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Optimal design of the tweezer control for chimera states
Iryna Omelchenko, Oleh E. Omel’chenko, Anna Zakharova, Eckehard Schöll

Abstract

Chimera states are complex spatio-temporal patterns, which consist of coexisting domains of
spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks,
chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the inco-
herent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera
states. We analyse the action of the tweezer control in small nonlocally coupled networks of Van
der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parame-
ters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states
with different shapes, and can be used as an instrument for controlling the coherent domains size,
as well as the maximum average frequency difference of the oscillators.

1 Introduction

Systems of coupled oscillators are a widely studied topic in the area of nonlinear science, they have
numerous applications in physics, chemistry, biology, and technology. Synchronization and partial syn-
chronization of oscillators has been in the focus of the studies, including the phenomenon of chimera
states which are characterized by a hybrid nature of coexisting spatially coherent and incoherent do-
mains [1, 2, 3, 4, 5, 6, 7]. Theoretical studies of chimera states have considered a wide range of
large-size networks [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35], with a variety of regular and irregular coupling topologies. In experiments,
chimera states were first demonstrated in optical [36] and chemical [37, 38] systems, followed by ex-
periments in mechanical [39], electronic [40, 41, 42] and electrochemical [43, 44] oscillator systems
as well as Boolean networks [45]. In the framework of phase oscillator systems, analytical insights
and bifurcation analysis of chimera states have been obtained in the continuum limit case, which ex-
plains the behaviour of very large ensembles of coupled oscillators [46, 47, 48, 49]. Chimera states in
small-size networks have attracted attention only recently [50, 51, 52, 53], whereas lab experiments
with such networks are usually more realistic. For identification of chimera states, the concept of ’weak
chimeras’ [50] was introduced, using partial frequency synchronization as the main indicator of such
states.

In small-size systems of nonlocally coupled oscillators, chimera states usually have a finite lifetime,
and it is known that chimera states are chaotic transients, which eventually collapse to the uniformly
synchronized state [14]. Their mean lifetime decreases rapidly with decreasing system size. Moreover,
chimera states exhibit a motion of the position of the incoherent domain along the oscillator array.
This drift has the statistical properties of a Brownian motion and its diffusion coefficient is inversely
proportional to some power of the system size [54].

In phase oscillator systems with more complex coupling functions including higher harmonics or
quadratic components [55, 56], chimera states can be stabilized without any external influence. In
large networks with nonlocal coupling functions, the drift of chimera states is weak, and collapse is
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impossible to observe numerically due to their very long lifetimes. However, in small networks both
problems dominate. A control techniques, which allow to overcome these difficulties in phase oscilla-
tor networks, have been suggested recently. The lifetime of chimera states as well as their basin of
attraction can be effectively controlled by a special type of proportional control relying on the measure-
ment of the global order parameter [57]. The spatial position of the coherent domain of the chimera
states can be stabilized by a feedback loop inducing a state-dependent asymmetry of the coupling
topology [58], based on the evaluation of a finite difference derivative for some local mean field.

Recently, we proposed a tweezer control scheme for stabilization of chimera states [59], shown sche-
matically in Fig. 1. This control scheme consists of two parts, symmetric and asymmetric, and effec-
tively stabilizes chimera states in small networks of oscillators exhibiting both phase and amplitude
dynamics.

Figure 1: Schematic representation of the tweezer control. Z1 and Z2 denote the complex order pa-
rameters for one half of the oscillator population, respectively.

In the case of networks of coupled phase and amplitude dynamics, in contrast to pure phase os-
cillators, a simple analytical study for the continuum limit (N → ∞) is not possible, therefore we
concentrate mainly on the numerical stability analysis. We provide an extensive numerical scan of
the oscillators frequency variations in the parameter space, and uncover parameter ranges of sym-
metric and asymmetric control gains where chimera states are the most pronounced in the sense
of frequency differences between oscillators from coherent and incoherent domains and size of the
coherent domains. We aim to analyze the influence of the control gain on the shape of the stabilized
chimera states, and detect parameter regimes where tweezer control is the most effective. This can
be useful in the experiments in order to choose the control gains appropriately for the optimal con-
trol of chimera states. Additionally, we analyze the influence of the individual oscillator dynamics on
the controlled system for networks of Van der Pol and FitzHugh-Nagumo oscillators, and demonstrate
that optimal tweezer control allows for stabilization of variable chimera patterns with different sizes
of coherent domains. Moreover, in networks of FitzHugh-Nagumo oscillators, the control enables the
stabilization of chimera states with multiple incoherent domains even in small networks.
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Optimal design of the tweezer control for chimera states 3

