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Abstract

We study the almost reversible storage process of charging and discharging
of lithium-ion batteries. That process is accompanied by a phase transition
and charging and discharging run along different paths, so that hysteretic
behavior is observed.

We are interested in the storage problem of the cathode of a lithium-ion bat-
tery consisting of a system of many iron phosphate (FePOy) particles. There
are mathematical models, see [2], 3] and [4], that describe phase transitions
and hysteresis exclusively in a single storage particle and they can describe
the observed hysteretic voltage-charge plots with almost horizontal plateaus.
Interestingly the models predict that the coexistence of a 2-phase system in
an individual particle disappears, if its size is below a critical value. The dis-
appearance of the phase transition in the single particle model implies the
disappearance of the hysteresis. However, in the experiment hysteretic behav-
ior survives. In other words: The behavior of a storage system consisting of
many particles is qualitatively independent of the fact whether the individual
particles itself develop a 2-phase system or if they remain in a single phase
state.

This apparent paradoxical observation will be resolved in this article by a
many particle model. It will be shown that if each of the individual particles
is in a homogeneous state, nevertheless the many particle ensemble exhibits
phase transition and hysteresis, because one of the two phases is realized in
some part of the particles while the remaining particles are in the other phase.
Mathematically speaking this phenomenon is due to the non-monotonicity of
the relation between the chemical potential and the lithium mole fraction.

The pressure-radius relation of a spherical elastic rubber balloon also ex-
hibits non-monotone behavior. In fact, a system of many interconnected bal-
loons behaves correspondingly to a cathode consisting of many storage par-
ticles. This analogy between the two systems is important, because the pre-
dictions of the many particle model can easier be tested with rubber balloons
of macroscopic size than with an ensemble of microscopically small (FePOy)
particles.

1 Introduction and basic functionality of recharge-

able lithium-ion batteries

Currently rechargeable lithium-ion batteries are the most promising storage systems
for electrical energy.



The charging and discharging process is accompanied by a phase transition and
it exhibits hysteretic behavior, which is described in a characteristic diagram, see
Figure 1, that gives the voltage of the battery cell versus its total charge.

Voltage/V

1 1 1 1

1 1

Capacity/mAhg

Figure 1: Voltage versus charge per mass of a FePO, cathode |2]

The cathode of lithium-ion batteries is designed as a storage system for lithium
atoms, which consists of many small iron phosphate (FePO,) crystalline particles
forming a layer on a substrate. The interstitial lattice sites of FePO, serve to store
the lithium atoms. In the fully charged state of the battery, there is no lithium in
the storage system while it contains the maximal possible number of lithium atoms
when the battery is fully discharged.

We consider two versions of a simplified battery cell as they are sketched in Figure 2.
The device on the left hand side of Figure 2 contains a many-particle storage system,
whereas on its right hand side the cathode consists of a single storage particle. Both
versions consider the storage particles as small spheres of about 50 nm diameter,
thus these are not of macroscopic size. Figure 2 also indicates the processes in a

electrolyte electrolyte

Figure 2: FePO, particles against an metallic Li anode within an electrolyte.

lithium battery during discharging and charging. During discharging electrons leave
the anode to travel through an outer circuit. The remaining positive lithium ions
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leave the anode and move through the electrolyte towards the cathode, where they
recombine with the incoming electron at the carbon coated surface of the storage
particles.

In a single storage particle we have the following situation. For small lithium content,
the lithium atoms form a single phase that we call a-phase. However, if the lithium
content of the storage particle exceeds a certain value and if the particle is not
too small, the formation of a second phase, J-phase, sets in. The single particle
model predicts that the voltage remains constant in the coexistence region of the
two phases, see Figure 1.

A further phenomenon that occurs is a reversible and elastic change of the particle
volume during charging and discharging, which is due to the fact that the lithium
atoms need more space as is available by the interstitial lattice sites in FePQOy.
During lithium storage the volume typically changes up to 6%.

The mathematical model, that were proposed in [2|, [3] and [4], describe phase
transitions and hysteresis exclusively in a single particle. On that basis they are
able to show that the observed horizontal plateaus can be a consequence of the
coexistence of two phases which differ by high and small lithium concentrations in
a single particle. Further theoretical studies on the evolution of lithium atoms in a
single particle system by Han et al. [7], Srinivasan and Newman [15] also rely on
this phenomenon, which is experimentally investigated by Yamada et al. |18|.

Surprisingly there is the following observation. When the size of an individual
particle becomes too small the coexistence region vanishes and the particle remains
in a single phase state. This fact is observed in experiments, see Wagemaker et al.
|17|, and it also results from the model equations in 2|, |3] and [4].

However, in the experiment hysteretic behavior survives. The key idea to explain
this strange behavior relies on the fact that in the experiment we always meet a
many particle cathode.

Delmas et al. [5] report on detailed experimental observations concerning the state-
ment of Wagemaker et al. [17]. They study an ensemble of storage particles with
sizes within the range from 80 nm to 150 nm. Here they exclusively found particles
either in a- or in - phase. This fact lead them to the conjecture that only few par-
ticles are in the state of two coexistent phases. They develop an interesting model,
that describes the mechanism of the phase transition in a many storage particle
system. In the current study we propose a mathematical model that is capable to
predict the observations by Delmas et.al. in a very natural way.

We will show that the non-monotonicity of the chemical potential function with
respect to the lithium concentration of a single storage particle implies the hysteretic
behavior of a many particle system, where its members are single phase storage
particles.

