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Abstract: We report in this paper the wavelength switching features of semiconductor ring lasers
that are wavelength tunable based on filtered optical feedback. The filtered feedback provides
a wavelength dependent loss mechanism in these devices with which a particular longitudinal
mode, and thus a particular wavelength, can be selected by changing the filter characteristics
of the feedback channel. We investigate how the wavelength switching speed depends on the
amplitude of the modulation of the switching driving signal and on the different phase factors
within the filtering branches of the SRL. We compare qualitatively the experimental results with
numerical simulations based on a travelling wave model. We also investigate the dynamical
behavior of the lasing and nonlasing longitudinal modes in the two channels of the clockwise
and the counter-clockwise directions. We show the crucial importance of various phase relation
factors on the wavelength switching behavior. Finally, we discuss what limits the switching speed
and how we can accelerate it.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Wavelength tunable lasers [1] are being used in several applications, such as optical sensing [2]
and wavelength division multiplexing [3]. Therefore, during last years there is a large interest
in the further development and optimization of such tunable lasers. There exist many different
approaches in order to make a tunable laser, each approach having its particular advantages and
disadvantages. These approaches typically rely on changing the laser’s effective cavity length [4],
by varying the physical length of the cavity or its refractive index, or by introducing a wavelength
dependence in the cavity such as in the arrayed waveguide grating lasers [5].

Filtered optical feedback (FOF) is one way of achieving a laser with controllable wavelength.
In this approach, part of the light emitted by the laser is reinjected in the cavity after passing
through a wavelength dependent optical filter. If the reinjected light has the same phase as the
originally emitted field and if the delay is short (compared to the relaxation oscillations time
scale), the filtered feedback will select those laser mode(s) whose wavelength is closest to the
transmission maximum of the filter in the feedback section [6]. The wavelength selective elements
in such tunable lasers are thus placed outside of the laser cavity, which can have a positive
effect on the stability of the selected wavelength [7] and can result in a simpler control system

                                                                                                          Vol. 1, No. 4 | 15 Dec 2018 | OSA CONTINUUM 1226 

#341184 https://doi.org/10.1364/OSAC.1.001226 
Journal © 2018 Received 31 Jul 2018; revised 24 Oct 2018; accepted 26 Oct 2018; published 30 Nov 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OSAC.1.001226&domain=pdf&date_stamp=2018-11-30


needed to tune the emitted wavelength [8]. This approach has been implemented successfully in
a number of laser architectures. For example, FOF has been used to make a tunable Fabry-Perot
semiconductor laser in [9] and a tunable semiconductor ring laser in [10]. In both papers the
filtered feedback section has been fabricated on the same chip as the laser, which results in a
compact, robust and potentially low-cost device. In [9], the strength of the FOF is controlled by
adjusting the current send through semiconductor optical amplifiers (SOAs). In [10], a switching
time of 450 ps between adjacent wavelengths has been achieved in SRLs using on-chip FOF
which is controlled by electrically pumped distributed Bragg reflectors.

In our previous works, we have combined the electrical control of the FOF from [9] with
semiconductor ring lasers (SRLs). SRLs have attracted interest experimentaly and theortically
[11–13] due to their directional bistability which makes it possible to operate these lasers in
either of the two counter-propagating directions [14,15]. It is also possible to optically trigger
a switch between these directional modes, which can be used to realise an all-optical flip-flop
based on SRLs [16,17]. Several studies have proposed to use ring lasers in order to reduce the
sensitivity to external feedback [18] as SRL can already exhibit reduced sensitivity to external
feedback even in the absence of any special procedures, due to intrinsic bistability with respect
to clockwise (CW) and counterclockwise (CCW) operation [19]. This sensitivity to external
feedback can be reduced more using a one-sided strong reflector [20], or by using a second
controlled feedback [21]. In [22], FOF has been used to reduce the SRL sensitivity to external
optical injection.
On chip FOF has been used in SRLs in order to obtain tunable single mode emission [8, 23],

controllable multi-wavelength emission [24,25] and to decrease the sensitivity of SRL against
(undesired) external feedback [21, 26]. We have also shown that the switching from one
wavelength to another is rather fast (ns time scale) and is governed by a short transition time
together with a non-negligable (longer) delay time at each switching event [27]. However, it is
important to know the parameters which control the wavelength switching time.

