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21 IntrodutionThe theory of quasilinear paraboli systems has many appliations to evo-lution problems in natural sienes, see e.g. [2℄, [1℄, [4℄, [5℄, [19℄, [9℄, [30℄and [38℄. In this paper we investigate in partiular systems of reation-di�usion equations with mixed Dirihlet-Neumann boundary onditions onnon-smooth domains Ω ⊂ R
n for n = 2, 3 of the form

u′k − div(Gk(v)µk∇vk) = Rk(t, v,∇v), t ∈ (T0, T ), x ∈ Ω,

uk = bk Fk(vk), t ∈ [T0, T ), x ∈ Ω,

ν · µk∇vk = 0, t ∈ [T0, T ), x ∈ ΓN , (1.1)
vk = φk, t ∈ [T0, T ), x ∈ ΓD,

vk(T0) = v0k, x ∈ Ω.Here v = (v1, . . . , vm), µk ∈ L∞(Ω,Mn×n) are di�usion oe�ients, bk ∈
L∞(Ω) referene densities and Rk, Gk, Fk denote the reation, di�usion andsuperposition terms for k ∈ {1, . . . , m}.In many onrete problems whih are desribed as a system of the form(1.1), the underlying domain is non-smooth and the oe�ient funtions
bk and µk are disontinuous. We therefore aim for minimal smoothnessassumptions on the boundary ∂Ω of Ω, the oe�ient funtions bk and µkas well as on the interfae between the Neumann boundary part ΓN of
∂Ω and the Dirihlet boundary part ΓD = ∂Ω \ ΓN . More preisely, wegenerally assume that Ω ⊂ R

n is a Lipshitz domain (see [23℄) and Ω ∪ ΓNis regular in the sense of Gröger (see [24℄). Our approah inludes reationtermsRk whih depend disontinously on time t, whih is important in manyexamples (see [38℄, [25℄, [30℄), in partiular in the ontrol theory of paraboliequations. Alternatively, the reader should think e.g. of a manufaturingproess for semiondutors, where at a ertain moment light is swithedon/o� and, of ourse, parameters in the hemial proess hange abruptely.Note that the original formulation of the evolution equation in terms of



1 Introdution 3balane laws takes the form (see [36, Chap. 21℄, see also [4℄)
∂

∂t

∫

Ω′

uk dx+

∫

∂Ω′

ν · jk dσ =

∫

Ω′

Rk dx ; jk = jk(v) = Gk(v)µk∇vk(1.2)where Ω′ stands for any (Lipshitzian) subdomain of Ω. Within the vari-ational theory of weak solutions, however, the indiator funtions of thesubdomains are not admissible test funtions. Therefore the integral for-mulation (1.2) is equivalent to the above evolution equation only if theweak solutions have some additional regularity. It is the main advantage ofthe present onept that the divergene of the orresponding urrent jk(v)indeed is a funtion, not only a distribution. In a strit sense, only this jus-ti�es the appliation of Gauss' theorem to alulate the normal omponentsof the urrents over boundaries of suitable subdomains. Moreover, the fat
div jk ∈ Lp is also of importane for the numerial treatment of (1.1), as theformulation (1.2) is the basis of �nite volume methods (see [17℄) � namelyin the sense of loal balanes.Global existene results for (1.1) annot be expeted within suh a generalapproah (see e.g. [16℄ or [5℄ and the referenes therein, see also [27℄), andare thus outside the sope of this paper.In ontrast to many papers where existene and uniqueness results for quasi-linear paraboli systems are based on the onstrution of an appropriateevolution operator (see e.g. [1℄), our approah relies heavily on maximal
Lp-estimates for the linear part of (1.1). In fat, after rewriting equation(1.1) as an abstrat evolution equation in Lp(Ω)m of the form

w′ −H(t, w)
(
div(µ∇w)

)
= S(t, w)

w(T0) = v0 − φ(T0), (1.3)our strategy to solve (1.3) follows the approah of Clément and Li [9℄ andPrüss [34℄. The advantage in the given situation (1.1) is that subtle teh-niques from harmoni analysis as well as heat-kernel methods an be usedto prove the entral Lp-estimates of the linear part. In order to apply thesemethods in our situation one needs embedding properties of ertain inter-polation spaes between the domain of the Lp-realization of the underlyingellipti operators and Lp(Ω) into W 1,2p(Ω). This embedding property rests



4on the assumption that the operators formally de�ned by
−∇ · µk∇ + 1 : W 1,q

ΓN
(Ω) →W−1,q

ΓN
(Ω)provide topologial ismorphisms for some q > n. Note that this assumptionis in fat ful�lled for many geometri onstellations and oe�ient funtions;see Setion 4.2 PreliminariesLet Ω ⊂ R

n be a bounded Lipshitz domain and assume that n = 2 or
n = 3. Denote by Γ ⊂ ∂Ω an open subset of ∂Ω. For 1 < q < ∞ we de�ne
W 1,q

Γ (Ω) as the losure of
{ψ|Ω : ψ ∈ C∞

c (Rn), suppψ ∩ (∂Ω\Γ) = ∅}.in the Sobolev spae W 1,q(Ω). If q = 2, we write H1(Ω) or H1
Γ(Ω) insteadof W 1,2(Ω) or W 1,2

