afun
tion of the �lling degree q.Re
all the simple 
onstitutive law for the pressure inside a storage parti
le from Se
-tion 3.3. In an analogous manner we assume that the pressure within the ele
trolyte22
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Figure 9: Path-dependen
e and hystereti
 behavior generated by a 
athode with1000 storage parti
les. Left and right: Di�erent experiments, see text for the details.is given by a similar law. We write
p0 = pR +KE(V 0E

VE − 1

)

, (66)where KE is the bulk modulus of the ele
trolyte and VE is its a
tual volume whi
his related to the referen
e volume V 0E a

ording to VE = V 0E (1 − δq). Thus we have
p0 = pR +KE( q

1 − δq

)

. (67)The further treatment of this 
ase is the same as before, i.e. we evaluate the 
onditionof me
hani
al equilibrium and determine a new fun
tion nlM = n̂M(yl, q) to 
onstru
tthe 
hemi
al potentials µ̂l of the parti
les indexed by l. The previous horizontalplateaus, whi
h indi
ate the 2-phase region in the µ, q diagram now o

ur with a
ertain slope as it is shown in Figure 10.5 An illustrative analogy: Simultaneous in�ation ofinter
onne
ted rubber balloonsWe 
onsider N inter
onne
ted spheri
al rubber balloons indexed by l ∈ 1, 2, ..., N asindi
ated in Figure 12. Via the pressure vessel the balloons 
an be simultaneouslyin�ated by air.The pressure di�eren
e pl −p0 of ea
h balloon with respe
t to the outer pressure p0,is related to its a
tual radius r by
pl − p0 = α

(

R

rl
−

(

R

rl

)7
)(

1 + β

(

rl

R

)2
)

, (68)23
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Figure 10: Storage system with 250 parti
les. Due to me
hani
al intera
tions theprevious horizontal 2-phase plateaus a
hieve a slope.where R is the radius of the undeformed balloon and α > 0 and β > 0 are relatedto the initial thi
kness of the balloon and to the elasti
 
onstants of rubber, moredetails are found in [6℄ and [13℄. The fun
tion (68) is represented in Figure 11 and
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Figure 11: Non-monotone pressure-radius relation of a spheri
al elasti
 rubber bal-loonshows a non-monotone graph, whi
h qualitatively indu
es the same behavior as the
hemi
al potentials of the storage parti
les from above, 
ompare with Figure 4.In 
ase that a single balloon is in�ated by supply of air under �xed pressure, thede
reasing part of the pressure-radius relation is an unstable bran
h.Now we 
onsider the pro
ess that is illustrated by Figure 12. There is a 
onstantsupply of air into the pressure vessel and that air freely distributes among theballoons. The following happens: As long as the �lling of balloons is small, theyall have the same size until they rea
h with in
reasing �lling the end of the �rstin
reasing pressure-radius bran
h. Careful observation now reveals that only oneballoon will pass qui
kly through the de
reasing bran
h to an apparent larger radius,24



Figure 12: Four di�erent states of 
onne
ted rubber balloons during loading withair via the pressure vessel.whereas the other balloons slightly de
rease at �rst their radii before all balloonsagain in
rease their radii due to the 
onstant supply of air. In that time regime wethus have one large balloon and N−1 small ones. This regimes ends when the smallballoons again rea
h the end of the �rst in
reasing pressure-radius bran
h, and herethe same event as before happens. One balloon passes to a larger radius, whereasnow N −2 balloons slightly fall ba
k, and we have now a state with 2 large balloonsand N−2 small ones. This pro
ess is repeated until all balloons have the same largesize, whi
h is the last state of the sequen
e from Figure 12.The interpretation and in parti
ular the analogy to the behavior of the many storageparti
le system from above is obvious. There is a regime of two 
oexisting phases,formed by small respe
tively large balloons. Ea
h balloon is a homogeneous andsingle phase obje
t, however, some balloons are in one phase and the others are inthe other phase. See [8℄, [9℄ and [13℄ for more details. The same happens in thestorage system during 
harging and dis
harging of the battery: There is a regimeof parti
les with small respe
tively large lithium 
ontent. Ea
h storage parti
le is ahomogeneous and single phase obje
t, however, some parti
les are in one phase andthe others are in the other phase.A
knowledgmentsThis work was performed as part of Proje
t C26 �Storage of Hydrogen in Hydrides�of the DFG resear
h 
enter MATHEON, Berlin.25



