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Abstract

A new two-phase model is derived that make use of a constitutive law combin-
ing non-Brownian suspension with granular rheology, that was recently proposed
by Boyer et al. [PRL, 107(18),188301 (2011)]. It is shown that for the simple
channel flow geometry, the stress model naturally exhibits a Bingham type flow
property with an unyielded finite-size zone in the center of the channel. As the
volume fraction of the solid phase is increased, the various transitions in the flow
fields are discussed using phase space methods for a boundary value problem,
that is derived from the full model. The predictions of this analysis is then com-
pared to the direct finite-element numerical solutions of the full model.

1 Introduction

Suspensions are ubiquitous and their tendency to exhibit non-Newtonian and often
unusual flow properties which are of great scientific interest and critically important for
many technical and everyday applications. Examples are the flow of many biological
fluids, such as blood, freshly mixed concrete, and many wet food materials, such as
pastes, to name but a few. It is therefore not surprising that the investigation of the
rheological properties has been the target of research efforts ever since the derivation
of an effective viscosity for dilute suspensions in the seminal paper by Einstein [14].

While Enstein’s model for dilute suspensions has been extended to higher order cor-
rections in terms of the solid volume fraction only recently by Batchelor & Green
[1], much effort has been devoted to higher concentrated suspensions, where ad-
ditional effects come into play. As was first observed in experiments by Gadala-Maria
& Acrivos [17] shear-induced particle migration needs to be taken into account by ap-
propriate rheological models. Further experiments and theoretical investigations were
carried out by Leighton & Acrivos [34] including expressions for the diffusive flux, and
by Phillips et al. [41] who formulated a complete diffusion model that incorporates
shear-induced migration effects. However, this model is limited to simple flows, such
as shear flows, where the particle migration is orthogonal to the shearing plane. For
other geometries, such as for example for parallel-plate torsional flows [7, 39] it pre-
dicts unphysical migration behaviour, in particular a sharp peak or cusp in the particle
volume fraction profile, where the shear rate vanishes, e.g. along the center-line of
channel or pipe flows [40], whereas in experiments e.g. by Hampton [21] the concen-
tration profile is in fact flattened there.

These issues were addressed by the work by Nott & Brady [40], who introduced a
“suspension balance models” for non-Brownian suspensions that include the suspen-
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sion temperature for the fluctuational motion of the particles and an energy balance,
which achieves a non-local behavior that leads to a blunting of the otherwise cusped
concentration profile, see also Jenkins & McTigue [29] for a discussion on the impacr
of “viscous temperature”. Ramachandran [42] achieved a similar effect by deliber-
ately choosing slightly differing exponents for the singularity in the relative suspen-
sion viscosity and the particulate phase pressure as the maximum packing fraction is
approached, and compared his predicitions with experiments by Hampton [21].

More recently, Boyer et al. [2, 9] have approached the rheology of dense suspensions
from the granular rheology paradigm. Their analysis builds on earlier studies, that find
certain universal features for various types of dry granular flows [18]. Most signifi-
cantly, they find that that the flow of granular medium made from hard spheres and
sheared at a rate γ̇ under a confining pressure pp can be characterized by a single
dimensionless control parameter, the “inertial number” I = aγ̇

√
ρ̄s/pp, where a and

ρ̄s are the particle size and density, respectively,[2, 8, 15, 30]. These findings have
been supported by experiments, where the suspensions are sheared with a constant
particle pressure [2]. in particular they show that the granular rheology is completely
described by a friction law for the shear stress and for the volume-fraction in terms of
this number. An overview of problems that can be described by these scaling laws is
given in the review by Forterre & Pouliquen [15] and related discussion in connection
with granular medium paradigm can befound in the papers by Isa et al. [25, 26].

Furthermore, as has been shown in Cassar et al. [6], these principles can be gener-
alised to dense suspensions of particles in a viscous liquid, where the corresponding
dimensionless parameter is the so-called “viscous number” Iv = ηf γ̇/pp, where ηf
is the fluid viscosity. These findings have been supported by experiments, where the
suspensions are sheared with a constant particle pressure [2]. Their results show that
indeed that the friction and volume-fraction law collapse onto universal curves when
expressed in terms of the dimensionless number Iv. By including hydrodynamic con-
tributions, Boyer et al. propose a model for the whole range of Iv. A review of this
constitutive law has been given by de Bruyn [9] with further discussions based on
discrete element numerical simulation given in Trulsson et al. [46]. A general review
of stress terms for dense suspensions can be found in [44].

These rheological laws can be reformulated in a more conventional form for suspen-
sions, where the shear stress and particle pressure are expressed in terms of the
strain rate and the volume fraction. In fact, we note that Boyer et al.’s expressions for
the shear and normal viscosities are similar to the ones found in Morris & Boulay [39],
see also Miller et al. [36], who investigated more general curvilinear flows, where
the migration behavior was accommodated by allowing for anisotropy in the normal
stresses. Hence, both models should exhibit viscoplastic behaviour with a yield stress
that is proportional to the particle pressure. We note that similar models are also
known for granular flow as proposed by Kaushal et al. [31] and Gidaspow [19]. The
models by Nott & Kaushal use a non-local stress contribution, effectively eliminating
problems originating from Bingham like formulations, see also further discussions in
[22].
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Extensions to Brownian suspensions were developed by Brady [3] and later by Frank
et al. [16], who included thermally driven contributions to the normal stresses. For an
overview of of further extensions and modeling aspects of concentrated suspensions
we refer to the recent review by Morris [38].

The focus of the present study is to incorporate the rheology of Boyer et al. into a
general three-dimensional model for non-homogeneous shear flows that captures the
flow properties of non-Brownian concentrated suspensions.

The derivation of our two-phase model is based on the averaging framework as given
in Drew & Passman [12, 13], together with constitutive laws as proposed by Boyer et
al. [2] in Section 2.

In order to investigate the flow behaviour predicted by this two-phase model as the
particle volume fraction is varied, we choose the one-dimensional pressure-driven
channel flow as our basic model example for non-constant shear flows. In Section 3
we show that our model can be reduced to a boundary-value problem for a system of
ordinary differential equations that is amenable to obtain and investigate the solutions
for the entire parameter space by using phase space methods.

One of our main findings for this model is that instead of a singularity at the centerline,
our solutions typically exhibit an unyielded or jammed region of finite width in the
center of the channel. In Section 4, we solve a the model for a channel of finite length
using an appropriate regularisation and a finite element discretisation, and show how
the flow develops along the channel for given inlet conditions. In Section 5 we give a
discussion of our results.

