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Abstract

We study the behavior of systems that can be described as ensembles of in-
terconnected storage particles. Our examples concern the storage of lithium in
many-particle electrodes of rechargeable lithium-ion batteries and the storage of
air in a system of interconnected rubber balloons. We are particularly interest-
ed in those storage systems whose constituents exhibit non-monotone material
behavior leading to transitions between two coexisting phases and to hysteresis.
In the current study we consider the case that the time to approach equilibrium
of a single storage particle is much smaller than the time for full charging of the
ensemble. In this regime, the evolution of the probability to find a particle of the
ensemble in a certain state may be described by a nonlocal conservation law of
Fokker-Planck type. The resulting equation contains two parameter which control
whether the ensemble transits the 2-phase region along a Maxwell line or along
a hysteresis path, or whether the ensemble shows the same non-monotone be-
havior as its constituents.

1 Introduction

Reversible storage systems are of key importance in modern energy technologies.
They serve to store electrical or chemical energy for later use, in particular in mobile
applications. In this study we consider storage systems that consist of an ensemble
of many interconnected storage particles. The technological applications concern en-
sembles of nano-sized crystalline solids, where matter is stored on lattice sites. Mod-
ern many-particle electrodes of lithium-ion batteries belong to this class of storage
systems. The storage of hydrogen in certain metals provides a further example.

Our first goal is to develop a generic model that is capable of simulating the evolu-
tion of many-particle storage systems during slow loading respectively unloading. We
apply this model to FePO4 electrodes of lithium-ion batteries. Moreover, in order to il-
lustrate the crucial behavior of many particle systems we also consider a macroscopic
system of interconnected rubber balloons. Such a system may serve to store air and
exhibits a similar behavior as the ensemble of nano-sized FePO4 particles.

Rechargeable lithium-ion batteries are the most promising storage devices to store
and convert chemical energy into electrical energy and vice versa [1]. The basic
functionality of a lithium-ion battery relies on the system anode-cathode-electrolyte-
separator. We focus on electrodes that consist of a powder of 1010 - 1017 nano-
particles on a substrate. These nano-particles serve to store lithium atoms reversibly,
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and the electrode acts as a cathode during the discharging of the battery. For mod-
elling and simulation we consider a half cell consisting of a many-particle LiyFePO4

electrode against metallic Li within an electrolyte of infinite conductivity. The storage
particles of a fully discharged battery consists of LiFePO4, i.e. in this state the lithium
mole fraction of a storage particle is y = 1, whereas we have y = 0 in the fully charged
battery.

During discharging of the battery, the interstitial lattice sites of the FePO4 crystal are
filled up with lithium atoms and these are released again during charging. These pro-
cesses are accompanied by quite large mechanical deformations, because the lithium
atoms need more space than it is available by the interstitial lattice sites, leading to a
maximal relative change of the crystal volume of about 6%.

The characteristics of charging and discharging of a lithium-ion battery is represented
in the voltage-capacity diagram. In the half cell, the voltage U is related to a mean
chemical potential, 〈µ〉, by

U = −
〈µ〉
e0

+U0. (1)

The quantity 〈µ〉 will be defined below and calculated within the model, e0 denotes the
electric charge of an electron, and U0 is the cell voltage. The capacity is proportional
to the contained charge of the cell and the charge is proportional to 1− q, where q
represents the filling degree of the FePO4 particles, i.e. the total amount of stored
lithium.

The Figure 1 shows the typical behavior of the half cell. The time for full charging is 20
hours and hence very large with respect to the diffusional relaxation time of a single
storage particle, which is about 1 second. The voltage-capacity diagram reveals two

Figure 1: Voltage versus capacity of a FePO4 half cell [6].

crucial phenomena. We observe hysteretic behavior and horizontal branches, indicat-
ing a phase transition in the many-particle system during charging and discharging.
The main objective of this study is the simulation of the voltage-capacity diagram and
to explain the origin of the two phenomena.

Classically hysteresis may be related to variations of charging rate, particles size,
electrode thickness etc. In this context we mention the electrode systems TiO2 [10],
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LiFeSiO4 [19], LiCoO2 [13] and LiFePO4 [27]. These mechanisms are called classi-
cal because they lead to a decrease of the overvoltage by decreasing the current
density or by increasing the impedance due to charge transport. However, there is
a further non-classical hysteresis inducing phenomenon, that was first observed for
the LiFePO4 electrode by M. Gaberšček et al. [6]. At a first glance it should be ex-
pected that the overvoltage due to classical hysteretic effects should tend to zero for
decreasing current, whereas the LiFePO4 electrode exhibits a finite voltage gap for
zero current. We will show that this kind of hysteresis is induced by the configurational
entropy of a many-particle system and appears only for slow loading when there is
sufficient time to exchange lithium atoms between the storage particles.

The second characteristic property of many-particle electrodes is a phase transition
during loading-unloading processes and we now summarize the ongoing debate on
this matter. Based on experimental studies of LiyFePO4 bulk matter, Yamada et al. [27]
suggest that in a certain region of the total lithium mole fraction y two phases coexist.
These phases are called α- and β -phase, and correspond to high and low lithium mole
fraction, respectievly. The horizontal branches from Figure 1 indicate that the same
phenomenon also occurs in a system of nano-sized LiyFePO4 particles. In fact, it was
assumed that there is likewise a 2-phase region in the single particle, and the simplest
model setting is the core-shell model that was first suggested by Padhi et. al. [20]: In
the 2-phase region a single spherical storage particle consists of an inner core and an
outer shell. The core-shell model is established and applied to the process of insertion
and extraction of lithium by Srinivasan and Newman [22, 23] within a sharp interface
model. Moreover, Ceder et al. [9] formulate and exploit a phase field model of Cahn-
Hilliard type, and Dreyer et. al. [4] use the core-shell model to take the coupling of
diffusional and mechanical phenomena into account. In [26] Wagemaker et. al. study
various different morphologies of a 2-phase system within a single storage particle.

