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Abstract. Rather weak fossil magnetic fields in the radiative core can produce
the solar tachocline if the field is almost horizontal in the tachocline region, i.e.
if the field is confined within the core. This particular field geometry is shown
to result from a shallow (�1 Mm) penetration of the meridional flow existing in
the convection zone into the radiative core. Two conditions are thus crucial for a
magnetic tachocline theory: (i) the presence of meridional flow of a few metres per
second at the base of the convection zone, and (ii) a magnetic diffusivity inside the
tachocline smaller than 108 cm2 s−1. Numerical solutions for the confined poloidal
fields and the resulting tachocline structures are presented. We find that the
tachocline thickness runs as B−1/2

p with the poloidal field amplitude falling below
5% of the solar radius for Bp > 5 mG. The resulting toroidal field amplitude inside
the tachocline of about 100 G does not depend on the Bp. The hydromagnetic
stability of the tachocline is only briefly discussed. For the hydrodynamic stability
of latitudinal differential rotation we found that the critical 29% of the 2D theory
of Watson (1981 Geophys. Astrophys. Fluid Dyn. 16 285) are reduced to only
21% in 3D for marginal modes of about 6 Mm radial scale.
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1. Introduction

The tachocline is a thin shell inside the Sun where the rotation pattern changes strongly. Beneath
the tachocline the solar rotation is rather uniform. Above the tachocline, the rotation rate varies
with latitude to decrease from the equator to the poles. Inside the tachocline, a sharp transition
from differential to uniform rotation occurs with increasing depth. The tachocline was discovered
by probing the internal structure of the Sun with observations of its global oscillations. The
helioseismology provided in particular the angular velocity distribution inside the Sun shown in
figure 1 (Kosovichev et al 1997; Schou et al 1998; Wilson et al 1997).

The strong rotational shear inside the tachocline is believed to be important for the solar
magnetic activity (Hughes et al 2007). Even the solar cycle may originate from the tachocline
or its vicinity (Rüdiger and Brandenburg 1995). Also other stars with convective envelopes will
possess tachoclines. Strong differences in the magnetic activity between fully convective stars
which cannot have tachoclines and solar-type stars with their convective envelopes can then be
expected (cf Donati et al (2007)).

The solar tachocline parameters are well known from helioseismology. The tachocline
thickness is about 4% of the solar radius, its midpoint radius is (0.692 ± 0.005)R�, and it
is slightly prolate in shape (Antia et al 1998; Charbonneau et al 1999b; Kosovichev 1996).
The tachocline is located mainly if not totally beneath the base of the convection zone at
Rin = 0.713R� (Basu and Antia 1997; Christensen-Dalsgaard et al 1991) in the uppermost
radiative zone.

The given picture of the internal solar rotation suggests that some coupling must exist
between the base of the convection zone and the inner radiative core. Otherwise, the magnetic-
induced rotational braking of the Sun on evolutionary time-scales would produce a rapidly
rotating core (Dicke 1970). Moreover, an even stronger link between low and high latitudes
should operate immediately below the base of the convection zone in order to suppress the
latitudinal rotation rate difference. The magnetic theory which explains the tachocline structure
as a consequence of a weak internal magnetic field in the solar radiative interior provides both the
links simultaneously (Rüdiger and Kitchatinov 1997). The present paper summarizes the basic
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Figure 1. The internal solar rotation as a result of helioseismology. The radial
profiles of the rotation rate �/2π are shown for several latitudes. The lines are
marked by the latitude values. The tachocline is a thin layer around r/R� � 0.7
where transition from latitude-dependent rotation to uniform rotation occurs.
Graph courtesy of NSF’s National Solar Observatory.

ideas of the magnetic theory and describes new results of numerical magnetohydrodynamics
(MHD) to model the tachocline and probing the internal field structure. Other approaches have
been recently reviewed by Gilman (2005) and Garaud (2007).