Γ (Ω). Of ourse, if Γ = ∅, then W 1,q
Γ (Ω) = W 1,q

0 (Ω).Moreover, throughout this work we always suppose that Ω ∪ ΓN is regularin the sense of Gröger ([24℄), this means: for all x ∈ ∂Ω there exist opensets Ux, Vx ⊂ R
n and a bi-Lipshitz transform Ψx from Ux onto Vx suh that

x ∈ Ux,Ψx(x) = 0 and Ψx(Ux ∩ (Ω ∪ ΓN)) oinides with one of the sets
E1 := {x ∈ R

n : max
l=1...,n

|xl| < 1, xn < 0},

E2 := {x ∈ R
n : max

l=1,...,n
|xl| < 1, xn ≤ 0},

E3 := {x ∈ E2 : xn < 0 or x1 > 0}.It is not hard to see that every Lipshitz domain and also its losure isregular in the sense of Gröger, the orresponding model sets are then E1or E2, respetively, see [23℄. Moreover, if Ω ⊂ R
2 is a bounded Lipshitzdomain and ∂Ω\ΓN is the �nite union of (non-degenerate) losed ar pieesfrom the boundary, then Ω∪ ΓN is regular in the sense of Gröger. It is alsoknown (see [20℄, Satz 1. 103 or [21℄) that if Ω ∪ ΓN is regular in the senseor Gröger, then one has the following oinidene:

W 1,q
ΓN

(Ω) = {ψ ∈W 1,q (Ω) : tr ψ = 0 a.e. on ∂Ω\ΓN}. (2.1)



3 Main result 5Finally, for k ∈ {1, . . . , m}, let µk ∈ L∞(Ω,Mn×n), where Mn×n denotes theset of all real, symmetri n× n matries. Suppose that additionally
inf
x∈Ω

inf
|ς|=1

µk(x)ς · ς > 0. (2.2)For a losed subspae V ⊆ H1(Ω) suh that H1
0 (Ω) ⊆ V we de�ne the form

ak : V × V → R by
ak(u, v) := −

∫

Ω

µk∇u · ∇v dx, u, v ∈ V.The form indues a ontinuous mapping Ak : V → V ′ suh that
ak(u, v) = (Aku|v), u, v ∈ V. (2.3)Here, for v ∈ L2(Ω), fv(u) := (v|u)L2 de�nes an element fv ∈ V ′ and

v 7→ fv : L2(Ω) → V ′ de�nes a ontinuous injetion. In the following, weidentify v with fv. We then de�ne the operator Ak as
D(Ak) := {u ∈ V : ∃f ∈ L2(Ω), ak(u, φ) = (f |φ) ∀φ ∈ V } (2.4)
Aku := f. (2.5)It is well known that Ak generates an analyti semigroup on L2(Ω) whihis positivity preserving. Furthermore, this semigroup extends to a C0-semigroup of ontrations on Lp(Ω) for all 1 < p < ∞, see [22℄. Therealization of its generator in Lp is denoted by Apk.3 Main resultWe start this setion by giving preise assumptions on the oe�ients andfuntions being involved in problem (1.1). In order to do so, let 0 ≤ T0 < T1and set J := (T0, T1). For k ∈ {1, . . . , m} let µk ∈ L∞(Ω,Mn×n) and assumethat (2.2) is satis�ed.Moreover, let for every k ∈ {1...m} the funtions bk ∈ L∞(Ω; R) bebounded from below by some positive onstant.We assume the following for all k ∈ {1 . . . , m}



6Op) There exists p > n
2
suh that eah Ak−Id is a topologial isomorphismfrom W 1,2p

ΓN
(Ω) onto W−1,2p

ΓN
(Ω). For all what follows we �x a number

r > 4p
2p−n

.Su) There exists fk ∈ C2(R), positive, with stritly positive derivative,suh that Fk is the superposition operator indued by fk.Ga) The mapping Gk :
(
W 1,2p(Ω)

)m →W 1,2p(Ω) is loally Lipshitz.Gb) For any ball in (
W 1,2p(Ω)

)m there exists δ > 0 suh that Gk(u) ≥ δfor all u from this ball.Ra) The funtion Rk : J×
(
W 1,2p(Ω)

)m → Lp(Ω) is of Caratheodory type,i. e. Rk(·, u) is measurable for all u ∈
(
W 1,2p(Ω)

)m and Rk(t, ·) isontinuous for a.a. t ∈ J .Rb) Rk(·, 0) ∈ Lr(J, Lp(Ω)) and for β > 0 there exists gβ ∈ Lr(J) suhthat
‖Rk(t, u) − Rk(t, ũ)‖Lp ≤ g(t)‖u− ũ‖W 1,2p, t ∈ Jprovided max(‖u‖W 1,2p, ‖ũ‖W 1,2p) ≤ β.BC) φk ∈ C(J ;W 1,2p(Ω)) ∩ W 1,r(J ;Lp(Ω)) and Akφk(t) = 0 for all

t ∈ J .IC) v0k − φk(T0) ∈ (Lp(Ω), D(Apk))1− 1

r
,r.The assumptions imply that the system (1.1) may be (formally) rewrittenas a quasilinear system of the form

w′
k −Hk(t, w)Akwk = Tk(t, w), k = 1, . . . , m (3.1)

w(T0) = v0 − φ(T0),where
Tk(t, w) := (bkf

′
k(wk + φk(t)))