2 Formulation of a multiphase model

We consider two phases k ∈ {1, 2} = {s, f}, with a solid phase s = 1 and a fluid
phase f = 2 that is not undertaking chemical reactions on their interfaces. Inside
each phase the balance equations for mass and momentum

ρ,t +∇ · (ρu) = 0 (2.1)

(ρu),t +∇ · (ρu⊗ u)−∇ · T − f = 0. (2.2)

are satisfied together with the two jump conditions (see e.g. [27])
∑

k

ρk(uk − ui) · nk = 0 (2.3)

∑

k

ρkuk(uk − ui) · nk − T k · nk = σfsκns, (2.4)

at the interfaces of the phases with nk denoting the unit normal out of phase k, σfs a
surface tension coefficient and κ the curvature of the interface that is positive towards
−n; ui is the interface velocity. The quantities ρ, u, T and f denote density, velocity,
stress tensor and body force density in each phase, respectively.
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There are essentially three different averaging ansatzes. The volume average, the
time average and the ensemble average (sometimes also called statistical average).
Although all three produce similar balance equation for the phases their derivation
and closure is distinct. For ensemble averaging there are the monographs by Drew
& Passman [13]. Volume averaging is treated in the monographs by Kolev [32] and
Whitaker [48] and time averaging by Ishii et al. [28]. A good review paper is given by
Drew [12]. For introductory texts on the numerical treatment of multiphase equations
see e.g. [49] and [23].

For the derivation of the multiphase model we follow the mathematical framework by
Drew [12] and Drew & Passman [13] and introduce the component indicator function

Xk(x, t) =

{
1, if (x, t) ∈ K

0, if (x, t) 6∈ K
(2.5)

with K the set of states of the k-th-phase. We further define an average operator 〈·〉
obeying the so-called Reynolds’ rules, the Leibniz’ rule and the Gauss’ rule, which are
given in the appendix A.

Multiplication with Xk, followed by usage of the average operator and its linearity
together with Gauss’ and Leibniz’ rules yield

〈Xkρ〉,t +∇ · 〈Xkρu〉 = 〈ρ(Xk,t + ui∇ ·Xk)〉+ 〈ρ(u− ui) · ∇Xk〉
(2.6)

〈Xkρu〉,t +∇ · 〈Xkρu⊗ u〉 − ∇ · 〈XkT 〉 = 〈Xkf〉+ 〈(Xk,t + ui · ∇Xk)ρu〉 (2.7)

+ 〈[(u− ui) · ∇Xk]ρu〉 − 〈∇Xk · T 〉,

In the above we assume that the interface velocity ui has been smoothly extended into
the phases. Since the indicator function satisfies the so-called topological equation (cf.
[13])

Xk,t + ui · ∇Xk = 0, (2.8)

the first and the second term equations (2.6) and (2.7) drop out, respectively, and we
can write the system as

〈Xkρ〉,t +∇ · 〈Xkρu〉 = Γk (2.9)

〈Xkρu〉,t +∇ · 〈Xkρu⊗ u〉 − ∇ · 〈XkT 〉 = 〈Xkf〉+M k. (2.10)

where

Γk := 〈ρ(u− ui) · ∇Xk〉 denotes the interfacial mass source and
(2.11)

M k := 〈∇Xk · [ρ(u− ui)⊗ u− T ]〉 the interfacial momentum source
(2.12)

for the k-th phase.
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To obtain the averaged form of the jump conditions, we note first the Dirac delta prop-
erty of the component indicator functions’ derivative

〈∇Xkf〉 = −

∫

Sk

nkf
kdS, (2.13)

with Sk the interface of phase k. Using this and (2.11), (2.12) in the jump conditions
for mass (2.3) and momentum (2.4), these conditions become

∑

k

Γk = 0, (2.14)

∑

k

M k = 〈σ12κ∇X1〉. (2.15)

If we introduce the following averaged quantities (cf. [13])

φk := 〈Xk〉 volume fraction

ρk :=
〈Xkρ〉

φk

average density

ûk :=
〈Xkρu〉

φkρk
average velocity

T k := −
〈XkT 〉

φk
average stress

TRe
k := −

〈Xkρu
◦
k ⊗ u◦

k〉

φk
average Reynolds stress

f k :=
〈Xkf〉

φk
average body forces

Sd
k := −〈∇Xk · T 〉 interfacial stress

ukiΓk := 〈∇Xk · ρ(u− ui)⊗ u〉, interfacial velocity of kth phase

then, after we split the interfacial momentum source as

M k = Sd
k + ukiΓk. (2.16)

and the momentum flux into an average flux and a Reynolds stress

〈Xkρu⊗ u〉 = φkρkûk ⊗ ûk − φkT
Re
k . (2.17)

and use the product rule (A.12) for the velocity, we obtain the following system of
phase averaged mass and momentum equations

(φkρk),t +∇ · (φkρkûk) = Γk (2.18)

(φkρkûk),t +∇ · (φkρkûk ⊗ ûk)−∇ · (φkT ) = ∇ · (φkT
Re
k ) + f k + Sd

k + ukiΓk.
(2.19)

We henceforth neglect the Reynolds stress T Re
k = 0 and assume no phase change

occurs at the interface between particles and liquid, Γk = 0.
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We note that the stress tensor is usually given as the sum of pressure and deviatoric
stress in the form

T k = −pkI + τ k. (2.20)

Introducing the interfacial pressure of phase k and the interfacial force density

p̃ik :=
〈∇Xkpik〉

〈∇Xk〉
=

〈∇Xkpik〉

∇φk
, (2.21)

M d
k := Sd

k − 〈∇Xkpik〉 = 〈∇Xk · ((pk − pik)I − τ )〉, (2.22)

respectively, where the second equality in (2.21) follows from an application of Gauss’
rule (A.5), we have (from (2.16))

M k = M d
k + p̃ik∇φk (2.23)

so that we obtain for the mass and momentum balance equations

(φkρk),t +∇ · (φkρkûk) = 0 (2.24)

(φkρkûk),t +∇ · (φkρkûk ⊗ ûk)−∇ · (φkτ k) +∇(φkpk) = M d
k + p̃ik∇φk. (2.25)

where we have also assumed that no external body forces are applied, i.e. f = 0.

We neglect surface tension forces between the two phases Assume the surface ten-
sion comes from the pressure difference between phases [12]. Setting σsf = 0 the
interfacial pressure difference becomes

∑

k

p̃ik∇φk = 〈σκ∇Xs〉 = 0, (2.26)

and we obtain together with the interfacial momentum jump condition (2.15) the rela-
tion

Md
s = −Md

f . (2.27)

Since we only have two phases, we know φs + φf = 1, which directly leads to ∇φs =
−∇φf . Thus, equation (2.26) yields p̃is = p̃if .

For the case of constant densities ρk within each phase and identical liquid interfacial
and bulk pressure, i.e. p̃if = pf the balance equations reduce to

(φs),t +∇ · (φsûs) = 0, (2.28a)

(φf),t +∇ · (φf ûf) = 0, (2.28b)

ρs(φsûs),t +∇ · (φsρsûs ⊗ ûs)−∇ · (φsτ s) +∇(φsps) = Md
s + pf∇φs, (2.28c)

ρf(φf ûf),t +∇ · (φfρf ûf ⊗ ûf)−∇ · (φfτ f ) +∇(φfpf) = −Md
s + pf∇φf .

