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Abstract: The optical Vernier effect magnifies the sensing capabilities of an interferometer, allowing
for unprecedented sensitivities and resolutions to be achieved. Just like a caliper uses two different
scales to achieve higher resolution measurements, the optical Vernier effect is based on the overlap in
the responses of two interferometers with slightly detuned interference signals. Here, we present
a novel approach in detail, which introduces optical harmonics to the Vernier effect through
Fabry–Perot interferometers, where the two interferometers can have very different frequencies in the
interferometric pattern. We demonstrate not only a considerable enhancement compared to current
methods, but also better control of the sensitivity magnification factor, which scales up with the order
of the harmonics, allowing us to surpass the limits of the conventional Vernier effect as used today.
In addition, this novel concept opens also new ways of dimensioning the sensing structures, together
with improved fabrication tolerances.

Keywords: optical fiber sensor; Vernier effect; Fabry–Perot interferometer

1. Introduction

The fast development in many research fields utilizing optical fibers along with the specific
technical challenges in their use places strong pressure and new challenges for current optical fiber
sensing research. There is an increasing need for sensing structures able to achieve higher sensitivities
and resolutions than what conventional fiber sensors can offer. As such, researchers are driven to
find new solutions for improved fiber sensors. Recently, in one such improvement, the Vernier effect
was applied to fiber sensors. This effect, known for many years due to its application in calipers,
consists of two measurement scales with slightly different periods so that the overlap of both improves
measurement accuracy [1,2]. Similarly, the optical Vernier effect makes use of two interferometers with
slightly shifted interferometric frequencies, normally arranged in series (cascaded configuration) [3].
Ideally, one interferometer is used as a sensor while the other acts as a stable reference. However, in
this type of configuration, maintaining one interferometer as a reference can be difficult since usually
both interferometers are located physically close to one another. This problem was recently solved by
using a 3 dB fiber coupler to physically separate the two interferometers into a parallel configuration,
preserving the properties of the Vernier effect [4]. However, this work still relies only on the standard
Vernier effect. In both configurations, the superposition of the responses from the two interferometers
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produces a beating pattern containing a large envelope that provides a spectral shift magnification
compared to the normal sensing interferometer, allowing higher sensitivities and resolutions to be
achieved [5].

The optical Vernier effect applied to optical fiber Fabry–Perot interferometers (FPIs) was first
reported in 2014 [6]. Since then, different structures have been proposed for a diverse range of sensing
applications [3,7–9]. In fact, this subject has quickly become a hot topic in fiber sensing, with more
than two-thirds of the reports published since last year [1–31]. A wide variety of FPI configurations,
previously demonstrated in the literature, can be further improved through combination with the
Vernier effect, resulting in considerably enhanced sensitivities.

In this paper, to the best of our knowledge, we introduce for the first time an extended concept of
an optical harmonic Vernier effect for Fabry–Perot interferometers, illustrated in Figure 1. In this case,
the optical path length of one of the interferometers is increased by a multiple (i-times) of the optical
path length of the second interferometer, plus a detuning factor. The magnification factor provided by
the Vernier envelope is enhanced in proportion to the order of the harmonic, allowing unprecedented
sensitivities and resolutions to be achieved. Moreover, the effect generates internal envelopes distinct
from the upper envelope, which is the only envelope monitored in the fundamental optical Vernier
effect. These internal envelopes scale up in number and in free spectral range in proportion to the order
of the harmonics, making it easier to track the spectral shift by monitoring the intersections provided
by them. This report describes the properties of the optical harmonic Vernier effect, together with an
experimental demonstration of the effect. This approach opens new possibilities for the development
of novel optical fiber sensors with even higher performances, allowing better control and tuning of the
effect dependent on the target application.

Figure 1. Illustration of the harmonic Vernier effect. The Vernier effect, like in a caliper, uses two
different scales to achieve higher resolution measurements. Similarly, the optical Vernier effect uses
the overlap response of two interferometers with slightly different frequencies. The novel concept of
harmonics of the Vernier effect shows that it is, in fact, possible to use two interferometers with very
different frequencies, creating a complex harmonic response with enhanced sensing resolution and
sensing magnification capabilities when compared to the fundamental optical Vernier effect.

2. Theoretical Considerations

2.1. Fundamental Optical Vernier Effect

The fundamental optical Vernier effect requires two interferometers with slightly shifted
interferometric frequencies. In Fabry–Perot interferometers (FPIs), the interferometric frequency
is adjusted by modifying the optical path length of the interferometer. This is achieved by changing
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the refractive index and/or the physical length of the interferometer. Therefore, given the properties of
an initial FPI, the second interferometer can be adjusted to maximize the enhancement provided by the
Vernier effect.

