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)is text studies the fixed-time tracking consensus for nonlinear multiagent systems with disturbances. To make the fixed-time
tracking consensus, the distributed control protocol based on the integral sliding mode control is proposed; meanwhile, the
adjacent followers can be maintained in a limited sensing range. By using the nonsmooth analysis method, sufficient conditions
for the fixed-time consensus together with the upper and lower bounds of convergence time are obtained. An example is given to
illustrate the potential correctness of the main results.

1. Introduction

Consensus of multiagent systems (MASs) is a very active
research topic in control field [1–15]. )e key to consensus
problem is through designing an appropriate control pro-
tocol, such that all the agents can achieve a certain value.)e
convergence velocity is an important performance index of a
control protocol, and the fast convergence velocity is very
important for improving the performance and robustness of
a system [4, 7–15]. Olfati-Saber and Murray [9] proved that
the algebraic connectivity of the interaction graph deter-
mines the convergence velocity. )e larger the second small
eigenvalue of the Laplace matrix, the faster the convergence
velocity. Zhou and Wang [4] characterized the convergence
velocity for the distributed discrete-time consensus algo-
rithm over a variety of random networks with arbitrary
weights. )ey proposed the asymptotic and per-step con-
vergence factors as measures of the convergence velocity and
derived the exact value for the per-step convergence fact.
Draief and Vojnović [11] derived an exact relation between
the expected convergence time and the voting margin for

some of these graphs, which revealed how the expected
convergence time tends to infinity as the voting margin
approaches zero. By maximizing the algebraic connectivity
of the interaction graph, one can increase the convergence
velocity with respect to the linear protocol, but the consensus
can never be reached in finite time [4, 9–15]. )at is, the
convergence time is infinite or inestimable. However, in
practice, it is often required the consensus to be reached in
finite time. Comparing with the asymptotic consensus, the
finite-time consensus has strong antiinterference, anti-
uncertainty, robustness, and fast convergence velocity
[16–19]. )ough the finite-time consensus can ensure the
system converge in finite time, the convergence time de-
pends on the initial states. However, due to the complexity of
environment, the initial states are usually not available in
advance [20–28]. In this case, the convergence time cannot
be estimated. Correspondingly, the practical application of
the multiagents systems will be restricted. To overcome this
shortcoming, the fixed-time stability is proposed and ana-
lyzed in [20–23]. Based on the fixed-time stability concept,
Parsegov et al. [22] first proposed the fixed-time consensus
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(FdTC), which means that the convergence time is limited
and the upper bound of convergence time is independent of
the initial states. Zuo and Tie [24] studied the FdTC of first-
order MASs over undirected topology. It is shown that the
convergence time of the proposed general framework is
upper bounded for any initial states. Fu and Wang [25]
studied the fixed-time tracking problem for second-order
systems with bounded input uncertainties. Based on a fixed-
time distributed observer and sliding mode control method,
the fixed-time tracking consensus (FdTTC) for high-order
MASs with unknown bounded external disturbances is
studied in [26]. A new cascade control structure is developed
to achieve the FdTTC. Wang et al. [27] studied the FdTC of
the second-order nonlinear MASs with time delay over
undirected topology. Shang and Ye studied the leader-fol-
lower fixed-time group consensus control of MASs over
directed topology [28]. A display estimation of convergence
time is given. )ough there are many results on FdTC, the
preserving connectivity between agents communicating
with each other is seldom taken into account. However, in
practice, the communication ability of multiple agents is
usually limited, so it is very important to ensure that the
agents communicate with each other within a limited
communication radius [29–32]. In addition, for some
complex systems, the Lipschitz condition is hard to satisfy.
Hence, it is very important to study the system with the
nonlinear term regardless of the Lipschitz conditions
[29, 30]. By the nonsmooth analysis method, Cao et al. [29]
studied the finite-time consensus of MASs with unknown
Lipschitz terms and ensured that the communication be-
tween agents are always within a limited communication
radius. Sun et al. [30] studied the finite-time connectivity-
preserving consensus of second-order MASs with nonlinear
terms which did not satisfy the Lipschitz conditions. In [30],
by using the energy function idea and the technique of arc
method, it is proved that the designed control protocol can
ensure that the neighbor agents are always in a limited
communication radius. Hong et al. [31] studied the finite-
time consensus problem for second-order nonlinear MASs
under communication constraints, and the interaction
patterns can be preserved for the system with the objection
of disturbance rejection, but the display estimation of
convergence time is not given. Hong et al. [32] studied fixed-
time connectivity-preserving distributed average tracking
for first-order MASs without considering the interference
and the nonlinear terms. Zuo et al. [33] studied the FdTC for
MASs over directed and switching interaction topology.
)ey addressed that the explicit bounds of the convergence
time for both protocols are independent of the initial
condition. However, as far as we know, there are few results
related to the FdTTC of MASs with the disturbance and
general nonlinearity under the limited communication ra-
dius between neighbor agents. Hence, inspired by [27–34],
this work studies the FdTTC of the first-order leader fol-
lowing MASs with disturbances and general nonlinearities.
Based on the integral sliding surface, a new control protocol
is designed. )e main contributions of this paper are as
follows: (a) the FdTTC of MASs with disturbances and
nonlinear term is studied; (b) the agents communicating

