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ABSTRACT. In this paper we study a non-local fractional Laplace equation, depending on a parameter,
with asymptotically linear right-hand side. Our main result concerns the existence of weak solutions
for this equation and it is obtained using variational and topological methods. We treat both the non-
resonant case and the resonant one.
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1. INTRODUCTION

In the literature many papers are devoted to the study of non-local fractional Laplacian equations with
superlinear and subcritical or critical growth (see [2, 5, 6, 10, 15, 16, 18, 19, 20, 21, 22, 24] and
references therein). After studying this kind of problems in the recent papers cited above, here we
deal with non-local equations with asymptotically linear right-hand side.

In the standard case of the Laplacian there is a wide literature on this topic (see, for instance, [1] and
references therein). Aim of the present work is to provide some existence results for the non-local
counterpart of such a problem, that is the equation

(1.1)

{

−LKu + q(x)u = λu + f(u) + h(x) in Ω
u = 0 in R

n \ Ω ,

where s ∈ (0, 1) is fixed, n > 2s , Ω ⊂ R
n is an open, bounded set with Lipschitz boundary, λ is a

real parameter, f , q and h are sufficiently smooth functions and LK is a general non-local operator
defined as follows:

(1.2) LKu(x) =

∫

Rn

(u(x + y) + u(x− y)− 2u(x))K(y)dy,

for all x ∈ R
n . Here, the kernel K : R

n \ {0} → (0, +∞) is a function with the properties that

(1.3) mK ∈ L1(Rn), where m(x) = min{|x|2, 1} ;

(1.4) there exists θ > 0 such that K(x) > θ|x|−(n+2s) for any x ∈ R
n \ {0};



2

(1.5) K(x) = K(−x) for any x ∈ R
n \ {0} .

A typical example for K is given by K(x) = |x|−(n+2s). In this case LK = −(−∆)s and prob-
lem (1.1) becomes

(1.6)

{

(−∆)su + q(x)u = λu + f(u) + h(x) in Ω
u = 0 in R

n \ Ω,

where −(−∆)s is the fractional Laplace operator which (up to normalization factors) may be defined
as

(1.7) −(−∆)su(x) =

∫

Rn

u(x + y) + u(x− y)− 2u(x)

|y|n+2s
dy

for x ∈ R
n (see [8] and references therein for further details on the fractional Laplacian).

Along the paper, we suppose that in equation (1.1) the function f : R → R verifies the following
assumptions:

(1.8) f ∈ C1(R)

(1.9) there exists a constant M > 0 such that |f(t)| 6 M for any t ∈ R ,

while q, h : Ω→ R are such that

(1.10) q ∈ L∞(Ω), q(x) > 0 a.e. x ∈ Ω

and

(1.11) h ∈ L2(Ω),

respectively.

When f ≡ 0 and h ≡ 0 problem (1.1) becomes the following eigenvalue problem

(1.12)

{

−LKu + q(x)u = λu in Ω
u = 0 in R

n \ Ω .

We recall that there exists a non-decreasing sequence of positive eigenvalues λk for which (1.12)
admits a solution. We will study problem (1.12) in Appendix A, since, in the following, we need some
information on the eigenvalues and the eigenfunctions of −LK + q.

Along the paper we consider both the resonant and the non-resonant case, that is the case when λ
belongs to the spectrum of the operator driving the equation and the one when λ does not, respec-
tively. As for the resonant setting we would like to note that we are able to treat this case only if λ
satisfies the following assumption (for more details see Section 5)

(1.13)

λ is an eigenvalue of problem (1.12) such that

all the eigenfunctions corresponding to λ

have nodal set with zero Lebesgue measure.

As usual, the “nodal set” of a function e in Ω is the level set {x ∈ Ω : e(x) = 0}.

We think that it is an intriguing question to establish whether or not all the eigenfunctions of prob-
lem (1.12) have their nodal sets of vanishing measure, as it happens in the classical case of the
Laplacian (i.e., to decide whether or not (1.13) is always satisfied). After this paper was completed,
a new version of the paper [9] appeared, motivated by the applications discussed here. In this new
version, available at http://arxiv.org/pdf/1301.5119v3.pdf, there is a new result,
namely Theorem 1.4, that proves condition (1.13) when LK = −(−∆)s. As far as we know, the prob-
lem of proving condition (1.13) for general integrodifferential operators is still open (for completeness,
in the Appendix B of this paper, we will provide a simple proof that condition (1.13) is satisfied when
LK = −(−∆)s, n = 1 and s ∈ (0, 1/2)) .
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In the resonant case, in order to prove our existence result, we need some extra conditions on the
terms f and h . Precisely, denoting by

fl = lim
t→−∞

f(t) and fr = lim
t→+∞

f(t) ,

we assume that

(1.14) fl and fr exist, are finite and such that fl > fr

and

(1.15)
fr

∫

Ω

ϕ−(x)dx− fl

∫

Ω

ϕ+(x)dx <

∫

Ω

h(x)ϕ(x)dx < fl

∫

Ω

ϕ−(x)dx− fr

∫

Ω

ϕ+(x)dx

for any ϕ ∈ Eλ \ {0} ,

where ϕ+ = max{ϕ, 0} and ϕ− = max{−ϕ, 0} denote the positive and the negative part of the
function ϕ, respectively, while Eλ is the linear space generated by the eigenfunctions related to λ (for
a precise definition of Eλ we refer to Section 5).

We would remark that these extra conditions on f and h are exactly the same required in the resonant
setting, when dealing with the classical Laplace operator (see [1, Section 4.4.3]). Moreover, we would
point out that in (1.14) the limits fl and fr have to be different, but the case fl < fr would work as well,
with some modifications in the main arguments. Assumption (1.15) is the classical Landesman–Lazer
condition, firstly introduced in [13], which represents one of the natural sufficient condition1 given in
order to obtain an existence result in a resonant setting.

As a model for f we can take the function

f(t) =











1

1 + t2
if t > 0

1 if t < 0 .

We would like to note that, in this case, f does not satisfy the assumptions required in [11, Theo-
rem 1], where an asymptotically linear problem at resonance driven by a general non-local operator
was considered. Indeed, in [11] the asymptotically linear case when the primitive of f goes to infinity
was considered.

The main result of the present paper concerns the existence of weak solutions for problem (1.1) . For
this, first of all, we have to write the weak formulation of the problem. To this purpose, the fractional
Sobolev space Hs(Rn) is not enough. This is the reason why we work in the spaces X and X0,
introduced in [17] (see also [18, 19] for further properties).

1We point out that condition (1.15) is satisfied by every measurable function h which ranges in (−fl,−fr). Indeed, in
this case,

fr < −h(x) < fl,

hence, multiplying by ϕ±(x) > 0 and integrating over Ω

fr

∫

Ω

ϕ±(x) dx < −

∫

Ω

h(x)ϕ±(x) dx < fl

∫

Ω

ϕ±(x) dx .

As a consequence

fr

∫

Ω

ϕ−(x) dx− fl

∫

Ω

ϕ+(x) dx < −

∫

Ω

h(x)ϕ−(x) dx +

∫

Ω

h(x)ϕ+(x) dx

=

∫

Ω

h(x)ϕ(x) dx =

∫

Ω

h(x)ϕ+(x) dx−

∫

Ω

h(x)ϕ−(x) dx

< −fr

∫

Ω

ϕ+(x) dx + fl

∫

Ω

ϕ−(x) dx ,

that is (1.15).
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The functional space X denotes the linear space of Lebesgue measurable functions from R
n to R

such that the restriction to Ω of any function g in X belongs to L2(Ω) and

the map (x, y) 7→ (g(x)− g(y))
√

K(x− y) is in L2
(

(Rn × R
n) \ (CΩ× CΩ), dxdy

)

,

(here CΩ := R
n \ Ω). Also, we denote by X0 the following linear subspace of X

X0 =
{

g ∈ X : g = 0 a.e. in R
n \ Ω

}

.

We remark that X and X0 are non-empty, since C2
0(Ω) ⊆ X0 by [17, Lemma 11].

With these two definitions and condition (1.5) we can write the weak formulation of (1.1) , given by the
following problem

(1.16)



















∫

Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy +

∫

Ω

q(x)u(x)ϕ(x)dx

= λ

∫

Ω

u(x)ϕ(x)dx +

∫

Ω

f(u(x))ϕ(x)dx +

∫

Ω

h(x)ϕ(x)dx ∀ϕ ∈ X0

u ∈ X0.

Before stating our existence result, we would like to note that, in general, the trivial function u ≡ 0 is
not a solution of problem (1.1) . On the other hand, if h ≡ 0 and f(0) = 0 , then u ≡ 0 solves the
problem.

Now, we can state our main result as follows:

Theorem 1. Let s ∈ (0, 1), n > 2s and Ω be an open, bounded subset of Rn with Lipschitz boundary.