The tachocline parameters expected from its formation by a magnetic field are estimated
in the next section using a simplified model of tachocline in Cartesian geometry. Section 3
formulates the equations of the tachocline model and shows their solution for prescribed geometry
of the fossil magnetic field within the radiative core. The role of a meridional flow penetrating the
uppermost region of the radiative core from the convection zone is discussed in section 4. Also
in this section, the eigenmodes of the internal poloidal field are computed under the influence
of the penetrating flow. Tachocline models with consistently defined internal field modes are
discussed in section 5. In the final section 6 a first step is presented towards understanding the
stability of the solar tachocline. In a hydrodynamical approach the 2D theory of Watson (1981)
for the stability of latitudinal differential rotation is reformulated in 3D with surprising results.
The modes with rather small radial wavelengths are most unstable.
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Figure 2. A shear flow is prescribed at z = 0. Its penetration into the region of
z > 0 where the magnetic field B0 exists mimics the magnetic tachocline.

2. Heuristic approach

The basic parameters of the magnetic tachocline can be estimated with a simplified shear flow
model in Cartesian geometry as sketched in figure 2. The Cartesian coordinates x, y and z may
correspond to azimuth, latitude and depth beneath the base of the convection zone. The plane of
z = 0 mimics the bottom of the convection zone where a shear flow u = (U(y, z), 0, 0) imitating
the differential rotation is prescribed by

U = U0 sin (ky). (1)

In a steady-state, penetration of the shear flow into the radiative zone of z > 0 where a uniform
(poloidal) field B0 along the y-axis is present imitates the magnetic tachocline. The shear flow
produces a toroidal x-component B(y, z) of the field so that B = (B(y, z), B0, 0).

The equations for the steady azimuthal components of both magnetic and velocity fields are
then

ν

(
∂2U

∂y2
+

∂2U

∂z2

)
+

B0

µ0ρ

∂B

∂y
= 0, η

(
∂2B

∂y2
+

∂2B

∂z2

)
+ B0

∂U

∂y
= 0, (2)

where ν is the viscosity and η the magnetic diffusivity. The boundary condition for the flow is
given by (1). For the toroidal field we impose the vacuum condition B = 0 at z = 0 motivated
by the very large turbulent magnetic diffusivity inside the convection zone compared with the
microscopic diffusivity of the radiative interior. The remaining two conditions require U and B

to vanish for z → ∞.
The solutions of equations (2) read

U(y, z) = U0 exp (−λ1kz) cos (λ2kz) sin ky,

B(y, z) = √
µ0ρU0Pm1/2 exp (−λ1kz) sin (λ2kz) cos ky,

(3)
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where Pm = ν/η is the magnetic Prandtl number. The parameters

λ1 = (
1 + Ha2

)1/4
cos

(
1
2arc tan(Ha)

)
(4)

and

λ2 = (
1 + Ha2

)1/4
sin

(
1
2arc tan(Ha)

)
(5)

depend on the Hartmann number

Ha = B0

k
√

µ0ρνη
, (6)

which is the basic parameter of the whole theory.
For Ha = 0 the equations give λ1 = 1, λ2 = 0, and (3) converts into the nonmagnetic

solution U = U0e−kz sin ky. The shear flow penetrates deep inside the z > 0 region in this case.
No slender tachocline can thus be formed without magnetic fields.

With solar parameters one finds Ha � 107B0 (B0 in G) just below the convection zone. Very
large Ha can thus be expected. For this case, λ1 = λ2 = √

Ha/2, and the solution (3) provides
two important consequences.

1. The tachocline thickness, Dtach, is strongly reduced compared to its nonmagnetic value, D0,

Dtach = D0

√
2

Ha
�

√
D0

B0
(µ0ρνη)1/4 . (7)

The tachocline is so thin because its extension in the z-direction is only due to viscous stress
while the smoothing in the y-direction is provided by the much stronger Maxwell stress.

2. The amplitude

B = U0

√
µ0ρ Pm (8)

of the toroidal magnetic field in the steady tachocline does not depend on the poloidal field
strength. The ratio of magnetic to kinetic energy in the tachocline equals Pm which is a
small number for microscopic diffusion (see figure 3).

In terms of the Alfvén velocity, VA = B/
√

µ0ρ, one finds

VA =
√

PmU0. (9)

Equation (8) means B � 1000 G for the Sun. After (7) even a weak poloidal field of only
B0 ∼ 10−3 G can reduce Dtach below 5% of the solar radius. Equation (7) also holds when
B0 is of other origin than being a fossil field of the radiative core. If B0 is the poloidal field of
the solar cycle which diffuses into the core due to turbulent mixing (Forgács-Dajka and Petrovay
2002) ν and η must be replaced by their turbulent values. As the magnetic Prandtl number is no
longer small, the resulting toroidal magnetic field after (9) becomes much stronger than 1000 G
and their stability against nonaxisymmetric perturbations after Tayler (1973) and Vandakurov
(1972) must be checked.
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Figure 3. Radial profiles of magnetic diffusivity (15) and viscosity (17)
calculated with the solar structure model by Stix and Skaley (1990).

