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Abstract. Free electron laser (FEL) based x-ray sources show great promise for use in ultrafast 

molecular studies due to the short pulse durations and site/element sensitivity in this spectral 

range. However, the self amplified spontaneous emission (SASE) process mostly used in FELs 

is intrinsically noisy resulting in highly fluctuating beam parameters. Additionally timing 

synchronization of optical and FEL sources adds delay jitter in pump-probe experiments. We 

show how we mitigate the effects of source noise for the case of ultrafast molecular 

spectroscopy of the nucleobase thymine. Using binning and resorting techniques allows us to 

increase time and spectral resolution. In addition, choosing observables independent of noisy 

beam parameters enhances the signal fidelity. 

1.  Introduction 

Molecules exhibit the ability to transform light energy into chemical [1], electrical [2], or thermal 

energy [3] with very high selectivity and efficiency. Initially, absorbed light energy is stored in 

rearranged valence electrons, leading to altered intramolecular forces and subsequent nuclear motion 

on an ultrafast timescale. The topology of the photoexcited molecular potential energy surface (PES) 

determines the efficiency for light energy conversion and contains regions in which the Born-
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Oppenheimer approximation (BOA) breaks down [4, 5]. The theoretical treatment of non-BOA 

processes is most accurate for isolated quantum systems, eliminating the complications of additional 

solvent coordinates. Thus, gas phase experiments, in combination with advanced theoretical modeling, 

are valuable for understanding light energy conversion. 

Ultrafast experiments are typically implemented in the pump-probe fashion; a pump pulse first 

excites the molecule, thereby launching a nuclear wavepacket on a PES. A probe pulse with a variable 

time delay then interrogates the photoinduced dynamics. In gas phase experiments, the probe pulse 

typically ionizes the molecule yielding  mass resolved photoions [6] or energy resolved photoelectrons  

detected as a function of pump-probe delay [7]. Due to the wide availability of ultrafast lasers in the 

optical frequency domain, most of these experiments are carried out in the infrared, visible, or 

ultraviolet regions. 

Probing photoinduced molecular dynamics with ultrashort x-ray pulses complements optical 

probing with additional opportunities. In particular X-rays offer element/site selectivity. X-rays 

interact with core electron wavefunctions which are highly localized, and their binding energies are 

determined by element and position inside the molecule. The photoelectron induced after core 

ionization thus emerges from a locality in the molecule and the so called chemical shift contains local 

information about chemical bonding [8]. X-ray fluorescence and Auger decay of core holes also 

contain the core hole wavefunction in the dipole or Coulomb matrix element. This leads to high spatial 

and element sensitivity on the valence electrons.Ultrafast x-ray sources have become available at 

synchrotrons [9] however with rather limited single pulse energy, making the gas phase 

photoionization method hard if not impossible. Recently, x-ray free electron lasers (FELs) provide 

milliJoule level x-ray pulses [10-12] suitable for photoion and photoelectron probe techniques, and 

even nonlinear experiments in gas phase targets [13-17]. X-ray FELs usually operate by self amplified 

spontaneous emission (SASE) of an electron bunch at the beginning of the undulator resulting in large 

spectral, pulse energy and pulse length fluctuations from pulse to pulse [18]. Using an independent 

optical laser for photoexcitation  introduces additional variation due to laser/X-ray delay fluctuations 

which occur despite locking the electron gun laser to the optical excitation laser. If the desired spectral 

or temporal resolution in the experiment is smaller than the instrument jitter, important features are 

lost in averaged or transient spectra. 

This paper describes the experimental setup and important data analysis strategies of an ultraviolet 

(UV) pump – soft x-ray probe experiment on the nucleobase thymine. All nucleobases show 

interesting excxited state photodynamics. After UV excitation with giant cross sections as high as 

30Mbarn, the excited state population is funneled into lower lying electronic states on an ultrafast 

timescale. This mechanism, already manifest in single molecules, is responsible for protecting the 

nucleobases inside DNA and RNA from light induced damage processes [19-21].  

The experiment was performed in September 2011 at the linac coherent light source (LCLS). We 

demonstrate how to select and resort observables in an optical pump-x-ray probe experiment to 

compensate for SASE fluctuations with the aim to increase spectral and temporal fidelity. This can be 

achieved in two ways. First, by selecting molecular observables that are independent of fluctuating 

laser/X-ray parameters. Photoelectrons will show a kinetic energy modulation following the X-ray 

pulse spectral jitter. In constrast, Auger or fluorescence decay yields and energies do not shift with 

photon energy and are thus easy to interpret. Second, by single shot detection of jittering machine 

parameters and subsequent binning and resorting of data to enhance contrast. We illustrate this below 

with examples of X-ray/laser delay and photon energy resorting. 