−1[∇Gk(w + φ(t)) · [µk∇(wk + φk(t))]]

+Qk(t, w) − ∂φk

∂t
(t) (3.2)



3 Main result 7with
Hk(t, z) :=

Gk(z + φ(t))

bk f ′
k(zk + φk(t))

, t ∈ J, z ∈
(
W 1,2p(Ω)

)m (3.3)
Qk(t, z) :=

Rk(t, z + φ(t))

bk f ′
k(zk + φk(t))

, t ∈ J, z ∈
(
W 1,2p(Ω)

)m (3.4)We are now in the position to state the main result of this paper.3.1 Theorem. Let 1 < r, p < ∞ suh that r > 4p
2p−n

, where n ∈ {2, 3}.Assume that the assumptions (Op), (Su), (Ga), (Gb), (Ra), (Rb), (BC)and (IC) are satis�ed. Then there exists a unique loal solution w =
(w1, . . . , wm) for equation (3.1) on an interval I = (T0, T ) satisfying

wk ∈W 1,r(I;Lp(Ω)) ∩ Lr(I;D(Ak)), k ∈ {1, . . . , m}. (3.5)3.2 Corollary. Eah wk is Hölder ontinuous simultaneously in spae andtime.Some remarks at this point are in order.3.3 Remarks. a) We refer to setion 4 for preise geometri and smooth-ness onditions implying the validity of Assumption (Op).b) Besides the exponential, a typial example for a funtion f satisfyingassumption Su) is the Fermi-Dira distribution funtion
f(t) :=

2√
π

∞∫

0

√
s

1 + es−t
ds.) Suppose that vk oinides on ΓD with a funtion φ ∈ C1(J,W 1,2p(Ω)).Then there exists φk satisfying Assumption BC).d) Note that Condition (BC) implies ν ·µk∇φk = 0 on ΓN . This, togetherwith the property (3.5) yields the Neumann boundary ondition for

vk on ΓN , see [18℄, [8℄.



84 ExamplesConsider Ω and ΓN , the subset of ∂Ω on whih the Neumann boundary on-dition is presribed. In this setion we desribe geometri on�gurations forwhih the above Theorem 3.1 holds true. Furthermore, we present onreteexamples of mappings Gk and reation terms Rk �tting in our framework.We start with a result, due to Gröger [24℄, whih ompletely overs thetwo-dimensional ase.4.1 Proposition. Assume that Ω ∪ ΓN is regular in the sense of Gröger.Then there exists q > 2 suh that Ak−Id is a topologial isomorphism from
W 1,q

ΓN
(Ω) onto W−1,q

ΓN
(Ω).Admissable three-dimensional settings may be desribed as follows.4.2 Proposition. Let Ω ⊂ R

3 be a bounded domain. Then there exists
q > 3 suh that Ak − Id is a topologial isomorphism from W 1,q

ΓN
(Ω) onto

W−1,q
ΓN

(Ω) provided there is a �nite loalization of Ω and ΓN suh that theloalized sets satisfy one of the following onditions:i) Ω has a Lipshitz boundary (see [23℄), ΓN = ∅, µk ≡ 1.ii) Ω has a Lipshitz boundary, ΓN = ∂Ω, µk ≡ 1.iii) Ω is a three dimensional Lipshitzian polyhedron, ΓN = ∅. Thereare hyperplanes H1...Hn in R
3 whih meet at most in a vertex of thepolyhedron suh that the oe�ient funtion µk is onstantly a real,symmetri, positive de�nite 3 × 3 matrix on eah of the onnetedomponents of Ω \∪nl=1Hl. Moreover, for every edge on the boundary,indued by a hetero interfaeHl, the angles between the outer boundaryplane and the hetero interfae do not exeed π and at most one of themmay equal π.iv) Ω has a Lipshitz boundary. ΓN = ∅ or ΓN = ∂Ω. Ω◦ ⊂ Ω is anotherdomain whih is C1 and whih does not touh the boundary of Ω.

µk|Ω◦ ∈ BUC(Ω◦) and µk|Ω\Ω̄◦
∈ BUC(Ω \ Ω̄◦).



4 Examples 9v) Ω has a Lipshitz boundary. ΓN = ∅. Ω◦ ⊂ Ω is a Lipshitz domain,suh that ∂Ω◦ ∩ Ω is a C1 surfae and ∂Ω and ∂Ω◦ meet suitably.
µk|Ω◦ ∈ BUC(Ω◦) and µk|Ω\Ω̄◦

∈ BUC(Ω \ Ω̄◦).vi) Ω is a onvex polyhedron, ΓN ∩ (∂Ω\ΓN ) is a �nite union of linesegments, µk ≡ 1.vii) Ω is a bounded domain with Lipshitz boundary. Additionally, foreah x ∈ ΓN ∩ (∂Ω\ΓN ) the mapping Ψx de�ned in Setion 2 is a
C1-di�eomorphism from Ux onto Vx, µk ∈ BUC(Ω)A proof of the assertion of Proposition 4.2 an be found for i) in [28℄, forii) in [39℄, for iii) in [13℄, for iv) and v) in [14℄, for vi) in [10℄ and for vii) in[15℄. The loalization priniple is desribed in [24℄ and [15℄.In the following we illustrate two admissable three-dimensional settings.In the �gure on the left hand side one assumes Neumann onditions on thetop of the upper uboid, otherwise Dirihlet onditions. In the �gure on theright hand side, the boundary of the ylinder is subjet to Dirhlet ondi-tions exept for the upper �hat�, where Neumann onditions are presribed.