In this paper we investigate in details the effect of the FOF and the amplitude of the modulation
of the switching driving signal on the wavelength switching speed in SRLs. We numerically
illustrate that different switching scenarios can take place in SRLs. We start in Section 2 by
describing the laser and experimental setup. In section 3 the experimental results are presented.
We show the effect of the modulation amplitude (of the SOA gates in the feedback loop) on both
the transition and the delay time. In Section 4, numerically simulated results based on a traveling
wave model are shown. Finally, the summary and conclusions are given in Section 5.

2. Device description and experimental setup

The SRL and the filtered feedback section are fabricated on the same chip by the JePPIX
platform [28]. Details of the fabrication and the layout can be found in [23]. A microscopic photo
of the device is shown in Fig. 1 (top). The ring cavity of the SRL has a race-track geometry
with two straight active waveguides, 753 µm long each, connected to each other via two passive,
curved waveguides with a bend radius of 107 µm. The circumference of the ring defines the
mode spacing.

The filtered feedback section includes two identical arrayed-waveguide gratings (AWGs) filters
with one input connected to the SRL and four outputs which are mutually connected. This
provides self-feedback, i.e. each directional mode of the ring will be re-injected in itself after a
round-trip in the filtered feedback section. Both ends of the of outcoupling waveguide were tilted
in order to reduce the facet reflectivity. To achieve some asymmetry between CW and CCW
fields, we applied an additional anti-reflection coating to one of the facets (the left side of the
chip (see top panel of Fig. 1) while the right side was left as cleaved.
The AWGs in the feedback section are used to split the SRL light into 4 different wavelength

channels. We have chosen to make the AWG filter channels broader than the longitudinal mode
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Fig. 1. Top: Microscopic image of the device, bottom: Schematic of the lab setup.

(LM) spacing, because otherwise there is a risk that, due to fabrication tolerances, the LMs are
spectrally positioned far from the filter transmission maxima. The AWG channel spacing is
1.336 nm (166.92 GHz) and the AWG free spectral range is 5.65 nm, whereas the LM spacing
is chosen to be 0.3 nm. Four electrically controllable SOAs gates are located in the middle of
the four waveguides that are used to connect the two AWGs with each other. Each gate can be
independently pumped with an electrical bias current using a metalic contact pad. When a gate is
biased, the feedback strength and phase of the LMs (in the corresponding AWG channel) change
while there is only a small residual feedback or no feedback at all without bias or for a reverse
bias of the SOA.

We use the setup that is schematically illustrated in Fig. 1 (bottom) in order to test the tunable
SRL. The temperature of the laser’s mount is stabilized at 21℃. We use three electrical probes to
provide current to different parts of the device: one probe is used to pump the SRL, a second one
is used to pump one of the SOA gates (i.e. gate 1 in Fig. 1) and the third probe is connected
to another SOA gate (i.e. gate 3 in Fig. 1). The SRL output in the CW and CCW directions is
collected using lensed fibers.

3. Experimental study of SRL switching

We start by checking the output power of the SRL in the two directional modes (without feedback)
when we increase the pumping current of the SRL. We notice that the threshold current of the
device is ISRL =64.5 mA. By further increasing the injected current in the SRL, the output power
in both directions is irregular. The SRL is bidirectional for all the currents above the threshold.
It emits in the two directions with more power in the CW direction than the CCW direction.
We used the oscilloscope to measure time traces of the device’s output. We did not notice the
alternate oscillation regime in this SRL. The bidirectional output of our device indicates that the
backscattering is the dominant coupling mechanism between the CW and CCW modes while the
difference in the power between the CW and the CCW directions can be understood due to the
asymmetry introduced by using anti-coating reflection on one side of the chip while the other
side was left as cleaved.

We investigate the optical spectrum of our device by using the setup shown in Fig. 1 (bottom).
The output of the laser is single mode when the pumping current is close to the threshold.
By increasing the pumping current and starting from 80 mA, the output of the laser becomes
multimode as is for example shown in the spectrum, shown in Fig. 2, of the CW mode when the
laser is pumped at 85 mA and without pumping any gate. A similar spectrum has been observed
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in the CCW direction. In [23], it has been shown that using FOF, the multimode emission can be
changed to a single mode in a controlled way. In this work, we need the FOF in order to achieve
single mode emission such that we can measure the wavelength switching speed when the laser
switches to another (single) mode.
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Fig. 2. Optical spectrum of the output of the SRL in the CW direction when it is pumped at
85 mA and without pumping any gate (without feedback).