2.  Experiment 

We performed our experiments at the AMO scientific instrument of LCLS at SLAC National 

Accelerator Laboratory [22]. A schematic overview is given in figure 1. Molecules in the interaction 

region were excited with an ultrashort UV pump pulse (~70 fs pulse duration, h=4.5 eV) produced by 

third harmonic generation of a commercial Ti:Sapphire amplified laser. The molecular dynamics after 

photoexcitation was probed by a soft x-ray pulse (<70 fs pulse duration). Its photon energy was ~ 25 
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eV above the oxygen K edge, leading to core ionization. We used a magnetic bottle electron 

spectrometer to detect the Auger decay of the oxygen core holes from 480 eV to 520 eV and 

additionally the valence photoelectron spectrum at even higher kinetic energies [13,14,19]. A retarding 

field of 470 V was applied to the electrons to optimize energy resolution in the Auger region, while 

compromising resolution for valence photoemission.  

 

 

Figure 1. Setup at the AMO scientific instrument of the LCLS. UV 

pump and soft x-ray probe pulses have a delay t and excite/interrogate 

the molecular dynamics. Molecules are delivered by an evaporative 

source described in detail in figure 2. X-ray pulse energy (acquired 

from a gas detector), photon energy, and relative delay as well as the 

electrons yielded by the FEL pulses are recorded on every shot.  

 

The molecules, available as a low vapor pressure powder (Sigma Aldrich, purity >99%), were 

introduced into the interaction region by an evaporative source, heated to about 420 K. The source 

shown in figure 2 was designed specifically for this experiment and we will explain its features and 

design more extensively here. The oven produces a narrow and continuous gas beam for samples with 

low vapor pressure, by evaporating the molecules and directing them through a thin capillary towards 

the interaction region. Compared to actuated valves, this source contains no moving parts requiring 

maintenance. Our capillary-oven provides a narrower beam compared to a simple Knudsen cell with a 

hole in the heated reservoir. A continuous source generally gives rise to higher pump loading 

compared to actuated valves. Molecules with low vapor pressure at room temperature and a high 

sticking coefficient do not impose that problem. We provided a liquid nitrogen cooled surface opposite 

to the oven for preferential condensation of the sample.  

The molecular source consists of three main parts. A body machined out of a 1” Al rod contains the 

sample powder. The body has an inner rim, which avoids sample falling into capillary when the oven 

is mounted with the capillary tip pointing down. An Al cap seals the oven by a tapered thread painted 

with graphite. The oven tip is made out of an Al capillary which is press fitted into an Al screw (1/4”-

20 thread painted with graphite), and attached to the body. The capillary itself has an inner diameter of 

0.9 mm, outer diameter of 1.6 mm and a typical length of 40-50 mm. The capillary is too fragile for a 

simple press fit into the screw. We therefore drilled a hole into the Al screw which was slightly larger 

than the capillary. We subsequently filled the capillary with water and dipped the assembly of screw 

and capillary into liquid nitrogen. The freezing water expanded the capillary tight into the Al screw. 

The body, cap, and capillary assembly of the oven are separately heated by kapton sheet heating 

elements (Omega), providing up to 30W heating power. The sheet heaters are attached to the oven by 

Al sheet metal covers. To provide good thermal contact to the capillary, we designed a capillary casing 

that clamped to the capillary. During experiments, the tip is kept a few Kelvin higher than the rest of 

the oven to avoid accumulation of sample inside the capillary. The temperatures of all three parts of 

the oven can be independently monitored by thermocouples. 
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We tested the oven for jet divergence and sample density out of the capillary of 47 mm. The spread 

was determined by evaluating the spot size of condensed sample on a glass plate. The total mass flux 

out of oven was determined by deposition on a cooled quartz crystal monitor. Table 1 presents the 

oven parameters for three different evaporation temperatures. It is well documented that the thymine 

molecules do not suffer thermally induced fragmentation in this temperature range [23,24].  

 

 

Figure 2. Oven assembly. The oven consists of 

three parts: the cap, the body (with sample 

reservoir) and the capillary assembly. All three 

parts can be separately heated by sheet heaters 

attached to the surface of each element. 

 

  Table 1. Thymine molecular source characteristics for three 

different temperatures. The vapour pressure of thymine is 

taken from reference [25]. The divergence was measured by 

deposition on a substrate. The full width half maximum 

(FWHM) of the spot density profile reflects the angular width 

of the molecular source. The mass rate was evaluated a quartz 

crystal balance. The sample density at the exit of the capillary 

is estimated from mass rate and molecular thermal velocity. 