A similar non-monotonicity occurs in the paper on rate independent hysteresis by
Truskinovski and Puglisi in a different context. They aim to explain hysteretic
phenomena in shape memory alloys on a microscopic basis, [14]|. Their microscopic
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model is a one-dimensional chain of NV oscillators, where each oscillator is equipped
with a non-monotone stress-strain relation. Further differences to the study of this
paper are boundary conditions during the cycling of the hysteresis loop and the
mathematical treatment.

The same subject is currently under investigation by Mielke and Truskinovski, [11].
In order to reduce the necessary assumptions which are needed in a quasi-static
treatment of the problem. The authors rely their new reasoning of the behavior of
the chain model according to an evolution law, and in addition to the non-monotone
stress-strain relation they provide the oscillators with viscous elements and stochas-
tic behavior.

The analysis of a many particle system, where each particle is equipped with un-
stable states between two stable states, has already been started in 1982 by Dreyer,
Miiller and Strehlow, |6], where the equilibria of two interconnected spherical and
elastic rubber balloons were studied. That problem was generalized to N > 2 inter-
connected balloons by Kitsche, [8] in his diploma thesis, and the results, which form
a complete analogy to the current problem and to Truskinovski and Puglisi, were
published in [9] in 1987, see also Chapter 5 for a detailed discussion of the analogy
between the behavior of the many particle cathode of a lithium-ion battery and a
large number of interconnected rubber balloons.

The paper is organized as follows: In Chapter 2 we introduce the basic properties of
the storage particles. Chapter 3 introduces the thermodynamic model. Chapter 4 is
addressed to the detailed exploitation of a simplified model for lithium storage. Here
we numerically illustrate the various phenomena and carry out the mathematical
analysis. Finally we have added a small Chapter 5, where we explain the intimate
analogy between the many particle storage problems and the problem of the inflation
of many connected rubber balloons.

2 Crystal structure and basic variables of the host
systems

In this chapter we describe the crystal structure of the FePO, and identify the basic
variables that are needed to describe the thermodynamic state of the storage system.
However, for the purposes of the current study we will end up with a simplified
description, and we refer the reader to the given citations for the complete and more
precise details.

2.1 Crystal structure of FePO, for lithium storage
The crystal lattice of an FePO, particle is illustrated in Figure 3. The FePO, units

are indicated by yellow (Fe), pink (P), red (O) and the green balls are the interstitial
lattice sites that can be occupied by the lithium atoms. The deformation of the



Figure 3: FePO, structure. Yellow: Fe, pink: P, red: O, green: interstitial sites.
From [10]

lattice during the loading of the storage system with lithium atoms is described in
detail by T. Maxisch and G. Ceder in [10]. The undeformed crystal has orthorhombic
olivine symmetry. In this state the sublattice, formed by the interstitial lattice sites,
is completely empty. To each unit of FePO, there corresponds one single site in the
sublattice. The olivine structure does not change during the occupation of the
sublattice sites by lithium atoms. When these are supplied or removed through
the external boundary, there is a deformation of the olivine structure, because the
lithium atoms need more space as is available by the sublattice sites. Thus the
crystal volume changes if the number of lithium atoms is changed. Moreover the
stiffness coefficients change.

2.2 Basic variables for lithium storage

The number Ny; of FePOy units, which form the matrix lattice, is fixed. Thus we
assume that there is no diffusion in the matrix lattice but it is deformed, and for
simplicity we only take the change of its volume V" into account and ignore deviatoric
stresses, see |2| concerning the complete mechanical description.

On the sublattice of a particle we have Nj; lithium atoms and Ny vacancies. The
latter indicate the empty lattice sites, which do not have mass or momentum but
they are carrier of energy and entropy. Since there is a single sublattice site to each
FePO, unit, we have the side condition

NM - NLi + NV- (1)

Thus for given temperature T, the basic variables of the lithium storage problem
are V, Ny and Nyp;. For the local description we introduce the mole densities nyy,
nr; and ny which have units mole/m3. Note that ny changes because the volume
V' may change, whereas Ny is constant.



3 A piece of thermodynamics of the storage parti-
cles

In this chapter we introduce those basic facts of thermodynamics that are needed.

3.1 Thermodynamics of a single storage particle

Global inequality. We consider a single FePO, particle, see Figure 2. For constant
temperature and fixed external pressure or fixed volume the 15 and 2"¢ law of
thermodynamics imply for a system, that does not exchange lithium atoms with the
surrounding, the temporal inequality

dA

—5 <0 with A= pV. (2)

The quantity A is the available free energy of the storage particle, which occupies
a spatial domain €Q(t), and it is given by the (Helmholtz) free energy W plus outer
pressure pg times the total volume V' of the particle, provided that the kinetic energy
is ignored.

In equilibrium the equality sign holds, whereas the available free energy must exclu-
sively decrease in non-equilibrium. Possible equilibria are thus determined by the
minima of A.

The application of the inequality (2) to the cases at hand requires some discussion in
advance. Whatever the initial state of the storage particle is, the inequality describes
the evolution of that state to equilibrium, provided, that the given side conditions are
satisfied. In this study we are interested in processes that are induced by loading
and unloading of the storage particle with lithium atoms. Thus the considered
system does exchange matter with the surrounding. In this case the form (2) of the
thermodynamic inequality is only applicable for quasi-static loading and unloading.
This means that the interior processes run on a much faster time scale than the
evolution of Ny;(¢).