The strength of the FOF depends on the current injected in the SOAs. For this reason we need
to estimate the amplification of the SOA. we use an identical SOA of another device on the same
chip with our device (because the SOAs in our device is not accessible for a direct measurement).
In the device which is used for characterization of the SOA, the light after being amplified by the
SOA passes through a waveguide until it reaches the chip facet as can be seen in Fig. 3 (left)
where we show the setup to measure the amplification of the SOA gate. A current driver is used
to pump the SOA while its output is collected using a lensed fiber which is connected to a splitter
which divides the output to two sections, one is connected to a power meter and the other section
is connected to an optical spectrum analyzer (OSA). We increase the current which is applied on
the SOA using a current driver and we measure the output power as a function of the injected
current into the SOA. The results are shown in Fig. 3 (right). In this figure, we see that the output
power increases from 2 nW to 115 nW when the current in the SOA increases from 0 to 50 mA.
Above approximately 30 mA, the output power from the SOA seems to saturate. On the optical
spectrum analyzer which is shown in the setup scheme in [in Fig. 3 (left)], we do not observe
any signature in the optical spectrum; that suggests lasing in the output waveguide due to the
pumping of the SOA gate.

Fig. 3. (left) A schematic representation of the test structure which is used to characterize
the SOA gate. (Right) Output power of the SOA amplifier as a function of the injection
current (when the SRL is switched off).

By tuning the currents I1, I2, I3, I4 injected in the SOA gates, we can control the emission
wavelength. For more details on such characteristics of the SRL see [23,33]. We apply a fixed
current of 95 mA to the SRL. If we pump gate 1 at 14.2mA ,the SRL emits a single LM at λ1 =
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1581.048 nm. This LM is positioned within the passband of gate 1 channel. The corresponding
optical spectrum in the CW direction is shown in Fig. 4 The SRL will emit the same wavelength
even if we applied a current equal or less than 3.55mA on gate 3. By increasing the pump current
of gate 3 to between 3.55mA and less than 38mA, the SRL’ s output is multimode. By further
increasing the pump current of gate 3 to 38 mA, the SRL’ s output switches from the LM at λ1 to
the LM at λ3 = 1583.790 nm (see CW spectrum in Fig. 4), which corresponds to the passband of
gate 3. We note that similar switching behavior has been observed in the CCW direction. These
results illustrate that the wavelength of the device can indeed be tuned by changing the currents
injected in the SOA gates

Fig. 4. Spectrum of the SRL’s output in the CW direction when pumping the SRL at 95
mA, gate 1 at 14.2 mA and gate 3 either at 3.55 mA (red) or at 38 mA (blue). A schematic
representation of the AWG channels passbands is plotted at the top.

In order to measure the wavelength switching speed, we apply a square wave signal to gate 1.
This signal, with a period of 2.56 µs and a peak to peak voltage amplitude Vpp , is generated using
an arbitrary waveform generator (Tektronix-AWG 520) and is added to the DC bias current using
a bias-T. The device’s output in the CCW direction is amplified using an external semiconductor
optical amplifier (Thorlabs LM14S2) in order to ensure accurate measurements of the switching
time, and then spectrally filtered using a tunable optical bandpass filter (Santec OTF-320 with 3
dB bandpass width of 0.5 nm) in order to select a particular LM in the measurement. Finally the
time traces are recorded using a 2.4 GHz bandwidth detector connected to a 4 GHz bandwidth
oscilloscope (Tektronix CSA7404). An Ando AQ6317B optical spectrum analyzer is used to
measure the optical spectrum in the CW direction.
In Fig. 5(a), we show the driving square wave signal sent to gate 1 when the square-wave