Let K : R
n\{0} → (0, +∞) be a function satisfying (1.3)–(1.5) and let f , q and h be three functions

verifying (1.8)–(1.11).

Then, problem (1.1) admits a solution u ∈ X0 provided either

� λ is not an eigenvalue of problem (1.12), or

� λ is an eigenvalue of problem (1.12) satisfying (1.13) and conditions (1.14) and (1.15) hold true.

The proof of Theorem 1 is based on variational techniques. Precisely, we will find solutions of prob-
lem (1.1) as critical points of the Euler–Lagrange functional naturally associated with the problem. To
this purpose we will perform the Saddle Point Theorem by Rabinowitz, see [14, Theorem 4.6] . Hence,
as usual, we have to study both the compactness properties of the functional associated with the prob-
lem and also its geometrical structure. In doing this we need to consider separately the case when the
parameter λ is an eigenvalue of −LK + q and the case when it does not, namely the resonant and
the non-resonant situation.

The resonant setting is more difficult to be treated than the non-resonant one. We would like to point
out that the resonant assumption affects both the compactness property and the geometry of the func-
tional. For this reason, the extra assumptions (1.13)–(1.15) (in particular (1.13) and the Landesman–
Lazer condition) will be crucial both in proving the compactness and in showing the geometric proper-
ties possessed by the Euler–Lagrange functional associated with problem (1.1) .

Theorem 1 extends the result obtained in [1, Theorem 4.4.11 and Theorem 4.4.17] (see also [1,
Chapter 4] and references therein) in the case of the classical Laplacian operator to a general non-
local framework.

The paper is organized as follows. In Section 2 we will give some definitions related to the functional
setting we will work in. In Section 3 we will discuss the variational formulation of the problem, while
Sections 4 and 5 will be devoted to the proof of Theorem 1, respectively in the non-resonant case and
in the resonant one.
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Finally, in Appendix A we will briefly discuss the eigenvalue problem (1.12) and in Appendix B we
sketch the proof that condition (1.13) is satisfied when LK = −(−∆)s, n = 1 and s ∈ (0, 1/2) (for
the general case we refer to Theorem 1.4 of the latest version of [9]).

2. THE FUNCTIONAL ANALYTIC SETTING

Here we recall some preliminary results on the functional spaces X and X0 , whose definitions were
recalled in the Introduction. The readers familiar with this topic may skip it and go directly to Section 3.
In the sequel we denote by Q = (Rn × R

n) \ O , where

O = (CΩ)× (CΩ) ⊂ R
n × R

n and CΩ = R
n \ Ω .

The space X is endowed with the norm defined as

(2.1) ‖g‖X = ‖g‖L2(Ω) +
(

∫

Q

|g(x)− g(y)|2K(x− y)dx dy
)1/2

,

while we equip X0 with the following norm

(2.2) ‖g‖X0, q =

(
∫

Q

|g(x)− g(y)|2K(x− y) dx dy +

∫

Ω

q(x) |g(x)|2 dx

)1/2

,

which is equivalent to the usual one defined in (2.1), as we prove in the following lemma:

Lemma 2. Let K : R
n \ {0} → (0, +∞) be a function satisfying assumptions (1.3)–(1.5) and let q

satisfy (1.10). Then, the expression

(2.3) 〈u, v〉X0, q =

∫

Q

(u(x)− u(y))(v(x)− v(y))K(x− y) dx dy +

∫

Ω

q(x)u(x)v(x)dx

defines on X0 a scalar product that induces a norm, denoted with ‖ · ‖X0, q , equivalent to the usual

one defined in (2.1).

Proof. Since the expression (2.3) is a sum of two scalar products, it is immediate to observe that
〈·, ·〉X0, q is a scalar product on X0 which induces the norm defined in (2.2).

Now, we show that the norm defined in (2.2) is equivalent to the one given in (2.1). For this, let v ∈ X0.
It is easily seen that

(2.4)

‖v‖2X0, q =

∫

Q

|v(x)− v(y)|2K(x− y) dx dy +

∫

Ω

q(x) |v(x)|2 dx

6

∫

Q

|v(x)− v(y)|2K(x− y) dx dy + ‖q‖L∞(Ω) ‖v‖
2
L2(Ω) 6 C1‖v‖

2
X ,

where C1 = max
{

1, ‖q‖L∞(Ω)

}

> 0.

Moreover, by [18, Lemma 6] we know that there is a constant C2 > 1 such that

‖v‖2X 6 C2

∫

Q

|v(x)− v(y)|2K(x− y) dx dy ,

so that, by using also (1.10), we get

(2.5)

1

C2

‖v‖2X 6

∫

Q

|v(x)− v(y)|2K(x− y) dx dy

6

∫

Q

|v(x)− v(y)|2K(x− y) dx dy +

∫

Ω

q(x) |v(x)|2 dx = ‖v‖2X0, q .

By combining (2.4) and (2.5) we conclude the proof. �
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In the following we denote by Hs(Ω) the usual fractional Sobolev space endowed with the norm (the
so-called Gagliardo norm)

(2.6) ‖g‖Hs(Ω) = ‖g‖L2(Ω) +
(

∫

Ω×Ω

|g(x)− g(y)|2

|x− y|n+2s
dx dy

)1/2

.

We remark that, even in the model case in which K(x) = |x|−(n+2s), the norms in (2.1) and (2.6) are
not the same, because Ω×Ω is strictly contained in Q . This is the reason why the classical fractional
Sobolev space is not enough for studying our problem and why we work in the new spaces X and
X0 .

For further details on the fractional Sobolev spaces we refer to [8] and to the references therein, while
for other details on X and X0 we refer to [17], where these spaces were introduced, and also to
[15, 18, 19, 20, 21, 22], where various properties of these spaces were proved.

3. VARIATIONAL FORMULATION OF THE PROBLEM

For the proof of our main result, stated in Theorem 1, we first observe that problem (1.1) has a varia-
tional structure. Indeed, the weak formulation of problem (1.1), given in (1.16), represents the Euler-
Lagrange equation of the functional J : X0 → R defined as follows

(3.1)

J (u) =
1

2

∫

Rn×Rn

|u(x)− u(y)|2K(x− y) dx dy +
1

2

∫

Ω

q(x) |u(x)|2 dx

−
λ

2

∫

Ω

|u(x)|2 dx−

∫

Ω

F (u(x))dx−

∫

Ω

h(x)u(x)dx ,

where F (t) =

∫ t

0

f(τ) dτ .

Note that the functional J is well defined thanks to Lemma 2, the definition of F , assumptions (1.9)–
(1.11) and since X0 ⊆ L2(Ω) ⊆ L1(Ω) (being Ω bounded). Moreover, J is Fréchet differentiable at
u ∈ X0 and for any ϕ ∈ X0

〈J ′(u), ϕ〉 =

∫

Rn×Rn

(

u(x)− u(y)
)(

ϕ(x)− ϕ(y)
)

K(x− y) dx dy +

∫

Ω

q(x)u(x)ϕ(x)dx

− λ

∫

Ω

u(x)ϕ(x)dx−

∫

Ω

f(u(x))ϕ(x)dx−

∫

Ω

h(x)ϕ(x)dx .

Thus, critical points of J are weak solutions to problem (1.1), that is solutions of (1.16).

At first, we need some notation. In what follows we will denote by

λ1 < λ2 6 . . . 6 λk 6 . . .

the sequence of the eigenvalues of −LK + q (see problem (1.12)) , while ek will be the k-th eigen-
function corresponding to the eigenvalue λk . Moreover, we will set

Pk+1 :=
{

u ∈ X0 : 〈u, ej〉X0, q = 0 ∀j = 1, . . . , k
}

as defined in Proposition 14 (see Appendix A), while

Hk := span {e1, . . . , ek}

will denote the linear subspace generated by the first k eigenfunctions of −LK + q for any k ∈ N.

In order to prove Theorem 1 we need some preliminary lemmas.
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Lemma 3. The following inequality holds true

‖u‖2X0,q 6 λk‖u‖
2
L2(Ω)

for all u ∈ Hk and any k ∈ N.

Proof. Let u ∈ Hk. Then, we can write

u(x) =
k
∑

i=1

uiei(x)

with ui ∈ R, i = 1, . . . , k.

Since {e1, . . . , ek, . . .} is an orthonormal basis of L2(Ω) and an orthogonal one of X0 (see Proposi-
tion 14–vi)), by Proposition 14–iv) and v), we get

‖u‖2X0, q =
k
∑

i=1

u2
i ‖ei‖

2
X0, q =

k
∑

i=1

λiu
2
i 6 λk

k
∑

i=1

u2
i = λk‖u‖

2
L2(Ω) ,

which gives the desired assertion. �

Lemma 4. The following inequality holds true

‖u‖2X0,q > λk+1‖u‖
2
L2(Ω)

for all u ∈ Pk+1 and any k ∈ N.