2 Tweezer control in networks of Van der Pol oscillators

We consider a system of N identical nonlocally coupled Van der Pol oscillators xk ∈ R given by

ẍk = (ε− x2
k)ẋk − xk

+
1

R

R∑
j=1

[a−(xk−j − xk) + b−(ẋk−j − ẋk)]

+
1

R

R∑
j=1

[
a+(xk+j − xk) + b+(ẋk+j − ẋk)

]
. (1)

Here, the scalar parameter ε > 0 determines the internal dynamics of all individual elements. For
small ε the oscillation of a single element is sinusoidal, while for large ε it is a strongly nonlinear
relaxation oscillation. Each element is coupled with R nearest neighbours to the left and to the right.
We assume that the oscillators are arranged on a ring (i.e., periodic boundary conditions) such that all
indices in Eq. (1) are modulo N . The coupling constants in position and velocity to the left and to the
right are denoted as a−, a+ and b−, b+, respectively.

For the sake of simplicity we assume

a− = a+ = a, b− = aσ−, b+ = aσ+, (2)
with rescaled coupling parameters a, σ− and σ+.

We define two complex order parameters

Z1(t) =
1

[N/2]

[N/2]∑
k=1

eiφk(t) (3)

Z2(t) =
1

[N/2]

[N/2]∑
k=1

eiφN−k+1(t), (4)

where φk(t) is the geometric phase of the k-th oscillator computed from

eiφk(t) =
(
x2
k(t) + ẋ2

k(t)
)−1/2

(xk(t) + iẋk(t)) . (5)

As in our previous work, the tweezer feedback control [59] is defined in the form

σ± = Ks

(
1− 1

2
|Z1 + Z2|

)
±Ka(|Z1| − |Z2|). (6)

The control term has two parts referred to as symmetric and asymmetric controls, see Fig. 1. The
symmetric control is analogous to the proportional control suggested for phase oscillators in [57]. It is
defined as a feedback loop between coupling parameters σ± and the global Kuramoto order parameter

|Zs| =
|Z1 + Z2|

2
.

The aim of this feedback loop is to suppress the collapse of small-size chimera states. The asymmetric
control is defined as another feedback loop between coupling parameters σ± and the difference

Za = |Z1| − |Z2|.
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This difference indicates a relative shift of the chimera’s incoherent domain with respect to the center of
the oscillator array 1, ..., N . If the incoherent domain of the chimera state moves towards larger indices
(|Z1| > |Z2|), the difference is positive, and σ+ > σ−. In the opposite case, when the incoherent
domain is shifted towards smaller indices (|Z1| < |Z2|), we obtain σ+ < σ−. An imbalance between
σ+ and σ− introduces asymmetry in the coupling, and induces the counterbalancing lateral motion
of a chimera state towards dynamically preferable centered position. The gain constants Ks and Ka

govern the strength of the symmetric and the asymmetric parts of the control, respectively. In [59] we
demonstrated the successful performance of the tweezer control scheme (1)–(6) in small nonlocally
coupled networks of Van der Pol oscillators with N = 48, 24, 12. The characteristic signature of a
chimera state is a pronounced difference of the average frequencies for oscillators belonging to the
coherent and incoherent domain, respectively. The oscillators from the coherent domain are phase-
locked and have equal frequencies, while the oscillators from the incoherent domain have different
average frequencies which form typically an arc-like profile. We use the following definition of the
mean phase velocities of the oscillators

ωk(t) =
1

∆T

∫ ∆T

0

φ̇k(t− t′)dt′, k = 1, . . . , N. (7)

For the time window ∆T = 50 Eq. (7) yields phase velocities averaged over 101 − 102 oscillations.
Plotting these functions ωk(t) allows us to monitor the spatio-temporal phase dynamics of the system.
On the other hand, using Eq. (7) with t = ∆T = 500000 we obtain long-time averaged phase
velocities, or average frequencies, which are denoted as 〈ωk〉.
When both the symmetric Ks and the asymmetric Ka control gains are switched on, the system
develops a stable chimera state without any lateral motion of the coherent and incoherent domains. In
the case when we switch off the asymmetric part of the control by fixing Ka = 0 and keep a positive
symmetric gain Ks > 0, the chimera state starts to drift. This lateral motion becomes stronger for
decreasing system size. To switch off both parts of the control, we replace σ+ and σ− with their
effective time-averaged value 〈σ〉 = 1

2
[〈σ+〉 + 〈σ−〉] where 〈σ+〉 ans 〈σ−〉 are time-averages of

σ+(t) and σ−(t) obtained from the controlled reference case. In this case we observe a collapse of
the chimera state.