In the following analysis, we rely on a parallel configuration using a 3 dB fiber coupler [4],
where each arm contains a single FPI. This configuration allows both FPIs to be independent of
each other, where one of them can easily be maintained as a reference. Note that FPIs positioned in
series (without a physical separation provided by an optical coupler) would show equivalent results.
However, additional factors would have to be considered in order to describe the effect under such
conditions. Although the following theoretical considerations are valid for any FPI structure, they can
easily be extended to other types of interferometers, such as the Mach–Zehnder interferometer or the
Michelson interferometer, expanding the range of configurations and applications of this powerful
technique. Here, we assume that each FPI is an air cavity formed by a silica tube between two
sections of single-mode fiber. In this case, all interfaces provide a silica/air Fresnel reflection with an
intensity reflection coefficient Ri. The value of Ri is small (around 3.3% at 1550 nm), and hence only one
reflection at each interface is considered (two-wave approximation). This also allows us to simplify the
mathematical description of the effect. Note that we are considering the case of a coherent light source.
Therefore, to take into account the phase, we need to make the description in terms of amplitude, and
not intensity. In this configuration, the output electric field at the detection system is described as the
sum of the electric fields reflected from each interferometer. The output electric field, Eout(λ), can,
therefore, be expressed as (further details in Appendix A):

Eout(λ) =
√

2AEin(λ) + B
Ein(λ)
√

2

{
exp[− j(4πn1L1/λ−π)] + exp[− j(4πn2L2/λ−π)]

}
, (1)

where, Ein(λ) is the electric field of the input light, n1, L1 and n2, L2 are the effective refractive indices
and lengths of the first and second interferometer, respectively, and λ is the vacuum wavelength.
The coefficients A and B are given by:

A =
√

R1, (2)

B = (1−A1)(1−R1)
√

R2, (3)

where R1 and R2 represent the intensity reflectivities at the cavity interfaces, considered to be similar
in both FPIs, A1 represents the transmission losses through the first interface and is related with
mode mismatch and surface imperfections. In this approach, no propagation losses are considered.
The output reflected light intensity, Iout(λ), normalized to the input, is then given by (see Appendix A):

Iout(λ) = I0 − 2AB[cos(4πn1L1/λ) + cos(4πn2L2/λ)] + B2 cos[4π(n1L1 − n2L2)/λ], (4)

where I0 = 2A2 + B2. It shows the combination of the oscillatory responses of both FPIs, plus a lower
frequency component given by the difference between the optical path lengths of the two interferometers.

The interference spectrum is modulated by an envelope whose free spectral range (FSR) can
be described by the relationship between the FSRs of each individual interferometer, such as (see
Appendix B) [6]:

FSRenvelope =

∣∣∣∣∣ FSR1FSR2

FSR1 − FSR2

∣∣∣∣∣ =
∣∣∣∣∣∣ λ1λ2

2(n1L1 − n2L2)

∣∣∣∣∣∣, (5)

where λ1 and λ2 are the wavelengths of two adjacent maxima (or minima).
An important characteristic of the Vernier effect is the magnification factor (M). There are currently

two definitions for this parameter [17]. In the first, the M-factor expresses how large the FSR of the
envelope is when compared with the individual sensing FPI, here defined as (see Appendix B) [3]:

M =
FSRenvelope

FSR1
=

∣∣∣∣∣ n1L1

n1L1 − n2L2

∣∣∣∣∣, (6)
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From Equations (5) and (6), it is noticeable that both the FSR of the envelope and the M-factor
depend on the optical path lengths of the interferometers that form the optical structure.

The second definition of the M-factor is directly related to the sensing application, describing
how much the wavelength shift of the envelope is magnified in comparison to the wavelength shift
of the individual sensing FPI, under the effect of a certain measurand. In this case, the M-factor is
expressed as:

M =
Senvelope

SFPI1
, (7)

where Senvelope is the sensitivity of the envelope and SFPI1 is the sensitivity of the individual sensing
FPI, if the second interferometer acts as a reference.

2.2. Optical Harmonic Vernier Effect

Harmonics of the optical Vernier effect are provided when the optical path length (OPL) of one
of the interferometers is increased by a multiple (i-times) of the OPL of the second interferometer.
The fundamental Vernier effect relies on the fabrication of two sensors with close OPLs. From a practical
point of view, and considering the current fabrication processes of inline FPIs, usually at sub-millimeter
scale, this requirement can be challenging and unfeasible in certain situations. On the other hand,
it is possible to tailor the properties of the sensor to produce optical harmonics of the Vernier effect,
significantly increasing the design possibilities of the sensor. To explore the harmonic properties,
let us assume that the OPL of the second interferometer is increased by i-times the OPL of the first
interferometer (OPL2 = n2L2 + in1L1). i indicates the order of the harmonic, where for the case of i = 0
one ends up in the fundamental optical Vernier effect. The FSR of the second interferometer, depending
on the harmonic order, is now defined as:

FSRi
2 =

∣∣∣∣∣∣ λ1λ2

2(n2L2 + in1L1)

∣∣∣∣∣∣, i = 0, 1, 2 . . . (8)

Figure 2 presents the numerical simulations of Equation (4) for the fundamental Vernier effect
and for the first three harmonic orders, together with the correspondent fast Fourier transform (FFT).
The ideal case of no transmission loss related to mode mismatch and surface imperfections, and no
propagation losses were considered. The coefficient A was assumed to be 0.04, B as 0.96A, and n1

and n2 equal to 1 (air). A length of 41 µm was considered for the first interferometer, and a length
of 32 µm plus multiples of the first interferometer length (i×41 µm), depending on the order of the
harmonic, was used for the second interferometer. The slight detuning between the OPLs of the two
interferometers is visible in the FFT for the fundamental case, where the peaks corresponding to the
frequencies of the interferometers are slightly separated.