amplitude Vpp is set to 0.4 V. We set the laser bias current at 95 mA, the bias current of gate 3 at
7.81 mA, the bias current of gate 1 at 30.1 mA and the central frequency of the tunable filter at
λ1. In Fig. 5(b) we show the measured time trace of the intensity (at λ1 because of the filter) in
the CCW direction. This time trace clearly shows that the wavelength switches with the same
periodicity as the modulation signal. When the signal sent to gate 1 [see Fig. 5(a)] is high, the
device output at λ1 [see Fig. 5(b)] is on. When the signal sent to gate 1 is switched to a low
value, the device output at λ1 switches off. Repeating these measurements, but with the tunable
filter centered at λ3 (not shown), shows that λ3 is switched completely off when λ1 is switched
on. In order to estimate the wavelength switching speed, we assume that a switch is completed
once the LM’s power reaches 90% of the final level. Therefore, we define the transition time as
the time it takes for a LM to go from 10% to 90% of its final power level. The time trace shown
in Fig. 5(b) corresponds to an average transition time of 6 ns for both the rising and the falling
edge of the modulation signal, which agrees with the results that we described earlier in [27].
However, as can be seen in Fig. 5(c), there is also a non-negligible delay (92 ns) between the
trigger signal from the arbitrary waveform generator and the start of the switching transition.
This delay time is not constant, but varies from one switching event to another. In order to deduce
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Fig. 5. (a) Trigger signal from arbitrary waveform generator to the oscilloscope. (b). Device
output signal when the tunable bandpass filter is centered at λ1. (c). Zoom in of a single
switching event.

Fig. 6. Histogram of the wavelength switching’s delay time at the falling edge of the gate 1
modulation using Vpp = 0.5 volt.

the delay time from the measured oscilloscope time traces, we have to take into account that there
is propagation delay between the trigger signal and the signal reaching the optical detector. This
delay depends on the cabling used in the setup and has been determined to be 50 ns for the setup
used here. We take this delay into account by subtracting it from each delay measurement. For an
accurate estimation of the wavelength switching delay, we also subtract the RC time constant of
the on-chip SOA gates from the measured delay. This RC time constant has been measured to be
around 10 ns. It is worth to mention that we did not notice any directional switching associated
with the wavelength switching which takes place in the two directions simultaneously.

In Fig. 6, we show a histogram of the wavelength switching delay at the falling edge of the
modulation signal in Fig. 5(a), taking into account 143 switching events and subtracting both the
RC time constant and the cabling propagation delay. This histogram shows a quasi-Gaussian
distribution in the delay time with an average of 31.7 ns and standard deviation of 4 ns. This
delay time is clearly longer than the transition time.
Next, we study the effect on the transition and delay time of the modulation amplitude of

the switching driving signal. We change the amplitude Vpp of the square wave signal which is
applied on gate 1. In Fig. 7(a), we show the transition time as a function of Vpp where we can
see that the transition time decreases from 13.3 ns to 2.3 ns when Vpp increases from 0.16 V
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Fig. 7. (a). Transition time as function of Vpp . (b). Delay time as function of Vpp . Other
experimental settings are ISRL= 95 mA, I1 =27.86 mA and I3 =5.18 mA.

to 0.6 V. As the delay time changes stochastically, we measure a histogram of the delay time
for each value of Vpp. We extract the mean value of the delay time from the histogram’s data.
We show in Fig. 7(b) the delay time as function of the modulation amplitude. The delay time
decreases from 44 ns to 25 ns when Vpp increases from 0.16 V to 0.6 V. These results show that
both the transition time and the delay time decrease by increasing Vpp .

4. Numerical simulations using travelling wave model and analysis

To get a better understanding of the wavelength switching we perform numerical simulations of
the considered ring laser device using a traveling wave model (TWM) which has been introduced
and used in several studies [29–32].

−
E

E
+

−
E

E
+

CCW CW

active amplifier passive waveguide passive filter

nonvanishing reflectionssection interfaces

Fig. 8. Schematic representation of the simulated SRL with four FOF branches. Different
colored frames and black segments indicate three different types of SRL sections and
interfaces between these sections, respectively. Blue curved arrows represent all nonvanishing
field reflections at these interfaces.

According to our modeling approach, the SRL with FOF branches is modelled as a set of
mutually interconnected sections such as active amplifiers, passive waveguides, and passive
wavelength filters, see Fig. 8. Whereas field transmission and reflection conditions at the interfaces
of the adjacent sections realize coupling between different parts of the SRL, the TWM equations
govern the dynamics of optical fields and carriers within each such part. Such modeling allows
us on one hand to follow the transient dynamics in each of the LMs and in the corresponding
carrier density, hence clarifying their role in the wavelength switching process. On the other
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hand, we investigate the effect of the different phase factors within the filtering branch on the
switching process numerically which was difficult to be investigated experimentally.