However, careful studies on the coexistence of two phases within a single storage
particle recently gave rise to some doubts concerning the stability of two coexisting
phases. Wagemaker et al. [24] investigated for lithiated anatase TiO2 the dependence
of the phase diagram on the particle size. If the particles become too small, the for-
mation of two phases is energetically unfavorable due to the high interfacial energy
between the different intercalated phases. Corresponding experiments with LiFePO4

by Delmas and his group [2] lead to similar results. They report that even in larger
particles two coexisting phases can not be observed. Instead Delmas et al. observe
homogeneous particles that are either in the high or in the low lithium mole fraction
phase. Thus the horizontal branches cannot explained anymore by two coexisting
phases within the single particles. Moreover, Delmas and his group established the
domino cascade model whereupon the charging/discharging process proceeds se-
quentially, i.e. particle-by-particle or in other words: one after the other.

In collaboration with J. Jamnik, J. Moškon and M. Gaberšček from the National Insti-
tute of Chemistry Slovenia who carried out new experiments, we establish in [5] and
[6] the many-particle model to explain and simulate both the voltage-charge diagram
from Figure 1 and the finite hysteresis gap for zero current from Figure 2.
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Figure 2: Current versus voltage at charge state of 80mAhg−1 of a FePO4 half-cell [6].

The many-particle model considers an electrode consisting of N interconnected FePO4

storage particles for insertion and removal of lithium atoms. It relies on three essential
assumptions:

1. The chemical potential of lithium in LiyFePO4 , is given by a non-monotone function
of y. 2. The charging-discharging rate of a many-particle ensemble is small with re-
spect to the diffusional relaxation time of a single particle. 3. On this slow time scale
the lithium distribution is homogeneous within each particle.

The first assumption is motivated by the observed miscibility gap in experiments with
LiyFePO4 bulk matter. Relying on estimates from [9], the diffusional relaxation time
of nano-particles is of the order 1 s, but the usual charging times are currently much
larger than this value. The third assumption on the homogeneity of the lithium distri-
bution inside the storage particles is intimately related to a stability problem. Relying
on a preliminary study, we conjecture that the 2-phase region of a single storage par-
ticle is unstable due to the high interfacial energy between two adjacent phases, so
that there is a rapid transition through that region. Therefore, on the slow time scale
of charging/discharging we expect that all particles are homogenous. This explains,
in particular, why Delmas et al. [2] only observed homogenous particles and no par-
ticles with two phases. Between two subsequent observations of the morphologies
of the particles in the Delmas experiment there is sufficient time for relaxation of the
particles.

However, if the loading time of a many-particle electrode is comparable with the diffu-
sional relaxation time of a single particle, then the coexistence of two phases within a
single particle becomes observable and the many-particle model with homogeneous
storage particles becomes inadequate. This situation will be studied in a forthcoming
paper.

The many-particle electrode has a nice analogon represented by a system of inter-
connected spherical rubber balloons that can be loaded with air via a pressure vessel.
The two systems evolve in a similar way because in correspondence to the many-
particle electrode, the pressure difference across the balloon membrane is given by
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a non-monotone function of the balloon radius. For this reason also the rubber bal-
loon system exhibits phase transitions and hysteresis during the loading-unloading
process.

In their paper on rate independent hysteresis from 2001, Truskinovski and Puglisi [21]
studied a closely related subject with the objective to explain hysteretic phenomena
in shape memory alloys on a microscopic basis. The microscopic model consists of a
one-dimensional chain of N oscillators with a non-monotone stress-strain character-
istic that intimately corresponds to the non-monotone chemical potential- lithium mole
fraction characteristic. Differences of the two studies concern the prescribed side con-
ditions during the cycling of the hysteresis loop and the modelling of the evolution law,
see also Mielke and Truskinovski [15]. In order to reduce the necessary assumptions
that are needed in a quasi-static treatment of the problem, the authors establish an
evolution law, that provides the oscillators in addition to the non-monotone stress-
strain characteristic with viscous elements and stochastic behavior. Compared to this
strategy, our approach is quite simple as it relies on the configurational entropy.

The analysis of a many particle system, where each particle is equipped with unstable
states between two stable states, has been started already in 1982, when Dreyer,
Müller, and Strehlow [7] investigated the equilibria of two connected spherical rubber
balloons. This problem was later generalized to N > 2 connected balloons by Kitsche
[11, 12], whose results are in complete analogy to [21] and our findings.

The paper is organized as follows:

In Chapter 2 we develop a general setting to describe the evolution of a generic stor-
age systems that consists of a large number of storage particles whose thermody-
namic states are described by a single variable ξ (t). In the limiting case of infinitely
many particles we introduce a probability density w(t,ξ ) to find at time t a storage
particle in the state ξ . For given filling degree q(t) of the ensemble, the evolution law
for w(t,ξ ) turns out to be a non-local and non-linear Fokker-Planck equation.

Chapters 3 and 6 address the constitutive theory for two applications:

1 The storage problem for a many-particle electrode of a rechargeable lithium-ion
battery. Here we focus on FePO4 storage particles and describe their materi-
al behavior within the simplified setting of homogeneous particles. In particular
we ignore the orthorhombic olivine crystal symmetry. In this case the thermo-
dynamic behavior of a single storage particle is described by a non-monotone
chemical potential function that depends only on the lithium mole fraction of the
particle.

2 A system of interconnected spherical rubber balloon that serves to store air
supplied from a pressure vessel. The analogy to the many-particle electrode
results from the fact that the pressure difference across the balloon membrane
depends on the strain in a non-monotone manner.
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In Chapters 4 and 7 we apply the generic storage model to the two applications and
identify the statistical variable as the lithium mole fraction of a single storage particle
in the battery case, and as the strain of a single rubber balloon in the second example.
The evolution equations for both storage systems are then described in Chapters 5
and 8.

In Chapter 9 we present detailed numerical simulations for a many-particle electrode
during loading and unloading. In Chapter 10 we then compare simulations of the
rubber balloon systems with experimental results.