Proof. If u ≡ 0, then the assertion is trivial, while if u ∈ Pk+1 \ {0} it follows from the variational
characterization of λk+1 given in Proposition 14–iv) . �

To conclude this section we prove the following result:

Lemma 5. Let f and h be functions verifying (1.8)–(1.9) and (1.11), respectively. Then, there exists

a positive constant C̃ such that
∣

∣

∣

∣

∫

Ω

F (u(x))dx +

∫

Ω

h(x)u(x)dx

∣

∣

∣

∣

6 C̃ ‖u‖X0, q

for all u ∈ X0 .

Proof. By (1.9), (1.11), the definition of F , the Hölder inequality, Lemma 2 and [18, Lemma 6], we get

(3.2)

∣

∣

∣

∣

∫

Ω

F (u(x))dx +

∫

Ω

h(x)u(x)dx

∣

∣

∣

∣

6 M

∫

Ω

|u(x)| dx + ‖h‖L2(Ω) ‖u‖L2(Ω)

6 M |Ω|1/2 ‖u‖L2(Ω) + κ̃ ‖h‖L2(Ω) ‖u‖X0, q

6 C̃ ‖u‖X0, q ,

for a suitable C̃ > 0 (here |Ω| denotes the measure of Ω and κ̃ is a positive constant). This gives the
desired assertion. �

Due to the variational nature of the problem, in order to find weak solutions for problem (1.1), in the
following we will look for critical points of the functional J defined in (3.1) . In doing this we need to
study separately the resonant case and the non-resonant one, that is the case when the parameter λ
is an eigenvalue of the operator −LK + q and the one where λ is different from these eigenvalues,
respectively. We will treat the non-resonant case in the forthcoming Section 4 and the resonant one in
the next Section 5 .
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4. THE NON-RESONANT CASE

In this section we will prove Theorem 1 in the case when the parameter λ appearing in problem (1.1)
is not an eigenvalue of the operator −LK + q . As we said before, the idea is to find critical points of
the functional J , given in formula (3.1) . To this purpose, we will consider two different cases:

� λ < λ1: in this setting the existence of a solution for problem (1.1) follows from the Weierstrass
Theorem (i.e. by direct minimization);

� λ > λ1: in this framework we will apply the Saddle Point Theorem (see [14]) to the functionalJ .
As usual, for this we have to check that the functional J has a particular geometric structure
(as stated, e.g., in conditions (I3) and (I4) of [14, Theorem 4.6]) and that it satisfies the Palais–
Smale compactness condition (see, for instance, [14, page 3]).

4.1. The case λ < λ1. In this subsection, in order to apply the Weierstrass Theorem, we first verify
that the functional J satisfies some geometric features. For this we need a preliminary lemma.

Lemma 6. Let λ < λ1 and let K : R
n \ {0} → (0, +∞) satisfy assumptions (1.3)–(1.5). Moreover,

let f , q, h be functions satisfying conditions (1.8)–(1.11). Then, the functional J verifies

lim inf
‖u‖X0, q→+∞

J (u)

‖u‖2X0, q

> 0.

Proof. By the variational characterization of λ1 given in Proposition 14-i), we get

λ1‖u‖
2
L2 6 ‖u‖2X0, q

for any u ∈ X0 (of course, if u ≡ 0, this inequality is trivial).

Hence, as a consequence of this and Lemma 5, we get

J (u) =
1

2
‖u‖2X0, q −

λ

2

∫

Ω

|u(x)|2 dx−

∫

Ω

F (u(x))dx−

∫

Ω

h(x)u(x)dx

>







1
2

(

1− λ
λ1

)

‖u‖2X0, q − C̃ ‖u‖X0, q if λ > 0

1
2
‖u‖2X0, q − C̃ ‖u‖X0, q if λ 6 0 ,

so that, dividing by ‖u‖2X0, q and passing to the limit as ‖u‖X0, q → +∞, we get the assertion, since
λ < λ1 by assumption. �

4.2. Proof of Theorem 1 in the non-resonant case, when λ < λ1. Let us note that the map

u 7→ ‖u‖2X0, q

is lower semicontinuous in the weak topology of X0, while the map

u 7→

∫

Ω

F (x, u(x))dx

is continuous in the weak topology of X0. Indeed, if {uj}j∈N is a sequence in X0 such that uj ⇀ u
in X0, then, by [18, Lemma 8] and [4, Theorem IV.9], up to a subsequence, uj converges to u strongly
in Lν(Ω) and a.e. in Ω and it is dominated by some function κν ∈ Lν(Ω) for any ν ∈ [1, 2∗). Here
and in the following 2∗ is the fractional critical Sobolev exponent given by2

(4.1) 2∗ =
2n

n− 2s
.

2Note that, when s = 1 the exponent 2∗ reduces to the classical critical Sobolev exponent 2∗ = 2n/(n− 2) .
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Then, by (1.8) and (1.9) it follows

F (uj(x))→ F (u(x)) a.e. x ∈ Ω

as j → +∞ and

|F (uj(x))| 6 M |uj(x)| 6 Mκ1(x) ∈ L1(Ω)

a.e. x ∈ Ω and for any j ∈ N . Hence, by applying the Lebesgue Dominated Convergence Theorem
applied in L1(Ω), we have that

∫

Ω

F (uj(x)) dx→

∫

Ω

F (u(x)) dx

as j → +∞, that is the map

u 7→

∫

Ω

F (x, u(x))dx

is continuous from X0 with the weak topology to R.

Moreover, again by [18, Lemma 8], also the map

u 7→
λ

2

∫

Ω

|u(x)|2 dx +

∫

Ω

h(x)u(x) dx

is continuous in the weak topology of X0 . Hence, the functional J is lower semicontinuous in the
weak topology of X0.

Furthermore, Lemma 6 gives the coerciveness of J . Thus, we can apply the Weierstrass Theorem in
order to find a minimum u of J on X0 . Clearly, u is a weak solution of problem (1.1).

4.3. The case λ > λ1. In this subsection we can suppose that λk < λ < λk+1 for some k ∈ N.
This is due to the fact that the sequence of eigenvalues λk of the operator−LK + q diverges to +∞
as k → +∞ (see Proposition 14–iv)) .

In this framework we will look for critical points of the functional J using the Saddle Point Theorem.
First of all, we need some preliminary lemmas.

Lemma 7. Let λ ∈ (λk, λk+1] for some k ∈ N . Let K : R
n \ {0} → (0, +∞) satisfy assumptions

(1.3)–(1.5) and let f , q and h be functions satisfying (1.8)–(1.11). Then, the functional J verifies

lim sup
u∈Hk

‖u‖X0, q→+∞

J (u)

‖u‖2X0, q

< 0 .

Proof. Let u ∈ Hk. By Lemma 3, Lemma 5 and the fact that λ > 0 (being λ > λk > λ1 > 0) we get

J (u) =
1

2
‖u‖2X0, q −

λ

2

∫

Ω

|u(x)|2 dx−

∫

Ω

F (u(x))dx−

∫

Ω

h(x)u(x)dx

6
1

2

(

1−
λ

λk

)

‖u‖2X0, q + C̃ ‖u‖X0, q .

So, dividing by ‖u‖2X0, q and passing to the limit as ‖u‖X0, q → +∞, we get the assertion, since
λ > λk. �

Note that Lemma 7 holds true for any λ ∈ (λk, λk+1] for some k ∈ N and this will be used in the
resonant case of problem (1.1), that is in the case when λ = λk+1 .
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Lemma 8. Let λ ∈ (λk, λk+1) for some k ∈ N . Let K : R
n \ {0} → (0, +∞) satisfy assumptions

(1.3)–(1.5) and let f , q and h be functions satisfying (1.8)–(1.11). Then, the functional J verifies

lim inf
u∈Pk+1

‖u‖X0, q→+∞

J (u)

‖u‖2X0, q

> 0 .

Proof. Let u ∈ Pk+1 . In this case, by Lemma 4, Lemma 5 and the positivity of λ, we have

J (u) >
1

2

(

1−
λ

λk+1

)

‖u‖2X0, q − C̃ ‖u‖X0, q ,

so that, dividing by ‖u‖2X0, q and passing to the limit as ‖u‖X0, q → +∞, we get the assertion, being
λ < λk+1 . �

With these preliminary results we can prove that the functional J has the geometric structure required
by the Saddle Point Theorem, according to the following result:

Proposition 9. Let λ ∈ (λk, λk+1) for some k ∈ N . Let K : R
n \ {0} → (0, +∞) satisfy

assumptions (1.3)–(1.5) and let f , q and h be functions satisfying (1.8)–(1.11). Then, there exist two

positive constants C and T such that

sup
u∈Hk

‖u‖X0, q=T

J (u) < −C 6 inf
u∈Pk+1

J (u) .

Proof. By Lemma 8 it follows that for any H > 0 there exists R > 0 such that if u ∈ Pk+1 and
‖u‖X0

> R then J (u) > H .