Next we give two examples for the operators Gk:4.3 Example. Let gk : R
m 7→]0,∞[ be a twie ontinuously di�erentiablefuntion and de�ne Gk(z)(x) = gk(z(x)) if z ∈ (

W 1,2p
)m and x ∈ Ω.In many appliations gk depends only on one variable and is a multiple ofthe exponential funtion.



10As the seond example we present a nonloal operator arising in thedi�usion of bateria; see [6℄, [7℄ and referenes therein.4.4 Example. Let η be a ontinuously di�erentiable funtion on R whihis bounded from above and below by positive onstants. Assume ϕ ∈ L2(Ω)and de�ne
Gk(z) := η(

∫

Ω

zkϕdx), z = (z1, ..., zm) ∈
(
W 1,2p

)m
.Now we give two examples for mappings Rk:4.5 Example. Assume that [T0, T1) = ∪jl=1[tl, tl+1) is a (disjoint) deom-position of [T0, T1) and let for l ∈ {1, ..., j}

Sl : R
m × R

nm 7→ Rbe a funtion whih satis�es the following ondition: For any ompat set
K ⊂ R

m there is a onstant LK suh that for any a, ã ∈ K, b, b̃ ∈ R
nm theinequality

|Sl(a, b) − Sl(ã, b̃)| ≤ LK |a− ã|Rm

(
|b|2

Rnm + |b̃|2
Rnm

)

+ LK |b− b̃|Rnm

(
|b|Rnm + |b̃|Rnm

)holds. We de�ne a mapping S : [T0, T1[×R
m × R

nm 7→ R by setting
S(t, a, b) := Sl(a, b), if t ∈ [tl, tl+1).The funtion S de�nes a mapping R in the following way: If z is the restri-tion of a R

m-valued, ontinuously di�erentiable funtion on R
n to Ω, thenwe put

R(t, z,∇z)(x) = S(t, z(x), (∇z)(x)) for x ∈ Ω (4.1)and afterwards extend R by ontinuity to the whole set [T0, T1)×
(
W 1,2p(Ω)

)m.4.6 Example. Assume σ : R 7→ (0,∞) to be a ontinuously di�erentiablefuntion. Further, let S : W 1,2p 7→ W 1,2p be the mapping whih assigns to
z ∈W 1,2p the solution ϕ of the (inhomogeneous) Dirihlet problem

−∇ · σ(z)∇ϕ = 0.



5 Tools for the proof of Theorem 3.1 11If one de�nes
R(z) = σ(z)|∇(S(z))|2then, under a reasonable supposition on the boundary value of ϕ, the map-ping R satis�es Assumption (Ra).This seond example omes from a model whih desribes eletrial heatondution; see [5℄ and the referenes therein.

5 Tools for the proof of Theorem 3.1Let 1 < s < ∞ and B be a densely de�ned setorial operator in a Banahspae X. Let again J = (T0, T1) for some T0, T1 > 0. We say that the linearevolution equation
u′ +Bu = f, (5.1)
u(T0) = 0,admits maximal Ls regularity on J if for any f ∈ Ls(J ;X) there exists aunique funtion u ∈ W 1,s(J ;X) ∩ Ls(J ;D(B)) satisfying (5.1) in the Ls-sense. In that ase, we write B ∈MR(s,X). Observe that

W 1,s(J ;X) ∩ Ls(J ;D(B)) →֒ C(J ;Xs), (5.2)where Xs is the real interpolation spae (X,D(B))1− 1

s
,s. Consider now thequasilinear problem

u′(t) + B(t, u(t))u(t) = F (t, u(t)), t ∈ J, (5.3)
u(T0) = u0.Here u0 ∈ Xs, B := B(T0, u0) and B : J ×Xs → L(D(B);X) is ontinuous.

F : J×Xs → X is a Caratheodory map. We assume the following Lipshitzonditions on B and F :(B): For eah R > 0 there exists a onstant CR > 0, suh that



12
‖B(t, u)v − B(t, ũ)v‖X ≤ CR ||u− ũ||Xs

||v||D(B), t ∈ J, u, ũ ∈ Xs, ||u||s,
||ũ||s ≤ R, v ∈ D(B). (5.4)(F): F (·, 0) ∈ Ls(J ;X) and for eah R > 0 there is a funtion ηR ∈ Ls(J)suh that