4.1. Mathematical model

Our mathematical model is based on the TWM equations for the slow envelopes of the
counterpropagating complex optical field amplitudes E+(z, t) and E−(z, t),

1
vg
∂tE± ± ∂zE± =

(
−iβ±(N, |E± |2) − D

)
E± + F±sp, (1)

where vg denotes the group velocity, z represents a unique spatial coordinate in the considered
SRL device (including the outcoupling waveguide and FOF branches), whereas t is the time
coordinate. The linear operator D models (relatively weak) material gain dispersion in the
amplifying parts of the SRL as well as strong optical filtering within the passive waveguide part
of each FOF branch. In the frequency (wavelength) domain, this operator is determined by a
Lorentzian function with certain peak frequency, width, and amplitude [32]. The propagation
factor β± is composed from the fixed static and dynamically changing parts,

β± =
[
δ − i

α0
2

]
+

[
αH +

i
1 + εs |E± |2 + εc |E∓ |2

]
g(N)

2
. (2)

The detuning factor δ and the nonradiative loss factor α0 are responsible for the complex field
phase shift and the field attenuation within each part of the considered SRL device. In the
amplifying parts of the SRL device, β depends on the local carrier density N(z, t) and, through
the self- and cross-gain saturation, on the photon densities |E+ |2 and |E− |2 within corresponding
waves. Here, αH and g(N) are the linewidth enhancement factor and the logarithmic gain
function, respectively. The dynamics of N(z, t) is governed by the rate equations

∂tN =
I

qV
− R(N) − G

(
N, |E± |

)
, (3)

where functions R and G denote spontaneous and stimulated recombination, respectively, q is
the elementary charge, whereas I and V are the bias current and the volume of the active zone in
the corresponding amplifying part of the SRL. To close the model, we need also to define field
scattering relations at the interfaces of different parts of the SRL. In all nontrivial cases (facets of
the waveguide, couplers of the ring and the outer waveguide, beam splitting and collecting at
the AWG), the relations between the incident and scatterd fields are given by constant scattering
matrices. In particular, we account for nonvanishing (asymmetric) field backscattering at the
facets of the outcoupling waveguide (10−4 and 10−2 power reflection at the cw and ccw output
facets, respectively) as well as 0.25 × 10−4 field power reflection at two positions representing
localized couplers between SRL and two adjacent waveguides, see small curved arrows at these
interfaces in Fig. 8. For more details on the model equations, scattering relations and model
parameters, see Refs. [32, 33].

As it was briefly discussed in Ref. [33], the operation of the SRL device is sensitively depending
not only on the bias current at the SRL and the different gate contacts, but also on the hardly
identifiable phase relations (distinguishable by modulus 2π) within SRL and the FOF branches,
ϕ ∼ δ. Thus, in order to mimic the experimental results discussed above and to explain the
observed dynamics, we need to work in five- or even six-dimensional parameter space (including
modulation amplitude and bias of the SRL).

4.2. Simulations of the gate switching

We start our numerical study from the conditions used in Fig. 8 of Ref. [33]. In this case, the
proper choice of the bias currents in the 1-st and 3-rd channels has allowed achieving a stable
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simultaneous operation of two different-channel modes emitted in the CW direction. This is
illustrated in Fig. 9(a) and 9(b), for which the bias currents at the gates of these channels were
set to I1 = 29mA and I3 = 18mA (I2 = I4 = 0), whereas the corresponding static phase factors
were set to zero, ϕ1 = ϕ3 = 0. In Fig. 9(a), it can be seen that the power for the 1-st and 3-rd
channels are stable and almost fixed in time. In Fig. 9(b) where the wavelength relative to a central
wavelength λ0 = 1.58 µm is plotted, one can see that the emitted LMs are indeed spectrally
aligned with the filter passbands of channel 1 and 3. We expect that some increase/decrease of
the bias within one of the activated branches will lead to the growth/decay of this channel mode
and simultaneous decay/growth of the other channel modes. This assumption is supported by
our simulations shown in panels (c) and (d) of the same figure. Here, we gradually increase one
gate current ( i.e. I1 in panel (c) and I3 in panel (d)) whereas the bias of another gate was kept
constant [I3 = 18mA in (c) and I1 = 29mA in (d)]. Both these diagrams show that changing the
gate current by 2 [panel (c)] or 5 [panel (d)] mA can be sufficient for achieving full switching
between the different channels.

Fig. 9. Simulated SRL operation for continuous pumping of the 1st and 3rd gates. (a): time
trace of the emitted CW field after filtering it with digital filters centred at the dominant first
and third gate mode wavelengths. (b): optical spectra of this field (bottom) and different
gate transmission spectra (above). (c): wavelengths of the dominant (large bullets) and the
largest side (small bullets) modes within the two considered gates, and power of the emitted
CW field after filtering it with digital filters as functions of I1. (d): same as the previous
panel as functions of I3. In all cases, ϕj = 0, j = 1, . . . , 4.