3. Tachocline model in spherical geometry

The tachocline equations may be formulated for the axial symmetry. In this case the magnetic
field can be expressed in terms of the toroidal field, B, and the potential A of the poloidal field,

B = eφB + ∇ ×
(

eφ

A

r sin θ

)
, (10)

where r, θ and φ are the spherical coordinates and eφ is the azimuthal unit vector. In the next
section we shall show that the meridional flow is only significant for the structure of the poloidal
field. It can thus be neglected in the tachocline equations. Here the only flow is the rotation with
the nonuniform angular velocity �(r, θ).

The equation for the poloidal field decouples from the rest of the equation system. The
poloidal field is discussed in the next section but here the field is assumed as given. The tachocline
is described by the equations for the toroidal field B and the angular velocity �, i.e.

η

r

∂

∂θ

(
1

sin θ

∂ (B sin θ)

∂θ

)
+

∂

∂r

(
η
∂ (Br)

∂r

)
= ∂(A, �)

∂(r, θ)
, (11)

and

ρν

sin3 θ

∂

∂θ

(
sin3 θ

∂�

∂θ

)
+

1

r2

∂

∂r

(
r4ρν

∂�

∂r

)
= 1

µ0r2 sin3 θ

∂(A, Br sin θ)

∂(r, θ)
. (12)

The differential rotation of the convection zone imposes the angular velocity profile on the top
boundary for which the expression

� = 2.9
(
1 − 0.15 cos2 θ

)
µ rad s−1, (13)
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Figure 4. Isolines of the angular velocity inside the radiative core for the poloidal
field model (18) with q = 5 . The outer circle is the base of the convection zone.
Left: Bp = 0, no tachocline. Right: Bp = 0.01 G, tachocline is formed.

at r = Rin by Charbonneau et al (1999a) is used. The remaining boundary conditions are the
vacuum condition for the toroidal field on the top and the regularity conditions for the fields at
r = 0, i.e.

B|r=Rin = B|r=0 = ∂�

∂θ

∣∣∣∣
r=0

= 0. (14)

The diffusivity profiles are shown in figure 3. We do not expect turbulence in the radiative core
and shall use, therefore, the microscopic magnetic diffusivity

η = 1013T −3/2 cm2 s−1, (15)

and the viscosity

ν = νmicro + νrad (16)

with

νmicro = 1.2 × 10−16 T 5/2

ρ
cm2s−1, νrad = 2.5 × 10−25 T 4

κρ
cm2s−1 (17)

(Kippenhahn and Weigert 1994) including molecular (νmicro) and radiative (νrad) parts; where κ

is the opacity.
The equations (11) and (12) with the boundary conditions (13) and (14) provide the

tachocline solutions if the poloidal field is known. For a first view the particular field model

A = Bp
r2

2

(
1 − r

Rin

)q

sin2 θ (18)

with q > 1 is used to probe whether slender tachoclines can be found. Bp is the free amplitude of
the poloidal field. Figure 4 compares the patterns of radiative zone rotation computed with zero
magnetic field and with Bp = 0.01 G. Bp is the maximum strength of the poloidal field inside
the core. The maximum is attained in the core centre. The field in the tachocline region is much
weaker. Even this rather weak field suffices to produce a very strict and slender tachocline.
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Figure 5. Left: depth of meridional flow penetration into the radiative core as a
function of the viscosity below the convection zone. Right: meridional velocity
in the penetration region at 45◦ latitude for ν = 1.3 × 109 cm2 s−1. The vertical
dotted line marks the bottom of the convection zone.