2 General model of many-particle storage systems

2.1 Evolution of Energy and Entropy in an Open System

In what follows we consider a generic system Ω with volume V that may exchange
heat, mechanical work and matter with the environment via its surface ∂Ω. We as-
sume that ∂Ω = ∂Ωm∪∂Ωex, where ∂Ωm denotes a material part which is subjected
to a constant pressure p0. ∂Ωex, however, is not material but allows the transfer of
matter equipped with the enthalpy per molecule hex at a rate dNex/dt, where Nex

gives the number of stored molecules at time t. The energy E of Ω evolves according
to the conservation law of energy, which reads

dE
dt

= Q̇− p0
dV
dt

+hex
dNex

dt
. (2)

Next we assume that the temperature T is constant in Ω∪∂Ω, and this can be guar-
anteed by choosing an appropriate heat power Q̇. Under this assumption the entropy
S of Ω satisfies the inequality

dS
dt

≥
Q̇
T

+ sex
dNex

dt
, (3)

where sex abbreviates the entropy per molecule of the supplied matter. Of course, in
equilibrium we have an equality sign in (3). More details about the fundamental laws
(2) and (3) and can be found in the textbook [17].

2.2 The fundamental inequality for isothermal processes

By combination of (2) and (3) we may eliminate the heat power Q̇ to obtain the funda-
mental thermodynamic inequality for isothermal processes

dA

dt
≤ gex

dNex

dt
with A = E −T S + p0V and gex = hex −T sex . (4)

The quantity A represents the total free energy of the system and Ψ = E −T S de-
notes its Helmholtz free energy including the kinetic energy, which, however, will be
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ignored in this study. The Gibbs free energy per particle of the incoming matter is
abbreviated by gex. The Helmholtz free energy is a constitutive quantity that will be
explicitly calculated from the constitutive models for the two cases at hand in Chapters
3 and 6. Later on we will exclusively study processes with prescribed rate dNex/dt,
and in this case gex must be determined within the model.

2.3 General representation of the total free energy

The storage particles of the ensemble are indexed by l ∈ {1,2, ...,N}. Their essential
properties are embodied by two assumptions: (i) The particles are homogeneous on
the time scale of slow charging of the storage system. (ii) The thermodynamic state of
any particle l is sufficiently described by a single time dependent function ξl(t)∈ [a,b].

The homogeneity assumption restricts the model to slow charging, recall the detailed
discussion in the Introduction and see [6]. The description of a particle by a single
variable, viz. ξ , relies on the fact that mechanical equilibrium is established at any
instant of time. In this case we can solve the mechanical problem in advance, so
that we can eliminate the mechanical variables as functions of ξ . The fundamental
inequality (4) then reflects that the ensemble approaches the phase equilibrium during
the processes of charging and discharging. Moreover, due to the second assumption,
the free energy of particle l can be represented by a function Al = A(ξl), where we
restrict to the case that each particle is described by the same function A.

The total free energy of the storage system has two contributions. The first one is the
sum of the free energies of the particles, and the second one is the configurational
entropy, which takes care of the interchange of matter between the storage particles
due to fluctuations. We write

A =
N

∑
l=1

A(ξl)−T Sconf. (5)

As a preparation to calculate Sconf we decompose the interval [a,b] into N subintervals
indexed by α ∈ {1,2, ...,N} of length (b−a)/N, and denote by Zα the number of par-
ticles of the ensemble with states in the subinterval iα = [ξα ,ξα+1]. In order to control
the amount of stored molecules we introduce the filling degree of the storage system
by q ≡ Nex/(N ¯N ), where ¯N denotes a constant characteristic particle number of the
system. In this setting we now characterize a thermodynamic state of an ensemble
with N storage particles by the sequence {Z1,Z2, ...,ZN} that satisfies the conditions

1 =
1
N

N

∑
α=1

Zα , and q =
1
N

N

∑
α=1

G(ξα)Zα , (6)

where G(ξα) is related to the number of stored molecules in the subinterval iα and
will be specified below.
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Due to fluctuations the interconnected storage particles exchange the stored molecules,
so that a given sequence {Z1,Z2, ...,ZN} can be realized in many ways. The number
R of realizations is calculated according to

R =
N!

Z1!Z2!...ZN !
, (7)

and the configurational entropy follows from Boltzmann’s formula S = k logR, where k
denotes the Boltzmann constant.

After rearranging the A(ξl)’s in (5) and using Stirling’s formula for large numbers we
obtain a general representation the total free energy of the ensemble

A =
N

∑
α=1

A(ξα)Zα + kT
N

∑
α=1

Zα log
(Zα

N

)

. (8)

We divide (8) by NE0, where E0 is a constant energy to be chosen below, and set
F = A/E0, ν2 = kT/E0, and substitute A /(NE0) → A . This gives

A =
1
N

N

∑
α=1

F(ξα)Zα +ν2 1
N

N

∑
α=1

Zα log
(Zα

N

)

. (9)

The probability Wα to find a storage particle in the subinterval iα is given by Wα =
Zα/N and its density wα is defined by Wα = wα∆ξα = wα · (b−a)/N. Hence we have
Zα = Nwα∆ξα . We now pass to the limit N → ∞ and substitute wα → w(t,ξ ). The free
energy of the whole storage system can then be written as

A (t) =
∫ b

a

(

F(ξ )+ν2 logw(t,ξ )
)

w(t,ξ )dξ . (10)

2.4 The evolution of the probability density

In this section we derive an evolution equation for the probability density w(t,ξ ) ≥
0. This equation must satisfy the fundamental inequality (4) as well as the two side
conditions (6). With Λ = (gex

¯N )/E0 these read in the continuous setting

dA

dt
−Λ

dq
dt

≤ 0, 1 =
∫ b

a
w(t,ξ )dξ , q(t) =

∫ b

a
G(ξ )w(t,ξ )dξ . (11)