On the other hand, if u ∈ Pk+1 with ‖u‖X0, q < R, by applying Lemma 5, the Hölder inequality,
Lemma 2 and [18, Lemma 6] we have

J (u) > −
λ

2

∫

Ω

|u(x)|2 dx−

∫

Ω

F (u(x))dx−

∫

Ω

h(x)u(x)dx >

> −κ̄ ‖u‖2X0, q − C̃ ‖u‖X0, q

> −κ̄R2 − C̃R =: −C ,

thanks to the fact that λ > 0 (being λ > λk > λ1 > 0 by Proposition 14-i)). Also, here κ̄ is a positive
constant.

So, we get

(4.2) J (u) > −C for any u ∈ Pk+1 .

Moreover, by Lemma 7 there exists T > 0 such that for any u ∈ Hk with ‖u‖X0, q > T we have

(4.3) sup
u∈Hk

‖u‖X0, q=T

J (u) 6 sup
u∈Hk

‖u‖X0, q>T

J (u) < −C .

Thus, Proposition 9 follows from (4.2) and (4.3) . �

Roughly speaking, Proposition 9 says that J has the geometric structure required by the Saddle Point
Theorem.

Finally, we have to show that J satisfies the Palais–Smale condition. To this purpose, first of all we
prove that every Palais–Smale sequence for J is bounded in X0 .
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Proposition 10. Let λ ∈ (λk, λk+1) for some k ∈ N . Let K : R
n \ {0} → (0, +∞) satisfy

assumptions (1.3)–(1.5) and let f , q and h be functions satisfying (1.8)–(1.11). Let c ∈ R and let

{uj}j∈N
be a sequence in X0 such that

(4.4) J (uj) 6 c,

and

(4.5) sup
{

|〈J
′

(uj), ϕ〉| : ϕ ∈ X0, ‖ϕ‖X0, q = 1
}

→ 0

as j → +∞. Then, the sequence {uj}j∈N
is bounded in X0.

Proof. We argue by contradiction and we suppose that the sequence {uj}j∈N is unbounded in X0.
As a consequence, up to a subsequence, we can assume that

(4.6) ‖uj‖X0, q → +∞ as j → +∞ .

Thus, there exists u ∈ X0 such that uj/ ‖uj‖X0, q converges to u weakly in X0, that is
(4.7)
∫

Rn×Rn

(

uj(x)

‖uj‖X0, q

−
uj(y)

‖uj‖X0, q

)

(ϕ(x)− ϕ(y))K(x− y) dx dy +

∫

Ω

q(x)
uj(x)

‖uj‖X0, q

ϕ(x)dx

→

∫

Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y) dx dy +

∫

Ω

q(x)u(x)ϕ(x)dx

as j → +∞, for any ϕ ∈ X0.

Hence, by applying [18, Lemma 8] and [4, Theorem IV.9], up to a subsequence

(4.8)

uj

‖uj‖X0, q

→ u in Lν(Rn) for any ν ∈ [1, 2∗)

uj

‖uj‖X0, q

→ u a.e. in R
n

as j → +∞. Here 2∗ is the exponent defined as in (4.1) .

Furthermore, by (1.9), (1.11) and the Hölder inequality it follows that

(4.9)

1

‖uj‖X0, q

∣

∣

∣

∣

∫

Ω

f(uj(x))ϕ(x) dx +

∫

Ω

h(x)ϕ(x) dx

∣

∣

∣

∣

6
1

‖uj‖X0, q

(

M ‖ϕ‖L1(Ω) + ‖h‖L2(Ω) ‖ϕ‖L2(Ω)

)

→ 0

as j → +∞ , for any ϕ ∈ X0 , thanks to (4.6) .

So, by (4.7)–(4.9) we have

(4.10)

〈J ′(uj), ϕ〉

‖uj‖X0, q

→

∫

Rn×Rn

(

u(x)− u(y)
)(

ϕ(x)− ϕ(y)
)

K(x− y) dx dy

+

∫

Ω

q(x)u(x)ϕ(x) dx− λ

∫

Ω

u(x)ϕ(x)dx

as j → +∞ , for any ϕ ∈ X0 .

Hence, by combining (4.5), (4.6) and (4.10) we get
∫

Rn×Rn

(

u(x)−u(y)
)(

ϕ(x)−ϕ(y)
)

K(x−y) dx dy+

∫

Ω

q(x)u(x)ϕ(x) dx = λ

∫

Ω

u(x)ϕ(x) dx

for all ϕ ∈ X0 and we deduce that u is a weak solution of problem (1.12).
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Let us now prove that u 6≡ 0 in X0. Assume, by contradiction, that u ≡ 0 in X0. By (4.5) with
ϕ = uj/ ‖uj‖X0, q we get

(4.11)

∫

Rn×Rn

|uj(x)− uj(y)|2

‖uj‖X0, q

K(x− y) dx dy +

∫

Ω

q(x)
|uj(x)|2

‖uj‖X0, q

dx− λ

∫

Ω

|uj(x)|2

‖uj‖X0, q

dx

−

∫

Ω

f(uj(x))
uj(x)

‖uj‖X0, q

dx−

∫

Ω

h(x)
uj(x)

‖uj‖X0, q

dx → 0

as j → +∞. Moreover, by (1.9), (1.11) and (4.8), since u ≡ 0 , we get

(4.12)

∣

∣

∣

∣

∣

∫

Ω

f(uj(x))
uj(x)

‖uj‖X0, q

dx +

∫

Ω

h(x)
uj(x)

‖uj‖X0, q

dx

∣

∣

∣

∣

∣

6 M
‖uj‖L1(Ω)

‖uj‖X0, q

+
‖h‖L2(Ω) ‖uj‖L2(Ω)

‖uj‖X0, q

→ 0

as j → +∞.

Hence, by combining (4.11) and (4.12) it follows that
∫

Rn×Rn

|uj(x)− uj(y)|2

‖uj‖X0, q

K(x− y) dx dy +

∫

Ω

q(x)
|uj(x)|2

‖uj‖X0, q

dx− λ

∫

Ω

|uj(x)|2

‖uj‖X0, q

dx→ 0

so that, dividing by ‖uj‖X0, q , we get

1− λ
‖uj‖

2
L2(Ω)

‖uj‖2X0,q

→ 0 as j → +∞ .

This gives 1 = 0 , again by (4.8) and the fact that u ≡ 0 in X0 . Of course, this is a contradiction and
so u 6≡ 0 in X0 .

In this way we have constructed a non-trivial function u solving (1.12), but this contradicts the non-
resonance assumption λk < λ < λk+1 . Thus, the sequence {uj}j∈N is bounded in X0 and this
ends the proof of Proposition 10 . �

Now, we can prove the following result, whose proof is quite standard and, differently from Proposi-
tion 10, it is not affected by the resonant/non-resonant assumptions:

Proposition 11. Let λ ∈ R . Let K : R
n \ {0} → (0, +∞) satisfy assumptions (1.3)–(1.5) and let

f , q and h be functions satisfying (1.8)–(1.11). Let {uj}j∈N
be a bounded sequence in X0 such that

(4.5) holds true. Then, there exists u∞ ∈ X0 such that, up to a subsequence,

‖uj − u∞‖X0, q → 0 as j → +∞.

Proof. Since {uj}j∈N is bounded by assumption and X0 is a reflexive space (being a Hilbert space,
by [18, Lemma 7]), up to a subsequence, there exists u∞ ∈ X0 such that uj converges to u∞ weakly
in X0, that is

(4.13)

∫

Rn×Rn

(uj(x)− uj(y))(ϕ(x)− ϕ(y))K(x− y) dx dy +

∫

Ω

q(x)uj(x)ϕ(x)dx→

∫

Rn×Rn

(u∞(x)− u∞(y))(ϕ(x)− ϕ(y))K(x− y) dx dy +

∫

Ω

q(x)u∞(x)ϕ(x)dx
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as j → +∞ , for any ϕ ∈ X0 . Moreover, by applying [18, Lemma 8] and [4, Theorem IV.9], up to a
subsequence

(4.14)
uj → u∞ in Lν(Rn) for any ν ∈ [1, 2∗)

uj → u∞ a.e. in R
n

as j → +∞ . Again 2∗ is defined as in (4.1) .

By (4.5) we have

(4.15)

0← 〈J ′(uj), uj − u∞〉 =

∫

Rn×Rn

|uj(x)− uj(y)|2 K(x− y) dx dy

+

∫

Ω

q(x) |uj(x)|2 dx−

∫

Rn×Rn

(uj(x)− uj(y))(u∞(x)− u∞(y))K(x− y) dx dy

−

∫

Ω

q(x)uj(x)u∞(x)dx− λ

∫

Ω

uj(x)
(

uj(x)− u∞(x)
)

dx

−

∫

Ω

f(x, uj(x))
(

uj(x)− u∞(x)
)

dx−

∫

Ω

h(x)
(

uj(x)− u∞(x)
)

dx

as j → +∞ .