with each other are always maintaining in a limited com-
munication radius; (c) the upper and lower bounds of
convergence time that are independent of initial conditions
are given; (d) the unknown disturbances and nonlinear
terms are not required to satisfy the Lipschitz condition.

)e remainder of this paper is as follows. Notations and
preliminaries are described in Section 2. Problem statement
and some necessary lemmas are given in Section 3. Main
results are given in Section 4. A simulation example is
presented in Section 5 to illustrate the correctness of the
obtained theoretical results. And the conclusion is con-
cluded in Section 6.

2. Notations and Preliminaries

In this paper, R is the real set, Rn is the n-dimensional real
space, E⊗F is the Kronecker product of matrices E and F, ‖∙‖
is the 2-norm of a matrix, ‖·‖1 is the 1-norm of a matrix,
1n � (1, . . . , n)T is the n-dimensional column vector with all
elements being 1, and (·)T is the transposition of a matrix or
a vector. Let sign(X) � [sign(x1), . . . , sign(xn)]T, where
X � [x1, . . . , xn]T, and sign(·) is the sign function,
andsig(·)a � ‖·‖asign(·).

Graph G � ε,φ􏼈 􏼉 with the edge set ε⊆φ × φ describes the
communication connection between followers, and φ �

φi | i � 1, 2, . . . , N􏼈 􏼉 is the node set. )e neighbor set of agent
φi is denoted as Ni � φj |(φj,φi) ∈ ε􏽮 􏽯. )e adjacency matrix
between followers is A � [aij]N×N ∈ RN×N, where aij � 0 if
node φj does not belong to Ni or the relative distance between
nodes φi and φj is larger than r, and r> 0 is the communication
radius of the agent; otherwise aij > 0. In the context, assume that
aii � 0, ∀i � 1, 2, . . . , N. If for any k ∈ 2, . . . , s{ }, there is a
sequence of edges (i1, i2), (i2, i3), . . . , (is− 1, is) with
(ik− 1, ik) ∈ ε, it is called there is a path from agent i1 to agent is.
If there is a path between any two different nodes ofG, graph G
is a connected graph. )e degree matrix of G is
D � diag d1, d2, . . . , dN􏼈 􏼉, where di � 􏽐

N
j�1 aij for

i � 1, 2, . . . , N. LetL � [lij] � D − A represent the Laplacian
matrix of G. Denote H � L + B, where B �

diag b1, . . . , bN􏼈 􏼉, and bi > 0 if the ith follower can get infor-
mation from the leader, otherwise bi � 0.