4. Magnetic field confinement by meridional flow

The tachocline model with a prescribed poloidal field is not yet consistent. We have shown
that the model is not very sensitive to the poloidal field amplitude. Even a weak field can
produce tachoclinic structures. The model is, however, very sensitive to the field geometry. A
tachocline can only be produced if the field lines are almost horizontal near the top of the
radiative zone (MacGregor and Charbonneau 1999). Steady rotation and steady magnetic fields
can be realized in highly conducting fluids only with constant angular velocity along the field
lines (Ferraro 1937). Therefore, the open field geometry with field lines crossing the boundary
between convection and radiative zones cannot be appropriate for tachocline formation. The
poloidal field prescribed by equation (18) is of the closed type. The field can, however, change
to an open structure due to magnetic diffusion (Brun and Zahn 2006). We shall show that even a
small penetration of meridional flow from the convection zone into the radiative core produces the
confined field geometry required for the tachocline formation (Kitchatinov and Rüdiger 2006).
If the electric conductivity in the core is high enough then the flow has massive consequences
and the poloidal field lines in the penetration zone become parallel to the meridional flow
(cf Mestel (1999)).

4.1. Penetration of meridional circulation

A global poleward flow observed on the solar surface (Komm et al 1993) persists to a depth of
at least 12 Mm (Zhao and Kosovichev 2004). There must be a return flow towards the equator
somewhere deeper. Theoretical models indeed predict an equatorward flow of ∼10 m s−1 at the
base of the convection zone (Kitchatinov and Rüdiger 1999; Miesch et al 2000; Rempel 2005).
This flow can penetrate beneath the bottom of the convection zone into the radiative core (figure 5).
This penetration has been discussed recently in relation to dynamo models for solar activity
(Gilman and Miesch 2004; Nandy and Choudhuri 2002; Rüdiger et al 2005).

New Journal of Physics 9 (2007) 302 (http://www.njp.org/)
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The penetration results from the viscous drag imposed by the meridional flow at the base of
the convection zone on the fluid beneath, and this is opposed by the Coriolis force. The Ekman
balance leads to the estimation of the penetration depth

Dpen ∼
√

ν

�
, (19)

(Gilman and Miesch 2004). The plot in the left of figure 5 is approximated well by
Dpen � 2.3

√
ν/� or, equivalently, by

Dpen = 1400
√

ν cm, (20)

for solar parameters and ν in cgs.4 The penetration distance is about 100 m for the microscopic
viscosity value and remains shorter than 1000 km for any reasonable value of eddy viscosity.
The distance is always small even compared to the tachocline depth, i.e. Dpen � Dtach.

But this shallow penetration is of high relevance for the geometry of the internal poloidal
field. The ratio of the diffusion time for the magnetic field across the penetration layer
(τdiff = D2

pen/η) to the characteristic time of induction of a latitudinal magnetic field from a
radial one (τs = Dpen/u

m) gives the magnetic Reynolds number

Rm = Dpenu
m

η
� 106 × Pm√

ν
, (21)

where equation (20) for Dpen is applied, um � 10 m s−1 for the meridional velocity is used
and the viscosity is measured in cm2 s−1. For microscopic diffusivities with Pm � 5 × 10−3

(figure 3), this Reynolds number is large, Rm ∼ 103, and it remains above this value with eddy
diffusivities (Pm ∼ 1) up to 106 cm2 s−1. The large ratio (21) means that the latitudinal field
inside the penetration layer is large compared to the radial field component so that the field
has just the confined geometry required for the tachocline formation. With eddy diffusivities of
1012 cm2 s−1 the Reynolds number (21) would sink to unity, so that only in this case the influence
of penetration on the internal field geometry becomes weak.

The ratio of τdiff to the advection time τadv = Rin/u
m,

τdiff

τadv
= Dpen

Rin
Rm � 0.03 Pm, (22)

(with equation (21)) is always small independent of whether microscopic or eddy diffusion
applies. If the tachocline is stable in the hydrodynamic regime (see section 6) the microscopic
diffusivities should be used. The small ratio (22) justifies the neglect of the meridional flow in the
tachocline equation (11). The diffusion time τdiff is so short that the penetration layer cannot be
dynamo-relevant. Possibly, the configuration of the internal poloidal field is the only process for
which the penetration of the meridional circulation into the stable radiative zone is important.