‖F (t, u)−F (t, ũ)‖X ≤ ηR(t) ‖u−ũ‖s, a. a. t ∈ J, u, ũ ∈ Xs, ||u||s, ‖ũ‖s ≤ R.(5.5)Then the following existene and uniqueness result due to Clément andLi [9℄ and Prüss [34℄ holds true.5.1 Proposition. Assume that (B) and (F) are satis�ed and that B :=
B(T0, u0) has the property of maximal Ls-regularity. Then there exists T ∈
(T0, T1) suh that (5.3) admits a unique solution u on I := (T0, T ) satisfying

u ∈W 1,s(I;X) ∩ Ls(I;D(B)).In order to verify the ruial ondition that B = B(T0, u0) has maximal
Ls-regularity in our situation we need the following results on traes, heatkernels, their multipliative perturbations and maximal Ls-regularity. Westart with the following result on traes.5.2 Lemma. Let Ω ⊂ R

n be a Lipshitz domain. Then the trae mapping
tr : H1(Ω) → L2(∂Ω) is order preserving.For a proof we refer to [33℄, Ch. 6.6.1.5.3 Lemma. Let Ω ⊂ R

n be any domain. Assume that un → u in H1(Ω).Then |un| → |u|, u+
n → u+ and inf(un, 1) → inf(u, 1) in H1(Ω).A proof is given in [3℄, see also [32℄ and referenes therein.Consider a losed subspae V of H1(Ω) whih inludes H1

0 (Ω). Let ̺ ∈
L∞(Ω,Mn×n) and assume it to be ellipti in the sense of (2.2). De�ne abilinear form a : V × V → R on V by

a(u, v) = −
∫

Ω

̺∇u · ∇u dx, u, v ∈ V.



5 Tools for the proof of Theorem 3.1 13Let A be the operator assoiated to a in L2(Ω) and (etA)t≥0 be the semigroupon L2(Ω) generated by A. The following result gives su�ient onditions onthe subspae V suh that (etA)t≥0 satis�es an upper Gaussian bound. Morepreisely, the following holds, see [3℄.5.4 Proposition. Assume that V is a losed subspae of H1(Ω) satisfyinga) H1
0 (Ω) ⊆ V ,b) V has the L1 −H1 extension property,) u ∈ V implies |u|, inf(|u|, 1) ∈ V ,d) u ∈ V, v ∈ H1(Ω), |v| ≤ u implies v ∈ V .Then etA satis�es an upper Gaussian estimate, i.e.

(etAf)(x) =

∫

Ω

Kt(x, y)f(y)dy, x ∈ Ω, f ∈ L2(Ω)for some measurable funtion Kt : Ω × Ω → R+ and there exists onstants
γ, a > 0 and ω ∈ R suh that

0 ≤ Kt(x, y) ≤
γ

t
n
2

e
−a|x−y|2

t eωt, t > 0, a.a. x, y ∈ Ω. (5.6)5.5 Lemma. Let H1
ΓN

(Ω) be de�ned as above. Then V := H1
ΓN

(Ω) satis�esthe assumptions a) - d) of Proposition (5.4).Proof. Assertion a) is obvious. Conerning b) it seems that the required ex-tension result for H1(Ω) is known only for domains with Lipshitz boundaryand not for Lipshitz domains. Hene, in the following we give a proof ofthe subsequent laim whih implies the desired L1−H1 extension property:Claim: If Ω is a Lipshitz domain, then there exists a (linear, ontinuous)extension operator E : L1(Ω) → L1(Rn) whose restrition to H1(Ω) mapsthis spae ontinuously into H1(Rn).By de�nition of Lipshitz domains (see [23℄), for every x ∈ ∂Ω there isan open neighbourhood Ux of x and a bi-Lipshitz mapping Ψx : Ux 7→ R
n



14suh that Ψx(x) = 0 and Ψ(Ux ∩ Ω) is the half ube E1 = {x ∈ R
n :

max
l=1...,n

|xl| < 1, xn < 0}. Sine the image of Ux under Ψx is open, there is anumber ζx ∈ (0, 1) suh that ζxE ⊆ Ψx(Ux ∩ Ω), where E is the ube E =
{x ∈ R

n : max
l=1...,n

|xl| < 1}. De�ne Ox as the image of ζxE under Ψ−1
x . For

x ∈ Ω let Ox be a ball around x whose losure is a subset of Ω. Clearly, thesystem {Ox}x∈Ω̄ is an open overing of Ω̄. Let Ox1
, ..., Oxj

, Oxj+1
, ..., Oxl

bea �nite subovering, where x1, ..., xj ∈ Ω and xj+1, ..., xl ∈ ∂Ω. Let η1, ..., ηlbe a partition of unity over Ω̄, subordinated to the overing Ox1
, ..., Oxl

.Obviously, then for any ϕ ∈ L1(Ω) it holds ϕ =
∑l

k=1 ηkϕ. Moreover, if
ϕ ∈ H1(Ω) then this equation holds also true as an equation in H1(Ω).Further, one has supp ηkϕ ⊆ supp ηk ⊆ Oxk

. Therefore, if k ∈ {1, ..., j}, thefuntions ηkϕ an be extended by zero (norm preserving) to whole R
n andone obtains again a funtion from L1(Rn) or H1(Rn), respetively. For any

k ∈ {j + 1, ..., l} the funtion ηkϕ may be transformed via Ψx to a funtion
η̃kϕ on ζxk