Free energy density, chemical potentials, pressure, Gibbs equation and
Gibbs-Duhem equation. The total free energy ¥ of a storage particle is an
additive quantity that can be written as

U= /Q pt da. (3)

Here p is the mass density and 1 denotes the specific free energy of the particle.

We have p = myny + myny = nu(mu + myiy), where my and my; are the
molecular masses of FePO, and Li, respectively, and y = ny;/ny gives the lithium
mole fraction.

The specific free energy is given by a constitutive function that relates ¢ to the
temperature 1", which is a constant in this study, and to the mole densities ny;, ny
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of lithium and vacancies. Since we have ny = n; + ny, the latter dependence can
also be described by the lithium mole fraction y and the mole density of the matrix
units ny: )

w = w(T> nLi,”V) = w(T>y>nM) (4)
The representation via the function ¢ simply results from a transformation of the
variables.

The free energy density satisfies the Gibbs equation and the Gibbs-Duhem equations,
see [1] and [12]|. These read

dpy = —psdT + Y piadng and p=—p+ > jigna, (5)

ae(Ti,V) ae(Ti,V)

where the newly introduced quantities are the chemical potentials p, and the pres-
sure p. From (5) and by an easy calculation we obtain the constitutive relations

- N - i)
MLi_NV:mLﬂ/}""(mM"FmLiy)a—Z}a p:—/ﬂ/J-i‘nM%- (6)

_ Op¥

/’l’ll - ana I

The representations (6) are of central importance in the following.

3.2 The available free energy of a many particle system

Now we consider the many particle problem as indicated in Figure 2),¢. The con-
sidered system contains N storage particles, indexed by [ € 1,2,..., N. A storage
particle [ has the volume V!, N}, FePO, units forming the matrix lattice and N/,
lithium atoms on the interstitial lattice. The further characterization of the many
particle ensemble relies on three conditions.

(i) We assume that each particle is in a homogeneous state.

(ii) The number N}, of matrix molecules (FePQ,) is constant and the same for
each storage particle N}, = N}, 1 =1,..., N.

(iii) The unloaded particles all have the same volume V! = V[ = 1,..., N and
thus the same mole density ny;.

The available free energy for the N particle system is given by
N N
A=Y [ A0 v =Y Vi ) ©
1=1 /¢ =1

where V' = Zf\il V! is the total volume of the system.



Furthermore we introduce the total numbers of matrix units and of lithium content
of the ensemble.

Ny =ny V! =gV, Ni; =V, (8)

N N
Ny = Z Nl = NV, Ny = Z N (9)
=1 —

The macroscopic filling degree ¢ = Ny; /Ny denotes the overall loading state of the
system, which can be written as

q= Zl lNIll _ 1 Z (10)

Necessary conditions for equilibria. According to (4), (7) and (8); the available
free energy A depends on the variables (yl, n{w)le{m,m,N}. Recall that we study the
quasi-static case. We thus seek for equilibria at given filling degree q. We get rid
of the condition (10) by the introduction of a Lagrange multiplier A. There are two
kinds of necessary conditions for equilibrium:

0A* 0A*

N
—— =0, —— =0 with A*=A-X vy —Ng). (11)
Oy dy' ;

The conditions (11); and (11), determine mechanical equilibrium respectively chem-
ical equilibrium, and by means of (7) and (6) we obtain for mechanical equilibrium

p(y',nk,) = po forall I=1,...,N, (12)

where pg is the external pressure on the particle surfaces, and for chemical equilib-
rium

piy's ) — v (' ) = sy ) — v (™ i) (13)
forall l = 1,...,(N —1). Later, we will see that this condition implies that the

voltage of all particles is the same.

The explicit evaluation of the necessary conditions for equilibrium requires consti-
tutive equations for the specific free energies.

3.3 Simplified version of explicit constitutive equations

Section 3.1 reveals that the explicit knowledge of the specific free energy allows to
calculate the chemical potentials and the pressure as well. The strategy to deter-
mine the specific free energy, i.e. ¥ = (T, ny,ny) = i(T,y,nM), relies on the
observation that we may additively decompose pi) into a chemical and a mechanical
part:

o = p@Chem(T, y,mm) + pi/;meCh(T, y,my)  with @meCh(T, y=0,my)=0. (14)
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The motivation of that decomposition relies on the fact, that our knowledge on the
two contributions to the free energy originates from different sources.

Constitutive functions for the pressure. The storage particles are assumed to
be elastic with misfit strain, which is due to the variation of their volume during
loading and unloading. The misfit strain is given by h(y) = 1/(1 + dy) with § =
(VmaX—V)/V, and a simple constitutive law for the pressure p of a particle is assumed
to be given by

p=p+ K@) (”—M ~ >) (15)

nm

We have 6 =~ 0.067 for lithium storage. p is the reference pressure, V.., denotes
the volume of a storage particle with maximal loading and V' denotes the reference
volume, which is assumed by an unloaded particle. Finally K(y) denotes the con-
centration dependent bulk modulus. However, that dependence will be ignored here
and so K is a constant.

Mechanical part of the free energy. By integration of (6); we obtain the
mechanical part of the free energy density of the particles

ped = (p — Kh(y)) ( oM 1) + KM og ( ol ) (16)

nmh(y) nm numh(y)

where the integration constant is chosen so that py™°(y = 0,ny = fiy) = 0.