3. Problem Formulation

)is section studies the FdTTC for MASs with N agents. )e
dynamics of the i-th follower is

_pi(t) � ui(t) + fi pi(t), t( 􏼁 + di pi(t), t( 􏼁, i � 1, . . . , N,

(1)

where pi(t) ∈ R is the position, ui(t) ∈ R is the control input,
fi(pi(t), t) ∈ R is the nonlinear item, and di(pi(t), t) ∈ R is
the interference item of the ith agent, respectively.

)e dynamics of the leader, that is, agent 0, is described
as

_p0(t) � f0 p0(t), t( 􏼁, (2)

where p0(t) ∈ R is the position state and f0(p0(t), t) ∈ R is
the nonlinear item.
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Lemma 1 (see [21]). If there is a continuous unbounded
positive definite function V(x), such that for some
d1 > 0,d2 > 0,d3 > 1, and 0≤d4 < 1, there is

V
∙
(x)≤ − d1V

d3(x) − d2V
d4(x). (3)

7en, the origin of systems (1) and (2) is globally fixed-
time stable, and the convergence time T satisfies

1
d1 + d2( 􏼁 1 − d4( 􏼁

≕Tmin ≤T≤Tmax

≔
1

d1 d3 − 1( 􏼁
+

1
d2 1 − d4( 􏼁

.

(4)

Lemma 2

(i) (see [33]) Let σ1, σ2, . . . , σN ≥ 0 and w> 1, then there is

σ1 + · · · + σN( 􏼁
w ≥ σw

1 + · · · + σw
N ≥N

1− w σ1 + · · · + σN( 􏼁
w

.

(5)

(ii) (see [7]) Let σ1, σ2, . . . , σN ≥ 0 and 0<w≤ 1, then
there is

N
1− w σ1 + · · · + σN( 􏼁

w ≥ σw
1 + · · · + σw

N ≥ σ1 + · · · + σN( 􏼁
w

.

(6)

(iii) Sequence inequality

Let ε1 ≤ ε2 ≤ · · · ≤ εn and μ1 ≤ μ2 ≤ · · · ≤ μn be two se-
quences of the real number. 7en, there is

ε1μn + ε2μn− 1 + · · · + εnμ1 ≤ ε1ρ1 + ε2ρ2 + · · · + εnρn ≤ ε1μ1
+ ε2μ2 + · · · + εnμn,

(7)

where ρ1, . . . , ρn is an arrangement of μ1, . . . , μn.

(iv) Let m1, m2, . . . , mn, l be the positive real numbers.
7en, according to (iii) there is

m1 + m2 + · · · + mn( 􏼁 m
l
1 + m

l
2 + · · · + m

l
n􏼐 􏼑

≤ n m
l+1
1 + m

l+1
2 + · · · + m

l+1
n􏼐 􏼑.

(8)

Lemma 3 (see [18]). Assume that function φ: R2⟶ R+

satisfies φ(yi, yj) � − φ(yj, yi), i, j � 1, . . . , N, i≠ j. 7en, for
any symmetric matrix B � [bij]N×N and real numbers
ς1, ς2, . . . , ςN, the following equality holds:

􏽘

N

i�1
􏽘

N

j�1
bijςiφ yj, yi􏼐 􏼑 � −

1
2

􏽘

N

i�1
􏽘

N

j�1
bij ςj − ςi􏼐 􏼑φ yj, yi􏼐 􏼑. (9)

Lemma 4 (see [9]). Laplace matrix L of the undirected
connected graph G satisfies the following:

(i) For any N-dimensional column vectors x � [x1,

. . . , xN]T ∈ RN, there is

x
T
Lx � 􏽘

N

i�1
􏽘

N

j�1
aij xi − xj􏼐 􏼑

2
. (10)

(ii) 7e eigenvalues of matrix L are recorded as
0< λ2 ≤ · · · ≤ λN− 1, and xTLx≥ λ2xTx.

Assumption 1. Graph G is connected, and there is at least
one agent that can access the leader’s information, and at the
initial time, the distance between any follower and its
neighbors is less than r.