Also note that, by the definition of norm in X0 (see formula (2.2)), since {uj}j∈N is bounded in X0 ,
then {uj}j∈N does in L2(Ω) . Hence, by using the Hölder inequality, (1.9), (1.11) and (4.14), we get

(4.16)

∣

∣

∣

∣

λ

∫

Ω

uj(x)(uj(x)− u∞(x))dx +

∫

Ω

f(x, uj(x))(uj(x)− u∞(x))dx

+

∫

Ω

h(x)(uj(x)− u∞(x))dx

∣

∣

∣

∣

6

(

λ ‖uj‖L2(Ω) + M |Ω|1/2 + ‖h‖L2(Ω)

)

‖uj − u∞‖L2(Ω) → 0

as j → +∞.

Then, by (4.13), (4.15) and (4.16) we obtain
∫

Rn×Rn

|uj(x)− uj(y)|2 K(x− y) dx dy +

∫

Ω

q(x) |uj(x)|2 dx

→

∫

Rn×Rn

|u∞(x)− u∞(y)|2 K(x− y) dx dy +

∫

Ω

q(x) |u∞(x)|2 dx ,

that is

(4.17) ‖uj‖X0, q → ‖u∞‖X0, q

as j → +∞.

Finally, we have that

‖uj − u∞‖
2
X0, q = ‖uj‖

2
X0, q + ‖u∞‖

2
X0, q

− 2

∫

Rn×Rn

(uj(x)− uj(y))(u∞(x)− u∞(y))K(x− y) dx dy − 2

∫

Ω

q(x)uj(x)u∞(x)dx

→ 2 ‖u∞‖
2
X0, q − 2

∫

Rn×Rn

|u∞(x)− u∞(y)|2 K(x− y) dx dy − 2

∫

Ω

q(x) |u∞(x)|2 dx = 0

as j → +∞, again thanks to (4.13) and (4.17). This concludes the proof. �
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4.4. Proof of Theorem 1 in the non-resonant case, when λ > λ1. For the proof it is enough to
observe that, by Proposition 9 the functional J satisfies the geometric assumptions required by the
Saddle Point Theorem, while by Propositions 10 and 11 it verifies the Palais–Smale compactness
condition. Hence, as a consequence of the Saddle Point Theorem, J possesses a critical point u ∈
X0 , which, of course, is a weak solution of problem (1.1) .

5. THE RESONANT CASE

In this section we study problem (1.1) in presence of a resonance, namely when λ is an eigenvalue
of the operator −LK + q. This kind of problem is harder to solve than the non-resonant one and
we have to impose further conditions on the nonlinearities and on the parameter appearing in the
equation. Namely, we have to assume the extra conditions (1.14) and (1.15) on f and h , as well
as (1.13).

Without loss of generality, in the sequel we assume that for some k, m ∈ N

(5.1) λk < λ = λk+1 = . . . = λk+m < λk+m+1 ,

that is we suppose that λ is an eigenvalue of −LK + q with multiplicity m .

As in the non-resonant framework, here the idea is to apply the Saddle Point Theorem. Hence, also in
this case, we have to check that the functional J satisfies the Palais–Smale condition and possesses
a suitable geometric structure. The resonant assumption (5.1) affects both these problems (i.e. the
compactness and the geometric structure of the functional), making the proof more difficult than in the
non-resonant setting.

Let us start by proving the compactness condition. If compared with the non-resonant case, in the res-
onant one the difference lies in the proof of the boundedness of the Palais–Smale sequence. Indeed,
in order to show that the Palais–Smale sequence is bounded in X0 , here we have to use different
arguments, since the ones used in the non-resonant case are based mainly on the fact that the pa-
rameter λ is not an eigenvalue of the operator −LK + q . Precisely, we will argue by contradiction
and we will use the Landesman–Lazer condition (1.15), which will be fundamental for our arguments.
Also, it will be crucial for our proof the property stated in (1.13).

Proposition 12. Let λ be as in (5.1) for some k,m ∈ N , and verify (1.13) . Let K : R
n \ {0} →

(0, +∞) satisfy assumptions (1.3)–(1.5). Moreover, let f , q and h be functions satisfying (1.8)–(1.11),
(1.14) and (1.15). Let c ∈ R and let {uj}j∈N

be a sequence in X0 such that (4.4) and (4.5) hold true.

Then, the sequence {uj}j∈N
is bounded in X0.

Proof. First of all, let us write uj = wj + vj , with wj ∈ Eλ and vj ∈ E⊥
λ , where

Eλ := span {ek+1, . . . , ek+m}

is the linear space generated by the eigenfunctions related to λ = λk+1 (see assumption (5.1)) .

In order to prove Proposition 12, it is enough to show that both the sequences {wj}j∈N and {vj}j∈N

are bounded in X0 .

Let us prove first that the sequence {vj}j∈N is bounded in X0 . For this, note that, since wj ∈ Eλ,
then

−LKwj + q(x)wj = λwj
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in the weak sense, that is for any ϕ ∈ X0

(5.2)

∫

Rn×Rn

(

wj(x)− wj(y)
)(

ϕ(x)− ϕ(y)
)

dx dy +

∫

Ω

q(x)wj(x)ϕ(x) dx

− λ

∫

Ω

wj(x)ϕ(x) dx = 0 .

Moreover, by linearity, for any ϕ ∈ X0

(5.3)
∫

Rn×Rn

(

uj(x)− uj(y)
)(

ϕ(x)− ϕ(y)
)

dx dy =

∫

Rn×Rn

(

wj(x)− wj(y)
)(

ϕ(x)− ϕ(y)
)

dx dy

+

∫

Rn×Rn

(

vj(x)− vj(y)
)(

ϕ(x)− ϕ(y)
)

dx dy

and

(5.4)

∫

Ω

q(x)uj(x)ϕ(x) dx =

∫

Ω

q(x)wj(x)ϕ(x) dx +

∫

Ω

q(x)vj(x)ϕ(x) dx .

Hence, as a consequence of (5.2)–(5.4) and (4.5) we get that for any ϕ ∈ X0

(5.5)
0← 〈J ′(uj), ϕ〉 =
∫

Rn×Rn

(

wj(x)− wj(y)
)(

ϕ(x)− ϕ(y)
)

K(x− y) dx dy +

∫

Ω

q(x)wj(x)ϕ(x)dx

+

∫

Rn×Rn

(

vj(x)− vj(y)
)(

ϕ(x)− ϕ(y)
)

K(x− y) dx dy +

∫

Ω

q(x)vj(x)ϕ(x)dx

− λ

∫

Ω

uj(x)ϕ(x) dx−

∫

Ω

f(uj(x))ϕ(x) dx−

∫

Ω

h(x)ϕ(x) dx

=

∫

Rn×Rn

(

vj(x)− vj(y)
)(

ϕ(x)− ϕ(y)
)

K(x− y) dx dy +

∫

Ω

q(x)vj(x)ϕ(x)dx

− λ

∫

Ω

vj(x)ϕ(x) dx−

∫

Ω

f(uj(x))ϕ(x) dx−

∫

Ω

h(x)ϕ(x) dx

as j → +∞ .

Now, assume by contradiction that ‖vj‖X0, q → +∞ as j → +∞ . Arguing exactly as in the proof of

Proposition 10 one shows that vj/ ‖vj‖X0, q converges weakly in X0 to an eigenfunction v relative to
λ.

Of course v ∈ Eλ \ {0}, being an eigenfunction. On the other hand, since

vj ∈ E⊥
λ = span{e1, . . . , ek, ek+m+1, . . . },

then v ∈ E⊥
λ . This leads to a contradiction since v 6≡ 0 and v ∈ Eλ ∩ E⊥

λ = {0}. Then, {vj}j∈N
is

bounded in X0 .

Now, it remains to prove that {wj}j∈N
is bounded in X0 . Also in this case we argue by contradiction

and assume that

(5.6) ‖wj‖X0, q → +∞

as j → +∞ .
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Since Eλ is finite dimensional, there exists w ∈ Eλ such that, up to a subsequence, wj/ ‖wj‖X0, q

converges to w strongly in X0 as j → +∞. Moreover, by applying [18, Lemma 8] and [4, Theo-
rem IV.9], up to a subsequence

(5.7)

wj

‖wj‖X0, q

→ w in Lν(Rn) for any ν ∈ [1, 2∗)

wj

‖wj‖X0, q

→ w a.e. in R
n

as j → +∞. The exponent 2∗ is given in (4.1) .

Note also that, since w ∈ Eλ , for any ϕ ∈ X0 we get

(5.8)

∫

Rn×Rn

(

w(x)− w(y)
)(

ϕ(x)− ϕ(y)
)

K(x− y) dx dy +

∫

Ω

q(x)w(x)ϕ(x)dx

= λ

∫

Ω

w(x)ϕ(x) dx ,

that is w is an eigenfunction of problem (1.12) . Hence, by (1.13), the function w is almost everywhere
different from zero, say

(5.9) w(x) 6= 0 for any x ∈ Ω \ N ,

whereN ⊂ Ω has zero Lebesgue measure.