The harmonics of the Vernier effect regenerate the upper envelope with the same frequency and
the same FSR as in the fundamental case, as one can observe in Figure 2 (note that the upper envelope,
indicated by a dashed line, was shifted upwards to distinguish it from the internal envelopes). In fact,
the FSR of the upper envelope, described by Equation (5), can be rewritten in a more general way (see
Appendix C), for any harmonic order, in the form of:

FSRi
envelope =

∣∣∣∣∣∣∣ FSR1FSRi
2

FSR1 − (i + 1)FSRi
2

∣∣∣∣∣∣∣. (9)

This general equation represents the regeneration property of the upper envelope since it turns
out to be independent of the order of the harmonic. Moreover, it is interesting to observe that for odd
harmonic orders, the upper envelope suffers a π-shift.
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Figure 2. Reflected intensity spectra described by Equation (4) in four different situations and
corresponding fast Fourier transform (FFT): (a) Fundamental optical Vernier effect, (b–d) first three
harmonic orders. Dashed line: Upper envelope (shifted upward to be distinguishable from the internal
ones). Red-orange lines: Internal envelopes. Green arrow: Frequency of the sensing interferometer
(FPI1). White-blue arrow: Frequency of the reference interferometer (FPI2). The non-marked small
peak in the FFTs corresponds to the frequency difference between the two interferometers.

For sensing applications, monitoring the wavelength shift of the upper envelope for higher
harmonic orders seems to have a drawback: The visibility decreases with the order of the harmonics.
Although, at first glance, this might seem to be a disadvantage, for practical applications, the problem
is easily solved by alternatively relying on the internal envelopes, as represented in Figure 2. These
envelopes are obtained by fitting groups of maxima in the harmonic spectrum. The maxima can
be classified into groups of i + 1 peaks, the same as the number of internal envelopes generated.
The intersection between internal envelopes provides multiple points that can be used to track the
wavelength shift, instead of using the upper envelope. Fitting the internal envelopes also reduces
the effects of intensity fluctuations in different peaks, which might contribute to an error in the
measurement of the wavelength shift. Additionally, the FSR of the internal envelope scales with the
order of the harmonics, also visible in Figure 2, as the frequency of the reference interferometer (inverse
of the FSR) increases harmonically with the order of the harmonics. Note that the detuning is the same
for all the presented cases. The FSR of the internal envelope can be expressed as:

FSRi
internalenvelope =

∣∣∣∣∣∣∣ (i + 1)FSR1FSRi
2

FSR1 − (i + 1)FSRi
2

∣∣∣∣∣∣∣ = (i + 1)FSRi
envelope, (10)
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where the internal envelope is larger by a factor of i + 1 than the upper envelope (Equation (9)). If high
finesse Fabry–Perot interferometers were used, the spectral dips would become narrower, which can
be an advantage for tracking their position and tracing the envelopes. At the same time, the envelope
properties of the effect would still be maintained.

As discussed in the previous section, the M-factor for the fundamental optical Vernier effect is
obtained by dividing the FSR of the upper envelope by the FSR of the sensing interferometer. Although
such calculations work for the fundamental effect, they are not correct for the harmonics. The result
would be an M-factor independent of the order of the harmonics, since the FSR of the upper envelope
is the same for every harmonic, as described by Equation (9). In fact, the M-factor does not depend
on the upper envelope, but rather on the internal envelope, as we will later demonstrate. Therefore,
the general expression for the M-factor as a function of the order of the harmonic is defined as:

Mi =
FSRi

internalenvelope

FSR1
=

∣∣∣∣∣∣∣ (i + 1)FSRi
2

FSR1 − (i + 1)FSRi
2

∣∣∣∣∣∣∣ = (i + 1)M, (11)

where the first interferometer (FPI1) is assumed to be the sensing interferometer, and the second one
(FPI2) serves as a reference.

The M-factor for the fundamental optical Vernier effect is recovered for i = 0. In a situation where
the OPL of the reference interferometer (FPI2) is scaled up to generate harmonics of the Vernier effect,
the magnification obtained scales up linearly with the order of the harmonic, for the same detuning.
This detuning corresponds to the optical path difference between the actual reference interferometer
and the closer situation of a perfect harmonic case (where OPL2 = (i + 1)OPL1). When no detuning is
considered, the magnification factor trends towards infinity, translating in a Vernier envelope with an
infinite FSR. In practice, it corresponds to a useless situation where the Vernier envelope cannot be
tracked and measured. In order to make the structure useful, one has to deliberately apply a detuning
(∆) to the reference interferometer OPL to slightly move away from the perfect harmonic situation.

For a harmonic of order i, the magnification increases i + 1 times the value of the magnification
for the fundamental optical Vernier effect. This means that the wavelength shift of the envelope
also increases linearly with the order of the harmonic, allowing for the realization of sensors with
a sensitivity enhanced by i + 1 times.

In the fundamental optical Vernier effect, the maximum M-factor is limited in practical applications
by the FSR of the upper envelope, where one period should stay within the wavelength range available
from the detection system. In the case of the harmonic effect, the maximum M-factor is not directly
limited by the FSR of the internal envelope, although it scales up with the order of the harmonic. Even
if the period of the upper envelope stays out of the wavelength range available, one can still rely on the
internal envelope intersections to monitor the wavelength shift, as discussed before.