(2.28d)
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Constitutive equations for a dense suspension

To close the model for the flow in the bulk, we need to specify constitutive equa-
tions besides the assumptions already made. Essentially we need four relations for
the pressure difference and stress between the phases pf − ps and Md

s , and for the
stresses in each phase, τ f and τ s.

For the momentum transfer Md
s , we use the Kozeny-Carman equation for the perme-

ability (cf. [23] and [4]),

Md
s =

µfφ
2
s

Kφf
(ûf − ûs), (2.29)

where K is the permeability number.

The constitutive law for the remaining quantities extend the model for dense suspen-
sions given by Boyer et al. [2] for shear flow to a general flow situation. We state it
in terms of the (weighted) solid contact pressure, defined here as pc ≡ φs(ps − pf),
which differs from the one given by Drew [12] by a factor of φs, and the shear rate
tensors for each phase,

γ̇f := [∇ûf + (∇ûf)
T ], γ̇s := [∇ûs + (∇ûs)

T ]. (2.30)

For the liquid phase stress, we have

τ f = µf γ̇f + (µ∗ −
2

3
µf)(∇ · ûf)I, (2.31a)

while in the solid phase, the constitutive laws contain a yield stress condition: If |γ̇s| >
0, then

τ s = µfηs(φs)γ̇s, (2.31b)

φs(ps − pf) = µfηn(φs)|γ̇s|, (2.31c)

with

ηs(φs) = 1 +
5

2

φsc

φsc − φs
+ µc(φs)

φs

(φsc − φs)2
, (2.31d)

µc(φs) = µ1 +
µ2 − µ1

1 + I0φ2
s(φsc − φs)−2

, (2.31e)

ηn(φs) =

(
φs

φsc − φs

)2

; (2.31f)

if γ̇s = 0, then τ s satisfies |τ s| ≤ µ1φs(ps − pf) but is not further specified, and
φs = φsc. Across a yield surface, where γ̇s is zero on one side and non-zero on the
other, φs, φf , ûf , ûs, ps, pf , τ s and τ f are assumed to be continuous.

The parameters are µf for the viscosity of the pure liquid, φsc for the critical or maxi-
mum volume fraction at the jamming point, and µ1, µ2 and I0 which characterise the
granular term contribution in the expression for ηs. The second term in the relation for
τ f can have signficant influence for suspensions especially near maximum packing,
see [45], however, for the purpose of this paper, we will set the bulk visocity µ∗ = 2

3
µf

and thus drop this term from (2.31a).
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Non-dimensionalization

We introduce generic scalings for the spatial variables and for the velocity, and a time
and pressure scale that balance the terms in the mass conservation equations and
the pressure and stress terms in the liquid momemtum equation, respectively,

x = Lx′, y = Ly′, z = Lz′, t =
L

U
t′, uk = Uu′

k, pk =
Uµf

L
p′k, (2.32)

for k = s, f . After scaling, we drop the primes and also the bars and hats indicating
averaging, so that the non-dimensional equations read

(φf ),t +∇ · (φfuf) = 0, (2.33a)

(φs),t +∇ · (φsus) = 0, (2.33b)

Re [(φfuf),t +∇ · (φfuf ⊗ uf)] (2.33c)

−∇ · (φfτ f ) +∇(φfpf) = −Da
φ2
s

φf
(uf − us) + pf∇φf ,

Re

r
[(φsus),t +∇ · (φsus ⊗ us)] (2.33d)

−∇ · (φsτ s) +∇(φsps) = Da
φ2
s

φf
(uf − us) + pf∇φs.

Three dimensionless numbers appear here, name a Reynolds and a Darcy number
and a density ratio, which are, in this order,

Re =
ULρf
µf

, Da =
L2

K
, r =

ρf
ρs

. (2.34)

For the remainder of the paper, we assume liquid and solid are density matched and
therefore r = 1.

The nondimensional versions of the constitutive equations for the rheology are as
follows:

τ f = γ̇f , (2.35a)

and if |γ̇s| > 0, then

τ s = ηs(φs)γ̇s, (2.35b)

φs(ps − pf) = ηn(φs)|γ̇s|, (2.35c)

with

ηs(φs) = 1 +
5

2

φsc

φsc − φs

+ µc(φs)
φs

(φsc − φs)2
, (2.35d)

µc(φs) = µ1 +
µ2 − µ1

1 + I0φ2
s(φsc − φs)−2

, (2.35e)

ηn(φs) =

(
φs

φsc − φs

)2

; (2.35f)
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if γ̇s = 0, then |τ s| ≤ µ1φs(ps − pf) and φs = φsc. Across a yield surface, φs, φf ,
uf , us, ps, pf , τ s and τ f are continuous. The equations (2.35) contribute four more
parameters, namely, µ1, µ2 and I0 and φsc, which were nondimensional to begin with
and have not changed from (2.31).

Discussion of model properties

We first remark at this point that it is straight forward to check, see appendix B, that the
mass and momentum balance equations are invariant under the Galilei transformation

x = x′ − U0t, t = t′, u = u′ − U0. (2.36)

we observe that due to (2.35b), the contact pressure pc = φs(ps − pf ) is always non-
negative. If pc > 0 and fixed, the solid phase itself exhibits viscoplastic behavior ,
with a yield stress τ 0 = µ1pc > 0, as can bee seen from (2.35b)-(2.35f). If τ s ≤ τ 0

the solid phase strain rate is γ̇s is zero, while in the yielded state, the behavior is
shear-thinning, that is, |τ s|/|γ̇s| decreases with inreasing |γ̇s|. The existence of a yield
stress suggests the possibility of unyielded region, which in turn is often associated
with shear banding and localization behavior in the literature, cf. [43], but here, where
the dependence of |τ s| on γ̇f is monotone, we do not expect that shear banding to
occur under these conditions for the solid phase itself.

In multiphase models the total stress contributions can be written as (cf. [39, 40] )

σ = τ + piI + pcQ,

where pi is the Lagrange multiplier due to the incompressible constraint and Q is
a tensor with constant entries for possibly anisotropic effects. The shear stress τ

contains a term of the form ηs(φs)γ̇i and the normal stresses are given as pc =
ηn(φs)|γ̇i|Q, where γ̇i is the solid or total shear rate depending on the model. Then,
a yield stress is to be expected for shear stress viscosities of the form

ηs(φs) = f(φs) + g(φs)ηn(φs)

with f = o(ηn) and g = O(1), 1 = O(g) for φs → φsc, because it yields a non-zero
τ for fixed pc > 0 in the limit of vanishing γ̇i. Examples for the viscoplastic case
are the experiments by Zarraga et al. [50], Boyer et al. [2] and the model by Morris
& Boulay [39]. On the other hand, for ηs(φs) = f(φs) one can only expect shear-
thinning behavior, as τ vanishes for zero shear-rate, examples being the analysis by
Ramachandran [42], who perturbed the problem by ε = 0.01 and by Mills and Snabre
[37]. Another possibility is pc containing a term independent of γ̇ i, in which case the
maximum packing fraction will not be reached and there is no viscoplastic behavior
as done by Frank et al. [16].
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It is instructive to briefly inspect the limit of vanishing and of near-critical solid volume
fraction in the governing equations, respectively. In the first limit, φs → 0, or φf → 1,
mass conservation (2.28a) and momentum equation (2.28d) become

∇ · uf = 0, Re [uf,t +∇ · (uf ⊗ uf)] = −∇pf +∇ · γ̇f ,

because the momentum transfer term tends to zero quadratically in φs, and τ f sat-
isfies (2.35a). Thus, in the limit φs → 0, we recover the Navier-Stokes equations for
Newtonian flow in the fluid phase.