Note that the tweezer control scheme is noninvasive on average only [57]. Indeed, for a non-invasively
stabilized chimera state, the control terms σ+ and σ− must be time-independent. Moreover, one also
must have σ+ = σ−. Figure 2(a) shows that this is not the case. Taking into account Eq. (6) and
the definitions of Zs and Za one easily sees that the instantaneous impact of tweezer control on
the stabilized chimera state varies in time and can be strongly invasive. On the other hand, both
terms σ+(t) and σ−(t) oscillate irregularly around almost the same constant level such that the time-
average of Za vanishes and the time-average of |Zs| can be identified with the order parameter of
the corresponding stabilized chimera state. Therefore, by analogy with [57] we can call our tweezer
control scheme non-invasive on average.

The tweezer control scheme works effectively for fixed values of the control gainsKs andKa. In order
to obtain insight into the mechanism of the control scheme, and understand how to choose optimal
values for control gains, we introduce the standard deviation of the mean phase velocity profile

∆ω =

√√√√ 1

N

N∑
k=1

(〈ωk〉 − Ω)2, where Ω =
1

N

N∑
k=1

〈ωk〉. (8)

Larger values of ∆ω correspond to a well pronounced arc-like mean phase velocity profile, character-
izing chimera states. Moreover, identifying the constant plateau in the graph of 〈ωk〉 we can find the
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size of the chimera’s coherent domain.

As an additional measure, we consider variations of the symmetric and asymmetric control inputs

∆Zs = max
t
|Zs| −min

t
|Zs|, and ∆Za = max

t
|Za|.

According to the tweezer control definition (6), productsKs∆Zs andKa∆Za characterize fluctuations
of the control terms σ± and of the difference σ+−σ−, respectively. They can be used to measure the
instantaneous invasiveness of the control scheme.

Figures 2(b),(c) show the dependence of Ks∆Zs on the symmetric control gain Ks (for fixed asym-
metric gain Ka = 2), and the dependence of Ka∆Za on the asymmetric control gain Ka (for fixed
symmetric gain Ks = 1) in numerical simulations with N = 24 Van der Pol oscillators. The product
Ks∆Zs vanishes for Ks → 0 where control does not work and the system relaxes to the completely
synchronized state. In the interval Ks ∈ (0.5, 2) this product starts to grow slowly and we observe
stabilization of chimera states. For Ks > 2 the tweezer control still stabilizes chimera states, but the
product Ks∆Zs grows much faster. Comparing the behavior of Ks∆Zs with the behavior of the fre-
quency variation ∆ω and with the behavior of the coherent domain size for stabilized chimera states
we note that the action of tweezer control is optimal for chimeras with large values of ∆ω and with
coherent domains comprising 10− 40% of the system size.

Figure 2(c) shows that the instantaneous invasiveness of the asymmetric control Ka∆Za grows al-
most linearly with increasing control gain Ka, therefore for optimal control design, the parameter Ka