So, by using (5.6), (5.7), the fact that {vj}j∈N is bounded3 in X0 and (5.9), for a.e. x ∈ Ω we get

(5.10) uj(x)= wj(x)+vj(x) = ‖wj‖X0, q

wj(x)

‖wj‖X0, q

+vj(x)→

{

+∞ for a.e. x ∈ {w > 0}
−∞ for a.e. x ∈ {w < 0}

as j → +∞.

Let us define the function f∞ : Ω→ R as

f∞(x) :=

{

fr if x ∈ {w > 0}
fl if x ∈ {w < 0},

where fl and fr were introduced in (1.14). Note that f∞ is well defined, thanks to (5.9) .

By (1.8), (5.10) and the definition of f∞ it follows that

f(uj(x))→ f∞(x) a.e. x ∈ Ω ,

while, by (1.9), the fact that Ω is bounded and the Lebesgue Dominated Convergence Theorem we
have

(5.11) f(uj)→ f∞ in Lν(Ω) for any ν ∈ [1, +∞)

as j → +∞.

Hence, by combining (5.5) with ϕ = w, (5.8) with ϕ = vj and (5.11) , we obtain
∫

Ω

f∞(x)w(x)dx +

∫

Ω

h(x)w(x)dx = 0,

namely, writing w(x) = w+(x)− w−(x) and taking into account the definition of f∞,
∫

Ω

h(x)w(x)dx = fl

∫

Ω

w−(x)dx− fr

∫

Ω

w+(x)dx.

This contradicts assumption (1.15). Thus, the sequence {wj}j∈N has to be bounded in X0 and this
concludes the proof of Proposition 12. �

3We stress that the boundedness in X0 imply the convergence of vj to some v in L1(Rn) and a.e. – in particular,
|v(x)| 6= +∞ for a.e. x ∈ Ω .
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As a consequence of Proposition 11 (which holds true for any λ ∈ R) and Proposition 12, the func-
tional J has the Palais–Smale compactness property, also in the case when (1.13) occurs.

Finally, we prove that the functional J has the geometric feature required by the Saddle Point Theo-
rem. As we said above, the resonance assumption affects also the proof of the particular geometric
structure of the functional J , making it more difficult than in the non-resonant setting. Indeed, here
we can not use the arguments performed in the non-resonant framework, but we have to argue in a
different way. For this, we will make use of (1.13) and of the Landesman–Lazer condition (1.15), which
will be both crucial in the proof of the following proposition:

Proposition 13. Let λ be as in (5.1) for some k,m ∈ N , and verify (1.13) . Let K : R
n \ {0} →

(0, +∞) satisfy assumptions (1.3)–(1.5). Moreover, let f , q and h be functions satisfying (1.8)–(1.11),
(1.14) and (1.15). Then, the functional J verifies

(5.12) inf
u∈Pk+1

J (u) > −∞.

Proof. In order to prove Proposition 13, we argue by contradiction and assume that there exists a
sequence

{

uj

}

j∈N
in Pk+1 such that

(5.13) J (uj)→ −∞,

as j → +∞.

First of all, note that, by (5.1) and the orthogonality properties of {e1, . . . , ek, . . . } (see Proposition 14-
vi)), we can write Pk+1 as follows

Pk+1 = Eλ ⊕ Pk+m+1

(recall that Eλ := span{ek+1, . . . ek+m}) .

Then, for any j ∈ N the function uj can be written as

(5.14) uj = wj + vj ,

with wj ∈ Eλ and vj ∈ Pk+m+1 , so that wj and vj are orthogonal both in X0 and in L2(Ω) , again
thanks to Proposition 14-vi).

From now on we proceed by steps.

Claim 1. The following assertion holds true:

‖wj‖X0, q → +∞

as j → +∞ .

Proof. First of all, since wj ∈ Eλ, note that

∫

Rn×Rn

|wj(x)− wj(y)|2 K(x− y)dx dy +

∫

Ω

q(x) |wj(x)|2 dx = λ

∫

Ω

|wj(x)|2 dx.
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So, as a consequence of this, of (5.14), of the orthogonality of the wj and vj , of Lemma 4 (here
applied in Pk+m+1) and of the positivity of λ , we get

(5.15)

J (uj) =
1

2
‖uj‖

2
X0, q −

λ

2

∫

Ω

|uj(x)|2 dx−

∫

Ω

F (uj(x))dx−

∫

Ω

h(x)uj(x)dx

=
1

2
‖wj‖

2
X0, q +

1

2
‖vj‖

2
X0, q −

λ

2
‖wj‖

2
L2(Ω) −

λ

2
‖vj‖

2
L2(Ω) −

∫

Ω

F (uj(x))dx

−

∫

Ω

h(x)uj(x)dx

>
1

2

(

1−
λ

λk+m+1

)

‖vj‖
2
X0, q −

∫

Ω

F (uj(x))dx−

∫

Ω

h(x)uj(x)dx

>
1

2

(

1−
λ

λk+m+1

)

‖vj‖
2
X0, q − C̃ ‖uj‖X0, q

>
1

2

(

1−
λ

λk+m+1

)

‖vj‖
2
X0, q − C̃ ‖vj‖X0, q − C̃ ‖wj‖X0, q ,

also thanks to Lemma 5 . So, by combining (5.13) and (5.15) we get

(5.16)
1

2

(

1−
λ

λk+m+1

)

‖vj‖
2
X0, q − C̃ ‖vj‖X0, q − C̃ ‖wj‖X0, q → −∞

which implies necessarily that

‖wj‖X0, q → +∞ as j → +∞ ,

since λ = λk+1 < λk+m+1 by (5.1) . Hence, Claim 1 is proved. �

Now, since Eλ is finite dimensional, there exists w ∈ Eλ such that, up to a subsequence,

(5.17) wj/ ‖wj‖X0, q → w strongly in X0

as j → +∞ . Note that w 6≡ 0 , since ‖w‖ = 1 . Also, w is an eigenfunction of problem (1.12) and
so, by (1.13), w is almost everywhere different from zero, say

(5.18) w(x) 6= 0 for any x ∈ Ω \ N ,

whereN ⊂ Ω has zero Lebesgue measure.

Moreover, by applying [18, Lemma 8] and [4, Theorem IV.9], up to a subsequence, we also have

(5.19)

wj

‖wj‖X0, q

→ w in Lν(Rn) for any ν ∈ [1, 2∗)

wj

‖wj‖X0, q

→ w a.e. in R
n

as j → +∞. Again here and in the sequel 2∗ is the exponent given in (4.1) .

Now, assume that ‖vj‖X0, q 6= 0 for j sufficiently large. We will discuss the case when ‖vj‖X0, q = 0
later on.

Again by applying [18, Lemma 8] and [4, Theorem IV.9] we can say that there exists v ∈ X0 such
that, up to a subsequence

(5.20)

vj

‖vj‖X0, q

→ v in Lν(Rn) for any ν ∈ [1, 2∗)

vj

‖vj‖X0, q

→ v a.e. in R
n

as j → +∞.
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Now, let us continue with some claims.

Claim 2. The following assertion holds true:

‖wj‖X0, q

‖vj‖X0, q

→ +∞

as j → +∞ .

Proof. If ‖vj‖X0, q was bounded, then Claim 2 would follow by Claim 1 . Assume that ‖vj‖X0, q →
+∞ as j → +∞ . Writing (5.16) as follows

‖vj‖X0, q

(

1

2

(

1−
λ

λk+m+1

)

‖vj‖X0, q − C̃ − C̃
‖wj‖X0, q

‖vj‖X0, q

)

→ −∞ ,

we would get necessarily that Claim 2 holds true, by assumption (5.1) . This concludes the proof of
Claim 2 . �

Claim 3. The following assertion holds true:

F (uj(x))

‖wj‖X0, q

→ w(x)f∞(x) a.e. x ∈ Ω

as j → +∞ , where f∞ : Ω→ R is the function defined as

(5.21) f∞(x) :=

{

fr if x ∈ {w > 0}
fl if x ∈ {w < 0} ,

with fl and fr given in (1.14) and w as in (5.17) .

Proof. To prove this we first observe that

(5.22) lim
t→−∞

F (t)

t
= fl and lim

t→+∞

F (t)

t
= fr.

We prove the identity for fr, since the one for fl is alike. If fr 6= 0, we can use de l’Hôpital Theorem
and get (5.22). On the other hand, when fr = 0 , for any ε > 0 there exists T > 0 such that
|f(t)| < ε for t > T . So, by (1.9) for t > T it follows that

∣

∣

∣

∣

F (t)

t

∣

∣

∣

∣

=

∣

∣

∣

∣

1

t

(

∫ T

0

f(τ) dτ +

∫ t

T

f(τ) dτ
)

∣

∣

∣

∣

6 M
T

t
+ ε

(t− T )

t
.