Chemical part of free energies. We use here the same non-convex constitutive
law as in |2|, which takes entropy of mixing and the heat of solution into account.
It reads

phem =y Lf(y) (17)
with RT
f(y)=y(1—y)+7(ylogy+(1—y)log(1—y)), (18)

where L > 0 is the constant heat of solution.
Chemical potentials. In order to calculate the chemical potentials we construct

from the above at first the function ¢ (7', ny;, ny), and then we use (61) to obtain

i = F()+ (1= 5) )+

nm h' nyh B 1
by (1 ( ) (1——)1— bh(1-21—y)) = (19
(1o (20) = 5 (1= 2= e (1= F0-0) 5. 19

1 , Nm n numh no\ 1
L= f) - b (1og (1) + (1= 20 )y ) 48 (1+ Ty ) - (20
Fiv = £ = s )+ (1o (20) o+ (1= 20y )y (14 50 1 20
The newly introduced constants by = K/(nyL) and by = p/(nyL) control the

strength of mechanical in comparison to chemical contributions.

Voltage of the battery cell in terms of chemical potentials. The simple
battery cell that is studied here contains an anode made from metallic lithium.
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This fact and the additional assumption that the electrolyte has infinite lithium ion
conductivity implies a simple relation between the cell voltage U and the difference
= pr; — py of the involved chemical potentials. It reads
1 dpis
v=-L4 Uy, with the useful identity p = 1 9w : (21)
e nu Oy
where e denotes the charge of an electron, Uy is the basic cell voltage, and (21)y
follows from (6)2 by a simple calculation.

3.4 Exploitation of mechanical equilibrium

In comparison with chemical processes, mechanical equilibrium is much faster es-
tablished, so that it is reasonable to assume that the storage system is in mechanical
equilibrium at any time. This assumption implies a large simplification of the avail-
able free energy, and we shall thus exploit mechanical equilibrium in advance before
we discuss the chemical equilibria in detail.

For each single FePO, particle with index [ € 1,2,.., N we have according to (12)

and (15)

nl

p(y',nk) =po implying K (ﬁ — h(yl)) = po — P, (22)

which gives the function nl, = 7y (y).

4 The many particle system in detail

4.1 Characterization of equilibria

For instantaneous mechanical equilibrium, exploited in 3.4, the available free energy
(7) reduces to

Nuss/1 ,- p Ny &
A(y17 e 7yN_17 q) = —M <A_pl1/}l + A—O) - —M F(yl) (23)
N ; iy n, N ;

with the side condition

N-1
yN=Ng=> 4. (24)
=1

The abbreviation F(y) = %(p@f) + po) simplifies the further discussion.

The available free energy has a local minimum at any equilibrium point. If the filling
degree ¢ is fixed, the necessary conditions for equilibria are now exclusively given by

9A  Nu . .
=Gy = W 0 —AGN)  foral 1=1 N-1o o (25)
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Here the chemical potential function f is given by ji(y) = p(y, nu(y)) = %.

According to (21) we conclude from (25) that each particle has the same voltage.

In order to select only solutions of (25) that are equilibria, the Hessian H

y:yN) . (26)

must be positive definite. The Hessian of A(-,q) can also be positiv semi definite,
and then further investigations must be made.

ofi
5 -
Dy ly=y* " g

k= 3714 %F —

A Ny O
OyLoyk N

The crucial point now is, that the chemical potential [ is a smooth non-monotone
function. We assume that F' and the chemical potential ji satisfies the assumptions:

(A1) F e C2((0,1);R) N C([0, 1]: R)

(A2) There exist y.,y* € (0,1) with y, < y*, so that i is strictly decreasing in the
interval [y, y*] and strictly increasing else.

A3) lim A(y) = — d  limi(y) = +00 .
(A3) lim ji(y) = —co and  lim fi(y) = +o0

(A4) i/ is strictly convex.
The assumption (A4) can be replaced by the weaker assumption
(A4’) For all y € (0,1) we have 1/(2) =0 < z € {y.,y*}.

We only use assumption (A4) to keep the proofs simple. Note that according to (21)
the chemical potential /i satisfies the assumptions, and its structure is illustrated in
Figure 4.

Figure 4: Qualitative description of chemical potential p
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Next we define the set of equilibria on M, := {z € [0,1]V"1]0 < Ng—S ;" 2! < 1}
as
Aév = {y e [0, 0V (v',...,y"") local minimum of A(.,q) on M,,

sy - (27)
yN :Nq— E :yl and yz S yz-i-l} )
=1

In order to ignore permutations the particles of equilibrium states are sorted accord-
ing to the mole fractions.

The assumption (A3) implies that no local minimum of A(-, ¢) lies on the boundary
of [0,1]" for ¢ & {0;1}. Let g € (0,1) be fixed and y € A). Then there must be
particle indices i,5 € {1,..., N} so that y* < 1 and 3/ > 0. Let us assume, there
exists an index k € {1,..., N} so that y* = 1. The assumptions (A1),(A3) imply
that the function f € C'((0,6);R) N C([0,d]; R), defined by

fle) =F(y'+e)+ F(y" —¢) for €€10,9], (28)

is strictly monotone decreasing on [0, 6], where 6 > 0 is sufficiently small. Therefore
the state y.

Y+ e if | =i

gh=< yF—e¢ if l =k forl=1,...,N . (29)

y! otherwise

satisfies the side condition (24), and using (28) we obtain
AL, 5N ) < A,y T ) for all ¢ € (0,4] (30)

This contradicts the assumption that y is a local minimum of A on M,. The case
of an index k with y* = 0 can be excluded by a similar reasoning. It follows, that
the set of equilibria reduce to
AN = {y € (0, )N (y', ...,y ") local minimum of A(.,q) on M,,
N_ N N=L d o <yt (81)
— 3 < (3
Y ¢+ Y and y' <y }

and for each equilibrium state y € Af]V, there must hold the necessary condition (25).