has to be as small as possible. However, it must not vanish completely, because otherwise the chimera
state will start to move on the ring.
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Figure 2: (a) Symmetric and asymmetric control inputs |Zs| (blue line) and Za (red line), respectively,
for N = 24 Van der Pol oscillators, R = 8, ε = 0.2, Ks = 1, Ka = 2, after transient time
T = 500 000. Solid black lines denote time averaged values of Zs and Za. (b), (c) Instantaneous
invasiveness of symmetric control Ks∆Zs for Ka = 2 (b) and of asymmetric control Ka∆Za for
Ks = 1 (c) (lines with circles). The black (dashed) and purple (full) lines in panel (b) show the variance
∆ω and the size of coherent domain for chimera states stabilized by tweezer control, respectively.
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Using these preliminaries, we examine the influence of the control parameters Ks, Ka on the chimera
behavior in networks of N = 24 Van der Pol oscillators, see Figure 3. Upper panels demonstrate
the standard deviation of the mean phase velocity profiles for different types of local dynamics of
the individual oscillators: ε = 0.2 (Fig 1(a))- sinusoidal limit cycle oscillations, ε = 1 (Fig 1(b))
and ε = 5 (Fig 1(c))- relaxation oscillations. Light colors correspond to larger values of standard
deviation ∆ω of the mean phase velocity profiles. Along the horizontal axis, for each ε there exists a
range of parameter Ks, where the symmetric control is most efficient: for small values the symmetric
control is not efficient, and for large Ks the chimera states approach the completely synchronized
state (∆ω = 0). Larger values of ε result in an increasing amplitude of the limit cycle (ε = 1, ε = 5),
and hence larger coupling strengths are required, therefore maximal values of ∆ω are observed for
larger Ks. Along the vertical axis, the standard deviation ∆ω sharply increases for small values of
the asymmetric control strength Ka, and then stays approximately at the same value indicating the
saturation of the position control. Thus, choosing the control gain constants from this optimal light-
colored region allows for stabilization of chimera states with the most pronounced mean phase velocity
profiles. The diagrams were obtained numerically as an average over 100 realizations starting from
random initial conditions and ∆T = 500000.

The bottom panels, Fig. 3(d),(e),(f), depict the corresponding sizes of the coherent domains for chimera
states with ε = 0.2, 1, 5, respectively. In our numerical experiments, the size of the coherent domain
for a chimera state corresponds to the number of oscillators having equal mean phase velocities. In
the parameter plane, we observe cascades of tongue-like regions depicting the increase of the size of
the coherent domains with increasing symmetric control gain Ks. Comparing each pair of upper and
lower panels in Fig. 3, we observe that the most pronounced difference between the values of mean
phase velocity for the oscillators from the coherent and incoherent domain corresponds to chimera
states with smallest coherent domains. Increasing the symmetric control gain results in decreasing
difference, and at the same time increasing size of the coherent domain.

Note that the black regions in Fig. 3(a),(b),(c) and the yellow regions in Fig. 3(d),(e),(f), respectively,
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Figure 3: Control regimes of Van der Pol oscillator: Standard deviation ∆ω of the mean phase velocity
profiles for controlled chimera states in system Eqs. (1)-(6) in dependence on the control gains Ks,
Ka for N = 24 oscillators, R = 8, a = 0.02, ∆T = 500 000: (a) ε = 0.2, (b) ε = 1, (c) ε = 5.
Corresponding sizes of coherent domains for chimera states: (d) ε = 0.2, (e) ε = 1, (f) ε = 5. White
dots A,B,C and D in panels (a),(d) correspond to the examples shown in Fig. 5.
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have different meaning for the limits Ks → 0 and Ka → 0. This fact is illustrated in Figure 4 where
we show the dependence of the time-averaged order parameter 〈|Zs|〉 on the control gain Ks (for
fixed Ka = 2) and on the control gain Ka (for fixed Ka = 1). If for Ka > 0 we switch off the
symmetric control (Ks = 0), the system relaxes to the completely synchronized state with the global
order parameter |Zs| = 1, see Fig. 4(a). On the other hand, if forKs > 0 we switch off the asymmetric
control (Ka = 0), we obtain a dynamical state with global order parameter |Zs| close to that of the
reference chimera state, see Fig. 4(b), but this state cannot be identified as a chimera because due to
the fast wandering of its position we obtain 〈ω1〉 = 〈ω2〉 = · · · = 〈ωN〉. Actually, if we consider the
interval Ks ∈ [0.5, 2] with the most developed chimera states, i.e., chimeras with large values of ∆ω,
then we find that the diagrams in Figure 3 show almost no dependence onKa forKa ≥ 2. This allows
us to identify tweezer control with Ks ∈ [0.5, 2] and Ka = 2 as optimal.