In our following simulations, we have studied the behavior of the SRL when one of the gate
currents I1 = 29mA or I3 = 18mA is modulated with a time-periodic current

δI =
a
2
· sign (sin(2πt/T)) . (4)

As it was predicted by Fig. 9, a large enoughmodulation amplitude a and periodT imply a periodic
switching between the modes of channel 1 and 3. Several typical current modulation-induced
channel mode switchings are shown in Fig. 10 for different modulation amplitudes. At the
left and right hand side of Fig. 10, we distinguish the transitions when the modulation current
instantaneously decreases at time t = 50 ns (left part of all panels) and increases at t = 100 ns
(right sides of the panels). To distinguish the evolution of separate longitudinal modes within each
of the two considered channels, we apply six different digital Lorenzian filters to the calculated
CW emission. The peak wavelengths of these filters correspond to the wavelengths of three
first-channel and three third-channel modes, whereas the considered 0.2 nm bandwidth of these
filters allows distinguishing different modes within the same channel.
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Fig. 10. Switchings between channel 1 and channel 3 modes by modulating the first
gate with a = 40mA (a), 20mA (b) and 5mA (c), or by modulating the third gate with
a = 20mA (d) and 5mA (e). Modulation period in all cases was T = 100 ns. Black and red
represent the first and the third gates, respectively. Thin: intensities of the central (solid),
shorter-wavelength neighbor (dashed) and the longer-wavelength neighbor (dotted) mode
within the first and third gates. Black and red bullets indicate beginning and end of the
corresponding gate opening and closing. Thick: deviations of the mean carrier density
within the ring (blue), within gate 1, and within gate 3 from the steady state densities
n̄R = 1.08 · 1024/m3, n̄1 = 2.85 · 1024/m3, and n̄3 = 2.03 · 1024/m3, respectively. Carrier
density deviations within modulated gates are shown after dividing them by factor 10. The
steady parts of the bias currents are I1 = 29mA and I3 = 18mA.

Just after the decrease of the gate current, the current density in the corresponding gate
amplifier (thick solid curves), the gate amplification, and the gate mode intensity are going down.
In the cases (a)–(d), this rather strong perturbation of the dynamical state of the SRL after 1-2 ns
also implies several relaxation oscillations, visible in Fig. 10 for example in the oscillations of the
carrier density in the main SRL (thick blue solid curve) and the intensity of the former dominant
mode of the modulated channel (thin solid curves). In the case (a), these oscillations last around
four ns until the central third-channel mode replaces the former dominant first-channel mode.
In the cases (b) and (c), the perturbations of the operating state when I1 is decreased excite

earlier suppressed channel modes neighboring the initially dominant mode (see black thin dashed
and dotted curves), which can contain some substantial part of the overall emission intensity for
more than ten ns, see panel (b), before the other channel mode takes over and the wavelength
switching is completed. A different situation is observed in the case (d), where the third gate was
modulated. In contrast to the previously discussed cases (b) and (c), the perturbation now strongly
excites side modes of the unmodulated channel 1, see thin black dotted and dashed curves in
panel (d), whereas the side modes of the modulated channel remain well damped. This example
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also confirms an asymmetry in the action of the channels 1 and 3. We believe that this asymmetry
could be changed by a suitable selection of the SRL current or the phase factors ϕ within the
first and third channels. Finally, in the case (e), the current modulation induced perturbation is
weak and implies neither relaxation oscillations nor significant changes of the carrier densities
in the SRL and the gates. The intensity exchange between the two different channel modes is
monotonous and smooth but takes more than ten ns. This long transition time is mainly induced
by the small difference in the damping/amplification of the two involved channel modes.

In contrast, the switching between different channel modes shown in Fig. 10 when increasing
the current of modulated gate at t = 100 ns is regular in all cases shown in Fig. 10. The exchange
of the mode intensity is similar to the one of case (e) discussed above, i.e., the transition is smooth
and the transition time depends mainly on the damping/amplification of the involved modes.
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Fig. 11. Simulated gate switching delay-[(a), (b)] and transition- [(c), (d)] times as functions
of the amplitude of the current modulation in the first gate. Switching on of the first gate and
switching off of the third gate are considered in panels (a),(c) and (b),(d), respectively. Gray
dots and black lines at each bias modulation amplitude represent these times in 40 individual
calculations and the mean value of these times, respectively. The steady parts of the bias
currents are the same as in Fig. 10.