The oven has now also been successfully used for uracil and 

aminophenol. 

 

     

Temperature 

(K) 

Thymine 

vapor 

pressure 

(mbar) 

Angular FWHM 

(deg) 

Mass rate 

(ng/sec) 

Sample 

density 

(1/cm3) 

408 4x10-4 10 3.4 1011 

428 2.5x10-3 16 100 2x1012 

448 1.4x10-2 40 700 1.7x1013 

 

The experimental setup at LCLS contains single shot diagnostics for essential parameters like x-ray 

central wavelength, pulse energies of optical and x-ray pulses, and relative delay between optical and 

x-ray pulses [26]. The single shot x-ray spectral monitor determines the center wavelength of x-rays 

from electron energy loss after undulator passage. The x-ray pulse energy monitors are based on 

nitrogen gas cells which are crossed by the x-ray beam. The x-ray induced core ionization and its 

relaxation processes result in UV photoluminescence, which is recorded on every shot [27]. The single 

shot optical pulse – x-ray delay monitor is documented in [28]. The x-ray pulse hits Si3N4 film on a Si 

substrate under normal incidence, thereby changing the reflectivity of sample. An infrared pulse is 

reflected from the Si3N4 film under a large angle. The transient reflectivity change is thereby encoded 

in the spatial profile of the reflected infrared pulse. The infrared pulse has a stable delay with respect 

to the UV pump pulse. The magnetic bottle time of flight spectrometer used in the experiment has a 
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2m long flight tube and uses a combination of a permanent magnet and a solenoid to shape the 

magnetic field with optimal collection efficiency [13,14,19]. The magnetic bottle has a small spatial 

region for optimal collection of electrons, which we overlapped with the optical/x-ray pulse interaction 

region. We typically detected tens of electron hits on the multichannel plate detector at the end of the 

flight tube. Since we have pulse pile up in certain regions we cannot distinguish individual electron 

hits. However, the single shot electron yield is not high enough to determine a complete spectrum and 

many shots are typically added for this purpose. 

3.  Results and Discussion 

The single shot parameters are recorded at the repetition rate of the free electron laser, which currently 

is 120 Hz. Each parameter is saved as a time series in large data files. Before resorting and binning 

according to experimental parameters we check if the time series of the different parameters match up. 

Due to detector or data storage errors a shot can be skipped in one parameter set without being skipped 

in others. This slippage will lead to erroneous results in single shot binning and resorting algorithms. 

One way to evaluate the integrity of the parameter time series is checking correlations. For instance, 

the total amount of detected electrons must be correlated to the x-ray pulse energy. 

  

  
Figure 3. Correlation of integrated magnetic bottle 

spectrometer signal with x-ray pulse energy. a) Ordering 

of the time series as recorded. The Pearson correlation 

coefficient x,y is 0.34. b) One of the two time series 

permuted by one shot. The correlation coefficient 

decreases to 0.16, indicating less  correlation between the 

parameters. 

Figure 4. Binning and resorting thymine 

valence photoelectron spectra according 

to photon energy. The spectra are given 

as a function of kinetic energy and 

grouped according to photon energy into 

1eV wide bins centered at the values 

listed in the legend (colored). The black 

curve is corrected for photon energy 

jitter. The binned spectra show a clear 

offset in the spectral step reflecting the 

bin photon energy. 

 

Figure 3 shows the correlation plot of integrated magnetic bottle spectrometer signal vs. x-ray pulse 

energy. The ordering recorded in the experiment is shown in (a) and the order of one time series 

permuted by 1 shot is used in (b). The slope in the correlation plot in (a) indicates that the two 

observables are correlated; we evaluate a Pearson correlation coefficient of 0.34. The correlation plot 

of the permuted data set in (b) shows a coefficient of 0.16, less than in (a). Systematic variation of the 

shot permutation leads to a maximum in the correlation coefficient for case (a). Thus we deduce that 

the original time-ordering as in (a) is correct. The fact that the correlation coefficient in (b) is still 
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different from zero (uncorrelated case) is related to the noise spectrum of the variables. The pulse 

energy of two adjacent shots of the free electron laser show some correlation. If the first pulse was 

high in energy, the second one also tends to be high. This translates to a non-vanishing correlation 

between the magnetic bottle electron spectrometer yield and pulse energy even for the permuted case. 

Since the slippage of single shots can occur at any point in the data series, the correlation should 

ideally be checked for various subsets of the parameter arrays.  

Figure 4 demonstrates the binning and resorting method with the example of valence 

photoemission. As mentioned above, the kinetic energy of the valence photoelectrons is dependent on 

the photon energy. Thus, the kinetic energy changes from shot to shot as the photon energy changes.  