In the near-critical, or jamming limit, φs → φsc, if we assume that the contact pressure
pc = φs(ps − pf) remains O(1), it follows from (2.35c), (2.35f) that γ̇s tends to zero
as O((φsc − φs)

2). Thus, the solid phase velocity us becomes uniform, so that in a
conveniently chosen reference frame, the solid phase is at rest. Notice, however, that
|τ s| → µ1pc remains O(1) due to (2.35b), (2.35d), (2.35e). The equations for the liquid
phase become

∇ · uf = 0, Re [uf,t +∇ · (uf ⊗ uf)] = −∇pf +∇ · γ̇f − Da
φ2
s

φf
2
(uf − us),

If, in addition, Da → ∞, the term ∇· γ̇f and the inertia terms drop out from the second
equation and we recover Darcy flow in a porous medium.

The model we give here generalises the rheological model introduced by Boyer et
al. [2] for the case of simple Couette shear flow. Indeed, if we assume pure shear flow
in the x, direction, so that the pressures and the stress and strain rate tensors are
constant, the velocities for both phases are linear in y and equal if Da 6= 0, and the
non-zero components of the stress and strain components and the contact pressure
satisfy the relations put forward by Boyer et al.

Shear flow

In order to understand the two dimensional shear flow, we make the assumption of
a stationary flow that is for all quantities only varying in the y direction and fulfills the
boundary conditions

us = 0, uf = 0, at y = 0 (2.37)

and
us = (1, 0)T , uf = (1, 0)T , at y = 1. (2.38)

Assume φs > 0, as the case φs = 0 is the standard Newtonian flow, where the result
for the shear flow is well-known. Then φf > 0 together with equations (2.33a), (2.33b)
and the boundary conditions yield

vs = 0, vf = 0, v = 0, for all y ∈ [0, 1] (2.39)

and therefore

γ̇s =

(
0 us,y

us,y 0

)
, γ̇f =

(
0 uf ,y

uf ,y 0

)
. (2.40)
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The second component of equations (2.33c) yield a constant fluid pressure, i.e. pf =
const. Taking the definition of the total pressure p = φsps + φfpf and the total stress
τ = φsτ s + φfτ f they become constants via the sum of (2.33c) and (2.33d). The
constant pressures directly imply

p− pf = φs(ps − pf ) = ηn(φs)|γ̇s| = const. (2.41)

Using all this information for the first components of (2.33c) and (2.33d) gives

−(φfuf ,y),y = −Da
φ2
s

φf
(uf − us), (2.42a)

−(φsηs(φs)us,y),y = Da
φ2
s

φf
(uf − us), (2.42b)

which together with equation (2.41) and the boundary conditions (2.37), (2.38) de-
scribes the shear flow.

At this point we can assume one of two equivalent assumptions to find a particular
solution, i.e. either (φsηs(φs)us,y),y = 0 or φs = const. We like to note assumption one
is also made by Morris and Boulay [39]. Either of these assumptions yields us(y) =
uf(y) = y, which is a particular solution of the shear flow.

3 Channel flow

In order to understand the model (2.33), we present analytical and numerical results
for the channel flow. We assume no-slip boundaries for all velocities at y = 0.5 and
y = −0.5, i.e.

us = 0, uf = 0, at y = ±1/2. (3.1)

We will seek stationary, two-dimensional solutions where all quantities, except for the
pressure, only depend on y and thus make the ansatz

φf = φf(y), φs = φs(y), uf = uf(y), us = us(y), τ f = τ f (y), τ s = τ s(y).
(3.2)

The combination of (3.1) and (2.33a), (2.33b) yields (if uf ,vf and us, vs denote the
components of the vectors uf and us, respectively)

vs = 0, vf = 0, (3.3)

and therefore

γ̇s =

(
0 us,y

us,y 0

)
, γ̇f =

(
0 uf ,y

uf ,y 0

)
. (3.4)
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The second component (2.33c) requires pf to be independent of y. For the total pres-
sure and stress p := φfpf + φsps and τ := φfτ f + φsτ s we get from (2.33c), (2.33d)

−p,x + (τ12),y = 0, −p,y = 0. (3.5)

Thus, p is independent of y and this means that in the first of these equations, one
term only depends on x and the other only on y, so the both have to be constant,
therefore the solution is

p(x) = p1x+ p0, (3.6a)

τ12(y) = p1y. (3.6b)

From now on, we will only look at the case of (i) solutions with velocities and volume
fractions that are symmetric with respect to y = 0 and that (ii) have at most one
unyielded region for 0 ≤ y ≤ yB, i.e. with at most one yB, where 0 ≤ yB ≤ 1/2. Due
to the symmetry assumption, the constant contribution to τ12 has been set to zero
in (3.6b) and it is sufficient to consider only non-negative y. The same reasoning as
above can be applied to (2.35c) to show

φs(ps − pf ) = const. if |γ̇s| > 0. (3.7)

Thus, the contact pressure, which we previously denoted by pc, is a constant here,
which is free and thus acts an additional parameter. From the above, we can conclude
pf(x) = p1x + p0 − pc, and by a choice of the origin, we can assume, without loss of
generality, that p0 = pc, and therefore

p(x) = p1x+ pc, pf (x) = p1x. (3.8)

Overall we get the system: In the liquid region y ∈ [yB; 1/2], the unknowns φs, φf ,
τs12, τf 12, us and uf satisfy

(φfτf 12),y = φfp1 +Da
φ2
s

φf

(uf − us), (3.9a)

φsτs12 = p1y − φfτf 12, (3.9b)

φf + φs = 1, (3.9c)

uf ,y = τf 12, (3.9d)

us,y =
τs12

ηs(φs)
, (3.9e)

pc = ηn(φs)|us,y|. (3.9f)

In the unyielded region y ∈ [0; yB[, the first three equations (3.9a)-(3.9c) are the same,
but the three remaining ones are replaced by

uf ,y = τf 12, (3.9g)

us,y = 0, (3.9h)

φs = φsc. (3.9i)
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The boundary and yield surface conditions are

uf = 0, us = 0, at y = 1/2, (3.9j)

uf,y = 0, us,y = 0, at y = 0, (3.9k)

[τs12]
+
− = 0, [τf 12]

+
− = 0, [us]

+
− = 0, [uf ]

+
− = 0, [φs]

+
− = 0, at y = yB. (3.9l)

The conditions at y = 0 are symmetry conditions and [g]+− = limy↘yB g − limy↗yB g
denotes the jump of a quantity across the yield surface y = yB.