A different way to approach these concepts is represented in Figure 3b. Here, the magnification
factor for the fundamental case and for the first three harmonic orders is plotted as a function of
the detuning (∆) from the perfect harmonic case. One can see, e.g., by observing the magnification
at the positions of the red circles that, for the same detuning (introduced on purpose to make the
envelope measurable) the M-factor scales up linearly with the order of the harmonics. Even though it
is not a perfect harmonic case, for a fixed detuning, the scaling properties of the effect (magnification
factor, number of internal envelopes, frequency of the internal envelope) can still be seen as harmonic.
Figure 3b also presents a 1 µm detuning error, showing how it can affect the final M-factor.
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Figure 3. (a) Magnification factor as a function of the total length (L2 + iL1) of the reference interferometer
(FPI2), for a fixed length (L1) of the sensing interferometer (FPI1), where i corresponds to the order
of the harmonic. The perfectly harmonic case is marked with F, P1, P2, and P3, respectively, for the
fundamental and the first three harmonic orders, where the M-factor is infinite. A deviation of 1 µm in
the length of FPI2 produces smaller variations in the M-factor for higher harmonic orders, as exhibited
by the red line. (b) Magnification factor as a function of the detuning (∆) from a perfectly harmonic
situation applied to the reference interferometer (FPI2). For the same detuning, the magnification factor
scales up linearly with the order of the harmonics as can be seen e.g. by the values at the red circles.
Small detuning errors from multiple sources, such as fabrication tolerances, can modify the obtained
magnification factor.

3. Results

In this section, an experimental demonstration on the production of harmonics of the Vernier effect
is presented, demonstrating the improved sensitivity magnification properties previously discussed.

3.1. Experimental Setup

The experimental setup is illustrated in Figure 4a. The two Fabry–Perot interferometers (sensing
and reference) are physically separated in a parallel configuration by means of a 50/50 fiber coupler.
The sensing interferometer is connected to port 2, while the reference interferometer is connected
to port 3. The input port 1 is connected to a supercontinuum laser source (Fianium WL-SC-400-2).
The reflected signals from port 2 and 3 are combined and measured at port 4 with an optical spectrum
analyzer (OSA ANDO AQ-6315A, resolution of 0.1 nm).

To perform the strain measurements, the sensor was glued to a fixed platform and to a translation
stage with a resolution of 0.01 mm. The total length over which strain was applied, corresponding
to the length between the fixed points, is 344 mm. All the experiments were carried out at room
temperature (23 ◦C). The strain was applied to FPI1, for all three cases of different reference FPIs.
The strain measurements were done by applying strain up to 600 µε, with steps of 87.2 µε (0.03 mm).
Only static measurements were performed in this experiment.

Figure 3a displays the M-factor curve, defined through Equation (11) as a function of the total
length of the second interferometer, for a fixed dimension of the first interferometer. The M-factor
trends toward infinity as the OPLs of the two interferometers become attuned, approaching a perfect
harmonic situation. The points marked as F, P1, P2, and P3 correspond to the perfect harmonic
case for the fundamental and the first three harmonic orders of the Vernier effect, respectively. This
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situation corresponds to an infinite M-factor. It is visible that the M-factor curve broadens for higher
harmonic orders. First, this allows higher M-factors to be achieved more easily, and second, it allows
the impact of small detuning errors to be reduced. There are different sources of detuning errors.
Environmental effects, such as temperature changes or deformation/strain, would typically result in
a percentage change in the interferometer length and would become more relevant for longer reference
interferometers. Besides these environmental effects, errors, and tolerances in the fabrication process
also contribute to detuning errors. From all these sources of error, strain, or deformation effects are
negligible in our case, as the reference interferometer is considered stable since no strain is applied to
it. The thermal expansion coefficient of silica is around 0.55× 10−6K−1, which for a 5 ◦C temperature
variation corresponds to a length variation of 2.75× 10−4%. In practical terms, for a 100 µm-long cavity
the length variation caused by this temperature variation is 0.275 nm, and for a 1 mm-long cavity that
corresponds to a length variation of 0.275 µm. These variable parameters produce a detuning error,
which is, in general, below the error imposed by the accuracy of the fabrication procedures (between
1 µm to a few micrometers). Therefore, the limiting factor here is the detuning error caused by the
fabrication process, which is a fixed value dependent on the available fabrication technology. One can
see by the red line of Figure 3a that the variation in the M-factor caused by a 1 µm fixed detuning error
in the length of the second FPI is smaller for higher harmonic orders. Therefore, higher harmonic
orders allow larger tolerances in sensor fabrication without compromising this parameter, for the same
M-factor.

Figure 4. (a) Schematic illustration of the experimental setup. The sensing interferometer (FPI1) and
the reference interferometer (FPI2) are separated by means of a 50/50 fiber coupler. A supercontinuum
laser source is connected to the input and the reflected signal from the device is measured with an
optical spectrum analyzer. Light is reflected at both interfaces of the capillary tube, with intensity
reflectivities R1 and R2. The length of the interferometer (L) is given by the length of the capillary tube.
Strain is only applied to FPI1. (b) Micrograph of the experimental fiber sensing interferometer (FPI1)
and the three different reference interferometers (FPI2) used to excite the first three harmonic orders.

3.2. Sensor Fabrication

The Fabry–Perot interferometers used in the experiment were based on a section of a capillary
tube spliced between two pieces of single-mode fiber (SMF28). The capillary tube, fabricated at
Leibniz-IPHT, has an internal diameter of 60 µm and an outer diameter of 125 µm. First, the end
of a single-mode fiber and a capillary tube were cleaved with a fiber cleaver and spliced together
using a splicing machine (Fitel S177). The splice was performed in the manual mode of the fusion
splicer, ensuring that the center of the electric arc was mainly applied to the single mode fiber, thus
avoiding the collapse of the capillary tube. The following parameters were used: Two electric arc
discharges with an arc power of 30 arb. units and arc duration of 400 ms. Then, the fiber was placed
in the fiber cleaver and, with the help of a magnification lens, the capillary tube was cleaved with
the desired length. At last, the cleaved end of the capillary tube was spliced to another piece of
single-mode fiber following the same procedures as described before. Figure 4b shows a micrograph of
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the different Fabry–Perot interferometers fabricated. The sensing interferometer (FPI1) is 41 µm long.
Three reference interferometers (FPI2) were fabricated to excite the first three harmonic orders of the
Vernier effect (OPL2 = (i + 1)OPL1 + ∆, where ∆ is the detuning). An FPI2 with a length of 72 µm (2 ×
41 µm plus a detuning of -10 µm) was used to produce the first harmonic. The second harmonic was
excited using an FPI2 with a length of 118 µm (3 × 41 µm plus a detuning of -5 µm). At last, an FPI2