4 Dpen of figure 5 was defined as distance from the convection zone bottom to the position where the meridional
flow falls to zero.
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4.2. A model of the poloidal field

For axisymmetric flows and fields the equation for poloidal magnetic field decouples from the
tachocline equations (11) and (12) reads

∂A

∂t
= −uθ

r

∂A

∂θ
− ur

∂A

∂r
+ η

∂2A

∂r2
+

η

r2
sin θ

∂

∂θ

(
1

sin θ

∂A

∂θ

)
, (23)

where u is the velocity field. The vacuum boundary condition for the poloidal field can be applied
on the top of the radiative zone because of the very large turbulent diffusivity in the convection
zone,

∂A

∂r
=

(
∂A

∂r

)
vac

at r = Rin. (24)

This condition is usually formulated in terms of a Legendre polynomial expansion

A(r, θ) = sin θ

∞∑
n=1

An (r) P1
n (cos θ) ,

(
∂A

∂r

)
vac

= −sin θ

r

∞∑
n=1

nAn (r) P1
n (cos θ) .

(25)

The second boundary condition is A = 0 at r = 0.
The velocity u can be written in terms of the streamfunction ψ as

u =
(

1

ρr2 sin θ

∂ψ

∂θ
, − 1

ρr sin θ

∂ψ

∂r
, r sin θ �

)
. (26)

The meridional flow in the bulk of the radiative core is very slow. The characteristic time of
the Eddington–Sweet circulation exceeds even the solar age (Tassoul 2000). Only the flow
penetrating from the convection zone is thus significant for the tachocline. The streamfunction ψ

of the penetrating flow drops to zero at a small depth of order Dpen inside the core. The function
is, however, finite at the upper boundary of the core where it scales as

ψ (Rin, θ) = umρRinDpenψ̂ (θ) , (27)

where ψ̂ is a dimensionless function of order unity. Here um is the meridional velocity amplitude
at the boundary.

The penetration depth is so small even compared to the tachocline thickness that we are
motivated to integrate equation (23) across the penetration layer instead of resolving this layer
explicitly. Such an integration results in a reformulation of the top boundary condition which
now reads

Rin
∂A

∂r
− Rm

ψ̂ (θ)

sin θ

∂A

∂θ
= Rin

(
∂A

∂r

)
vac

, (28)

where Rm is the magnetic Reynolds number (21) and the rhs is defined in (25). For Rm = 0 the
relation (28) reduces to the vacuum condition (24). The true Reynolds number is Rm ∼ 103.
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Figure 6. Field lines of the longest-living dipolar modes of the poloidal field
for various Rm. The Reynolds number varies as Rm = 0, 10, 1000 from left to
right. The outer circle is the base of convection zone. The decay times in Gyr
are marked at the top.

The penetrating meridional flow is now included via the boundary condition (28) and the
poloidal field can then be found by solving the eigenvalue problem

− A

τ
= η

∂2A

∂r2
+

η

r2
sin θ

∂

∂θ

(
1

sin θ

∂A

∂θ

)
(29)

of the diffusion equation where the eigenvalue τ is the decay time of normal modes. The results
discussed below were obtained in computations with the simplest streamfunction,

ψ̂ (θ) = − sin θP1
2 (cos θ) , (30)

where P1
2 is the normalized Legendre polynomial (Kitchatinov and Rüdiger 2006).

The penetrating flow is expected to confine the internal poloidal field within the radiative
core. The parameter

δφ = max|A (r, θ) |r=Rin

max|A (r, θ) |r�Rin

(31)

can be used to estimate the field confinement. The δφ estimates the ratio of the magnetic flux
through the surface of the core to the characteristic value of the flux within the core.

The linear equations (28) and (29) define the field structure but not its amplitude. The
amplitude Bp of the poloidal field is thus a free parameter of the model.

4.3. Normal modes of the internal field

How the structure of the internal field changes towards a confined geometry for increasing
Rm is shown in figure 6. The internal field computed with Rm = 0 has an open structure.
Even a moderate flow with Rm = 10 already changes the field considerably towards a confined
geometry. The internal field for the solar value Rm = 103, also shown in figure 6, is almost totally
confined. Less than 1% of magnetic flux belongs to ‘open’ field lines in this case (figure 7).

Figure 6 displays the most slowly decaying dipolar modes. Other normal modes have
smaller scales in radius or in latitude and also shorter decay times. The three modes following
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Figure 7. Confinement parameter (31) for the longest-living dipolar modes as a
function of the magnetic Reynolds number Rm.