Notice that (3.9f) applies in the fluid region where γ̇s > 0, so that, if pc = 0, this
implies φs = 0, i.e. no solid phase, which seems equivocal. We therefore assume
pc > 0. Then, we can remove pc from the equations by rescaling

τs12 = pcτ̃s12, τf 12 = pcτ̃s12, p1 = pcp̃1, uf = pcũf , us = pcũs. (3.10)

The fact that pc can be scaled out of the problem in this way implies that the width
of the unyielded region i.e. yB does not depend on pc, as was reported in [26]. In
simpler Herschel-Bulkley models, which are also able to model yield stress and shear-
thinning, the unyielded region would change with pc, thus making a case for the more
sophisticated model developed here.

As usual, we drop the tildes rescaling. Moreover, we can eliminate some of the vari-
ables and reduce the problem to a second order, non-autonomous system of ODEs for
φ ≡ φs (introduced for abbreviation) and w ≡ uf−us. In the fluid regions, y ∈ [yB; 1/2],
we have

−N(φ)y = φ p1 −Da
φ2

1− φ
w, (3.11a)

wy =
p1y +N(φ)

1− φ
+

1

ηn(φ)
; (3.11b)

in the unyielded region, y ∈ [0; yB[,

φ = φsc, (3.11c)

wyy = p1 +Da
φ2
sc

(1− φsc)2
w. (3.11d)

The functions N is given by

N(φ) ≡
φηs(φ)

ηn(φ)
. (3.11e)

At the channel wall and the channel center, we have the boundary conditions

w = 0 at y = 1/2, (3.11f)

wy = 0 at y = 0, (3.11g)

and at the yield surface,

φs = φsc, [w]+− = 0, [wy]
+
− = 0, at y = yB. (3.11h)
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The problem for w in the unyielded region, (3.11d) and (3.11g), can be solved explic-
itly. For Da > 0, we have

w = α1 cosh

(
Da1/2φsc

1− φsc

y

)
−

(1− φsc)
2

Daφ2
sc

p1, (3.12)

where α1 is a constant of integration. We can use this in the last two conditions in
(3.11h) to get

wy =

(
w +

(1− φsc)
2

Daφ2
sc

p1

)
Da1/2φsc

1− φsc

tanh

(
Da1/2φsc

1− φsc

yB

)
, at y = yB, (3.13)

and from this a new formulation of the free boundary condition

φs = φsc, w =
p1yB + µ1

Da1/2φsc tanh
(

Da1/2φsc

1−φsc
yB

) −
(1− φsc)

2

Daφsc
2

p1, at y = yB. (3.14)

We have thus reduced the problem to a free boundary value problem for second order
system of ODEs (3.11a), (3.11b) with a condition (3.9j) at the fixed boundary and two
at the free boundary (3.14).

No momentum transfer, Da = 0.

The case Da = 0 allows us to obtain an explict expression for yB. Integrating (3.11d)
and using the boundary condition (3.11g), we have

w = p1
y2

2
+ α2, (3.15)

with an unknown constant α2. Setting φ = φsc equation (3.11b) yields

wy =
p1yB + µ1

1− φsc
, at y = yB. (3.16)

Since we assumed continuity of wy at y = yB, we must equate this expression with
the derivative of the former and this fixes yB,

yB = −
µ1

p1φsc

. (3.17)

Thus, instead of the condition (3.14) we only need to impose φs = φsc at the known
boundary y = yB and this, together with (3.11a), (3.11b) with Da= 0 and (3.11f)
determines φs and w on yB < y < 1/2. Continuity of w at y = yB then yields α2.

Notice that the solution of this special case is recovered by solutions of (3.11a),
(3.11b), (3.11f), (3.14) in the limit Da→ 0 for which w remains bounded at yB, and
we therefore do not have to treat this case separately in our numerical computations.
For, the right hand side of the boundary condition for w in (3.14) is, to leading order
in Da1/2, equal to Da−1(µ1/yB + p1φsc)(1− φsc)/φsc

2 +O(1). Thus, boundedness as
Da→ 0 implies yB → −µ1/p1φsc.
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Figure 1: Plot of the w(yB) solution curve together with the w-boundary con-
dition (left) and the solution in the φ − y-plane (right) for the parameter set
(1, 0.5,−10, 0.32, 0.32, 0.005).
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Figure 2: Plot of the w(yB) solution curve together with the w-boundary con-
dition (left) and the solution in the φ − y-plane (right) for the parameter set
(1, 0.5,−0.9, 0.32, 0.32, 0.005).
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yB > 0.5. On the other hand for p1 → ∞ the free boundary position approaches zero
asymptotically.
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Figure 4: Plot of the w(yB) solution curve together with the w-boundary con-
dition (left) and the solution in the φ − y-plane (right) for the parameter set
(1000, 0.5,−10, 0.32, 0.32, 0.005).
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Figure 5: Plot of the w(yB) solution curve together with the w-boundary con-
dition (left) and the solution in the φ − y-plane (right) for the parameter set
(1, 0.5,−10, 0.32, 0.7, 0.005).
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Figure 6: Plot of the w(yB) solution curve together with the w-boundary con-
dition (left) and the solution in the φ-y-plane (right) for the parameter set
(1000, 0.5,−10, 0.32, 0.7, 0.005). Mind the double valued w(yB) coming from the curl
in the φ-y-plane.

17



Phase space analysis.

Problem (3.11a), (3.11b) with boundary conditions (3.9j) and (3.14) still contains the
set of parameters

(Da, φsc, p1, µ1, µ2, I0) ∈ R
+
0 ×]0, 1[×R

−
0 × R

+
0 × R

+
0 × R

+
0 . (3.18)

In order to solve the free-boundary problem, we seek a solution to (3.11a), (3.11b) as
an initial value problem (IVP) with initial values φ(0.5) = φ0 and w(0.5) = 0. The IVP
is solved until the volume fraction reaches the value φsc and we identify this position
as yB. The solution of the IVP is a solution to our original problem if the w-boundary
condition (3.14) is also fulfilled by it. If the solution does not reach φsc for y ∈ [0, 0.5] it
is not a solution to our original problem.

In order to find a solution we can vary φ0 ∈ [0, φsc] and plot the solution w(yB) and the
boundary condition for w as two curves. Any intersection of the curves is a solution to
our original problem.

We implemented the above method using Matlab’s ode15s solver and computed so-
lutions for several parameter sets.