Assumption 2. )ere is a constant c> 0, such that
fi pi(t), t( 􏼁 + di pi(t), t( 􏼁 − f0 p0(t), t( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ c, i � 1, . . . , N.

(11)

Definition 1. For any initial state, there is

lim
t⟶T

pi(t) − p0(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0,

pi(t) − p0(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0,

∀t≥T, i � 1, 2, . . . , N,

(12)

where T is the settling time and the bound of T is inde-
pendent of the initial states; then, systems (1) and (2) are said
to achieve the FdTTC.

Definition 2. If for any t> 0, graph G is connected, and the
distance between any agent and its neighbor agents is less
than the communication radius r and the states of systems
(1) and (2) satisfy Definition 1; then, systems (1) and (2) are
said to achieve the fixed-time connectivity-preserving
tracking consensus.

For systems (1) and (2), design the following sliding
mode control protocol:

ui(t) � ui1(t) + ui2(t), (13)

with

ui1 � − k1 􏽘

N

j�1
aijsig

α2 pi(t) − pj(t)􏼐 􏼑

− k2 􏽘

N

j�1
aijsig

α3 pi(t) − pj(t)􏼐 􏼑,

(14)

and

ui2(t) � − k5sign si( 􏼁 − k6sig
α1 si( 􏼁, (15)

where k1, k2,k5, and k6 are the positive constants; α1 > 1,
0< α2 < 1, α3 > 1, and the sliding surface si(t) ∈ R,
i � 1, . . . , N, is designed as
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si � 􏽘
N

j�1
aij pi − pj􏼐 􏼑 + bi pi − p0( 􏼁

− 􏽚
t

0
􏽘

N

j�1
aij ui1(τ) − uj1(τ)􏼐 􏼑 + biui1(τ)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dτ,

(16)

where pi � pi(t) − pi(0) with pi(0) being the initial position
state of agent i, i � 1, . . . , N. )roughout this paper, we
denote 􏽢amin � min aij|aij ≠ 0, | ∀i, j ∈ 1, . . . , N{ }􏽮 􏽯,c0 �

max 􏽢N1,
􏽢N2, . . . , 􏽢NN􏽮 􏽯, where 􏽢Ni is the number of elements

in the set Ni, H � H⊗ In, s(t) � [s1(t), . . . , sN(t)]T,

p � [p1, . . . , pN]T, u1 � [u11, . . . , uN1]
T, u2 � [u12, . . . ,

uN2]
T, f � [f1, . . . , fN]T and d(t) � [d1(t), . . . , dN(t)]T.

)en, (16) can be rewritten as

s � H p − 1n ⊗p0( 􏼁 − 􏽚
t

0
Hu1(τ)dτ. (17)

4. Main Results

Theorem 1. Suppose Assumptions 1 and 2 hold, and for any
t ∈ [0, t1), the distance between followers and their neighbors
is less than r. 7en, under the control protocol (13), each agent
of systems (1) and (2) can maintain its dynamic behavior on
the sliding surface in a limited time. 7at is, si(t) � 0 and

t ∈ [0, t1), ∀ i � 1, . . . , N, provided that the control gain
α1 > 1 and k5 > c and the convergence time T1 satisfies

�
2

√
λ(1/2)
max H

− 1
􏼐 􏼑

k5 + k6 − c
≕Tmin ≤T1 ≤Tmax

≔
�
2

√
λ(1/2)
max H

− 1
􏼐 􏼑

1
k5 − c( 􏼁 α1 − 1( 􏼁

+
1
k6

􏼠 􏼡.

(18)

Proof. Let V1(s, t) � (1/2)sTH
− 1

s. )en, the derivative of
V1(s, t) along system (17) is

V
∙
1 � s

T
H

− 1
s
∙

� s
T

− k5sign(s) + f + d(t)(

− 1n ⊗f0 p0(t), t( 􏼁 − k6sig
α1(s)􏼁

≤ − k5 − c( 􏼁 s1
����

���� − k6‖s‖
1+α1
2

≤ − k5 − c( 􏼁

���������
2

λmax H
− 1

􏼐 􏼑

􏽳

V
(1/2)
1 − k6

���������
2

λmax H
− 1

􏼐 􏼑

􏽳

V
1+α1( )/2

1 .