E1, whih is then from L1(ζxk
E1) or fromH1(ζxk

E1), respetively.We de�ne the funtion η̂kϕ on ζxk
E as

η̂kϕ(y) :=

{
η̃kϕ(y) if y ∈ ζxk

E1

η̃kϕ(y1, ..., yn−1,−yn) if (y1, ..., yn−1,−yn) ∈ ζxk
E1.Then η̂kϕ ∈ L1(ζxk

E) and η̂kϕ ∈ H1(ζxk
E) if ϕ ∈ H1(Ω). Additionally,

‖η̂kϕ‖L1(ζxk
E) = 2‖η̂kϕ‖L1(ζxk

E1) as well as ‖η̂kϕ‖H1(ζxk
E) = 2‖η̂kϕ‖H1(ζxk

E1).Moreover, suppη̂kϕ ⊂ ζxk
E. We transform η̂kϕ bak under Ψxk

and obtaina funtion whih has its support within Oxk
, oinides with ηxk

ϕ on Oxk
∩Ωand belongs to L1(Oxk

) or H1(Oxk
), respetively. Trivially, by the supportproperty, eah of these funtions may be extended by zero (hene normpreserving) to whole Rn. Clearly, this extension then also belongs to L1(Rn)or H1(Rn), respetively.In order to prove the �rst assertion of ), notie �rst that it su�es to showthat u ∈ V implies u+ ∈ V . Hene, let u ∈ V and let {ul}l ⊂ C∞

c (Rn)with supp ul ∩ (∂Ω\ΓN ) = ∅ and ul|Ω → u in H1(Ω). Clearly, then also
supp u+

l ∩ (∂Ω\ΓN ) = ∅, and by Lemma (5.3) we have u+
l |Ω → u+ in H1(Ω).A molli�er argument then yields the laim. The seond assertion of )follows similarly by Lemma 5.3.In order to prove assertion d) note that Lemma (5.2) a) implies that 0 ≤
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tr |v| ≤ tr u a.e. on ∂Ω. By (2.1), tr u = 0 a.e. on ∂Ω\ΓN . Hene, tr v = 0a.e. on ∂Ω\ΓN , whih yields, again by (2.1), that v ∈ V = H1

ΓN
(Ω).Consider the semigroup etAk on L2(Ω) generated by Ak assoiated to theform ak de�ned in (2.3) with V = H1

ΓN
(Ω). It follows from Proposition (5.4)and Lemma (5.5) that etAk is a positive semigroup on L2(Ω) satisfying anupper Gaussian bound. Hene, (etAk)t≥0 extends to a positive C0-semigroupof ontrations on Lq(Ω) for all 1 ≤ q <∞.5.6 Theorem. Let b ∈ L∞(Ω,R) suh that inf

x∈Ω
|b(x)| ≥ δ for some δ > 0.Let 1 < s, q <∞. Then bAk ∈MR(s, Lq(Ω)) for all k ∈ {1, . . . , m}.Proof. Let k ∈ {1, . . . , m}. By the above remark, etAk is a positive on-tration semigroup on Lq(Ω) satisfying an upper Gaussian bound. Hene,the kernel Kt of et(Ak−αId))t≥0 satis�es (5.6) with ω = 0 for suitable α ∈ R.Moreover, Ak − αId is self-adjoint in L2(Ω). By a result due to Duongand Ouhabaz [12℄, the semigroup on L2(Ω) generated by b(Ak − αId) sat-is�es an upper Gaussian bound with ω = 0 as well. Thus b(Ak − αId) ∈

MR(s, Lq(Ω)) by a result of Hieber and Prüss (see [26℄ or [11℄). Finally,
bAk ∈MR(s, Lq(Ω)) due to the lower order perturbation result of maximalregularity; see [11℄.5.7 Proposition. Let p > n

2
be the number from Assumption (Op) andassume θ ∈ (1

2
+ n

4p
, 1]. Then

[Lp, D(Apk)]θ →֒W 1,2p
ΓN

(Ω)A proof for the three dimensional ase is given in [35℄; the two dimensionalase requires only obvious modi�ations. A omplete, but tehnially moreinvolved proof for the two dimensional ase is ontained in [29℄.5.8 Corollary. Let r > 4p
2p−n

. Then
(Lp, D(Apk))1− 1

r
,r →֒ W 1,2p

ΓN
(Ω)Proof. Let θ be any number from the interval ]1

2
+ n

4p
, 1− 1

r
[. By interpolation

(Lp, D(Apk))1− 1

r
,r →֒ (Lp, D(Apk))θ,1 →֒ [Lp, D(Apk)]θ.Then the assertion follows from the embedding property of the omplexinterpolation spae into W 1,2p
ΓN

(Ω) established in Proposition 5.7.



166 Proof of the main resultWe �rst set X :=
(
Lp(Ω)

)m, D := ×m
k=1D(Apk) and Xr := (X,D)1− 1

r
,rfor r as above. By Assumption (IC), w0 ∈ Xr. Further, for every pair

(t, z) ∈ [T0, T1) ×W 1,2p(Ω)m we de�ne the mapping H(t, z) : X 7→ X via
ϕ := (ϕ1, . . . , ϕm) 7→

(
H1(t, z)ϕ1, . . . , Hm(t, z)ϕm

)
. (6.1)Sine Hk(t, z) ∈ L∞(Ω) and sine Hk possesses a stritly positive lowerbound, it follows that

D(Hk(t, z)A
p
k) = D(Apk).In partiular, D(Hk(T0, w0)A

p
k)) is dense in Lp(Ω) (see [22℄ Thm. 4.5 andThm. 4.7).Consider the mapping B : J ×Xr → L(D;X) given by

B(t, z)ϕ := H(t, z)(Ap1ϕ1, . . . , A
p
mϕm), ϕ = (ϕ1, ..., ϕm) ∈ D.By Corollary 5.8 and Morrey's theorem we have