For every parameter set, we plot the y-φ-curves and the yB-w(yb)-curves. The y-φ-
curves are a projection of the solution in y-φ-w space on the y-φ-plane. All solution
start at y = 0.5, φ = φ0 and go to the left as our IVP starts at y = 0.5 and solves for
decreasing y. The yB-w(yb)-plot shows the boundary value w(yB) and at the same
time the w(yB) obtained by numerical solution of the IVP. Any intersection of the two
curves in this plot is a solution to our original free-boundary problem.

Figure 1 shows the plots for parameter set

(Da, φsc, p1, µ1, µ2, I0) = (1, 0.5,−10, 0.32, 0.32, 0.005).

All curves are monotone decreasing in y for this parameter set. An increase in the
absolute pressure gradient |p1| causes a sharper decline of the curves from φsc until
a certain point, where the curves becomes very flat. In the yB-w(yB)-plot this shifts
the intersection point asymptotically towards y = 0. A decrease in |p1| causes a less
sharp decline and shifts the solution point in the yB-w(yB)-plot to y = 0.5. There is a
pmin > 0, such that for all |p1| < pmin the yB-w(yB)-plot has no intersection and thus
there is no solution to our problem as seen for example parameter set in Figure 2.

The change of intersection position is shown in Figure 3 in a semi-logarithmic plot
for pressures p1 ∈ {−0.9,−1.2,−2,−10,−100,−1000}. The curve approaches, but
never crosses the −p1-axes, thus showing the solutions converge to 0 for p1 → −∞.
The pressure p1 = −0.9 produces no solution as yB > 0.5 as denoted by a dotted
extrapolation line.

Figure 4 shows solutions of the IVP for large Darcy’s numbers, i.e. Da = 1000. With
large values of Da the solution set is split into two types. The first type are monotone
decreasing curves that have an initial value φ0 > φmin. The second type are curves
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starting below φmin. They have a maximum and never reach φsc, hence cannot be
solutions to our original problem. All curves with φ0 < φmin will stay above φ = 0 and
approach it asymptotically. Curves with a φ0 ≈ φmin tend to be unstable, since a small
change in φ0 can produce large changes in yB.

Next, we see a plot for µ1 6= µ2 and parameter set (1, 0.5,−10, 0.32, 0.7, 0.005) in
Figure 5. The yB-w(yB)-plot looks similar to the yB-w(yB)-plot of Figure 1. The y-φ-
plot also shows a similar behavior as in Figure 1, but the curves additionally contain a
small flat region just before the volume fraction approaches the critical value φsc. Our
interpretation is: the solutions start off as for µ1 = µ2 = 0.7 and just before φ = φsc

morph into curves similar to µ1 = µ2 = 0.32, thus the additional region, where the
transformation happens. This flattening becomes stronger for smaller I0 and bigger
differences µ2 − µ1.

Figure 6 shows the case µ1 6= µ2 with a large Darcy’s number. The plot has strong
similarities with Figure 4, but additionally has the flat region.

Unless the absolute pressure gradient becomes smaller than pmin, there seems to
always exist unique solution to our problem. Numerical tests suggest it is not possible
to intersect the w-curves more than ones. If a set of parameters produces no solution
one can decrease the pressure gradient until an intersection curve exists at yB = 0.5.

Summarizing, the phase space study shows the original boundary value problem
(3.11a), (3.11b) with a condition (3.9j) at the fixed boundary and two at the free bound-
ary (3.14) can have either no or a unique solutions depending on the parameters.

Solution for various parameter regimes

In Figures 7 and 8 we show two solutions obtained by the ODE system (3.11a), (3.11b)
with a condition (3.9j) at the fixed boundary and two at the free boundary (3.14) as
obtained using the Matlab ODE solver ode15s.

The first solution is for small Darcy number and equal friction coefficients, i.e. Da = 1,
µ1 = µ2 = 0.32. We see a volume fraction profile in the shape of a hyperbola until
φf = 1 − φsc, where it suddenly becomes constant due to the unyielded region. The
seemingly decreasing total velocity around the center is a pure averaging effect. The
fluid volume fraction is rapidly shifting the weighted average from the fluid to the solid
velocity, thus the total velocity is decreasing there, although neither the solid nor the
fluid velocity is decreasing. Since the viscosity of the solids is always greater than the
viscosity of the fluids and the force acting on both is the same, the fluid velocity is
always greater than the solid velocity.

The second simulation shows results for Darcy’s number 1000 in Figure 8a and 8b.
The momentum transfer term couples the fluid and solid velocities, thus the solid
velocity is increasing, whereas the fluid velocity is decreasing and flattens in the un-
yielded region. For very big values of Da all three velocities converge into one profile.
The effect of unequal friction coefficients µ1 6= µ2 is seen near the unyielded region
magnified in the plot of the volume fraction. In this region the slope of the volume
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Figure 7: The fluid volume fraction on the left and the velocities on the right as com-
puted for the channel flow solved using the ODE system. The non-dimensional pa-
rameters are Da = 1, pc = 0.145, φsc = 0.5, pc · p1 = −7.07, µ1 = µ2 = 0.32.
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Figure 8: The fluid volume fraction on the left and the velocities on the right as com-
puted for the channel flow solved using the ODE system. The non-dimensional param-
eters are Da = 1000, pc = 0.277, φsc = 0.5, pc · p1 = −9.455, I0 = 0.005, µ1 = 0.32,
µ2 = 0.7.
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fraction flattens a bit before getting steeper again.

Alternative two phase suspension model.

Finally, we briefly comment on another possibility for incorporating Boyer et al.’s con-
stitutive law into the suspension model. In the literature, it is more common to state
the constitutive laws for the stress and strain rate relation between the total stress
and strain rate rather than between the quantities for the particulate phase, as we
do here, though this approach is also followed, for example, in Morris & Boulay [39].
Suppose we replace (2.31b) by τ = (φsηs+φf)γ̇, where we define u ≡ φsus +φfuf

and γ̇ ≡ [∇u + (∇u)T ], while all other quantities retain their meaning. Also assume
we study channel flow with a fixed pressure gradient p1 but consider an increasingly
large average volume fraction, i.e. averaged over the channel cross section. The latter
can be achieved by increasing the particle contact pressure. Since (3.6b) still holds,
the total shear stress remains constant, but ηs → ∞ and therefore γ̇ → 0. Together
with the no-slip boundary conditions, this means that the total velocity tends to zero
across the channel. However, the liquid phase velocity is determined, to leading order,
by p1 and remains positive, so that as a consequence, the particle velocity becomes
negative at least for some portion of the channel cross section. This slightly surpris-
ing behaviour does not occur in the present formulation where the stress-strain rate
relation (2.31b) is expressed in terms of the particulate and not the total quantities.

4 Direct numerical solution for a finite length channel

In this section, we investigate how the channel flow develops by solving (2.33) numer-
ically on a finite size channel extending from x = 0 to x = L.