The colored lines in figure 4 present valence photoelectron spectra of thymine binned into different 

photon energy intervals. In order to obtain these data, the electron time of flight (TOF) spectrum was 

saved for every shot together with the measured x-ray photon energy. We then sorted all shots in 1eV 

wide bins and accumulated the spectral information for these bins. The center of the photon energy 

interval is given in the legend. The spectra of different bins are clearly shifted by the bin size of 1 eV. 

The black curve represents the spectra corrected for the photon energy jitter. The resolution is poor 

compared to literature data [29]. The spectrometer was optimized with a retarding potential for the 

Auger decay region. In the valence region, the energy resolution is only about 4eV due to the shorter 

flight time and the valence structure is washed out.  Moreover, the apparent binding energy is shifted 

by approximately 10 eV. Since we have not calibrated the photon energy detector, the 10eV 

inaccuracy is likely to result from an inaccurate detector reading.  

The individually binned datasets in figure 4 are normalized to the number of laser shots falling into 

the photon energy bin. Nevertheless they show a systematic trend in the signal strength. The initial 

spectral rise for higher photon energy bins is lower compared to the low photon energy bins. This 

indicates that an additional parameter is correlated with the photon energy. Figure 5 shows the 

correlation plot of soft x-ray photon energy and pulse energy. We clearly observe an anti-correlation 

between photon energy and pulse energy as indicated by the negative slope of the distribution. This 

example points out that binning and resorting can exhibit systematic trends if the resorting parameter 

is correlated (or anti-correlated) with other parameters influencing the signal. For future experiments 

on photoelectron spectroscopy, this has important consequences. When binning data according to 

photon energy, the systematic change in pulse energy has to be taken into account. As long as the 

photoelectron signal is linear, as in our case, one can rescale the signal in each photon energy bin 

according to the pulse energy. To create the resorted spectrum (black) in figure 4, we normalized on 

the pulse energy. Nonlinear experiments however will most likely require an additional filtering on 

pulse energy instead of rescaling. 

 

 

 

Figure 5. Correlation of photon 

energy with x-ray pulse energy. The 

dataset are anti-correlated with a 

correlation coefficient x,y = -0.43. 
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Figure 6. Auger difference spectra (UV on – 

UV off). a) All data from a particular 

dataset, no binning. b) Data binned on the 

single shot delay monitor for -140 to 75 fs 

time delay between UV pump and soft x-ray 

probe pulse. We clearly observe structures 

growing in the difference spectra after zero 

time delay. 

 

In addition to binning and resorting, we can choose molecular observables that are independent of 

fluctuating parameters. We demonstrated in figure 4 that valence photoelectrons are sensitive to the x-

ray photon energy jitter. The normal (non-resonant) Auger electron energy, however, is insensitive to 

this fluctuating parameter. Therefore, we chose to optimize the resolution of the magnetic bottle 

spectrometer in the region containing normal Auger features associated with oxygen 1s ionization. 

Figure 6 shows spectra in the energy range of oxygen core-hole Auger decay. We present Auger 

difference spectra between UV excited and unexcited molecules. Figure 6 a) shows one complete 

dataset, which is clearly modulated with a positive difference signal at 507 eV and negative difference 

signal around 500 eV. While recording these data, the single shot delay monitor [28] was used to log 

the relative delay between the UV excitation and soft x-ray probe pulse. The UV excited Auger 

spectra were corrected for the single shot delay jitter. The unexcited molecular Auger spectra were 

subtracted. The result is shown in Figure 6 b) in 4 different delay bins ranging from -140 to 75 fs 

pump-probe delay. The nominal jitter of the delay was larger than 250 fs and the onset of features 

from zero to 75 fs delay clearly shows the improvement of time resolution due to the delay monitor.  

The signal to noise ratio increases towards larger delays since more shots fall into these bins. The 

spectral features in the difference spectra are the subject of a separate publication [30]. In short, we 

observe the population the ultraviolet excited electronic state of thymine. 

In summary, we have shown the important experimental ingredients of our UV pump – LCLS soft 

x-ray probe experiment on the photoexcited dynamics of thymine. The molecular source designed for 

this purpose shows narrow divergence and high molecular density. We show how the correct time 

ordering of parameters can be checked using correlation. Furthermore, we describe how we bin and 

resort valence photoemission spectra and demonstrate that correlated parameters systematically shape 

the data. The Auger decay spectra are not sensitive to photon energy jitter. For this case, we show that 

time reordering using a single shot delay detector allows us to obtain time resolution exceeding the 

delay jitter. 
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