Figure 8. Normal modes of the internal field following the dipolar mode of
figure 6 for shorter lifetimes. The decay times (in Gyr) are shown at the top.
The confinement parameter (31) varies as 0.0051, 0.0073 and 0.0026 from left
to right, Rm = 1000.

the longest-living dipole ordered for decreasing lifetimes are shown in figure 8. The higher-order
modes also have a confined structure. The decay times of the given normal modes are long
enough to allow tachocline computations with steady poloidal fields.

For sufficiently high Rm the direction of the penetrating meridional flow does not play a
role. Also a flow from the equator to the poles makes efficient confinements of the internal field.
The effect can be understood as a magnetic field expulsion from the region of circulating motion
(Weiss 1966). The transition from convection zone to radiative core is treated as a sharp boundary
in our model. A smooth decrease of the eddy diffusivity in the convection zone towards its
base may also contribute to the field confinement via the diamagnetic effect of inhomogeneous
turbulence (see Krause and Rädler (1980); Rüdiger and Hollerbach (2004)).
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Figure 9. Angular velocity isolines in the radiative core computed with dipolar
internal fields for Rm = 1000 for various poloidal field amplitudes (marked at
the top).

5. Tachocline models

Figure 9 shows the angular velocity distributions inside the solar interior computed with dipolar
eigenmodes of the internal field of various strengths. The dependence of the tachocline thickness
on the poloidal field amplitude is shown in figure 10 where Dtach is defined as the depth of
exponential decrease of the equator-to-pole difference in the angular velocity. Even such a weak
field of 1 mG can produce a tachocline structure. The depth Dtach drops below 5% of the solar
radius for Bp > 5 mG.

The dependence of the tachocline thickness on the amplitude of the poloidal field is given in
figure 10. It is very close to the estimate (7). The simulations also confirm the above finding that
the toroidal field amplitude, Bt � 100 · · · 200 G, hardly varies while the poloidal field amplitude
changes by several orders of magnitude. Figure 10 suggests that the poloidal field amplitude
should be about 8 mG to reproduce the observed small value of the tachocline thickness.

Also the higher-order modes given in figure 8 produce tachoclinic structures provided that
the fields have the confined geometry which is always the case for Rm � 100.

Our results are rather robust. Figures 9 and 10 are valid for Rm = 1000. Already Rm = 100
suffices for the tachocline formation. For smaller Rm the poloidal field remains ‘too open’ for the
formation of a tachocline. In other words, a meridional flow with minimum 1 m s−1 amplitude
at the base of the convection zone is necessary for the magnetic tachocline theory to work. The
very shallow penetration of the meridional flow from the convection zone into the radiative core
influences the internal field geometry strongly enough and in such a way that the field becomes
appropriate for the tachocline formation. We suggest that a layer thinner than 1 Mm beneath
the convection zone where a meridional flow of 1–10 m s−1 enters the solar radiative interior is
responsible for the existence of the solar tachocline.

6. Hydrodynamic stability: the Watson approach in 3D

Note that latitudinal differential rotation can be unstable even without magnetic field if the shear
∂�/∂θ is positive and sufficiently strong (Watson 1981). The critical value of 29% latitudinal
shear found by Watson for the nonaxisymmetric mode with m = 1 resulted from a theory with
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Figure 10. The fractional tachocline thickness as a function of the amplitude, Bp,
of the internal poloidal field, Rm = 1000.

strong radial stratification but without any radial velocity. The value has also appeared in a 3D
numerical consideration of marginal stability of a shell rotating fast enough with the rotation law

� = �0

(
1 − a cos2 θ

)
(32)

but of incompressible material (Arlt et al 2007). The critical shear increases to higher values,
however, if the real rotation law (including its radial variations) of the solar tachocline is adopted.
In this case the superrotation observed in the equatorial region of the Sun strongly stabilizes the
shear instability.

In the present section the 2D approach by Watson is extended to 3D, i.e. to the inclusion
of finite radial velocities and finite radial wavelengths. The stabilizing effect of a subadiabatic
stratification is characterized by the buoyancy frequency N with

N2 = g

Cp

∂S

∂r
, (33)

where S = Cv log (P/ργ) is the specific entropy of ideal gas. The Brunt–Väisälä frequency N

in the solar radiative core is very large compared to � (see figure 11). The larger the N the more
the radial fluctuations are suppressed by the ‘negative’ buoyancy force. Radial velocities should
therefore be small. Our stability analysis is local in the radial dimension, i.e. we use Fourier
modes exp (ikr) in the short-wave approximation kr 	 1. The analysis remains, however, global
in horizontal dimensions.