with a length of 155 µm (4 × 41 µm plus a detuning of -9 µm) was used to produce the third harmonic.
Initially, the sensing interferometer (FPI1), with an FSR of 23.52 nm, was characterized with regard

to strain sensitivity, obtaining a value of (3.37 ± 0.02) pm/µε. Then, three Fabry–Perot interferometers
with different lengths were successively applied as the reference interferometer in order to respectively
excite the first three harmonic orders of the Vernier effect.

Figure 5a–c depicts the experimental reflected intensity spectra for the first three harmonic
orders, with different detunings. The appearance of the reflected intensity spectra is similar to the
theoretical results, as predicted by Equation (4) and as shown in Figure 2. The number of internal
envelopes scales up linearly with the order of the harmonics, providing intersection points suitable for
monitoring the wavelength shift in sensing applications. The FSR of the upper envelope for the first
three harmonic orders is 98.56, 222.80, and 107.77 nm, respectively. The FSR of the internal envelopes
is given approximately by i + 1 times the FSR of the upper envelope. With this, one can determine the
M-factor for each harmonic through Equation (11). The M-factor obtained via the FSRs for the first
three harmonic orders is 8.38, 28.42, and 18.33, respectively. Note that the M-factor is dependent on
the detuning of the reference interferometer. As the FSR of the upper envelope is independent of the
harmonic order, the larger the upper envelope, the less detuned the effect is and, therefore, the higher
the M-factors achieved, as discussed before. For example, the second harmonic sensor is well-tuned,
therefore it shows a larger envelope and a higher M-factor than the third harmonic, which is not so
well-tuned (larger detuning).

Figure 5. (a–c) Experimentally obtained reflected intensity spectra for the first three harmonic orders.
Red-orange lines correspond to the internal envelopes. The number of internal envelopes increases
linearly with the order of the harmonic, as expected theoretically. (d) The compensated phase
shift

(
2π× ∆λ/FSRenvelope

)
for the first three harmonic orders as a function of the strain applied.

The compensated phase sensitivities to strain, given by the slope of the curves (S), increase linearly
with the order of the harmonics, demonstrating the magnification enhancement predicted theoretically.
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To further validate the properties of the effect, the first three harmonic orders were characterized
in strain. An example of the experimental spectral shift of the harmonic Vernier spectrum can be found
in Appendix D. Sensitivity values of (27.6 ± 0.1 pm/µε), (93.4 ± 0.6) pm/µε, and (59.6 ± 0.1) pm/µεwere
achieved for the first, second, and third harmonics, respectively. Calculating the M-factor through
the ratio between the sensitivity of the Vernier envelope and the sensitivity of the individual sensing
interferometer (FPI1) determined previously, one obtains 8.18, 27.7, and 17.7, respectively, for each
harmonic. Both, the M-factors defined using the FSR of the internal envelopes (Equation (11)) and the
M-factors defined using the sensitivities (Equation (7)), are approximately the same, with a maximum
deviation of 3.5%. In other words, both definitions for the M-factor are equivalent.

In order to verify Equation (11), where the M-factor for each harmonic order is i + 1 times larger
than the M-factor for the fundamental optical Vernier effect, the ratio between the M-factor obtained via
the sensitivities and that of the equivalent fundamental optical Vernier effect was calculated. This last
factor is determined by the ratio between the FSR of each upper envelope, which is independent of the
order of the harmonic, and the FSR of the individual sensing interferometer (FPI1). Hence, the ratios
obtained are 1.95, 2.93, and 3.86, respectively, for the first three harmonic orders. As observed, the ratio
values are approximately increasing by factors of i + 1, as predicted by Equation (11).

Furthermore, it is possible to make a fair comparison between the structures independent of
the specific detuning value of the reference interferometers, and also to demonstrate more directly
the linear enhancement of the M-factor with the order of the harmonics by using a compensated
wavelength shift. The compensated wavelength shift takes into consideration the FSR of the upper
envelope which, as we discussed before, is an indicator of the detuning of the structure. Therefore,
the compensated wavelength shift

(
∆λ/FSRenvelope

)
is independent of the tuning of these structures.

It can also be transformed into a more meaningful value as
(
2π× ∆λ/FSRenvelope

)
, corresponding now

to the envelope phase shift, independent of the detuning. A more comparable value of sensitivity,

which quantifies how sensitive each interferometer is, can now be defined as S =
(

2π×∆λ
FSRenvelope

)
/strain,

representing the compensated phase sensitivity to strain. Figure 4d represents the compensated
wavelength shift for the first three harmonic orders. The compensated sensitivity for each structure,
defined by the slope of the curves, increases linearly with the order of the harmonics, which is also in
accordance with Equation (11).