Now we insert the mean values (10) and (11)3 into the inequality and obtain
∫ b

a

(

F(ξ )−Λ(t)G(ξ )+ν2(1+ logw(t,ξ )
)

)∂w(t,ξ )

∂ t
dξ ≤ 0 . (12)

In order to satisfy the normalization condition (11)2 as well as the positivity condition
w ≥ 0 we assume that w(t,ξ ) satisfies a conservation law of the type

∂w(t,ξ )

∂ t
+

∂υ(t,ξ )w(t,ξ )

∂ξ
= 0 (13)

8



with boundary conditions υ(t,a)w(t,a) = υ(t,b)w(t,b) = 0. We now determine the ve-
locity function υ(t,ξ ) such that the inequality (12) is satisfied. To this end we eliminate
the time derivative in (12) by means of (13), and using integration by parts we find

∫ b

a

(

(

F ′(ξ )−Λ(t)G′(ξ )
)

+ν2∂ log(w(t,ξ ))

∂ξ

)

υ w(t,ξ ) dξ ≤ 0 . (14)

The simplest possibility to satisfy the inequality (14) is obviously given by

τυ =
(

ΛG′(ξ )−F ′(ξ )
)

−ν2∂ log(w(t,ξ ))

∂ξ
, (15)

where τ > 0 is a positive phenomenological constant, which can be interpreted as the
relaxation time of the ensemble.

Finally, combining (13) and (15) gives the desired evolution equation for the probability
density w(t,ξ ). It reads

τ
∂w(t,ξ )

∂ t
+

∂
∂ξ

(

(

Λ(t)G′(ξ )−F ′(ξ )
)

w(t,ξ )
)

= ν2∂ 2w(t,ξ )

∂ξ 2 (16)

and fits into the the class of Fokker-Planck equations.

It remains to guarantee the side condition (11)3 for a prescribed charging rate, i.e.
to determine the unknown function Λ(t). At first we use a generic function m(ξ ) to
introduce the mean value

〈m〉(t) =
∫ b

a
m(ξ )w(t,ξ )dξ . (17)

Then we multiply (16) by m(ξ ) and integrate with respect to ξ . This gives

τ
d〈m〉

dt
−Λ〈G′m′〉+ 〈F ′m′〉 = ν2〈m′′〉−ν2(m′(b)w(b)−m′(a)w(a)

)

. (18)

The special choice m = G leads to the following relation between the charging rate
and the unknown function Λ(t)

τ q̇−Λ〈G′G′〉+ 〈F ′G′〉 = ν2〈G′′〉−ν2(G′(b)w(b)−G′(a)w(a)
)

, (19)

which can be solved for Λ(t).

2.5 Summary of the general model

We propose a general model of a storage system that consists of an ensemble of
many interconnected storage particles. The thermodynamic state of a single storage
particle is described by a single variable ξ ∈ [a,b]. Any particle of the ensemble is
equipped with a free energy function F(ξ ). The prescribed mean number of stored
molecules in a particle is represented by the mean value of a given function G(ξ ). The
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statistical behavior of the ensemble is represented by a probability density w(t,ξ )≥ 0,
whose initial- and boundary value problem reads

w(0,ξ ) = w0(ξ ), υ(t,a)w(t,a) = υ(t,b)w(t,b) = 0,

∂w(t,ξ )

∂ t
+

∂υ(t,ξ )w(t,ξ )

∂ξ
= 0,

τυ(t,ξ ) =
(

Λ(t)G′(ξ )−F ′(ξ )
)

−ν2∂ log(w(t,ξ ))

∂ξ
.

(20)

The problem is non-local and non-linear because the function Λ(t) must be calculated
from (19).

By means of the general model we will study now a many-particle electrode of a
rechargeable lithium-ion battery and for illustration we consider a system of rubber
balloons that behaves similar. It will turn out that the properties of the model are
simply controlled by the two constant parameter τ and ν2 that both have an intuitive
meaning.

3 Constitutive model 1: Many-particle electrode of a
lithium-ion battery

3.1 General properties of many-particle electrode material

We study the electrode of rechargeable lithium-ion batteries that acts as a cathode
during discharging of the battery, Figure 3. In modern batteries the cathode consists
of a powder of 1010 - 1017 nano-particles on a substrate. Here we consider FePO4

particles which have orthorhombic olivine symmetry. There is a sublattice whose sites
may be empty or occupied by lithium atoms. To each unit of FePO4 there corresponds
one single site in the sublattice. The sublattice of the fully charged battery is empty
whereas the storage particles consist of LiFePO4 in the complete discharged state of
the battery.

3.2 Thermodynamic state of a storage particle

On the time scale of experiments with an ensemble of storage particle, which is much
larger than the diffusional relaxation time of a single nano-particle, only homogeneous
particles have been observed, see [2, 24]. This fact motivates the essential assump-
tion of the thermodynamics in this paper: The particles are assumed to be homoge-
neous.

The number NM of FePO4 units, which form the matrix lattice, is fixed. On the sub-
lattice of a particle we have NLi lithium atoms and NV empty sites which we call
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Figure 3: Half cell with many-particle electrode.

vacancies. These do not have mass or momentum but they are carrier of energy and
entropy. Since there is a single sublattice site to each FePO4 unit, we have the side
condition

NM = NLi +NV. (21)

Thus for given temperature T , the basic variables of a storage particle are its volume
V and the mole numbers NM and NLi. For the local description we introduce the mole
densities nM, nLi and nV which have units mole/m3. Note that nM changes because
the volume V may change, whereas NM is constant.

Further quantities, which are related to the basic variables, are the mass density ρ
with ρ = mMnM + mLinLi = nM(mM + mLiy), where mM and mLi are the molecular
masses of FePO4 and Li, respectively, and y = nLi/nM gives the lithium mole fraction.

3.3 Free energy density, chemical potentials, pressure, Gibbs equa-
tion and Gibbs-Duhem equation

We denote the free energy density of a storage particle by ρψ , where ψ is the specific
free energy.