Instabilities of rotating shear flows are slow compared to characteristic times of the
compressive p-modes. Their growth rates are of order � or smaller. In the short-wave
approximation the velocity field can be assumed as divergence-free (div u′ = 0). The next
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Figure 11. The buoyancy frequency (33) in the upper radiative core following
the solar model of Stix and Skaley (1990).

assumption concerns the pressure. Local thermal disturbances occur at constant pressure so
that ρ′/ρ = −T ′/T or S′ = −Cpρ

′/ρ where perturbations have been marked by dashes. This
assumption is again justified by the incompressible nature of the disturbances (Acheson 1978).

We start from the linearized equations for the velocity disturbances, i.e.

∂u′

∂t
+ (u · ∇) u′ +

(
u′ · ∇)

u = −
(

1

ρ
∇p

)′
+ ν�u′ (34)

and entropy disturbances

∂S′

∂t
+ u · ∇S′ + u′ · ∇S = Cpχ

T
�T ′. (35)

The basic flow is the rotation law (32).
The perturbations of velocity are now expressed in terms of scalar potentials, i.e.

u′ = er

r2
LP − eθ

r

(
1

sin θ

∂T

∂φ
+

∂2P

∂r∂θ

)
+

eφ

r

(
∂T

∂θ
− 1

sin θ

∂2P

∂r∂φ

)
(36)

with the operator

L = 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
. (37)

The identities

r
(
r · ∇ × u′) = LT, r3

(
r · ∇ × ∇ × u′) = −

(
L + r2 ∂2

∂r2

)
LP (38)
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are used to reformulate the equations in terms of the potentials. It is a standard procedure.
The radial component of the curled equation (34) gives the equation for the potential T of the
toroidal flow. The radial component of the same equation curled twice gives the equation for
the poloidal flow.

The perturbations are considered as Fourier modes in the form of exp (i(−ωt+mφ+kr)). For
an instability the eigenvalue ω must possess a positive imaginary part. Only the highest order
terms in kr for the same variable have been retained. The pressure term in the poloidal flow
equation can be transformed as

r · ∇ × ∇ ×
(

1

ρ
∇p

)′
= −r · ∇ ×

(
1

ρ2
(∇ρ) × (∇p)

)′

= r

Cp
· ∇ ×

(
1

ρ
(∇S) × (∇p)

)′
= − r

Cp
· ∇ × (

g × ∇S′) = g

rCp
LS′. (39)

In order to normalize the variables the time is measured in units of �−1
0 and the velocities are

scaled with r�0. The remaining dimensionless variables are

V = k

�0r2
P, W = 1

�0r2
T, s = ikrg

CprN2
S′, �̂ = �

�0
. (40)

Now the equation for the poloidal flow reads

ω̂ (LV) = −λ̂2 (Ls) − i
εν

λ̂2
(LV) − 2µ�̂ (LW) − 2

(
1 − µ2

) ∂
(
µ�̂

)
∂µ

∂W

∂µ
− 2m2 ∂�̂

∂µ
W

+ m�̂ (LV) + 2m
∂
(
µ�̂

)
∂µ

V + 2m
(
1 − µ2

) ∂�̂

∂µ

∂V

∂µ
(41)

with µ = cos θ and the normalized radial wavelength

λ̂ = N

�0kr
. (42)

The first term on the rhs of (41) describes the stabilizing effect of the subadiabatic stratification.
It vanishes for small λ̂. Apart from this ‘negative’ buoyancy term, the wavelength only appears
in the diffusive terms. The second term of the rhs includes the action of viscosity. Here and in
the following we have used the quantities

εν = νN2

�3
0r

2
, εχ = χN2

�3
0r

2
, (43)

for the dissipation parameters ν and χ. Their numerical values for the solar tachocline are

εν � 2 · 10−10, εχ � 10−4. (44)

The third and the following terms in the right of (41) describe the influences of the basic rotation.
Note that only latitudinal derivatives of � appear.
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The complete system of equations also includes the equation for the toroidal flow,

ω̂ (LW) = −i
εν

λ̂2
(LW) + m�̂ (LW) + (LV)