(19)

From Lemma 1, one can get the convergence time which
satisfies

2
������������

2/ λmax H
− 1

􏼐 􏼑􏼐 􏼑

􏽱

k5 + k6 − c( 􏼁
≕Tmin ≤T1 ≤Tmax

≔
1

������������

2/ λmax H
− 1

􏼐 􏼑􏼐 􏼑

􏽱
1

k5 − c( 􏼁 α1 − 1( 􏼁/2( 􏼁
+

2
k6

􏼠 􏼡,

(20)

which implies that (18) holds. )e proof is
completed. □

Theorem 2. For systems (1) and (2) under the control
protocol (13), if k1 > 0, k2 > 0, k5 > c, k6 > 0, m≥ 2c1c0, and
E(0)< c2r

2􏽢amin, where E(0) is the initial value of an energy
function, then the distance between all followers and their
neighbor agents is less than r.

Proof. Similar to the argument in [30], assume that there
exists a time t0 > 0 and φj ∈ Ni,i � 1, . . . , N, such that
|pi(t−

0 ) − pj(t−
0 )|< r and |pi(t0) − pj(t0)|≥ r. According to

)eorem 1, si(t) � 0 for t ∈ [0, t0)i � 1, . . . , N. Denoting
ei1 � pi(t) − p0(t), then one can get

e
∙
i1 � − k1 􏽘

N

j�1
aijsig

α2 ei1 − ej1􏼐 􏼑 − k2 􏽘

N

j�1
aijsig

α3 ei1 − ej1􏼐 􏼑.

(21)

Define an energy function E(e) on [0, t0) as

E(e) � 􏽘
N

i�1
􏽘

N

j�1
aij 􏽚
∣ei1− ej1 ∣

0
h(s)ds + m 􏽘

N

i�1
e
2
i1, (22)

where h(|pi − pj|) satisfies the following conditions:

(i) h(|pi − pj|) is continuous for |pi − pj|;
(ii) c2|pi − pj|≤ h(|pi − pj|)≤ c1|pi − pj|,c1 > c2 > 0.

)e derivative of E(e) along (21) is

_E � 2􏽘
N

i�1
􏽘

N

j�1
aijh ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠ − 􏽘
N

j�1
k1aijsig

α2 ei1 − ej1􏼐 􏼑⎛⎝

− k2 􏽘

N

j�1
aijsig

α3 ei1 − ej1􏼐 􏼑⎞⎠

+ 2m 􏽘
N

i�1
ei1 − k1 􏽘

N

j�1
aijsig

α2 ei1 − ej1􏼐 􏼑⎛⎝

− k2 􏽘

N

j�1
aijsig

α3 ei1 − ej1􏼐 􏼑⎞⎠,

(23)
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that is,

_E≤ 2c1 􏽘

N

i�1
􏽘

N

j�1
aij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠ 􏽘

N

j�1
k1aij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2

+ k2 􏽘

N

j�1
aij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α3⎛⎝ ⎞⎠

− 2m 􏽘
N

i�1
ei1 k1 􏽘

N

j�1
aij sig

α2 ei1 − ej1􏼐 􏼑 + k2 􏽘

N

j�1
aij sig

α3 ei1 − ej1􏼐 􏼑⎛⎝ ⎞⎠.