The specific free energy is given by a constitutive function that relates ψ to the tem-
perature T , which is a constant here, and to the mole densities nLi, nV of lithium and
vacancies. Since we have nM = nLi +nV, we may change variables from nLi, nV to y,
nM:

ψ = ψ(T,nLi,nV) = ψ̃(T,y,nM). (22)

The free energy density satisfies the Gibbs equation and the Gibbs-Duhem equation,
see [3] and [16]. These read

dρψ = −ρsdT + ∑
a∈(Li,V)

µadna and p = −ρψ + ∑
a∈(Li,V)

µana, (23)

where the newly introduced quantities are the entropy density ρs, the chemical po-
tentials µa and the pressure p. From (23) and by an direct calculation we obtain the
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relations

µa =
∂ρψ
∂na

, µLi −µV = mLiψ̃ +(mM +mLiy)
∂ψ̃
∂y

, p = −ρψ̃ +nM
∂ρψ̃
∂nM

. (24)

3.4 Explicit constitutive equations

The explicit knowledge of the specific free energy allows to calculate the chemical
potentials and the pressure. Our strategy to determine the specific free energy, i.e.
ψ = ψ(T,nLi,nV) = ψ̃(T,y,nM), relies on the observation that we may additively de-
compose ρψ into a chemical and a mechanical part, i.e.,

ρψ = ρψ̃chem(T,y,nM)+ρψ̃mech(T,y,nM) with ψ̃mech(T,y = 0, n̄M) = 0. (25)

The constant n̄M denotes the matrix density in a reference state that refers to an
empty FePO4 particle.

Chemical part of the free energy. In this study we use the same non-convex consti-
tutive law as in [4, 9], which takes into account both the configurational entropy and
the heat of solution. We write

ρψ̃chem = nML f chem(y) (26)

with

f chem(y) = y(1− y)+
RT
L

(y logy+(1− y) log(1− y)), (27)

where L > 0 is the constant heat of solution, and R > 0 denotes the universal gas
constant.

Mechanical part of the free energy. The details of the mechanical properties of the
crystal LiyFePO4 are investigated by T. Maxisch and G. Ceder [14]. In [4] we discuss
the complete mechanical part of the free energy for the olivine crystal symmetry of
LiyFePO4. Here, however, we only account for volume changes of the storage particle.
Note that the maximal variation of the crystal volume between FePO4 and LiFePO4 is
up to 6%.

The mechanical part of the free energy density of the particles is represented by

ρψ̃mech = nML f mech(y,nM) (28)

with

f mech(y,nM) =
pR −Kh(y)

L

(

1
n̄Mh(y)

−
1

nM

)

+
K

Ln̄M

log

(

nM

n̄Mh(y)

)

. (29)

This leads to a linear law between the pressure and the relative volume change, which
can be described by the function h(y) = 1/(1+ δy) with a constant δ > 0. Therefore
we have

p = p̄+K
(nM

n̄M

−h(y)
)

. (30)

The pressure p̄ describes the reference state and the quantity K denotes a mean bulk
modulus of LiyFePO4.
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3.5 Mechanical equilibrium of a many-particle electrode

In comparison with the processes that drive the many-particle ensemble to phase
equilibrium, the mechanical equilibrium of the system is much faster established. For
this reason it is reasonable to assume that the storage system is in mechanical equilib-
rium at any time. This assumption allows to reduce the free energy density of particle
l ∈ 1,2, ...,N to a function of a single variable.

Recall that the surrounding of the N particles is under the constant pressure p0. In this
simplified setting, the mechanical equilibrium is then described by the N conditions

p(yl,nl
M) = p0 implying nl

M = n̂M(yl) = n̄M

(

h(yl)+
p0− p̄

K

)

. (31)

The function n̂M(yl) can now be used to eliminate the mole densities nl
M

. Thus the
free energy functions ψ l = ψ̃(yl,nM) become functions of a single variable and are
represented by ψ(yl) = ψ̃(yl, n̂M(yl)) .

4 The total free energy of a many-particle electrode

We consider the many-particle electrode as indicated in Figure 3. Relying on the
constitutive model for LiyFePO4 storage particles from the previous chapter we identify
the generic statistical variable ξ with the lithium mole fraction, i.e., we set ξ = y for
y ∈ [0,1].

In order to give an explicit representation of the total free energy A of the ensemble
we start from the general formulas (5),(8) and (10). Recall that A(yl) = V l(ρψ l + p0)
represents the single particle energy of particle l and V l is its volume. The constitutive
function A can be simplified by two further assumptions:

(i) The number constants N l
M

of matrix molecules (FePO4) are the same for each
storage particle N l

M
= N 1

M, l = 1, . . . ,N.

(ii) All particles have the same volume V̄ in the unloaded state, implying that they
have the same mole density n̄M.

Thus we obtain A(yl) = n̄MV̄ (ρψ l + p0)/nl
M

. The total total free energy A and the
free energy A(yl) of the particle l will be scaled by E0 = n̄MV̄ L, compare the derivation
of (10).

Finally we use the formulas from Section 3.4 to assemble the total free energy. This
yields the explicit form of the function F(y) from (10) and the constant ν2 = kT/(n̄MV̄ L).
The total free energy of the many-particle electrode finally reads

A (t) =
∫ b

a

(

F(y)+ν2log w(t,y)
)

w(t,y)dy with (32)

F(y) = f chem(y)+ f mech(y, n̂M(y))+
p0

Ln̂M(y)
. (33)
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For later use in the discussion of the simulations we need the difference µ = µLi −
µV of the chemical potentials of lithium and the vacancies, respectively. An easy but
careful calculation yields

µ(y) = µLi(y, n̂M(y))−µV(y, n̂M(y)) =
dF
dy

. (34)

0 0.5 1
−0.1

0

0.1

y

µ

Figure 4: Chemical potential difference according to (34).