In the case ¢ € (0, y..] U [y™, 1), see Figure 4, the set of equilibria reduces to

A ={ye 1Yy =qforali=1,... N} (32)

A crucial behavior of the many particle system is described by the following lemma.

Lemma 1. Let g € (0,1) be fized.

12



1. Based on the assumptions (A1)-(A4), there exists a sequence {dn}nen with
lim oy =0 so that for all N € N:

N—oo
be 0,y +0n) U (y" —0n, 1) forall y=(y',....y") €AY . (33)

2. Furthermore at most one mole fraction is in the intermediate region (Y., y*).

Proof. The case q € (0, y.] U [y*™, 1) is trivial due to the characterization (32).

We denote by e; € RY~! the i-th unit vector, which has an entry 1 at the i-th
position and zero entries otherwise.

Let g € (y**, y*) and N € N. For any y = (y',...,y") € A the equations (24),
(25) imply y' € [Yus, y**] (I =1,..., N) and it follows from the continuity

|7 (y)| <co forall yeA). (34)

Let I, € {1,...,N) and y* € (y.,y"), which implies ji/(y'*) < 0. Next, we define

(a) ifl, < N, Tri=e€, — §y= 1Zz 1,5 Cis

(b) ifl, =N, x:= lellel

In both cases, we conclude from the Hessian (26)
0< TH — (gl - AL ) 35
<z’ H(y)z u(y)+(N_1)2' ' (y") (35)

Thus due to (34) we have

zlz;él* ()< Co
- N -1 “N-1

0< | (y")

(36)
This means for sufficiently large N, that ji/(y'*) is close to zero. The strict convexity

of 1/ implies that there exist only two values yi < 3% (N sufficiently large) with

Co
N-1"

(37)

From ji(y.) = i(y*) = 0 follows y. < yy < yx < y* and y™ € (y.,y5] U [v3,9").
The convexity of ' also implies yy, > ypuq, yx < yx., and we define oy =
max{|yk — v«|, [y* — y&|} so that the assertion holds.

Next we prove that only one mole fraction 37 € Af]V for y € 1,...,N is in the
intermediate region (y., y*). The case ¢ € (0, y..]U[y*™, 1) is trivial. Let ¢ € (Yux, ™)
and y',y* € (y.,y*), this implies fi'(y'), i’ (y*) < 0 and

(a) if k,1 < N define z := e, — ¢; then we have 27 H(y)z < 0

13



(b) if I < N,k = N define x := ¢; then we have 27 H(y)z < 0
so that that we do not have a minimum for two mole fractions y', yv € (y.,y*). O

The lemma shows, that the individual storage particles of a many particle system
may not behave identical. In equilibrium they may form two phases, denoted by a-
and (-phase, with mole fractions in (0,y, + dy), respectively in (y* — dn,1). For
y= (' ...,yN) € Aflv the lemma implies the existence of a unique number M of
particles in the g-phase. This leads to the following definition.

o, . . N . . .
Definition 1. For given y € A we define the fraction of particles in the 3-phase

Ay) = —. (38)

We may say that X describes an internal state of the many particle system, whereas
its macroscopic state is characterized by the filling degree q.

A system state that satisfies (25) and (24) attains the same chemical potential i for
all particles. This allows to plot each system state in a (p, ¢)-diagram, see Figure 5.
Therefore we write for all y = (y',...,4y") € (0,1)" that satisfy (24) and (25).

aly) = ') =---=pa@") . (39)

The last lemma shows, that at most one particle has a mole fraction y'* in the
intermediate region (y.,y*) and for large N we have 3’ either close to y, or to y*.
We are exclusively interested in systems with many storage particles, so that from
now on we will ignore equilibria with individual particles in the region (y.,y*). This
fact motivates the following model assumption:

(A5) There is no index k € {1,2,..., N} so that the mole fraction y* is in the
intermediate region (y.,y*).

Thus from now on we consider equilibria that are contained in the set

AY == {y € A | y satisfies (A5)} . (40)

Figure 6 shows the equilibria for 10 and for 30 particles under the assumption (A5)
in (/’L7 q>_p10t

We revisit now Figures 5 and 6 and observe that the points indicating equilibria
separate into different branches for increasing N. Later on, we shall show that equi-
librium points of the same branch have the same internal state A € {0,1/N,...,1}.
Therefore, for a fixed A € {0,1/N,...,1} we call the set

Byi={y € (0,)V|3g € (0,1) : y € AY with A(y) = A} (41)
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a branch of equilibrium states. In other words B, contains those equilibria that
have the same number of particles in the G-phase.

Exploitation of the necessary conditions (25) for equilibria yields: The mole frac-
tions y = (y*,...,y") € /~\f]V of the storage particles can assume only two values
with low and high mole fraction, which are indicated by Y~ respectively Y. The
side condition (24) can then be written as ¢ = A(y)Y ™+ + (1—A(y))Y ", and Assump-
tion (A5) implies Y~ < y, and Y™ > y*. The next lemma proves existence and
uniqueness of the pair Y* and their continuous dependence on the filling degree g.

The continuity yields that the branches By define connected sets in (0,1)".