In Fig. 11, we give an estimation of the channel switching delay and transition time and
how they depend on the gate current modulation amplitude. The delay is determined as the
time interval between changing the gate current and the last moment at which the intensity
of an opening (closing) channel has reached 10% (90%) of the field intensity of this channel,
respectively. The transition times shown in Fig. 9 are the time intervals required for the intensity
transition between 10% and 90% levels of the corresponding channel emission power. The
beginning and the end of these transitions are also indicated by thick bullets in Fig. 4. Since in
our simulations multiple crossings of the 10% and 90% intensity levels were possible [see, e.g.,
left parts of Fig. 4(a) and 4(b)], for definition of the transition time intervals we use the last of
these crossings. We note that in contrast to the calculations of Fig. 10, in Fig. 11 we are not trying
to distinguish between different modes in the same channel, but, similarly to Fig. 9(a), we are
inspecting the overall contributions of the first and third channels to the total CW emission. Left
and right panels of Fig. 11 represent switching on of the first channel and switching off of the
third channel when modulating the first gate current. These diagrams generalize our simulations
represented in the right parts of Fig. 10(a), 10(b), and 10(c), where the black and red thin curves
were showing the evolution of the first [see Fig. 11(a)] and the third [Fig. 11(b)] channel modes.

The diagrams of Fig. 11 correspond to a regular smooth intensity exchange between the
different channel modes at rising edge of the modulated gate current (see right sides of all
panels in Fig. 10). The increasing modulation amplitude implies a growing contrast between the
amplification/damping of the two involved modes and, consequently, results in a faster exchange
of these states. The transition times for the modulated and unmodulated channel modes (left and
right panels in Fig. 11) are rather similar in this case.
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The limiting factors for the switching speed are not only the (short) photon life time, but also
(not so short) carrier relaxation time. First, after switching of the current, one needs some finite
time before the gate is fully opened or fully closed, and this time is comparable with the laser
switching-on or laser switching-off time, i.e., one or more ns. This initial transition can be seen
in Fig. 10, see behavior of the upper solid curve in panels (a)-(c) and upper red solid curve in
(d) and (e). Obviously, larger modulation amplitude we use - longer transient time can be seen.
Second, some transient time is needed for the transitions of the carrier density of laser and gate
3 from the situation before the switching to the situation after the switching. In general, these
transitions are initiated a bit later, when the field is starting to "flow" through the previously
closed gate (i.e., when a gate is already opened) and the flow of the field through another gate is
diminished. For some cases, the transition for the carrier density of the laser is finished only after
several rounds of relaxation oscillations (panels a-d), what is another reason of the prolongated
switching procedure. Third reason is the relation between damping/amplification of the two
main in the switching involved modes. Even though the damping/growth are exponential, the
difference between these exponential factors can be rather low (especially if small modulation
amplitude is applied, see panel e), In this case, the exchange of the field intensity in the two
modes can be rather long.

4.3. Impact of the field phase relations

The situation, however, becomes different once we choose other values of the static phase factors
ϕ1 and ϕ3 of the FOF. Figure 12 presents several sets of simulations, similar to those considered
in Fig. 9(c) and 9(d), performed for different phases ϕ1 and ϕ3, fixed current I3 (or I1) and tuned
current I1 (or I3). We should mention that the currents of the gates are not modulated in this and
the following calculations.
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Fig. 12. Simulated dominance of the first channel modes (light shading), third channel
modes (black), and dual gate operation with < 10 dB suppression of the weaker channel mode
(white) for different ϕ1 and I1 whereas I3 = 18mA and ϕ3/2π = 0.2 (a) or ϕ3/2π = 0.9 (b),
as well as different ϕ3 and I3 whereas I1 = 29mA and ϕ1 = 0 (c) or ϕ1/2π = 0.8 (d).

The panels (a) and (b) of Fig. 12 indicate the dominant channel mode when the first gate bias
current I1 is tuned for each considered phase ϕ1 (the different horizontal crossections of Fig. 12
(a) and (b) correspond to different values of the phase ϕ1). The simulations were performed for a
fixed third gate current I3 = 18mA and phase ϕ3, which was 0.2 · 2π and 0.9 · 2π in the panels
(a) and (b) respectively.