Xr →֒
(
W 1,2p

ΓN
(Ω)

)m →֒
(
Cα(Ω)

)mfor some α > 0. Thus, the assumed properties on Fk, Gk and φk imply that
B : J ×Xr → L(D;X)is ontinuous. Moreover, for β > 0 there exists Cβ > 0 suh that

‖H(t, z) −H(t, z̃)‖∞ ≤ Cβ‖z − z̃‖W 1,2pprovided t ∈ J and ‖z‖Xr
and ‖z̃‖Xr

≤ β. Hene, (5.4) from Assertion (B)is ful�lled.Furthermore, (5.5) from Assertion (F) holds due to the assumed prop-erties of Fk, Gk, φ, Rk and Proposition 5.8. It remains to verify the keyondition of Proposition 5.1, namely that B := B(T0, w0) has the propertyof maximal regularity. To this end, reall that H(T0, w0) ∈
(
L∞(Ω)

)m witha stritly positive lower bound in eah omponent. Thus, B ∈ MR(r,X) by



6 Proof of the main result 17Proposition 5.6. Finally, an appliation of Proposition 5.1 ends the proof ofTheorem 3.1.It remains to show that if w is a solution of (3.1) then v := w+φ providesa solution of (1.1). This will be done in the Appendix.We now give a proof of Corollary 3.2; in fat we prove the followingsharper result:6.1 Lemma. There exists β > 0 suh that eah omponent wk of the solu-tion w of (3.1) belongs to the spae Cβ((T0, T );W 1,2p
Γ (Ω)) →֒ Cβ((T0, T );

Cα(Ω)).Proof. We write for short Dk = D(Ak) and I = (T0, T ). Then
W 1,r(I;Lp) ∩ Lr(I;Dk) →֒ C(Ī; (Lp, Dk)1− 1

r
,r) →֒ C(Ī; [Lp, Dk]θ),if θ ∈ (0, 1 − 1

r
).Moreover, we have the embedding
W 1,r(I;Lp) →֒ Cδ(I;Lp) with δ = 1 − 1

r
.Fix θ ∈ (1

2
+ n

4p
, 1 − 1

r
) and let λ ∈ (0, 1) be given suh that

θλ >
1

2
+

n

4p
.In view of Proposition 5.7 and the reiteration theorem for omplex interpo-lation ( see [37℄) we obtain

‖wk(t) − wk(s)‖W 1,2p

|t− s|δ(1−λ)
≤

≤ c
‖wk(t) − wk(s)‖[Lp,Dk]θλ

|t− s|δ(1−λ)
∼

‖wk(t) − wk(s)‖[
Lp,[Lp,Dk]θ

]
λ

|t− s|δ(1−λ)
≤

≤ ĉ
‖wk(t) − wk(s)‖1−λ

Lp

|t− s|δ(1−λ)
‖wk(t) − wk(s)‖λ[Lp,Dk]θ

=

= ĉ
(‖wk(t) − wk(s)‖Lp

|t− s|δ
)1−λ(

2 sup
s∈Ī

‖wk(s)‖[Lp,Dk]θ

)λ
.
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7 AppendixIt remains to show that if w is a solution of (3.1) then v := w + φ providesa solution of (1.1). One easily reognizes that all the manipulations whihtransfrom (1.1) into (3.1) are straight forward to justify within the distri-butional alulus - exept one. Therefore, we will give a strit justi�ationof this point in the following lemma. Throughout this appendix f : R 7→ Ris always assumed to be twie ontinuously di�erentiable.7.1 Lemma. Assume p, r ∈]1,∞[ and v ∈W 1,r(]T0, T [;Lp)∩C([T0, T ];C(Ω̄)).Then the funtion ]T0, T [∋ t 7→ f(v(t)) belongs to W 1,r(]T0, T [;Lp) andits distributional derivative is the funtion ]T0, T [∋ t 7→ f ′(v(t))v′(t) ∈
Lr(]T0, T [;Lp).7.2 Remark. We denote by C1(]T0, T [;Lp) the spae of all Lp-valued, on-tinuously di�erentiable funtions on ]T0, T [ with bounded derivatives on
]T0, T [.In order to give a proof of Lemma 7.1 we use the following result.7.3 Lemma. Let [T0, T ] ∋ t 7→ ψ(t, ·) be a mapping belonging to C([T0, T ];
C(Ω̄)) ∩ C1(]T0, T [;Lp). Then the mapping

]T0, T [∋ t 7→ f(ψ(t, ·)) (7.1)takes its values in C(Ω̄) →֒ Lp. It is ontinuously di�erentiable when re-garded as Lp valued and its derivative in a point s ∈]T0, T [ is equal to the
Lp-funtion f ′(ψ(s, ·))ψ′(s).Proof. The �rst assertion is obvious. Conerning the seond one, the set
{ψ(t, x)/x ∈ Ω, t ∈ [T0, T ]} is bounded. Sine f is twie ontinuously di�er-entiable, for s, t ∈]T0, T [ and x ∈ Ω one may apply Taylor's formulae:

f(ψ(t, x)) − f(ψ(s, x))

t− s
= f ′(ψ(s, x))