Lemma 2. Let A € {1/N,2/N,...,(N —1)/N} be fized and assume that (A1)-(A3)
are satisfied. We define the interval Qy == (g, qi) with g5 = Ay* 4+ (1 — Ny, and
¢ = Ay + (1 = Ny.. There exist unique functions

Yy € C(Qx, (s 9s))  and YT € C(Qx, (7, 5™)) , (42)

which satisfy
¢ = A\, (¢)+ (1—=NY, (q) (43)
Y\ () = ¥y (q) (44)

for all q € Q.

Proof. In order to show the existence, we define the functions
90 :(N*alu*) - (y**7y*) 9o - = (m(y**,y*))_l (45)
g1 (b 1”) = (5" y™) g1 0= (Al y) ™ (46)

which are the inverses of the two monotone increasing branches of i and furthermore
we define

Ix (e, 187) = (Y ¥™) gr:=Ag1+ (1 = X)go. (47)

Recall that the functions gy ; are strictly monotone increasing and this implies g, is
strictly monotone increasing. Therefor gy (p., 1*) = @ and the function

Hx = 9;1 (48)

is well defined and continuous on Q. Now we define y , yi as

Yy (@) == go(pa(q)) yy = g1(ea(q)) (49)

which are continuous and defined on @,. Note that (43) and (44) are valid by
construction.

The uniqueness directly follows from (43) and (44). If we solve equation (43) for y~
and insert the result into (44), we may define

) (4= Ay
Gyt = ily}) — (200 (50)
1—A
The function G is strictly monotone, so that its root y, is unique. O
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Remark 1. We conclude from Lemma 2 that we can construct, for fired A €
{0,1/N,...,(N —=1)/N, 1}, continuous mole fractions yx of the filling degree q € Qx
with values in Aév.

icy.— ) (0 i< (1=MNN
yA(Q) = { Y;(Z) P> (1 . >\)N (51)

so that y\(q) € /~\£1V for all g € Q.

In the case A\ € {1/N,...,(N — 1)/N} the functions Yy, Yy~ and the set Qy are
defined in Lemma 2.

In the case X € {0,1} the functions are defined as Y, (q) = Y, (q) :== q for q € Qx,
where Qy := (0,y,) and Q1 := (yx, 1).

The functions y)jf are continuously expandable to Q).

Remark 2. For each equilibrium state of ]\év there exists Y~ and Y which satisfy
(43),(44) and as a result of the uniqueness in Lemma 2 every equilibrium state
belonging to Aév can be reached by a function yy.

As a consequence we have

By={n@lee @y} Ae{0.1/N,...,1} . (52)

This means that each branch By can be characterized by the function yy, and each
branch in the (u,q) plot, see Figure 6, is defined by {i(yr(q)) | ¢ € Qx}.

At last, we state that the vertical distance between the chemical potential of two
branches in the (u,q)-plot decreases if the number of storage particles increases.
This fact can be observed in Figure 6 and additionally follows from the following
corollary.

Corollary 1. Let yy € C(Q,; (0, 1)Y) be defined as in Remark 1. For ¢ > 0 exists
a number N* € N so that

max  |i(yx(q)) — Ayrsayn (@) < e (53)

a€Q\NQ x4 1/N
for all N > N* and for all A € {0,1/N,...,(N —1)/N} .

Proof. Let A € {0,1/N,...,(N —=1)/N} and ¢ € Qy N Qy,y/n. The functions y
and yx41/y are continuous so that the maximum is well defined on the closed set

Q\N @)\—H /N
In the following we ignore the argument ¢ in y) and yx41/n.

The functions y, satisfy identity (43) and it therefor follows for ¢ € @, N @/\H/N

- 1 _
(1=2) <3/A - yx+1/N) +A <y;r - y;\_—i-l/N) =N <y;\i-+1/N - y)\—l—l/N) (54)
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and from identity (44) they satisty
fi(yy) = fi(yy) and ﬂ(y;“/zv) = /l(y;\_—i-l/N) : (55)

q€ QN @/\H/N implies that Yriin S Ys and yLl/N > y*, and furthermore with
(54) we conclude

- I,
(1 - )‘) (?/A - y)\+1/N> + A (?/;\F - y;\:—l/N) > N (y - y*) >0. (56)
The monotonicity of i implies via (55) and (56)
Ux — y;—l/N >0 and Yn ~Yryyn =0 (57)

Note, if g € Q, N @/\H/N then y;\_—i-l/N’y):l-l/N € [Yux, ¥**], and from (54) we obtain

minf{[yy — vy, nl; Y — yj\_+1/N|}

<(1-2) (y; - y;+1/N) +A (yi - yLl/N) (58)

Finally the boundedness of & on [y.., y**] and (55) implies

[4(yn) — (yatayw)| (yx) = iynsayn) | = 1ayx) = i)l (59)

< comin{lyy — vyl U0 — v n (60)
Co

< 2y -y 61

< W7 =y (61)

0

4.2 Quasi-static evolution

Up to now we have studied the behavior of the storage system for constant filling
degree ¢. In this section we assume that the filling degree ¢ slowly depends on time
and therefore we study now a quasi-static evolution of the system. Thus during the
time interval I = [to, ] its evolution y : I — (0,1)" must satisfy y(t) € [\év(t) for all
tel.