5 The evolution of a many-particle electrode

The evolution equation for the probability density w(t,y) of a many-particle electrode
stems from the generic problem (20). In order to prescribe the processes of loading
respectively unloading, we introduce the macroscopic filling degree defined by q =
NLi/NM. Then, the generic function G(y) turns out to be G(y) = y, so we have

q(t) =
∫ 1

0
yw(t,y)dy . (35)

Consequently, for given filling degree q(t) the evolution of a many-particle electrode
is governed by

w(0,y) = w0(y), υ(t,0)w(t,0) = υ(t,1)w(t,1) = 0,

∂w(t,y)
∂ t

+
∂υ(t,y)w(t,y)

∂y
= 0,

τυ(t,y) = Λ(t)−µ(y)−ν2∂ log(w(t,y))
∂y

.

(36)

Recall that this PDE is non-local and non-linear as the function Λ(t) must be deter-
mined from the side condition (35) by means of (19).

In (36) there appear two constant parameter: τ is the relaxation time of the storage
system, and ν2 measures the importance of the configurational entropy of the ensem-
ble. Note that ν2 decreases if the size of the particles increases.
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6 Constitutive model 2: A system of interconnected
rubber balloons

6.1 General properties of a system of interconnected rubber bal-
loons

We study a system of N spherical rubber balloons that are connected via a pressure
vessel as is indicated in Figure 5. The system may be loaded or onloaded with air
and we are interested in the evolution of the balloons. There is a strong similarity
between the described many-particle electrode of a lithium-ion battery and a system
of interconnected balloons. Recall that the chemical potential µ of a single storage
particle is given by a non-monotone function of the lithium mole fraction. On the other
hand, the relation between the pressure difference across a spherical rubber balloon
versus the balloon filling is a non-monotone function. For this reason the ensemble of
interconnected balloons shows the same type of phase transition and hysteresis as
the many-particle electrode.

Air

1 2

3 4

65

NN−1

Figure 5: System of a pressure vessel and interconnected rubber balloons

6.2 Thermodynamic state of an air filled spherical rubber balloon

We denote the radii of the deformed respectively undeformed balloon by r and R.
The radial strain λ of the balloon is then defined by λ = r/R. The air molecules with
molecular mass mA in the balloon are assumed to be homogenously distributed and
their actual number is denoted by N . The number of air molecules in the undeformed
reference state is ¯N . We consider processes at constant temperature T = T̄ and
characterize a thermodynamic state of the system balloon plus air by the variables λ
and N . The volume V of the balloon may be related to the strain by V = V̄ λ 3 with

15



V̄ = 4πR3/3. The mole density of air molecules is denoted by nA = N /V and has the
unit mole/m3.

6.3 Free energy densities, pressures and Gibbs equations

The system balloon plus air is described by two free energy densities: 1. The free
energy density of air, denoted by (ρψ)A, where ψA is the specific free energy of air
and ρA denotes its mass density. 2. The free energy density (ρψ)B of a spherical
balloon is decomposed into the specific free energy ψB of a rubber membrane and
the mass per surface area ρB.

The corresponding constitutive functions have the forms

ψA = ψ̂A(T,nA), and ψB = ψ̂B(T,λ ) . (37)

As above, the free energy densities satisfy the Gibbs equation which read for an air
filled rubber balloon:

dψA = −sAdT −
pA

mA

d
1

nA

and dψB = −sBdT −
1

ρB

Pdr . (38)

Here sA and sB denote the specific entropies, pA is the air pressure, and P is re-
lated to the surface stress of the balloon. Concerning the general setting of surface
thermodynamics and the precise definition of surface stress we refer the reader to
[7, 18, 8].

6.4 Explicit constitutive equations

The explicit knowledge of the specific free energies allows to calculate the air pressure
pA and the surface stress P of a spherical rubber balloon.

Free energy density of air. The air is assumed to be a 2-atomic ideal gas. In this
case its free energy density is represented by the function

(ρψ)A(T,nA) = nAkT log

(

nA

n̄A

)

+(ρψ)A(T, n̄A) , (39)

leading to the gas pressure pA = nAkT .

Free energy density of a rubber balloon. Rubber is isotropic and incompressible
and its mechanical properties are here described by a Mooney Rivlin constitutive law
for the free energy density. For more details about the mechanical properties of rubber
and rubber balloons we refer to [7, 18]. In what follows we consider a spherical balloon
of thin thickness, so that the membrane limit can be applied. Up to terms of 2nd order
in the reference thickness d̄, the free energy per surface area is represented by

(ρψ)B(T,λ ) =
1
2

d̄
(

s+(2+λ−6)− s−(λ 2 +2λ−4)
)

, (40)
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where the Mooney-Rivlin constants depend on temperature. At 40◦C they have values
s+ = 30N/cm2 and s− = −0.1s+.

6.5 Mechanical equilibrium of a system of air filled interconnect-
ed rubber balloons

We assume that mechanical equilibrium across the balloon membrane is much faster
established than mechanical equilibrium of the air in the balloon system. This as-
sumption allows to reduce the free energy density of balloon l ∈ {1,2, . . . ,N} and the
contained air to a function of a single variable.

Mechanical equilibrium between the membrane and the innner pressure pl is given
by, see [7, 18],

pl − p0 = P(λl) , (41)

where the non-monotone function

P(λl) =
2d̄
R

(

s+(λ−1
l −λ−7

l )− s−(λ 1
l −λ−5

l )
)

, (42)

follows from (38)2 and (40), and is sketched in the first diagram of Figure 6.

2 4 6
0

500

1000

1500

2000

2500

3000

λ

p I
−

p 0  [
P

a]

2 4 6
0

1

2

3

4

5
x 10

24

λ

N

Figure 6: Left: Equilibrium pressure jump across a single balloon versus strain λ .
Right: Number of air molecules contained in a single balloon versus its strain λ .