[ψ(t, x) − ψ(s, x)]

t− s
+ (7.2)
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+

∫ 1

0

(1 − τ)f ′′((1 − τ)ψ(t, x) + τψ(s, x)) dτ
[ψ(t, x) − ψ(s, x)]2

t− s
(7.3)The family {

f ′(ψ(s, ·)) [ψ(t,·)−ψ(s,·)]
t−s

}
t
onverges by the supposition on thedi�erentiablity of the mapping t 7→ ψ(t, ·) in Lp to f ′(ψ(s, ·))ψ′(s) if t ap-proahes s . It remains to show that the expression in (7.3) approaheszero in Lp. This follows easily from the uniform boundedness of the values

f ′′((1 − τ)ψ(t, x) + τψ(s, x)), the boundedness of {
[ψ(t,·)−ψ(s,·)]

t−s

}
t
in Lp andthe onvergene of [ψ(t, ·) − ψ(s, ·)] to zero in C(Ω̄) for t approahing s.The ontinuity of the derivative follows from the ontinuity of ψ′ and theontinuity of the funtion t 7→ f ′(ψ(t, ·)) in C(Ω̄).7.4 Lemma. Let v ∈ W 1,r(]T0, T [;Lp) ∩ C([T0, T ];C(Ω̄)). Then there is asequene {ψl}l in C([T0, T ];C(Ω̄)) ∩ C1(]T0, T [;Lp(Ω)) suh that ψl 7→ v in

C([T0, T ];C(Ω̄)) and ψ′
l 7→ v′ in Lr(]T0, T [;Lp).Proof. Let us de�ne a ontinuous extension ṽ to all of R whih additionallyhas ompat support as follows: we put

v̂(t) :=





v(T0 + (T0 − t)) if t ∈]T0 − (T − T0), T0[

v(t) if t ∈ [T0, T ]

v(T − (t− T ) if t ∈]T, T + (T − T0)[

(7.4)(re�etion at T0, T , respetively). Afterwards we multiply v̂ by a real valued,ontinuously di�erentiable funtion whih is idential 1 on [T0, T ] and whihhas its support in ]T0−(T−T0)/2, T+(T−T0)/2[. We de�ne this produt as
ṽ and identify ṽ with its extension by zero to whole R. Oviously, ṽ|[T0,T ] = v;further one veri�es the property ṽ ∈ W 1,r(R;Lp) ∩ C(R;C(Ω̄)). Let ϑ bethe usual molli�er funtion

ϑ(s) =





1
R

e
− 1

1−s2 ds

e
− 1

1−s2 if |s| < 1

0 else on Rand ϑl(s) := lϑ(l s). Now we put
ψl(t) :=

{∫ t

T0

(
ṽ′ ∗ ϑl)(s) ds+ (ṽ ∗ ϑl)(T0), if t ≥ T0

−
∫ T0

t

(
ṽ′ ∗ ϑl)(s) ds+ (ṽ ∗ ϑl)(T0), if t < T0.

(7.5)



20Then ψl is nothing else but ṽ ∗ ϑl. This yields ψl 7→ v in C([T0, T ];C(Ω̄)).On the other hand, (7.5) immediately gives ψ′
l = ṽ′ ∗ ϑl. This means that

ψ′
l 7→ ṽ′ in Lr(R;Lp), whih implies ψ′

l|]T0,T [ 7→ v′ in Lr(]T0, T [;Lp).We now turn to the proof of Lemma 7.1: Let {ψl}l be the sequene fromthe previous lemma and ϕ ∈ C∞
0 (]T0, T [). Then, onsidering the funtion

]T0, T [∋ t 7→ f(v(t)) as a Lp-valued distribution, one gets by the de�nitionof the weak derivative
(
f(v)

)′
(ϕ) = −f(v)(ϕ′) = −

∫ T

T0

f(v(s))ϕ′(s) ds =

= −
∫ T

T0

lim
l 7→∞

f(ψl(s))ϕ
′(s) ds = lim

l 7→∞
−

∫ T

T0

f(ψl(s))ϕ
′(s) ds.By Lemma 7.3, eah f(ψl) even has a strong (time) derivative whihequals f ′(ψl)ψ

′
l. From this and integrating by parts one gets

−
∫ T

T0

f(ψl(s))ϕ
′(s) ds =

∫ T

T0

f ′(ψl(s))ψ
′
l(s)ϕ(s)ds.By onstrution, ψl 7→ v in C([T0, T ];C(Ω̄)), ψ′

l 7→ v′ in Lr(]T0, T [;Lp),what implies f ′(ψl(·))ψ′
lϕ 7→ f ′(v(·))v′ϕ in Lr(]T0, T [;Lp). But the integralis a ontinuous mapping from Lr(]T0, T [;Lp) into Lp; this �nally gives

∫ T

T0

f ′(v(s))v′(s)ϕ(s) ds =

∫ T

T0

lim
l 7→∞

f ′(ψl(s))ψ
′
l(s)ϕ(s)ds =

lim
l 7→∞

∫ T

T0

f ′(ψl(s))ψ
′
l(s)ϕ(s)ds = lim

l 7→∞
−

∫ T

T0

f(ψl(s))ϕ
′(s) ds =

(
f(v)

)′
(ϕ).Thus, Lemma 7.1 is proved.Aknowledgement The seond author would like to thank K. Gröger andJ. Griepentrog for stimulating disussions on the subjet.
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