At first we discuss the expected behavior. To this end we start from an equilibrium
state yg € Aév with ¢ € (0,1). Then Lemma 1 implies, that the storage particles
are separated in a- and -phase, with corresponding mole fractions Y ~, respectively
Y*. If the process is sufficiently slow, so that |¢| < 1, then we expect that the
system does not change significantly, i.e. |y(to) — y(to + )| < 1, and we expect the
evolution of the mole fractions y = (3!, ..., y") to be continuous.
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Corollary 2. Let I = [to,t1] be a time interval, yo € Aé\é with phase fraction X(yo)
and q € C(I;Qy) with qo = q(ty). Then there exists a unique continuous function
y: I — (0,1)N satisfying

y(to) =yo  and  y(t) €AY, forall tel. (62)

Proof. We conclude from Remark 1 that the function y(-) := y5,,,(¢(*)) is continu-
ous and we have y(t) € Aé\ét) for all ¢ € I. Let us now assume, that there exist mole
fractions § € C(I;(0,1)") with g(t) € ]\é\ét) and y(to) = yo. Starting from the initial
value and applying the continuity property yields that for all ¢ € I the function y
has the same phase fraction A(yp). The uniqueness follows from Lemma 2. O

So far we could describe the behavior of the system as long as the filling degree ¢
stays in an open set (), during the considered time interval.

Now we pose the question, what happens if ¢ runs over the boundary of @), =
(q5,q)). For simplicity we only discuss the case where ¢ is increasing in time and
exceeds ¢i = ¢(t.) at a certain time t,. By assuming continuous (in time) mole
fractions y(t) = y'(t),...,y™ (t), one can uniquely determine the state y(t.). The
positive definiteness of the Hessian matrix and therefore the requirement that the
system runs through equilibria is not guaranteed at this limit state. However for
q(t) > ¢ it is possible to continue the state y such that we have the necessary
condition (25) for equilibrium with the phase fraction A(y(ty)), though the extension
do not minimize the energy A. For this reason we call the state that results for q(t.)
a critical point.

Obviously within the setting of quasi-static evolution we need a further model as-
sumption in order to describe how the storage particle system evolves if ¢ exceeds
¢ Motivated by an analogy with N interconnected rubber balloons, where we
observe a similar behavior, we state that the system state changes discontinuously.
An a-phase particle changes at ¢f to the G-phase and the phase fraction A(y(t))
accordingly changes to A(y(t. + ¢)) = A(y(t,)) + 1/N for £ small enough.

This behavior is represented in the (u, g)-plot as follows. During the evolution, the
particle system follows the branch B, to its end, i.e. up to the critical point ¢(t,),
and then drops to the next branch B/\+% if ¢ exceeds ¢(t.). Note that for sufficiently
large N for A € {0,1/N,...,1} we have

G €QuNQyyy forx<l, Gy €EQ\NQy_ 1y for X>0,  (63)
so that the above described behavior is allowed within the quasi-static setting.

Now we summarize the assumed behavior of the storage particle system in a slightly
more systematic way. Recall that the evolution I := [to,t,] — (0,1)" of the state y
depends on the filling degree ¢ € C'(I;(0,1)) and on the initial value y, € Aé\éto).

(A5) (i) The evolution starts from yo with phase fraction A(yo) and q(t,) € Q340
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(ii) The evolution evolves along the function y(t) = y5,, (¢(t)), with y(to) =
Yo, where Ys(yo) 19 defined in Remark 1, until the system reaches a critical
: o _ ot
state where either ¢(t,) = @5y OF q(te) = %)’

(iii) If
q(t.) = Q;(yo) then y(t.) := yj\(yo)_l/N(Q(t*))
q(t.) = Q;\r(yo) then y(t.) := yj\(yo)—‘,-l/N(q(t*))

where the functions Yi(yo)—1/N and Ys(yo)+1/N A€ defined in Remark 1.

(iv) The evolution proceeds at (i) with ¢y = ¢, and yo = y(t.).

The Corollary 2 guarantees that the evolution of the mole fractions y according to
assumption (A5) is well defined and unique. Furthermore the construction (A5)
implies that the evolution is piecewise continuous. The discontinuities (jumps) are
attributed to the passage of a storage particle from the a- to the g-phase or vice
versa, see (A5) ().

4.3 Asymptotic behavior and hysteresis

In this section we discuss the asymptotic behavior that is induced by the quasi-
static evolution of the storage particle system. In particular we will demonstrate
that the introduced model is capable to predict the observed hysteretic behavior
during charging and discharging of a lithium-ion battery. We start from a fully
charged state and consider the process ¢ : [to, 1] — (0,1) along the paths

— for ¢t < th (discharging)
— t1—to 2
q(t) { ttl—_tt for t > to;rm (charging) for € [t0>t1] . (64)
1 0

The response of the storage system can at best be described in the plot that gives
the chemical potential i versus the filling degree ¢ of the storage system. Recall,
that —f is proportional to the voltage and 1 — ¢ is related to the capacity of the
battery, i.e. to the stored electric charge. The Figure 7 shows the response of a
storage system with 5 respectively with 10 storage particles.

We observe a path dependence during discharging and charging and moreover, for
an increasing number of storage particles occurs a hysteresis loop. This fact is
the content of the next corollary, whereupon the jumps of the chemical potential
decrease for increasing number of storage particles. For 1000 particles, see Figure 8,
they are not visible anymore.

Corollary 3. Let ¢ € C(I;(0,1)) and yn the solution of the quasi static model
which satisfies (A5) for N € N. For € > 0 exists a number N, € N, which depends
on g, so that

nggXl};;gu(yN(S)) —limjyn(s))l <e  forall N >N, . (65)
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Figure 7: Hysteretic behavior generated by a cathode with 5 (left) and 10 (right)
storage particles.
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Figure 8: Hysteretic behavior generated by a cathode with 1000 storage particles.