White dots denoted as A,B,C,D in Fig. 3(a),(d) correspond to the examples shown in Fig. 5, which
illustrate the dynamics of controlled system (1)–(6) of N = 24 coupled Van der Pol oscillators. To
visualize the temporal dynamics of the oscillators we plot their mean phase velocities defined by (7)
with ∆T = 50. Panels (a)-(d) in Fig. 5 demonstrate that the size of the incoherent domain decreases.
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function of Ka (for fixed Ks = 1). Parameters: N = 24 Van der Pol oscillators, R = 8, ε = 0.2,
Ks = 1, Ka = 2. Trajectory length ∆T = 500 000 and the same length of the discarded transient.
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Figure 5: Mean phase velocities for a system of N = 24 Van der Pol oscillators, R = 8, a = 0.02,
ε = 0.2 after a transient time of T = 495 000: (a) Ks = 0.5, Ka = 2; (b) Ks = 1, Ka = 2;
(c) Ks = 1.5, Ka = 2; (d) Ks = 2, Ka = 2. (e) Average frequency profiles corresponding to the
chimera states shown in panels (a)-(d). Trajectory length ∆T = 500 000. Values of control gains Ks,
Ka are denoted by white dots in Fig. 3(a),(d).
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Fig. 5(e) shows phase velocity profiles for these four examples, averaged over ∆T = 500000, where
for example A (Ks = 0.5, Ka = 2) the chimera state is characterized by the largest difference of
velocities for the coherent and incoherent oscillators, but at the same time has the smallest coherent
domain consisting of 8 oscillators (red circles). Further increasing of Ks results in stabilization of
chimera states with larger coherent domains.

To summarize, the tweezer control allows us not only to stabilize chimera states, but also to control the
size of coherent and incoherent domains with appropriate choice of the control gains. Varying Ks and
Ka, it is possible to solve different tasks: stabilize chimera states with maximal frequency difference
for coherent and incoherent oscillators, or chimera states with largest coherent domain. The symmet-
ric control gain Ks is crucial for the coherent domain size. The asymmetric control gain Ka usually
exhibits saturation behavior, although for relaxation-type oscillations (ε = 2, ε = 5) larger values of
Ka are optimal, while the amplitude of the limit cycle increases, and stronger coupling is needed for
the synchronization.

3 Tweezer control in networks of FitzHugh-Nagumo oscillators

To emphasize the universality of the tweezer control scheme, we now consider FitzHugh-Nagumo
oscillators:

Ẋk = Fε,a(Xk) +
1

R

R∑
j=1

B−(Xk−j −Xk)

+
1

R

R∑
j=1

B+(Xk+j −Xk), (9)

where Xk = (uk, vk)
T ∈ R2 is the state vector of the k-th oscillator and

Fε,a(Xk) =

(
(uk − 1

3
u3
k − vk)/ε

uk + a

)
(10)

is given by the nonlinear local dynamics of the FitzHugh-Nagumo model with time-scale parameter
ε > 0, which we fix at ε = 0.15, and threshold parameter a ∈ (−1, 1) in the oscillatory regime,
i.e., each uncoupled oscillator exhibits a stable periodic orbit on a limit cycle. Again, we explore the
nonlocal coupling topology, where each oscillator is coupled with R nearest neighbours to the left and
right, and the matrices B−, B+ ∈ R2×2 describe the coupling to the left and right, respectively.

System (9) with symmetric coupling

B− = B+ = bS(ψ),

where b ∈ R+ and

S(ψ) =

(
cosψ sinψ
− sinψ cosψ

)
(11)

is a rotational matrix with coupling phase ψ, has been considered in [17]. In this work, we have shown
that chimera states can be observed for ψ . π/2, and we demonstrated that in the limit of small
coupling strength b << 1 the phase dynamics of system (9) is approximately described by

θ̇k = −
R∑

j=−R

sin(θk − θk+j + α)
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where α ≈ ψ.

The tweezer control scheme for system (9) is introduced as

B− = bS(ψ−) and B+ = bS(ψ+) (12)

where

ψ± =
π

2
−Ks

(
1− |Z1 + Z2|

2

)
∓Ka(|Z1| − |Z2|), (13)

with two complex order parameters

Z1(t) =
1

[N/2]

[N/2]∑
k=1

eiξk(t)

Z2(t) =
1

[N/2]

[N/2]∑
k=1

eiξN−k+1(t),

and ξk(t) is the geometric phase of the k-th oscillator computed from

eiξk(t) =
(
u2
k(t) + v2

k(t)
)−1/2

(uk(t) + ivk(t)) .