We insert the gas pressure into (41) and obtain a relation between the number of
contained air molecules Nl and the strain λl of the balloon l ∈ {1,2, . . . ,N}:

Nl = ˆN (λl) =
Vl

kT
pl = ¯N λ 3

l

(

1+
P(λl)

p0

)

. (43)

The second diagram of Figure 6 reveals that this dependence is monotone in contrast
to the pressure-strain relation (41). The function ˆN (λl) may now be used to eliminate
the number of air molecules Nl as variables.
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7 The total free energy of a rubber balloon system

Relying on the constitutive model for the rubber balloon system from the previous
chapter, we identify the generic statistical variable ξ with the radial strain: ξ = λ for
λ ∈ [1,λ ∗].

In order to give an explicit representation of the total total free energy A of the system
we start from the general form which is represented by (5),(8),(10). The free energy
of a single balloon is given by

A(λl) = V̄

(

λ 3
l

(

(ρψ)l
A + p0

)

+
3
R

λ 2
l (ρψ)l

B

)

, (44)

and both A and A will in turn be scaled by E0 = p0V̄ .

Finally we calculate the free energy densities from (39) and (40) and identify the
generic function F(λ ) from (10) and the constant ν2 = kT/(p0V̄ ) = ¯N −1. The total
free energy of the rubber balloon system hence reads

A (t) =
∫ λ ∗

1

(

F(λ )+ν2 logw(t,λ )
)

w(t,λ )dλ with (45)

F =
ˆN (λ )

¯N

(

log

(

P(λ )

p0

)

−1

)

+
3
2

d̄
Rp0

(

s+(2λ 2 +λ−4)− s−(λ 4 +2λ−2)
)

+λ 3 , (46)

and a direct computation yields

dF
dλ

=
1
¯N

d ˆN

dλ
log

(

P(λ )

p0

)

. (47)

8 The evolution of a rubber balloon system

The evolution equation for the probability density w(t,λ ) of a rubber balloon system
relies on the generic problem (20). In order to prescribe the processes of loading
respectively unloading, we introduce the macroscopic filling degree q = N / ¯N de-
noting the overall loading state of the system. In this case the generic function G(λ )
turns out to be G(λ ) = ˆN (λ )/ ¯N , so we have

q(t) =
1
¯N

∫ λ ∗

1
ˆN (λ )w(t,λ )dλ . (48)
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For given filling degree q(t) the evolution of the rubber balloon system it thus repre-
sented by

w(0,λ ) = w0(λ ), υ(t,1)w(t,1) = υ(t,λ ∗)w(t,λ ∗) = 0,

∂w(t,λ )

∂ t
+

∂υ(t,λ )w(t,λ )

∂λ
= 0,

τυ(t,λ ) =
ˆN ′(λ )

¯N

(

Λ(t)− log
(P(λ )

p0

)

)

−ν2∂ log(w(t,λ ))

∂λ
.

(49)

Recall that this PDE is non-local and non-linear as the function Λ(t) must be deter-
mined from the side condition (48) by means of (19).

As in the lithium case we have two constant parameter: the relaxation time τ of the
balloon system and ν2 that measures the configurational entropy effect. Note that
increasing the size of the undeformed balloon implies a decreasing ν2.

9 Selected simulations for the many-particle electrode

In this section we prescribe the history of loading-unloading processes by the filling
degree q(t) and solve the evolution equation (36) for the probability density w(t,y).
In order to separate the chemical from the mechanical phenomena we ignore here
changes of the particle volume and set δ = 0 and p0 = p̄. The case where both
phenomena are coupled will be discussed in a forthcoming study.

We solve the equation for y ∈ [0, 1] and with boundary conditions υ(t,0)w(t,0) =
υ(t,1)w(t,1) = 0. Initially we start the simulation in the 1-phase region, where the
storage particles are Gaussian distributed around a small value, q0 = 0.1, for the ini-
tial filling degree. This reads

w(0,y) = w0(y) =

√

µ ′(q0)

2πν2 exp

(

−
µ ′(q0)

2ν2 (y−q0)
2
)

. (50)

We have performed simulations for 45 different values of (τ,ν2) but with the same
loading-unloading path: At first we increase the filling degree q linearly from q = 0.1
to q = 0.9 and afterwards we decrease it from q = 0.9 to q = 0.1. The time t has been
normalized by |q̇| = 1, so the parameter τ = τD/τL gives the ratio between relaxation
time τD of the storage system and loading time τL. In particular, for fixed τD a small τ
corresponds to a large loading time.

In order to illustrate the typical behavior of solutions to (36), we choose at first τ =
10−4,ν2 = 10−4. Figure 7 shows snapshots of the probability density at 5 different
times, where the arrows indicate the direction of the dynamics.

After a certain period the initial single pulse decays into two pulses indicating the tran-
sition from single phase states to the coexistence of two phases and back to single
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Figure 7: (a)-(e): Evolution of the probability density w(t,y) according a loading-
unloading process for τ = 10−4 and ν2 = 10−4. (f): (〈µ〉,q) diagram, black: mean
chemical potential 〈µ〉, gray: chemical potential of single storage particle µ(y).

phase states for large filling degree. In detail we observe the following dynamics: Ini-
tially we have a single pulse, whose maximum is roughly located at q(t) and moves
to the right. This behavior changes if the pulse reaches the region where the chemi-
cal potential function µ(y) has negative slope. In that region the initial pulse stops its
rightwards motion and a second pulse nucleates at some higher value of the lithium
mole fraction y and growths at the expense of the left pulse. The many-particle sys-
tem runs through a phase transition. After the left pulse has lost all of its mass, the
right pulse starts to move rightwards. In that period the system is single-phase again.
Finally the filling degree reaches its maximal value and is hereafter reduced. Now the
same dynamics happens the other way around.

It is important to observe that the location where a pulse growths or diminishes is dif-
ferent for the loading and the unloading path. This can be seen be comparing Figures
7(b) and 7(d), which contain corresponding snapshots for the same filling state q = 0.5.
See also Figure 7(f), which contains the (〈µ〉,q) diagram and reveals how the mean
chemical potential 〈µ〉 depends on the filling degree q. The path dependence of the
process becomes clearly manifest by the hysteresis curve.