As a general cautionary remark we note that the direct numerical solution of our
model comes with challenging numerical difficulties. Our multiphase model with vol-
ume fraction dependent viscosity terms are, at least for the channel flow and shear
flow case, a Bingham visco-plastic model, which can not be simulated by direct appli-
cation of FEM as discussed by Dean et al. [10] and Glowinski et al. [20]. Moreover,
in the non-stationary case, the mass balance equations are pure convection equa-
tions, which are known to produce stability problems for standard continuous Galerkin
methods and often demand the use of so-called streamline upwind/Petrov Galerkin
(SUPG) methods [5]. Still another numerical challenge posses the bounding box (or
discrete maximum principle) given by the physical range of the volume fraction, i.e.
φs ∈ [0, φsc]. In the case of non-stationary solutions this can be related to a time-
stepping constraint as shown by Horvarth [24].

With this in mind we propose a numerical solution by simply using a regularisation
procedure.
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(a) Volume fraction plot with Da = 1, µ1 = µ2
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(b) Velocities plot with Da = 1, µ1 = µ2
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(c) Volume fraction plot with Da = 1000, µ1 6=
µ2
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(d) Velocities plot with Da = 1000, µ1 6= µ2

Figure 9: Solid volume fraction and velocities as computed for the channel flow by
FEM simulation of formulation (2.33) compared to the non-regularized solution ob-
tained using the ODE formulation (3.11a), (3.11b). The non-dimensional parameters
are φsc = 0.5, I0 = 0.005, µ1 = 0.32, ε = 0.001 and for Figures 9a and 9b Da = 1,
µ2 = 0.32, whereas for Figures 9c and 9d we have Da = 1000, µ2 = 0.7. The inflow
mass flux and volume fraction has been matched to yield the same values for pc and
p,x as in Figures 7a and 8a, respectively. The result has been computed by a station-
ary formulation for a channel of length L = 30000, where the shown values have been
taken at 25000. The resolution of the computation is 30×50 squares each divided into
four triangles. We can also solve the regularized problem with the same ε value using
the ODE formulation, but on the scale of the resolution of the shown plots it would look
identical to the exact solution. Therefore, the FEM produces a different result than the
ODE solution due to its limited achievable resolution and stability around the center of
the channel.
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Regularized problem

We use the inlet conditions

φs = φs,in, uf = uf,in(1/4− y2), us = us,in(1/4− y2) at x = 0, (4.1)

with constant φs,in, uf,in, us,in, and at the outlet stress conditions

n · (psI+φsηs(∇us)
T ) = 0, n · (pfI+φf(∇uf )

T ) = 0, at x = L. (4.2)

The inlet conditions determine the two free parameters p1 and pc in the channel flow
situation via mass conservation for the two phases, which requires the integral of φfuf

and φsus across the channel to be constant. Evaluation of this integrals at the inlet and
at a position where the channel flow solutions have developed results in

2pc

∫ 1/2

0

φf(y; p1/pc)uf(y; p1/pc)dy = (1− φs,in)uf,in/6, (4.3a)

2pc

∫ 1/2

0

φs(y; p1/pc)us(y; p1/pc)dy = φs,inus,in/6, (4.3b)

where φf , φs, uf , us are given by the solutions determined in the previous section.
Their dependence on the rescaled pressure gradient −p1/pc arises from (3.10) and
is explicitly emphasized here by our choice of notation. Thus we have two equations
that determine p1 and pc for given φs,in, uf,in, us,in.

As we have seen in the previous section, we expect an unyielded zone to form at the
center of the channel. In this zone, the constitutive law for the stresses and pressures
is not specified and thus the governing equations are not well-posed. This difficulty
also arises in single phase models with Bingham-like rheologies [10], where it is ad-
dressed by various methods, such as the inclusion of regularising non-local terms,
see e.g. [39, 40], or by reformulation as a variational inequalities, see Glowinski et
al. [20]. Here, we follow a regularisation approach by replacing the normal viscosity
ηn by

ηnε(φs) =

(
φs

φsc − φs

)2+ε

(4.4)

with a small ε. The physical effect of this regularisation is that the volume fraction
never reaches φsc for ε > 0 and therefore the normal viscosity remains finite. Thus we
expect the unyielded zone to be replaced by a region with a high but finite viscosity,
which becomes increasingly rigid as ε → 0.

Weak formulation and results

The PDEs are solved using a finite element method (FEM) with P2/P1 elements for
the velocity and the pressure, respectively. For the weak formulation, let Ω =]0, L[×]−
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1/2, 1/2[, and define the products

(a, b) =

∫

Ω

a(x, y)b(x, y) dx dy, 〈a, b〉 =

∫ 1/2

−1/2

a(L, y)b(L, y) dx

for scalar valued, and analogously, for vector valued functions a, b. Define the spaces

Vs = {u ∈ P2 × P2 : u(x,±1/2) = 0, u(0, y) = us,in(1/4− y2)},

Qφ = {φ ∈ P1 : q(0, y) = φs,in},

Vf = {u ∈ P2 × P2 : u(x,±1/2) = 0, u(0, y) = uf,in(1/4− y2)},

Qp = {q ∈ P1},

Tv = {u ∈ P2 × P2 : u(x,±1/2) = 0, u(0, y) = 0},

Tφ = {q ∈ P1 : q(0, y) = 0}.

Then, the task is to find (us, φs,uf , pf) ∈ Vs×Qφ×Vf×Qp, which, for all test functions
(vs, qφ, vf , qf) in Tv × Tφ × Tv ×Qp, satisfy

−(φsτ s,∇vs) + (pf ,∇ · (φsvs)) + Da (φ2
s(uf − us)/(1− φf), vs) + (ηnε(φs)|γ̇s|,∇ · vs)

+〈φsηs(φs)n · ∇us, vs〉 − 〈ηnε(φs)|γ̇s|,n · vs〉+ (∇ · (φsus), qφ) = 0,

−(φfτ f ,∇vf ) + (pf ,∇ · (φfvf))− Da (φ2
s(uf − us)/(1− φf ), vs)

+〈φfn · ∇uf , vf 〉+ (∇ · (φfuf), qf) = 0

with τ f and τ s given by (2.35a) and (2.35b), respectively and γ̇s the non-dimensional
solid shear rate. The FEM method was implemented using the Python backend of
FEniCS [35] . The nonlinear discrete equations were solved with an underrelaxed
Newton-iteration with a choice ε = 0.001 for the regularisation parameter.