21



Proof. The model implies that the solution yy for any N is piecewise continuous.
It is only discontinuous if one particle changes the phase. According to Corollary 1
the jumps of i decrease uniformly for increasing V. O

4.4 Some selected properties of the model

Path dependence. A characteristic observation in lithium-ion batteries concerns
the fact that the voltage of a certain charge state depends on the charging history
[16]. In order to demonstrate that this path dependence can be explained within
the model we consider the following experiment:

1. We fully charge a discharged battery, i.e. we start with ¢ = 1 and end up with
q = 0. The resulting path is indicated in Figure 9. by the red arrows.

2. We discharge now the fully charged battery from ¢ = 0 and stop at ¢ = 0.5.

3. From here we fully charge the battery down to ¢ = 0. The resulting path is
indicated in Figure 9jo¢; by the blue arrows.

We observe in this experiment that the history, how a given charge state of the
battery is reached, is essential in order to predict its subsequent behavior during
further charging or discharging. The origin of this phenomenon is easily explained
within the setting of the proposed model. The system evolves along different paths,
because the number of particles in the (-phase is different for the two charging
processes.

Likewise the model predicts the occurrence of an inner hysteretic loop, as it is
represented in Figure 9,0¢. The corresponding process is

1. We start with a discharged battery at ¢ = 1.

2. Then we charge down to ¢ = 0.65.

3. Starting here we discharge and stop at ¢ = 0.35.

4. Starting here we fully charge the battery to end up with ¢ = 0.

The traversed path is indicated by the blue arrows in Figure 9pjgp.

Mechanical interaction of storage particles. Up to now the discussion relies
on the assumption that each storage particle is subjected to the constant outer
pressure pg. Now we take into account that the volume of the particles changes, as
it is described in Sections 3.3 and 3.4, leads to an elastic response of the electrolyte.
In this case the outer pressure pg is no longer a constant but will now become a
function of the filling degree q.

Recall the simple constitutive law for the pressure inside a storage particle from Sec-
tion 3.3. In an analogous manner we assume that the pressure within the electrolyte
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Figure 9: Path-dependence and hysteretic behavior generated by a cathode with
1000 storage particles. Left and right: Different experiments, see text for the details.

is given by a similar law. We write

Vie
po =pr + Kg 7—1 ; (66)
E

where Ky is the bulk modulus of the electrolyte and Vj; is its actual volume which
is related to the reference volume V)2 according to Vi; = Vi9(1 — d¢). Thus we have

q
= K .
Po = Pr + KE (1 — 5q) (67)

The further treatment of this case is the same as before, i.e. we evaluate the condition
of mechanical equilibrium and determine a new function nl; = fy(y!, ¢) to construct
the chemical potentials fi' of the particles indexed by [. The previous horizontal
plateaus, which indicate the 2-phase region in the u, ¢ diagram now occur with a
certain slope as it is shown in Figure 10.

5 An illustrative analogy: Simultaneous inflation of
interconnected rubber balloons

We consider N interconnected spherical rubber balloons indexed by [ € 1,2, ..., N as
indicated in Figure 12. Via the pressure vessel the balloons can be simultaneously
inflated by air.

The pressure difference p' — py of each balloon with respect to the outer pressure py,
is related to its actual radius r by

o E) ) e
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Figure 10: Storage system with 250 particles. Due to mechanical interactions the
previous horizontal 2-phase plateaus achieve a slope.

where R is the radius of the undeformed balloon and o > 0 and § > 0 are related
to the initial thickness of the balloon and to the elastic constants of rubber, more
details are found in [6] and [13|. The function (68) is represented in Figure 11 and

PP,

Figure 11: Non-monotone pressure-radius relation of a spherical elastic rubber bal-
loon

shows a non-monotone graph, which qualitatively induces the same behavior as the
chemical potentials of the storage particles from above, compare with Figure 4.

In case that a single balloon is inflated by supply of air under fixed pressure, the
decreasing part of the pressure-radius relation is an unstable branch.

Now we consider the process that is illustrated by Figure 12. There is a constant
supply of air into the pressure vessel and that air freely distributes among the
balloons. The following happens: As long as the filling of balloons is small, they
all have the same size until they reach with increasing filling the end of the first
increasing pressure-radius branch. Careful observation now reveals that only one
balloon will pass quickly through the decreasing branch to an apparent larger radius,
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Figure 12: Four different states of connected rubber balloons during loading with
air via the pressure vessel.

whereas the other balloons slightly decrease at first their radii before all balloons
again increase their radii due to the constant supply of air. In that time regime we
thus have one large balloon and N —1 small ones. This regimes ends when the small
balloons again reach the end of the first increasing pressure-radius branch, and here
the same event as before happens. One balloon passes to a larger radius, whereas
now N — 2 balloons slightly fall back, and we have now a state with 2 large balloons
and N —2 small ones. This process is repeated until all balloons have the same large
size, which is the last state of the sequence from Figure 12.

The interpretation and in particular the analogy to the behavior of the many storage
particle system from above is obvious. There is a regime of two coexisting phases,
formed by small respectively large balloons. Each balloon is a homogeneous and
single phase object, however, some balloons are in one phase and the others are in
the other phase. See [8], |9] and [13| for more details. The same happens in the
storage system during charging and discharging of the battery: There is a regime
of particles with small respectively large lithium content. Each storage particle is a
homogeneous and single phase object, however, some particles are in one phase and
the others are in the other phase.
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