A summary of the main values of the experimental results is displayed in Table 1. They can be
organized into three groups. The first resumes the experimental results for strain sensitivity, where
a compensated strain sensitivity is displayed for comparison purposes. The compensated strain
sensitivity is a way to observe only the influence of the harmonics in the experimental sensitivity.
It increases with the order of the harmonics, demonstrating the sensitivity enhancement property of
the effect independently of the detuning. The second group shows the M-factors by the two different
definitions (through Equations (11) and (7)). The values obtained are very similar, validating the use of
both definitions. At last, the third group compares the M-factor for each harmonic with the M-factor
for the equivalent fundamental optical Vernier effect. It shows the i + 1 factor improvement in the
M-factor with the order of the harmonic, as predicted by Equation (11).

Table 1. Overview of the experimental results for the first three harmonic orders. First group:
Experimental results. Second group: M-factor by different definitions (Equations (7) and (11)) give the
same results. Third group: M-factor for each harmonic compared with the M-factor for the fundamental
optical Vernier effect. It shows the i + 1 improvement factor with the order of the harmonic.

Experimental
Strain Sensitivity

(pm/µε)

Compensated
Phase Sensitivity

(mrad/ µε)

M-Factor by
FSRenvelope

Equation (11)

M-Factor by
Sensitivities
Equation (7)

M-Factor by
FSR/M-factor by

Fundamental
Vernier Effect

1st Harmonic 27.6 1.765 8.38 8.18 1.95 (2)
2nd Harmonic 93.4 2.633 28.41 27.70 2.93 (3)
3rd Harmonic 59.6 3.474 18.32 17.70 3.86 (4)
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4. Discussion

The fundamental optical Vernier effect can be used to achieve high sensitivity magnification
values. However, these magnifications are limited by the wavelength range available in the detection
system. The generation of optical harmonics of the Vernier effect is an effective tool to further increase,
by several fold, the magnification values and to achieve higher resolutions without compromising
the signal detection and monitoring. The presence of internal envelopes, which are different from the
upper envelope, typically monitored in the fundamental optical Vernier effect, provides intersection
points better suited to tracking the wavelength shift used for sensing.

In practical applications, fine-tuning of the interferometer optical path length can be quite
complicated and, in most cases, technically challenging. Therefore, going for higher-order harmonics
allows not only better fabrication tolerances, but also new ways of dimensioning interferometric
structures and new sensing configurations.

From a theoretical point of view, the equations allow the use of harmonic orders that can go
up to infinity. However, from an experimental perspective, the interference peaks get narrower,
and after a certain harmonic order, their FSR may stay below the resolution of the detection system.
Therefore, the peaks become indistinguishable, and internal envelopes fitting is no longer accessible.
Moreover, as the modulation contrast of the upper envelope decreases with the order of the harmonics,
the visibility of the modulation will deteriorate due to signal noise. Therefore, the limitation in terms of
the maximum harmonic order achievable depends both on the specific application and on the available
detection system.

The possibility of discriminating between multiple parameters, like strain and temperature, should
be explored in the future. Apart from the envelopes, the Fabry–Perot-like response is still present
in the spectrum. Its response, together with the envelope, could be used with a matrix method to
discriminate between different measurands or, for instance, compensate fluctuations in temperature.

Another interesting point to discuss is the possibility of performing dynamic measurements with
the Vernier effect. One drawback of the method is the need to measure a certain wavelength range,
which is in general large, in order to be able to trace and track the envelope. Indeed, such requirements
impose a limitation for dynamic measurements, especially if an OSA or other slow speed detection
system is used. One way to tackle this problem is to design the structure to work in the wavelength
range of a commercially available fast optical interrogator, together with specific software to extract the
envelope and measure the wavelength shift. A different solution would be to study and explore the
possibility of developing a detection system, e.g., with a wavelength tunable laser source that could
rapidly track the envelope shift without the need to measure a full spectrum and avoid the use of
an OSA.

In sum, the use of optical harmonics of the Vernier effect enables the exploitation of a new
generation of sensors, capable of fulfilling the sensitivity and resolution requirements for state-of-the-art
applications in areas like medicine, biology, and chemistry. With this setup, one can boost the
performance of conventional interferometric sensors to unprecedented values while making their
fabrication flexible and adaptable to a specific application. As an example of future development,
one could achieve sub-nanostrain resolution with a simple fiber geometry, such as a silica tube.
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Appendix A. Derivation of the Reflected Light Intensity for the Fundamental Optical
Vernier Effect

Let us consider a parallel configuration, where two Fabry–Perot interferometers (FPIs) are
physically separated by using a 3 dB fiber coupler [4]. For simplification, the two interferometers are
assumed to have identical interfaces, with an intensity reflection coefficient R1 for the first interface
and R2 for the second one.

Although the following theoretical considerations are valid for any FPI structure, we will assume
that each FPI is generated by a section of a silica tube between single-mode fibers. In this case,
all interfaces provide a silica/air Fresnel reflection. Note that the reflection coefficient due to a silica/air
Fresnel reflection is small (around 3.3% at 1550 nm), and hence, only one reflection at each interface
was considered, as a two-wave approximation.

In this configuration, light is injected at port 1 and split between the two arms (port 2 and 3) with
equal intensity. The light reflected by the system is collected at port 4. The electric field of the input
light, Ein(λ), propagating in the structure, will be reflected at different points. In both interferometers,
the electric field of light reflected at the interface 1 of the interferometer is given by:

ER1(λ) =
√

R1
Ein(λ)
√

2
, (A1)

while the electric field of the transmitted light at the same interface is expressed as:

ET1(λ) =
√
(1−A1)

√
(1−R1)

Ein(λ)
√

2
, (A2)

where A1 represents the transmission losses through interface 1, related to mode mismatch and
surface imperfections.