We compare the result from the FEM calculation with the analytical results for the
channel flow, by comparing the cross sectional velocity and volume fraction profiles
at x = xM ≡ 25000 for a channel of length L = 30000. The two solutions are in very
good agreement. The values for p1 and pc have been obtained by taking the gradient
of the pressure and by evaluating (2.35c) at xM , respectively. These values are close
to the ones obtained from (4.3). The FEM solutions for different Darcy numbers for the
solid volume fraction is shown in fig. 9a and fig. 9c together with the respective exact
ODE solution from fig. 7a and fig. 8a. We see there is a difference in the unyielded
region that is not due to the effect of the regularization as a regularized ODE solution
would look identical to the exact solution. We think the difference in the solution stems
from limited accuracy or non-monotonicity of the FEM scheme. Changing xM where
the profiles are obtained hardly influences the profile depending except very close to
the outlet or inlet, thus the channel flow solution obtained in the previous section is
quickly established and describes the flow in the channel except for small effect near
the inlets, outlets and unyielded region.
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5 Discussion and Conclusion

In this study we have derived a two-phase model for dense non-Brownian suspen-
sions incorporating a rheological constutive law proposed by Boyer et al. [2]. This
law enables us to establish dynamical features such as the formation of unyielded or
jammed regions. For the simple channel flow in two-dimensional geometry we anal-
ysed and characterized the flow regimes that can be obtained by solving a boundary
value problem for a corresponding system of ordinary differential equations. The solu-
tions of this system are then compared to numerical solutions of a full 2D flow problem
for a channel of finite length obtained by discretisation with appropriate finite elements.

The volume fraction profile obtained for the system of ODEs reaches the maximum
volume fraction φsc for positive y = yB, thus providing an unyielded region of non-zero
width at the center of the channel which increases with the average volume fraction.
This is in contrast to the cusps observed in the literature for channel or pipe flow
[36, 40, 41], i.e. where the maximum volume fraction is at best achieved exactly at
the centerline, and is a consequence of having a a positive yield stress threshold de-
pending on the particle pressure as a result of having shear and normal viscosity with
a singularity of the same order at φs → φsc. If a slight mismatch is introduced as a
regularisation by increasing the order of the singularity for the normal viscosity, see
also Ramachandran [42], the unyielded region in the channel flow is replaced by a
region where φ is still nearly flat and close to but below φsc for y 6= 0. It approaches
the maximum volume fraction with a horizontal tangent at y = 0. Interestingly, for suffi-
ciently small ratios of the particle-to-pipe radii, the experiments by Hampton et al. [21]
show a region near the center line that is consistently larger than 0.6 for their higher
bulk volume fractions, i.e., close to the maximum packing density. Moreover, consis-
tent with the widening of the unyielded region, their “peaks” show signs of flattening
near the pipe center and their sharpness decreases as their bulk volume fraction is
increased.

Future work should include a more careful comparison with the pipe flow experiments
and other experimental data. Moreover, the model needs to be extended for more
complex flows where normal stress differences are known to occur and are important
for the behaviour of the suspension, as in Morris & Boulay [39], or to accomodate
dependencies on the local rotation, see Miller et al. [36]. Moreover, experiments such
as those by Hampton et al. [21] reveal a dependence on the particle sizes relative to
the width of the channel, and a volume fraction that is well below the maximum packing
fraction at y = 0 for larger relative sizes. This can be accounted for by introducing non-
local contributions as in Nott & Brady [40].
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A Averaging rules

We will follow the mathematical framework by Drew and Passman [12],[13] in this
section. Let f and g be arbitrary measurable functions, c a constant and 〈·〉 an average
operator obeying the so-called Reynolds’ rules

〈f + g〉 = 〈f〉+ 〈g〉 (A.1)

〈〈f〉g〉 = 〈f〉〈g〉 (A.2)

〈c〉 = c, (A.3)

the Leibniz’ rule
〈f,t〉 = 〈f〉,t (A.4)

and the Gauss’ rule
〈f,i〉 = 〈f〉,i. (A.5)

The functions should be weakly differentiable up to the required order. Admissible
operators are for example the volume average [47], [33], time averages [27], the en-
semble average [13] or a mixture of these [11]. However, note the derivatives are
defined in the sense of distributions in this work. This implies 〈∇f〉 can have a Dirac
delta property yielding additional surface integrals, whereas in classical theories the
Leibniz’ and Gauss’ rule are written explicitly with surface integrals, c.f. [13] and [47].

We further need a component indicator function

Xk(x, t) =

{
1, if (x, t) ∈ K

0, if (x, t) 6∈ K
(A.6)

with K the set of states of the k-th-phase. In our model we use the average operator
in a weighted form. There are in general two averages in use, the intrinsic or phasic
average

g :=
〈Xkg〉

〈Xk〉
(A.7)

and the mass-weighted or Favré average (in its three common forms)

ĝ :=
ρg

ρ
=

〈Xkρg〉

〈Xk〉
〈Xkρ〉
〈Xk〉

=
〈Xkρg〉

〈Xkρ〉
. (A.8)

Further, every weighted average should possess a splitting into an average and a
derivation of the average

g = gk + g′k with g′ = 0 (A.9)

g = ĝk + g◦k with ĝ◦ = 0. (A.10)

This splitting together with the Reynolds rules yields the identity

fg = fkgk + f ′
kg

′
k (A.11)
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and similar for the Favré average

f̂ g = f̂kĝk + f̂ ◦
kg

◦
k. (A.12)

The characteristic function fulfills the so-called topological equation (cf. [13])

Xk,t + ui · ∇Xk = 0 (A.13)

with ui the interface velocity.

B Remark on Galilei invariance

Applying the transformation

x̃ = x− U0(t + t0) + x0, t̃ = t+ t0, ũ = u− U0. (B.1)

to the mass and momentum balance equations we find from

(φi),t +∇ · (φiui) = 0 (B.2)

∇ · (φiτ i) +∇(φipi) = Da ·M d
i + pi∇φi. (B.3)

for the mass balance

(φi),t +∇ · (φiui) = 0 ⇔ (B.4)

(φi),t̃
∂t̃

∂t
+ ∇̃φi ·

∂x̃

∂t
+ ∇̃(φi(ũi + U0)) : ∇x̃ = 0 ⇔ (B.5)

(φi),t̃ − U0 · ∇̃φi + ∇̃ · (φiũi) + U0 · ∇̃φi = 0 ⇔ (B.6)

(φi),t̃ + ∇̃ · (φiũi) = 0. (B.7)

For the momentum balance equation we find

∇ · (φiτ i) +∇(φipi) = Da ·M d
i + pi∇φi ⇔ (B.8)

∇ · (φiηi(φi)(∇ui + (∇ui)
T )) +∇(φipi) = Da · g(φi)(u− ui) + pi∇φi ⇔ (B.9)

∇̃ · (φiηi(φi)(∇̃(ũi + U0) + (∇̃ũi + U0)
T )) + ∇̃(φipi)

= Da · g(φi)(ũ+ U0 − ũi − U0) + pi∇̃φi ⇔ (B.10)

∇̃ · (φiηi(φi)(∇̃ũi + (∇̃ũi)
T )) + ∇̃(φipi) = Da · g(φi)(ũ− ũi) + pi∇̃φi ⇔ (B.11)

∇̃ · (φiτ̃ i) + ∇̃(φipi) = Da · M̃ d
i + pi∇̃φi (B.12)

Therefore, Galilei invariance is satisfied.
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