(24)

From (iv) in Lemma 2, one can get

_E≤ 2c1c0 􏽘

N

i�1
􏽘

N

j�1
k1aij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2+1

+ k2aij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α3+1

− 2m 􏽘

N

i�1
ei1 k1 􏽘

N

j�1
aij sig

α2 ei1 − ej1􏼐 􏼑⎛⎝

+ k2 􏽘

N

j�1
aij sig

α3 ei1 − ej1􏼐 􏼑⎞⎠

≤ 2c1c0 − m( 􏼁 􏽘

N

i�1
􏽘

N

j�1
k1aij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2+1

􏼒

+ k2aij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α3+1

􏼓

≤ 0,

(25)

which implies that E(t)≤E(0)< c1r
2􏽢amin. )en, there is

limt⟶t−
0
|ei1 − ej1| � r. Since 􏽒

r

0 h(s)ds> (c1r
2/2) and E(t−

0 )>
c2r

2􏽢amin, which contradicts E(t)≤E(0)< c1r
2􏽢amin. Hence, the

assumption is wrong. )e proof is completed. □
Denote k3 � (k1/2)2(1+α2)/2λ(1+α2)/2

2 (L1) and k4 � (k2/
2)N1− α32(1+α3)/2λ(1+α3)/2

2 (L2), where L1 and L2 are the
Laplacian matrix of matrix A1 � [(aij)

2/(1+α2)]N×N and A2 �

[(aij)
2/(1+α3)]N×N and λ2(L1) and λ2(L2) are the second

small eigenvalue of matrix L1 and L2, respectively. □

Theorem 3. Let Assumptions 1 and 2 hold. For systems (1)
and (2) under the control protocol (13) with (14)–(16), if
k1 > 0, k2 > 0, and 0< α2 < 1, α3 > 1, then for any
i ∈ 1, . . . , N{ },ei1 could converge to zero with the convergence
time T2 satisfying

2
k3 + k4( 􏼁 1 − α2( 􏼁

≤T2 ≤
2

k4 α3 − 1( 􏼁
+

2
k3 1 − α2( 􏼁

. (26)

Proof. According to )eorem 1, si(t) � 0, i � 1, . . . , N.
)en, based on the sliding manifold (17), there is

e
∙
i1 � − k1 􏽘

N

j�1
aij sig

α2 ei1 − ej1􏼐 􏼑 − k2 􏽘

N

j�1
aij sig

α3 ei1 − ej1􏼐 􏼑.

(27)

Choose the candidate Lyapunov function

V2 �
1
2

􏽘

N

i�1
e
2
i1. (28)

)e derivative of V2 along (27) is

V2
∙

� 􏽘
N

i�1
ei1e

∙
i1 � − k1 􏽘

N

i�1
􏽘

N

j�1
aijei1sig

α2 ei1 − ej1􏼐 􏼑

− k2 􏽘

N

i�1
􏽘

N

j�1
aije

T
i1sig

α3 ei1 − ej1􏼐 􏼑.

(29)

From Lemma 3, one can obtain

V2
∙
≤ −

k1

2
􏽘

N

i�1
􏽘

N

j�1
aij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+α2

􏼒 􏼓

−
k2

2
􏽘

N

i�1
􏽘

N

j�1
aij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+α3

􏼒 􏼓

≤ −
k1

2
􏽘

N

i�1
􏽘

N

j�1
a
2/ 1+α2( )
ij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
1+α2( )/2

−
k2

2
􏽘

N

i�1
􏽘

N

j�1
a
2/ 1+α3( )
ij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
1+α3( )/2

.

(30)

According to (i) and (ii) in Lemma 2 and 4, one can get

V2
∙
≤ −

k1

2
􏽘
i�1

N

􏽘
j�1

N

a
2/ 1+α2( )
ij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

⎛⎝ ⎞⎠

1+α2( )/2

− N
1− α3k2

2
􏽘

N

i�1
􏽘

N

j�1
a
2/ 1+α3( )
ij ei1 − ej1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

⎛⎝ ⎞⎠

1+α3( )/2

≤ −
k1

2
2 1+α2( )/2λ 1+α2( )/2

2 L1( 􏼁V
1+α2( )/2

2

−
k2

2
N

1− α32 1+α3( )/2λ 1+α3( )/2
2 L2( 􏼁V

1+α3( )/2
2

≤ − k3V
1+α2( )/2

2 − k4V
1+α3( )/2

2 .