Figures 8 and 9 contain the numerical results for (τ, ν) = (0.1, 10−5) and (τ, ν) =
(10−5, 10−3), respectively, but do not exhibit a hysteretic behavior. In fact, in Figure
8 the many-particle systems behaves like a single particle, whereas the system from
Figure 9 follows the Maxwell line.
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Figure 8: (a)-(e): Evolution of the probability density w(t,y) according a loading-
unloading process for τ = 0.1 and ν2 = 10−5. (f): (〈µ〉,q) diagram, black: mean chem-
ical potential 〈µ〉, gray: chemical potential of single storage particle µ(y).
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Figure 9: (a)-(e): Evolution of the probability density w(t,y) according a loading-
unloading process for τ = 10−5 and ν2 = 10−3. (f): (〈µ〉,q) diagram black: mean
chemical potential 〈µ〉, gray: chemical potential of single storage particle µ(y).

The location and the shape of the hysteresis is controlled by the two parameter τ and
ν2. This is demonstrated in Table 1, which shows the (〈µ〉,q) diagrams in a parameter
domain that is relevant for applications. The details of the hysteresis curves can be
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quite involved but we observe three main cases:

1 Case A, as in Figure 8: The probability density consists of a single pulse only,
because there is not sufficient time to interchange molecules between the stor-
age particles according to the configurational entropy effect. The mean chemical
potential follows the chemical potential of a single particle.

2 Case B, as in Figure 9: The configurational entropy is dominant and the storage
system follows the Maxwell line. A hysteresis does not develop here.

3 Case C, as in Figure 7: The deterministic evolution of the system and inter-
change of molecules due to the configurational entropy are of the same order.
A maximal possible hysteresis is developed.

Recall that the value of τ is related to 1/loading time, i.e fast and slow loading is
represented by small and large τ , respectively. Thus we may interpret the results from
Table 1 as follows. The configurational entropy is dominant for very slow loading and
drives the storage system along equilibria so that it follows the Maxwell line. The de-
velopment of hysteresis needs a larger loading time so that the effects of deterministic
evolution and interchange of molecules between the storage particles are of equal im-
portance.

In order to classify existing many-particle electrodes according to Table 1 we deter-
mine the constants τ and ν2 in applications. We assume that the relaxation time of the
system has the same order of magnitude as the diffusional relaxation time of a single
storage particle. From [9] we may read off the diffusion constant for the diffusion of
lithium in FePO4 viz. 10−15–10−17 m2/s. The loading time of a lithium-ion battery is
10800s on the average. For particle radii 10–100nm we obtain τ in the range 10−3–
10−7 and ν2 = 10−5–10−8. The configurational entropy effect is thus comparable with
τ , i.e. we meet the case 3. The many-particle electrode passes through the maximal
possible hysteresis.

Note that if τ is of order 0.1, the loading time is of order of seconds and the model
is not applicable, because the essential assumptions concerning slow loading and
homogeneous storage particles are not met in this case.
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Table 1: Hysteretic behavior in the (〈µ〉,q) diagram for severals values of τ and µ . All
simulations describe the time evoltuion of the same initial data (50).

ν2

τ H
H

H
HH

0.001 0.000316 0.0001 0.0000316 0.00001

0.1
nA

0.0316

0.01

0.00316

0.001

0.000316

0.0001

0.0000316

0.00001
nB nC
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10 Selected simulations for the rubber balloon sys-
tem

In this section we investigate numerical simulation of the rubber balloon system and
compare the numerical outcome with experiments.

The simulations of the Fokker-Planck equation for the many-particle electrode have
shown in a certain range of τ and ν2, the particle system separates into two phases
consisting of particles with low and high lithium content. The same phenomenon can
be observed in simulations of the rubber balloons system which separates into small
and large rubber balloons. Figure 10 shows the evolution of the probability density
w for an loading-unloading process und the finial hysteresis. Table 2 then shows the
hysteresis in the numerical simulations for different values of (τ, ν) and we observe
the same main cases A, B, and C as in Table 1.
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Figure 10: (a)-(e): Evolution of the probability density w(t,y) according a loading-
unloading process. (f): Hysteresis, black: mean pressure jump 〈P〉, gray: pressure
jump of single rubber balloon P(λ ).

Experiments with the rubber balloon system also exhibit the phase separation. The
sequence of snapshots in Figure 11 are generated for the analog loading-unloading
path as above. Initially we observe only balloons with small filling. After a critical filling
degree is reached, the transition to a second phase with large balloons sets in. In this
period the balloons grow one after the other and we have a system of two coexisting
phases with small and large balloons. After the system has reached the single phase
states, where only large balloons are present, we unload the balloon system and
observe in the 2-phase region that the balloons become smaller according to the
same rule as before: one after the other.
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Figure 11: Eight states of interconnected rubber balloons during loading and unload-
ing with air via the pressure vessel.

The simulation of the rubber balloon experiment by means of the application of the
corresponding Fokker-Planck equation from Section 8 is very much harder than in the
case of the many-particle electrode. This fact is due to the extreme small value of
ν2. The characteristic time scale of an air-filled balloon is determined by the sound
speed of air, which is about 343 m/s. We take rubber balloons with diameter 0.1 m
in the undeformed state, which implies ν2 = 10−22. The loading time of the system
of balloons is 250 s, which implies τ = 10−6. Thus the configurational entropy effect,
which is described by a second order derivative in the Fokker-Planck equation (49),
is controlled by an extremely small number so that it is numerically hard to treat. For
this reason a careful analysis of the limiting case ν2 → 0 becomes necessary. This,
however, is a non-trivial mathematical problem that will be studied in a forthcoming
paper.
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Table 2: Hysteretic behavior for several values of τ and ν .

ν2

τ H
H

H
HH

0.1 0.0316 0.01 0.00316 0.001

100
nA

31.6

10

3.16

1

0.316

0.1

0.0316

0.01
nB nC
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