Similarly to the system of coupled Van der Pol oscillators, for an appropriate choice of control gains
Ks andKa in (13) we can stabilize chimera states in the system (9)-(13) with a small, as well as large,
number of oscillators. To elaborate the issue of the optimal choice of the control gains, we will analyse
the standard deviation of the mean phase velocity profile ∆ω defined via the average frequencies
〈ωk〉 as in Eq. (8). Larger values of ∆ω correspond to a well pronounced arc-like mean phase velocity
profile, characterizing chimera states. Fig. 6(a),(b),(c) depicts values of ∆ω in the plane of symmetric
(Ks) and asymmetric (Ka) control gains for three values of the threshold parameter a of individual
FitzHugh-Nagumo units (10), namely a = 0.1 (Fig. 6(a)), a = 0.3 (Fig. 6(b)), a = 0.5 (Fig. 6(c)).
In all considered cases the individual FitzHugh-Nagumo oscillators are in the oscillatory regime, a
change of parameter a results in the shift of one of the nullclines, and for larger values of parameter a
the oscillator dynamics is more close to the bifurcation point (a = 1) on the transition from oscillatory
to excitable regime. Light colours correspond to larger values of the standard deviation, which means
well-pronounced mean phase velocity profile for obtained chimera state. The diagrams were obtained
numerically as an average over 100 realizations starting from random initial conditions and integration
time ∆T = 500000.

For very small values of control gains, the control is not yet efficient (dark colour); with increasing Ks

and Ka we obtain regions of optimal control (light colours) showing the maximal value of the standard
deviation of the mean phase velocity profiles. In the system (9)-(13) we observe the qualitatively similar
effect: the symmetric control gain Ks should be chosen within the optimal interval, while larger values
push the system dynamics towards the synchronized state, the asymmetric control gainKa shows the
saturation behaviour, and its further increase does not affect strongly the dynamics of chimera states.
The location of the optimal control gains depends on the threshold parameter a of the individual units.
If we are far away from the bifurcation (a = 0.1 (Fig. 6(a))), then stronger coupling is required. With
increasing a, the light optimal region moves to the left towards smaller values of symmetric control
gain. The shape of the optimal (light colour) region does not change much, in contrast to the case of
Van-der-Pol oscillators. This can be explained by the fact that a change of the threshold parameter a
does not affect strongly the amplitude of the oscillators, while in the previous case the form of the limits
cycle changes dramatically with the change of the parameter of individual oscillators.
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Figure 6: Control regimes of FitzHugh-Nagumo oscillator: Standard deviation ∆ω of the mean phase
velocity profiles for controlled chimera states in system Eqs. (9)-(13) depending on the control gains
Ks, Ka for N = 24 oscillators, R = 8, ε = 0.15, b = 0.15, ∆T = 500 000: (a) a = 0.1,
(b) a = 0.3, (c) a = 0.5 Corresponding sizes of coherent domains for chimera states: (d) a = 0.1,
(e) a = 0.3, (f) a = 0.5. White dots E,F,G and H in panels (c),(f) correspond to the examples shown
in Fig. 7.

The bottom panels Fig. 6(d),(e),(f) depict corresponding cascades of tongue-like regions for chimera
states with different size of coherent domains. The most pronounced difference of the mean phase
velocities for coherent and incoherent oscillators corresponds to chimera states with smallest coher-
ent domains. Increasing the symmetric control gain causes stabilization of chimera states with larger
coherent domains, but with smaller difference of frequencies. The location of these tongues shifts
correspondingly towards smaller values with increasing threshold parameter a.

White dots denoted by E,F,G,H in Fig. 6(c),(f) show the fixed control gains values for the examples
demonstrated in Fig. 7, which were obtained in the system of 24 FitzHugh-Nagumo oscillators with
R = 8, and a = 0.5. First, we fix the control gains at the values Ks = 1 and Ka = 1 (point
E in Fig. 6(c),(f)), the obtained chimera state is shown in Fig. 7(a) where we demonstrate the mean
phase velocities for the system (9)-(13). Fig. 7(b) shows corresponding phase velocity profile averaged
over time ∆T = 500000 (top panel), snapshot of variables uk at t = 500000 (middle panel),
and snapshot in the (uk, vk) phase space (bottom panel). The chimera state has a large incoherent
domain and well pronounced arc-like profile of averaged phase velocities. Increasing the control gains
Ks = 1.2 andKa = 1.2 (point F in Fig. 6(c),(f)) results in a chimera state with larger coherent domain,
but smaller value of ∆ω, shown in Fig. 7(c),(d). Note that the mean phase velocity profile shows a
dip inside the incoherent domain. This phenomena has been first reported in [17] for a system of
nonlocally coupled FitzHugh-Nagumo oscillators. There we have shown that stronger coupling causes
the transition to chimera states with multiple incoherent domains, evolving from one large incoherent
domain. Increasing of the coupling strength causes appearance of one or more dips in the mean
velocity profiles, which finally gives birth to multichimera states. This phenomena was possible to
observe in large networks, like 1000 coupled oscillators.