∂

∂µ

((
1 − µ2

)
�̂

)
− mW

∂2

∂µ2

((
1 − µ2

)
�̂

)

+

(
∂

∂µ

((
1 − µ2

)2 ∂�̂

∂µ

)
− 2

(
1 − µ2

)
�̂

)
∂V

∂µ
, (45)

and the entropy equation

ω̂s = −i
εχ

λ̂2
s + m�̂s + LV. (46)

For the Reynolds number

Re = �r2

ν
, (47)

follows

Re = N2/�2

εν

, (48)

which with (44) is very large.
For positive latitudinal shear a in (32) the modes A1 and S2 become unstable for sufficiently

large critical values acrit (we use the notations Sm and Am for the eigenmodes with symmetric
and antisymmetric profiles of W relative to the equator, m is the azimuthal wave number).
Figure 12 shows the dependence of the acrit on the normalized wavelength λ̂. For large enough
radial wavelengths the 29%-value of the Watson theory is reproduced. It is reduced, however,
to a = 0.21 (21%) in our 3D calculations. We see that in contrast to the Watson approach the
short radial scales rather than the long radial scales are preferred by the instability. The minimum
acrit appears for λ̂ � 0.6, so that the characteristic wavelength of λ � 6 Mm results as the most
unstable mode of the solar tachocline. For shorter scales the instability for m = 1 disappears but
modes with higher m remain still unstable for basically higher latitudinal shear a.

7. Concluding remarks

The presence of a meridional flow with an amplitude of a few metres per second at the bottom
of the convection zone is shown as necessary for the magnetic tachocline model. The flow
provides the confined geometry of the internal magnetic field (with field lines parallel to the
outer spherical boundary) which is necessary for the tachocline formation. The bottom flow is
also a key ingredient of advection-dominated dynamo models for the solar cycle (see Rüdiger
and Hollerbach (2004) for detailed references). The flow is indeed predicted theoretically but its
existence is not yet confirmed by observations. We hope, of course, that helioseismology will
soon probe the deep meridional flow.

The polar cusps in the tachoclines of figure 9 are consequences of the assumed axisymmetry.
This assumption may not be realistic. The penetrating meridional flow is, however, expected to
confine even nonaxisymmetric fields to the core so that the fields should also be able to produce
tachoclinic structures.
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Figure 12. Stability map for the latitudinal differential rotation law (32). Most
unstable are the perturbation modes with the vertical scale λ̂ � 0.6. The critical
magnitude of latitudinal shear is reduced to 0.21 compared to the 0.29 value of
the large-wavelength limit.

The tachocline computations result in toroidal fields of 100–200 G, much stronger than
the original poloidal fields. These toroidal fields can be subject to current-driven pinch-type
instabilities. Hence, the question is whether the steady axisymmetric solutions of our model
are stable against all the nonaxisymmetric disturbances. The threshold field strength for the
instability were estimated to be of order 102···3 G (Arlt et al 2007; Kitchatinov and Rüdiger 2007;
Spruit 1999) what is somewhat larger than the field amplitudes in our model.

It is important for the tachocline model that the magnetic Reynolds number (21) is large.
This is true for microscopic diffusivities or for not too large eddy diffusivities up to about
108 cm2 s−1. The tachocline should, therefore, be stable or only mildly turbulent to allow poloidal
field confinement by meridional flow. Some low level of turbulence may, however, even be
necessary. The magnetic field is so efficient in producing tachocline structures that poloidal
fields of only 1 G already lead to the tachocline thickness smaller than 1% of the solar radius.
It is, however, observed that Dtach � 0.04R�. Hence, the internal poloidal field may indeed be
small (Kitchatinov et al 2001) or, if it is not, some kind of instability prevents the tachocline
thickness to reduce below the helioseismologically detected level.

The stability issue is a clear perspective for future tachocline studies. As a corresponding
application we have extended in the preceding section the 2D theory of Watson (1981) for the
hydrodynamic instability of latitudinal differential rotation to a 3D theory which allows us to
find the critical values of the radial wavelengths. Now the critical wavelength of the unstable
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mode with m = 1 is only 6 Mm while the critical latitudinal shear (see (32)) is reduced from
29 to 21%. This (linear) theory works with a hydrodynamic Prandtl number of order 10−6 and a
very high Reynolds number of order 1015.
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