Passing to the limit as t→ +∞ and as ε→ 0 we obtain (5.22) in this case too.

By (5.14), Claims 1 and 2, (5.18), (5.19) and (5.20) for a.e. x ∈ Ω we get

(5.23)

uj(x) = wj(x) + vj(x)

= ‖wj‖X0, q

(

wj(x)

‖wj‖X0, q

+
‖vj‖X0, q

‖wj‖X0, q

vj(x)

‖vj‖X0, q

)

→

{

+∞ for a.e. x ∈ {w > 0}
−∞ for a.e. x ∈ {w < 0},

as j → +∞. In particular, fixed any x ∈ Ω, we have that uj(x) 6= 0 for large j.

Now, again by (5.14) and Claim 1, we can write

(5.24)
F (uj(x))

‖wj‖X0, q

=

(

vj(x)

‖wj‖X0, q

+
wj(x)

‖wj‖X0, q

)

F (uj(x))

uj(x)
.



20

By (5.22) and (5.23)

F (uj(x))

uj(x)
→

{

fr for a.e. x ∈ {w > 0}
fl for a.e. x ∈ {w < 0} ,

that is

(5.25)
F (uj(x))

uj(x)
→ f∞(x) a.e x ∈ Ω

as j → +∞ , where f∞ is given in (5.21) (this function is well defined, thanks to (5.18)).

Moreover, by Claim 2 and (5.20) it follows that

(5.26)
vj(x)

‖wj‖X0, q

=
‖vj‖X0, q

‖wj‖X0, q

vj(x)

‖vj‖X0, q

→ 0 a.e. x ∈ R
n

as j → +∞ . So, by combining (5.24)–(5.26) and by using also (5.19), we get the assertion of
Claim 3. �

Claim 4. The following assertion holds true:

F (uj)

‖wj‖X0, q

→ wf∞ in L1(Ω)

as j → +∞ , where w is as in (5.17) and f∞ is defined as in (5.21) .

Proof. Since uj/ ‖uj‖X0, q is bounded in X0, as usual by applying [18, Lemma 8] and [4, Theo-

rem IV.9], up to a subsequence, it converges strongly in L1(Ω) and there exists κ ∈ L1(Ω) such that
for any j ∈ N

(5.27)
|uj(x)|

‖uj‖X0, q

6 κ(x) a.e. x ∈ Ω.

Moreover, by the orthogonality properties of vj and wj we get

‖uj‖X0, q

‖wj‖X0, q

= 1 +
‖vj‖X0, q

‖wj‖X0, q

,

so that, by Claim 2 it follows that for any j ∈ N

‖uj‖X0, q

‖wj‖X0, q

6 C

for some positive constant C .

As a consequence of this, (5.27) and (1.9) we get a.e. x ∈ Ω

|F (uj(x))|

‖wj‖X0, q

6 M
|uj(x)|

‖wj‖X0, q

= M
‖uj‖X0, q

‖wj‖X0, q

|uj(x)|

‖uj‖X0, q

6 C̄κ(x) ∈ L1(Ω)

for a suitable positive constant C̄ . Then, the Lebesgue Dominated Convergence Theorem and Claim 3
yield the assertion of Claim 4 . �

Claim 5. The following assertion holds true:

lim
j→+∞

(

∫

Ω

F (uj(x))

‖wj‖X0, q

dx +

∫

Ω

h(x)
uj(x)

‖wj‖X0, q

dx

)

< 0 .
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Proof. First of all, note that

uj

‖wj‖X0, q

=
wj + vj

‖wj‖X0, q

=
wj

‖wj‖X0, q

+
vj

‖vj‖X0, q

‖vj‖X0, q

‖wj‖X0, q

→ w in L2(Ω) ,

as j → +∞ , thanks to (5.14), (5.19), (5.20) and Claim 2 .

As a consequence of this and by Claim 4 and (5.21) we have

(5.28)

lim
j→+∞

(

∫

Ω

F (uj(x))

‖wj‖X0, q

dx +

∫

Ω

h(x)
uj(x)

‖wj‖X0, q

dx

)

=

∫

Ω

f∞(x)w(x)dx +

∫

Ω

h(x)w(x)dx

= fr

∫

Ω

w+(x)dx− fl

∫

Ω

w−(x)dx +

∫

Ω

h(x)w(x)dx < 0 ,

since (1.15) holds true. This ends the proof of Claim 5 . �

Now, we can conclude the proof of Proposition 13 . Indeed, arguing as (5.15) and using (5.1), we get

J (uj) >
1

2

(

1−
λ

λk+m+1

)

‖vj‖
2
X0, q −

∫

Ω

F (uj(x))dx−

∫

Ω

h(x)uj(x)dx

> −‖wj‖X0, q

(

∫

Ω

F (uj(x))

‖wj‖X0, q

dx +

∫

Ω

h(x)
uj(x)

‖wj‖X0, q

dx

)

,

so that, by Claim 1 and Claim 5, we deduce

J (uj)→ +∞ as j → +∞ ,

which contradicts (5.13). Hence, Proposition 13 holds true in the case when ‖vj‖X0, q 6= 0 for j large
enough.

Finally, it remains to consider the case when ‖vj‖X0, q = 0 for j sufficiently large (up to a subse-
quence). In this setting, using the same arguments as above, the proof can be repeated in a simpler
way. For the sake of clarity and for reader’s convenience we prefer to give full details.

Since ‖vj‖X0, q = 0 for j sufficiently large, it easily follows that

(5.29) vj → 0 in X0

as j → +∞ . Hence, by [18, Lemma 8] and [4, Theorem IV.9] up to a subsequence

(5.30)
vj → 0 in Lν(Rn) for any ν ∈ [1, 2∗)

vj → 0 a.e. in R
n

as j → +∞.

As a consequence of this and by (5.14), (5.19) and Claim 1, we get that

(5.31)
uj

‖wj‖X0, q

=
wj

‖wj‖X0, q

+
vj

‖wj‖X0, q

→ w in Lν(Rn) for any ν ∈ [1, 2∗) ,

so that
uj(x)

‖wj‖X0, q

→ w(x) a.e x ∈ Ω

as j → +∞ , and, for any j ∈ N and a.e. x ∈ Ω

(5.32)
|uj(x)|

‖wj‖X0, q

6 κν(x)
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for some κν ∈ Lν(Ω) .

Also, again by (5.14), Claim 1, (5.19) and (5.30), we deduce that a.e. x ∈ Ω

(5.33) uj(x) = wj(x) + vj(x) = ‖wj‖X0, q
wj(x)

‖wj‖X0, q

+ vj(x)→

{

+∞ if x ∈ {w > 0}
−∞ if x ∈ {w < 0},

as j → +∞ , thanks to (5.18) .

Hence, by (5.22) and (5.33), also in this case we get

(5.34)
F (uj(x))

uj(x)
→ f∞(x) a.e. x ∈ Ω

as j → +∞, where f∞ is the function defined in (5.21) .

Now, we have that

(5.35)
F (uj(x))

‖wj‖X0, q

=

(

vj(x)

‖wj‖X0, q

+
wj(x)

‖wj‖X0, q

)

F (uj(x))

uj(x)
→ w(x)f∞(x) a.e. x ∈ Ω ,

as j → +∞ , thanks to (5.14), (5.19), (5.30) and (5.34) .

Furthermore, by (1.9) and (5.32) we get that a.e. x ∈ Ω and for any j ∈ N

|F (uj(x))|

‖wj‖X0, q

6 M
|uj(x)|

‖wj‖X0, q

6 M κ1(x) ∈ L1(Ω) ,

so that, using also (5.35), we obtain

(5.36)
F (uj)

‖wj‖X0, q

→ wf∞ in L1(Ω)

as j → +∞ .

Now, with (1.15), (5.31) (here used with ν = 2 < 2∗) and (5.36), arguing as in Claim 5, we can show
that

lim
j→+∞

(

∫

Ω

F (uj(x))

‖wj‖X0, q

dx +

∫

Ω

h(x)
uj(x)

‖wj‖X0, q

dx

)

< 0 .

Thus, the conclusion of Proposition 13 follows as in the previous case. This ends the proof of Propo-
sition 13 . �

Finally, we are ready to prove Theorem 1, in the resonant case.

5.1. Proof of Theorem 1 in the resonant setting. First of all, let us check the geometric structure of
the functional J . For this, let

I = inf
u∈Pk+1

J (u) .

By Proposition 13 and the fact that J 6≡ +∞, we have that I ∈ R . Moreover, by Lemma 7, there
exists R > 0 such that for any u ∈ Hk with ‖u‖X0, q > R it holds true that

J (u) < −|I| 6 I .

Then, as a consequence of this, we get

sup
u∈Hk

‖u‖X0, q=R

J (u) 6 sup
u∈Hk

‖u‖X0, q>R

J (u) < I = inf
u∈Pk+1

J (u) ,

that is J has the geometry required by the Saddle Point Theorem (see [14, Theorem 4.6]).