In our system (9)-(13), the tweezer control enables the observation of multichimera states in small
systems, which was not possible before. Fig. 7(e),(f) demonstrates stabilized chimera states with two
incoherent domains for Ks = 2 and Ka = 2 (point G in Fig. 6(c),(f)), and Fig. 7(g),(h) shows chimera
states with three incoherent domains forKs = 3 andKa = 3 (point H in Fig. 6(c),(f)), which appear for
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Figure 7: (a) Mean phase velocities for a system ofN = 24 FitzHugh-Nagumo oscillators, andR = 8,
ε = 0.15, b = 0.15, a = 0.5, after a transient time T = 495000; (b) phase velocity profile averaged
over ∆T = 500000 (top panel), snapshot of variables uk (middle panel), and snapshot in the (uk, vk)
phase space at time t = 500000 (bottom panel, cubic nullcline of the uncoupled FitzHugh-Nagumo
unit shown in black), control gains Ks = 1, Ka = 1, denoted by point E in Fig. 6(c),(f). Same for
other values of control gains: (c),(d) Ks = 1.2, Ka = 1.2; (e),(f) Ks = 2, Ka = 2; (g),(h) Ks = 3,
Ka = 3, denoted by F, G, H correspondingly in Fig. 6(c),(f).

increasing values of both control gains. Their coherent domains, including small domains in between
the incoherent ones, have large size, at the same time the difference between averaged frequencies
for coherent and incoherent oscillators decreases.

In the considered networks of FitzHugh-Nagumo oscillators, the tweezer control scheme works ef-
ficiently, stabilizing chimera states. Moreover, it enables the observation of multichimera states in a
system of small size.

4 Conclusion

Tweezer control allows for effective stabilization of chimera states in large and in small-size networks
of nonlinear oscillators. It is a combination of two instruments, the symmetric control term suppresses
the chimera collapse, and the asymmetric control stabilizes the spatial position of a chimera state. We
have provided an extensive numerical analysis of the parameter space of the control gains in order to
find the regions for the most effective stabilization of chimera states in the nonlocally coupled networks
of Van der Pol and FitzHugh-Nagumo oscillators. As a criterion for chimera patterns we have used the
standard deviation of the mean phase velocity profiles, and the size of the coherent domains.

The dynamics of the individual oscillators influences the shape of the controlled chimera states. In
networks of Van der Pol oscillators with sinusoidal individual oscillations (small parameter ε) for the
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effective stabilization of chimera states the symmetric control gain Ks has to be fixed at intermediate
values Ks ∈ (0.3, 2), and the asymmetric control gain Ka has weaker influence, it must be chosen
at least larger than Ka = 0.1. Further increasing the asymmetric control does not affect strongly the
stabilized chimera states. If individual Van der Pol oscillations perform relaxation oscillations (large
parameter ε), the symmetric control gain must be chosen larger, approximately Ks ∈ (1, 3), the
asymmetric control gain Ka now has a stronger influence on the chimera shape and must be larger
as well, due to the increased amplitude of the individual limit cycle. The symmetric control gain Ks is
essential for the size of the coherent domain in the stabilized chimera states, larger values promote
increasing size of the coherent domain.

Finally, with appropriate choice of control gains either the chimera state with the most pronounced
frequency difference (but smaller coherent domain) can be stabilized, or the chimera state with larger
coherent domain but less pronounced frequency difference.

In networks of FitzHugh-Nagumo oscillators, a change of the threshold parameter a results in a slight
shift of the optimal control region in the parameter plane, while the amplitude of the individual limit
cycle is unchanged. As in the previous case, the symmetric control gain Ks is more essential, and
when chosen optimally, the asymmetric control gain can be again relatively small. The interesting
aspect is that tweezer control allows for the stabilization of chimera states with multiple incoherent
domains in small-size networks.

Our results can be useful for the experimental realizations of chimera states in small networks, since
the optimal choice of the symmetric and asymmetric control gains can facilitate the observation of
preferable chimera patterns.
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