Referen
es[1℄ W. Dreyer and F. Duderstadt, On the modelling of semi-insulating GaAs in-
luding surfa
e tension and bulk stresses, WIAS Preprint No. 995, to appear inPro
. R. So
. A (2008).[2℄ W. Dreyer, M. Gaber²£ek and J. Jamnik, Phase transition and hysteresis in are
hargeable lithium battery, WIAS Preprint No. 1284 (2008)[3℄ W. Dreyer, C. Guhlke, M. Gaber²£ek, R. Huth and J. Jamnik, Phase transitionand hysteresis in a lithium-ion battery revisited, WIAS Preprint in preparation(2009)[4℄ W. Dreyer, C. Guhlke, A phase �eld model and its sharp interfa
e limit, WIASPreprint in preparation (2009)[5℄ C. Delmas, M. Ma

ario, L. Croguenne
, F. Le Cras and F. Weill, Lithiumdeinter
alation in LiFePO4 nanoparti
les via a domino-
as
ade model, Naturematerials, 7 (2008), pp. 665�671.[6℄ W. Dreyer, I. Müller and P. Strehlow, A study of equilibria of inter
onne
tedballoons, Quarterly J. Me
h. Appl. 35 (1982), p. 419.[7℄ B.C. Han, A. Van der Ven, D. Morgan and G. Ceder, Ele
tro
hemi
al modelingof inter
alation pro
esse with phase �eld models, Ele
tro
himi
a A
ta 49 (2004),4691�4699.[8℄ W. Kits
he, Modellierung eines Phasenüberganges an einem System vieler Bal-lons, Diploma thesis, TU Berlin (1985).[9℄ W. Kits
he, I. Müller and P. Strehlow, Simulation of pseudoelasti
 behavior in asystem of rubber balloons, In: Metastability and in
ompletely Posed Problems,IMA Vol. 3 (2004), p. 2113.[10℄ T. Maxis
h and G. Ceder, Elasti
 properties of olivine LixFePO4 from �rstprin
iples, Physi
al Reviev B73 (2006), 174112-1�174112-4.[11℄ A. Mielke and L. Truskinovsky Pseudoelasti
ity as limit of a bistable 
hainwith small vis
osity, Workshop, Phase Transitions and Optimal Control WIASBerlin, 23. - 25. O
tober 2008[12℄ I. Müller, Thermodynami
s, Intera
tion of Me
hani
s and Mathemati
s Series,Pitman Advan
ed Publishing Program, Boston, 1985.[13℄ I. Müller and P. Strehlow, Rubber and Rubber Balloons, Le
ture Notes inPhysi
s 637, Springer (2004).[14℄ G. Puglisia and L. Truskinovsky, Rate independent hysteresis in a bi-stable
hain, Journal of the Me
hani
s and Physi
s of Solids 50 (2002) 165 â�� 18726



[15℄ V. Srinivasan and J. Newman, Dis
harge Model for the Lithium Iron-PhosphateEle
trode, Journal of The Ele
tro
hemi
al So
iety 151(10) (2004), A1517�A1529.[16℄ V. Srinivasan and J. Newman, Existen
e of Path-dependen
e in the LiFePO4Ele
trode, Ele
tro
hemi
al and Solid State Letters, 9, A110 (2006)[17℄ M. Wagemaker, W.J.H. Borghols and F.M. Mulder, Large Impa
t of Parti
leSize on Insertion Rea
tion. A Case for Anatase LixTiO2, J. AM. CHEM. SOC.129(14) (2007), 4323�4327.[18℄ A. Yamada, H. Koizumi, S.I. Nishimura, N. Sonoyama, R. Kanno, M. Yone-mura, T. Nakamura and Y. Kobayashi, Room-temperature mis
ibility gap inLixFePO4, Nature materials Letters 5 (2006), 357�360.

27