Finally, by Proposition 11 (which holds true for any λ ∈ R) and Proposition 12, the functional J
satisfies the Palais–Smale condition.
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Hence, we can make use of the Saddle Point Theorem in order to obtain a critical point u ∈ X0 of J .
This concludes the proof of Theorem 1 in the resonant case.

APPENDIX A. AN EIGENVALUE PROBLEM FOR −LK + q

This appendix is devoted to the study of the eigenvalue problem (1.12). More precisely, we study the
weak formulation of (1.12), which consists in the following problem

(A.1)



















∫

Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy +

∫

Ω

q(x)u(x)ϕ(x)dx

= λ

∫

Ω

u(x)ϕ(x)dx ∀ ϕ ∈ X0

u ∈ X0.

We recall that λ ∈ R is an eigenvalue of−LK + q provided there exists a non-trivial solution u ∈ X0

of problem (A.1) and, in this case, any solution will be called an eigenfunction corresponding to the
eigenvalue λ.

For the proof of the next result we refer to [19, Proposition 9 and Appendix A], where the case when
q ≡ 0 was considered. The proof of [19, Proposition 9] can be easily adapted in order to get the
following result:

Proposition 14. Let s ∈ (0, 1), n > 2s, Ω be an open, bounded subset of R
n and let K : R

n \
{0} → (0, +∞) be a function satisfying assumptions (1.3)–(1.5). Moreover, let q : Ω → R be a

function verifying (1.10). Then,

(i) problem (A.1) admits an eigenvalue λ1 which is positive and that can be characterized as follows

λ1 = min
u∈X0

‖u‖
L2(Ω)

=1

(
∫

Rn×Rn

|u(x)− u(y)|2 K(x− y)dx dy +

∫

Ω

q(x) |u(x)|2 dx

)

,

or, equivalently,

(A.2) λ1 = min
u∈X0\{0}

∫

Rn×Rn |u(x)− u(y)|2 K(x− y) dx dy +
∫

Ω
q(x) |u(x)|2 dx

∫

Ω
|u(x)|2 dx

;

(ii) there exists a non-negative function e1 ∈ X0, which is an eigenfunction corresponding to λ1,

attaining the minimum in (A.2), that is ‖e1‖L2(Ω) = 1 and

λ1 =

∫

Rn×Rn

|e1(x)− e1(y)|2 K(x− y)dx dy +

∫

Ω

q(x) |e1(x)|2 dx;

(iii) λ1 is simple, that is if u ∈ X0 is a solution of the following equation
∫

Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy +

∫

Ω

q(x) |u(x)|2 dx

= λ1

∫

Ω

u(x)ϕ(x)dx ∀ϕ ∈ X0,

then u = ζe1, with ζ ∈ R;

(iv) the set of the eigenvalues of problem (A.1) consists of a sequence {λk}k∈N
with

0 < λ1 < λ2 6 . . . 6 λk 6 λk+1 6 . . .

and

λk → +∞ as k → +∞.
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Moreover, for k ∈ N the eigenvalues can be characterized as follows:

λk+1 = min
u∈Pk+1

‖u‖
L2(Ω)

=1

(
∫

Rn×Rn

|u(x)− u(y)|2 K(x− y)dx dy +

∫

Ω

q(x) |u(x)|2 dx

)

,

or, equivalently,

(A.3) λk+1 = min
u∈Pk+1\{0}

∫

Rn×Rn |u(x)− u(y)|2 K(x− y)dx dy +
∫

Ω
q(x) |u(x)|2 dx

∫

Ω
|u(x)|2 dx

,

where

Pk+1 :=
{

u ∈ X0 : 〈u, ej〉X0, q = 0 ∀j = 1, . . . , k
}

;

(v) for any k ∈ N there exists a function ek+1 ∈ Pk+1, which is an eigenfunction corresponding to

λk+1, attaining the minimum in (A.3), that is ‖ek+1‖L2(Ω) = 1 and

λk+1 =

∫

Rn×Rn

|ek+1(x)− ek+1(y)|2 K(x− y)dx dy +

∫

Ω

q(x) |ek+1(x)|2 dx;

(vi) the sequence {ek}k∈N
of eigenfunctions corresponding to λk is an orthonormal basis of L2(Ω)

and an orthogonal basis of X0;

(vii) each eigenvalue λk has finite multiplicity; more precisely, if λk is such that

λk−1 < λk = . . . = λk+h < λk+h+1

for some h ∈ N0, then the set of all the eigenfunctions corresponding to λk agrees with

span {ek, . . . , ek+h} .

For further properties of the eigenvalues and the eigenfunctions of the fractional Laplace operator
(and, in general, of non-local integrodifferential operators) we refer to [15, Proposition 5], [21, Propo-
sition 4] and [23].

APPENDIX B. NODAL SET OF THE EIGENFUNCTIONS OF (−∆)s: 1D CASE

The aim of this appendix consists in proving a property of the nodal set of the eigenfunctions of the
fractional Laplacian operator (−∆)s, that is the fact the nodal set of the eigenfunctions has zero
Lebesgue measure, in the one dimensional case. At this purpose, we will use some recent results
about the regularity of the solutions of the fractional Laplacian equation (see [3, 21, 23]) and a Unique
Continuation Principle for non-local equations (see [9]).

First of all, let us prove the following result:

Proposition 15. Let s ∈ (0, 1/2), n = 1 and Ω be an open bounded set of R
n . Finally, let u ∈

C∞(Ω) be a function such that its nodal set

Nu :=
{

x ∈ Ω : u(x) = 0
}

has positive Lebesgue measure.

Then, for almost any x̄ ∈ Nu we have that u(x) = o(|x− x̄|k) as x→ x̄ for any k ∈ N .

Proof. We take x̄ ∈ Nu to be a Lebesgue density point. Then, there exists a sequence {xj}j∈N in
Nu \ {x̄} such that xj → x̄ as j → +∞ . Without loss of generality, we may suppose that such
sequence is decreasing.

We claim that for any k ∈ N there exists a decreasing subsequence {xj, k}k∈N of {xj}j∈N such that
Dku(xj, k) = 0 for any j ∈ N. For this we argue by induction. When k = 0 we can take xj, k = xj ,
since u(xj) = 0 for any j ∈ N, by construction of xj .
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Now, suppose that the claim holds true for k and let us show it for k +1. At this purpose, we fix j ∈ N

and we apply the Rolle Theorem to the function Dku in the interval [xj+1, k, xj, k]. We get that there
exists xj, k+1 ∈ [xj+1, k, xj, k] such that

Dk+1u(xj, k+1) = Dku(xj, k)−Dku(xj+1, k) = 0 ,

thanks to the induction assumption. Hence, the claim is proved.

By continuity and thanks to the fact that xj → x̄ as j → +∞, we deduce that Dku(x̄) = 0 for any
k ∈ N. As a consequence of this, since u ∈ C∞(Ω), by Taylor expansion we get for any k ∈ N

u(x) =
k−1
∑

j=1

Dju(x̄)

j!
+ o(|x− x̄|k) = o(|x− x̄|k) ,

which gives the assertion of Proposition 15. �

Now, we can consider the following eigenvalue problem

(B.1)

{

(−∆)su + q(x)u = λu in Ω
u = 0 in R

n \ Ω .

We also recall that, in this setting, the space X0 can be characterized as (see [20, Lemma 7])

X0 =
{

v ∈ Hs(Rn) : v = 0 a.e. in R
n \ Ω} .

The main result of this appendix is the following:

Theorem 16. Let s ∈ (0, 1/2), n = 1 and Ω be an open, bounded subset of R
n with Lipschitz

boundary. Let e ∈ Hs(Rn) be a solution of problem (B.1), with q ∈ C∞(Ω) ∩ L∞(Ω) .

Then, the nodal set of e has zero Lebesgue measure.

Proof. We argue by contradiction and we suppose that the nodal set of e has positive Lebesgue
measure. First of all, note that

(B.2) e ∈ C∞(Ω) .

This follows via the following steps: first, we have that e ∈ L∞(Ω), by [21, Proposition 4]. Hence,
from [23], we obtain that e is uniformly continuous in Ω and it is a viscosity solution of the equation.
Then, by [3, Theorem 5], we obtain that e ∈ Ck(Ω), for any k ∈ N, thus establishing (B.2).

Hence, by Proposition 15 we easily get that for any x̄ such that e(x̄) = 0

e(x) = O(|x− x̄|k) for any k ∈ N

as x→ x̄ .

Now, applying [9, Theorem 1.2] (here with h(x) = λ − q(x) ∈ C∞(Ω)), we get that e ≡ 0 in Ω,
which is a contradiction, being e an eigenfunction. Thus, the assertion of Theorem 16 is proved. �

For the general case of Theorem 16 we refer to Theorem 1.4 of the latest version of [9].
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