Light transmitted at the interface 1 (ET1(λ)) will then travel through the FPI, being partially
reflected and transmitted at the interface 2. The electric field of the light reflected at the interface 2 of
the first interferometer is expressed as:

E1
R2(λ) =

√
(1−A1)

√
(1−R1) exp(−αL1)

√
R2

Ein(λ)
√

2
exp[− j(2πn1L1/λ−π)], (A3)

where exp(−αL1) represents the propagation losses in the first interferometer, 2πn1L1/λ − π is the
phase accumulated in the propagation up to interface 2, with a reflection phase of pi, λ is the vacuum
wavelength of the input light, n1 and L1 are the effective refractive index and the length of the first
interferometer. This reflected light

(
E1

R2(λ)
)

will be propagated back into the structure and get partially
transmitted at the interface 1 towards the output, interfering with the light initially reflected at that
interface as described by Equation (A1). Therefore, the electric field of the light coming from the first
interferometer is given by:

EFPI1(λ) =
Ein(λ)
√

2

{√
R1 + (1−A1)(1−R1) exp(−α2L1)

√
R2 exp[− j(4πn1L1/λ−π)]

}
. (A4)

At the interface 2, the transmitted light leaves the interferometer, and therefore no longer
contributes to the system.
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The same analysis can be performed for the second interferometer, where the electric field of the
light coming from the second interferometer can be expressed, in a similar form as in Equation (A4), as:

EFPI2(λ) =
Ein(λ)
√

2

{√
R1 + (1−A1)(1−R1) exp(−α2L2)

√
R2 exp[− j(4πn2L2/λ−π)]

}
, (A5)

where n2 and L2 are the effective refractive index and length of the second interferometer.
The electric field of the light coming from the first interferometer, expressed by Equation (A4),

is redirected from port 2 of the couple into the output. It can be simplified as:

Eport2
R (λ) =

Ein(λ)
√

2

{
A + B exp[− j(4πn1L1/λ−π)]

}
, (A6)

with A and B given by:
A =

√
R1, (A7)

B = (1−A1)(1−R1) exp(−2αL1)
√

R2. (A8)

In the same way, the reflected electric field coming from port 3 towards the output is expressed as:

Eport3
R (λ) =

Ein(λ)
√

2

{
A + C exp[− j(4πn2L2/λ−π)]

}
, (A9)

where C corresponds to:
C = (1−A1)(1−R1) exp(−2αL2)

√
R2. (A10)

If no propagation losses are considered as a simplification, the coefficients described by equations
(A8) and (A10) are the same (B = C). With this, one can express the total electric field leaving the
output at port 4

(
Eport2

R + Eport3
R

)
as:

Eout(λ) =
√

2AEin(λ) + B
Ein(λ)
√

2

{
exp[− j(4πn1L1/λ−π)] + exp[− j(4πn2L2/λ−π)]

}
, (A11)

where B is now defined as:
B = (1−A1)(1−R1)

√
R2, (A12)

The output light intensity, Iout(λ), normalized to the incident light, can now be calculated by:

Iout(λ) =

∣∣∣∣∣∣Eout(λ)

Ein(λ)

∣∣∣∣∣∣2 =
Eout(λ)E∗out(λ)

E2
in(λ)

, (A13)

where E∗out(λ) is the complex conjugated of Eout(λ). By substituting Equation (A11) in Equation (A13),
after some algebraic manipulation the expression for the reflected light intensity measured at the
output is:

Iout(λ) = I0 − 2AB[cos(4πn1L1/λ) + cos(4πn2L2/λ)] + B2 cos[4π(n1L1 − n2L2)/λ], (A14)

where I0 = 2A2 + B2.

Appendix B. Derivation of the Free Spectral Range (FSR) of the Envelope and Magnification
Factor (M-Factor) for the Fundamental Vernier Effect

Let us consider the overlap of two Fabry–Perot interferometers with slightly shifted interferometric
frequencies, whose individual responses are represented in Figure A1. The interferometer 1,
corresponding to the orange curve, is slightly smaller than interferometer 2, given by the blue curve.
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Figure A1. Diagram of the response of two Fabry–Perot interferometers (1 and 2). The wavelengths of
the different peaks are labeled as λm

k , where m = 1, 2 is the number of the interferometer and k is the
number of the peak.

The wavelengths of the different peaks are labeled as λm
k , where m = 1, 2 is the number of the

interferometer and k is the number of the peak. From Figure A1, both interferometers are in phase at
a wavelength λm

0 . The wavelength of the maximum “k” can be described using the free spectral range
(FSR) of the interferometer as:

λ1
k = λ0 + kFSR1, (A15)

for the interferometer 1, and similarly as:

λ2
k = λ0 + kFSR2, (A16)

for the interferometer 2. At a certain wavelength, both interferometers will be once again in phase.
In this case, from Figure A1 one can see that both interferometers are again in phase when:

λ1
k = λ2

k+1. (A17)

Introducing Equations (A15) and (A16) into Equation (A17), the following relationship is obtained:

kFSR1 = (k + 1)FSR2. (A18)

Therefore, one can express “k” as a function of the FSRs of both interferometers in the form of:

k =
FSR2

FSR1 − FSR2
. (A19)

In the fundamental optical Vernier effect, the FSR of the envelope corresponds to the wavelength
distance between two consecutive situations where both interferometers are in phase. Hence, the FSR
of the envelope can be given by:

FSRenvelope = λ1
k − λ0 = kFSR1 (A20)

By substituting Equation (A19) in Equation (A20), the final expression for the FSR of the envelope is:

FSRenvelope =
FSR2FSR1

FSR1 − FSR2
. (A21)

In a Fabry–Perot interferometer, the FSR is usually defined as [32]:

FSR =
λ1λ2

2nL
, (A22)
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where λ1 and λ2 are the wavelengths of two consecutive maxima (or minima), n is the effective
refractive index of the interferometer, and L is the length of the interferometer. With this, one can
define the FSR of the envelope in a different way as:

FSRenvelope =

∣∣∣∣∣∣∣ λ1
0λ

1
k

2(n1L1 − n2L2)

∣∣∣∣∣∣∣. (A23)

The magnification factor (M) is defined as the ratio between the FSR of the envelope and the
FSR of the individual sensing interferometer. If the interferometer 1 is the sensing interferometer,
the M-factor is defined as:

M =
FSRenvelope

FSR1
=

∣∣∣∣∣ FSR2

FSR1 − FSR2

∣∣∣∣∣, (A24)

which is the same as the index “k” defined in Equation (A19). If we substitute definitions described
by equations (A22) and (A23) for the FSRs, with the rough approximation of λ1

1λ
1
2 ' λ1

0λ
1
k , the

magnification factor can also be expressed as:

M =

∣∣∣∣∣ n1L1

n1L1 − n2L2

∣∣∣∣∣. (A25)

Appendix C. Derivation of the Free Spectral Range (FSR) of the Envelope for the First Optical
Vernier Effect Harmonic and Generalization for Any Harmonic Order

Let us consider the same two Fabry–Perot interferometers as in Appendix B, but now with the
optical path length of interferometer 2 increased by one-time the optical path length of interferometer
1, OPL2 = n2L2 + in1L1 with i = 1, in order to produce the first harmonic. The individual responses
of the two interferometers are represented in Figure A2 (orange curve: interferometer 1; blue curve:
interferometer 2).

Figure A2. Diagram of the response of two Fabry–Perot interferometers (1 and 2), with the optical path
of 2 increased by one-time the optical path of 1 (OPL2 = n2L2 + 1n1L1).

Due to this change in the optical path length of the second interferometer, the FSR of interferometer
2 is now defined as:

FSRi=1
2 =

λ1λ2

2(n2L2 + 1n1L1)
. (A26)

The same analysis as in Appendix B can be performed. From Figure A2, both interferometers are
in phase at a wavelength λm

0 . The wavelength of the maximum “k” can be described using the free
spectral range (FSR) of the interferometer as:

λ1
k = λ0 + kFSR1, (A27)

for the interferometer 1, and similarly as:

λ2
k = λ0 + kFSRi=1

2 , (A28)
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for the interferometer 2. At a certain wavelength, both interferometers will be once again in phase.
In this case, from Figure A2 one can see that both interferometers are again in phase when:

λ1
k = λ2

2k+1. (A29)

Introducing equations (A27) and (A28) into Equation (A29), the following relationship is obtained:

kFSR1 = (2k + 1)FSRi=1
2 . (A30)

Therefore, one can express “k” as a function of the FSRs of both interferometers in the form of:

k =
FSRi=1

2

FSR1 − 2FSRi=1
2

. (A31)

In the Vernier effect, the FSR of the envelope corresponds to the wavelength distance between
two consecutive situations where both interferometers are in phase. Hence, the FSR of the envelope
can be given by:

FSRenvelope = λ1
k − λ0 = kFSR1 (A32)

By substituting Equation (A31) in Equation (A32), the final expression for the FSR of the envelope is:

FSRenvelope =
FSRi=1

2 FSR1

FSR1 − 2FSRi=1
2

. (A33)

In general, for a harmonic of order i, the optical path of interferometer 2 is increased by i-times
the optical path of interferometer 1 (OPL2 = n2L2 + in1L1). Therefore, Equation (A26) for the FSR of
interferometer 2 can be expressed in a general form as:

FSRi
2 =

λ1λ2

2(n2L2 + in1L1)
, i = 0, 1, 2 (A34)

Starting from an initial in-phase situation, both interferometers will be again in phase when:

λ1
k = λ2

(i+1)k+1, (A35)

being i the order of the harmonic. Hence, one obtains a general expression for Equation (A30) as:

kFSR1 = [(i + 1)k + 1]FSRi
2, (A36)

where “k” is now defined as:

k =
FSRi

2

FSR1 − (i + 1)FSRi
2

, (A37)

and, therefore, the general expression for the FSR of the envelope as a function of the order of the
harmonic is:

FSRenvelope =
FSRi

2FSR1

FSR1 − (i + 1)FSRi
2

. (A38)

Appendix D. Example of the Spectral Shift

An example of the experimental wavelength shift of the harmonic Vernier effect is depicted
in Figure A3. The spectra correspond to the second harmonic of the Vernier effect, represented in
Figure 4b. The intersection between internal envelopes can be monitored as a function of the applied
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strain. In this case, tracking the intersection around 1400 nm, one can observe a shift of the intersection
position towards longer wavelengths with increasing applied strain.

Figure A3. Demonstration of the experimental wavelength shift of the harmonic Vernier spectrum
for three different strain values: (a) 0 µε, (b) 348.8 µε (c) 610.5 µε. One of the multiple intersections
between internal envelopes is marked with a red circle. The existence of a wavelength shift of the
envelopes towards longer wavelengths is clearly visible as strain is applied.
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