(31)

From Lemma 1, one can get for any i ∈ 1, . . . , N{ },ei1
converges to zero in a finite time and the settling time T2
satisfies
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2
k3 + k4( 􏼁 1 − α2( 􏼁

≕Tmin ≤T2 ≤Tmax

≔
2

k4 α3 − 1( 􏼁
+

2
k3

1 − α2( 􏼁.

(32)

)e proof is completed. □

From )eorems 1–3, one can find that systems (1) and
(2) can achieve the fixed-time connectivity-preserving
tracking consensus and the convergence time T � T1 + T2
satisfies

�
2

√
λ(1/2)
max H

− 1
􏼐 􏼑

k5 + k6 − c
+

2
k3 + k4( 􏼁 1 − α2( 􏼁

≤T≤
�
2

√
λ(1/2)
max H

− 1
􏼐 􏼑

1
k5 − c( 􏼁 α1 − 1( 􏼁

+
1
k6

􏼠 􏼡

+
2

k4 α3 − 1( 􏼁
+

2
k3 1 − α2( 􏼁

.

(33)

5. Examples

Example 1. Consider MASs (1) and (2) consisting of four
followers i � 1, 2, 3, and 4 and one leader i � 5. Under the
consensus protocol (13) over the communication network as
shown in Figure 1, choose α1 � 2, α2 � 0.3, α3 � 3, r � 20,
k1 � k2 � 1, k5 � 15, k6 � 1, fi(pi(t), t) � − pi(t)cos t,
di(pi(t), t) � 2 sin(0.5it + (iπ/6)), f0(p0(t), t) � 2 sin t. Let
d12 � |p1 − p2|, d13 � |p1 − p3|, and d34 � |p3 − p4|. )e
initial state is e1 � [e11, e21, e31, e41]

T � [6, 2, 3, 5]T, and the
adjacency matrix

A � aij􏼐 􏼑4×4 �

0 1 1 0

1 0 0 0

1 0 0 1

0 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B � diag 0, 0, 1, 1{ }.

(34)

By calculation, one can get Tmax � 28.465, Tmin � 4.785,
and T � 7.690, where T is the convergence time and Tmin
andTmax are the lower and upper bound of T. Hence, the
convergence time is limited. Trajectories of the position
error between followers and the leader are given in Fig-
ure 2, which shows that the position error between fol-
lowers and the leader tends to zero. )e distances between
neighbor agents are shown in Figure 3. )e maximum
distance (dmax) and minimum distance (dmin) are given in
Table 1. Figure 3 and Table 1 show that the distance
between followers and their neighbors is always within a
given limited range. )e simulations illustrate that under
the consensus protocol (13), systems (1) and (2) can
achieve the FdTTC, which verifies the correctness of the
main results in the work.
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Figure 3: Distances between neighbor agents of systems (1)
and (2).
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Figure 2: Trajectories of the position error between followers and
the leader.

0

3

4 2

1

Figure 1: Network graph.
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6. Conclusion

)e FdTTC of first-order MASs with general nonlinearity
and disturbances is studied in this paper. Firstly, the integral
sliding surface is designed to solve the nonlinear term and
disturbance in the system; then, the Lyapunov function
theory and principle of fixed-time stability are adopted to
prove that the integral sliding surface can switch to the
surface in a finite time, and the upper and lower bounds
independent of the initial conditions of the time to the
sliding surface are obtained. Secondly, it is proved that the
agents communicating with each other are always keeping
within a limited communication radius by using the idea of
arc method and designing the energy function. )irdly, it is
proved that the system can achieve FdTTC and the upper
and lower bounds of convergence time that are independent
of the initial conditions are given. Finally, a simulation
example is presented, which shows that all the states of the
followers can converge to that of the leader, and the con-
vergence time is between the given lower and upper bounds.
Table 1 gives that the agents communicating with each other
are always within the given limited communication radius.
Hence, the presented example verifies the correctness of
theoretical results and the validity of the adopting methods.
)e FdTTC for the nonlinear MASs with time delay or noise
over the switching network is the future work to be done.
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