We can see that in both cases the current I1 where the switching between channels from Fig. 12
takes place (vertical interfaces between light and black shadings) depends in a non-monotonous
manner on the factor ϕ1. Second, in the absence of phase control, even 30 mA steps of I1 can
be not enough to realize switching between two channels: the first channel mode can already
be dominant for small I1 ≈ 5mA, see panel (a), whereas, for particular values of the phases, I1
as large as 35mA still cannot prevent the dominance of the third channel mode, see panel (b).
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It is noteworthy, that even though a sufficient strong I1 usually imposes the dominance of the
first- channel modes and the suppression of the third- channel modes, we can also find conditions
where the closed third channel can be reopened again at even higher I1, see, e.g., a reappearing
black region at ϕ1/2π = 0.8 in Fig. 12(a). This behavior is again resulting from the complex field
phase relations: the growth of the carrier density in a gate when increasing that gate’s current
imposes not only the growth of the field amplification but also imposes changes in the refractive
index, i.e., the reduction of the overall phase factor ∼ <β in the first channel, which is of crucial
importance in the considered lasers.
A similar situation can be observed when the first gate phase ϕ1 and the bias I1 = 29mA are

kept constant, whereas I3 is tuned for each value of ϕ3, see panels (c) and (d) of the same figure
calculated for ϕ1 = 0 and 0.8 · 2π, respectively. In this case, of course, the first and the third
channel modes dominate for smaller and larger I3, respectively.
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Fig. 13. Study of the phase factors ϕ1 and ϕ3. (a): the first (light shading), third (black), or
dual (white) channel mode operation for I1 = 29mA and I3 = 18mA. (b): the first gate bias
I1 giving the upper border of the third channel mode operation regime once I3 = 18mA. (c):
the third gate bias I3 giving the upper border of the first channel mode operation regime
once I1 = 29mA. Horizontal and vertical dashed lines in panels (b) and (c) correspond to
the simulations presented in panels (a),(b) and (c),(d) of Fig. 12, respectively.

Another representation of our calculations for arbitrary combinations of phase factors (ϕ1, ϕ3)
is given in Fig. 13. Panel (a) of this figure indicates which mode is dominant for different values
of ϕ1 and ϕ3 when the gate bias currents are fixed at I1 = 29mA and I3 = 18mA. The simulations
results plotted in Fig. 9(a) show that for most-but not all- combinations of ϕ1 and ϕ3, the first
(stronger pumped) channel mode dominates the output of the laser. The situation considered in
Fig. 9(a) and 9(b) using (ϕ1, ϕ3) = (0, 0) is represented by white (dual-gate-operation) areas at
the corners of this diagram.
Figure 13(b) represents the results of multiple simulations when increasing I1 whereas

I3 = 18mA is fixed. This diagram indicates the smallest critical value Ic1 (ϕ1, ϕ3) that makes the
first channel dominant. Two dashed horizontal lines “a” and “b” denote the values of ϕ3 at which
the smallest and largest values of Ic1 were obtained and correspond to the simulations represented
in panels (a) and (b) of Fig. 12, respectively. Similarly, Fig. 13(c) shows critical Ic3 (ϕ1, ϕ3)
obtained during simulations with increasing I3 whereas I1 = 29mA. The vertical dashed lines “c”
and “d” correspond to the panels (c) and (d) of Fig. 12. Once again, in both these panels, we
note a large difference between the smallest and largest critical currents Ic1 (or Ic3 ). This large
range can cause troubles when trying to switch between different channels. Namely, a moderate
current modulation amplitude cannot guarantee a successful switching between the channels for
an arbitrary choice of the phase factors.

5. Conclusion

We have investigated the wavelength switching features of a SRL that uses FOF as wavelength
tuning mechanism. The switching time is composed of a sum of the delay and transient times. We
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have experimentally showed a wavelength transition time of a few nano seconds and a substantial
delay time. Both the transition and delay times depend on the modulation amplitude applied to
the SOA gate in the feedback loop.

The numerical results using TWMhave shown that the channel switching behavior is sensitively
depending not only on the selection of the gate current modulation amplitude, but also on the
fixed currents of the two selected channels, on the bias of the SRL itself, and on different phase
relation factors ϕ within the filtering branches and the SRL. The undesired long transient time
when one gate is switched off will be further investigated in a future work.

To improve the state switching performance, we have to control the field phase relations within
separate filtering branches, e.g., by introducing additional phase-control sections [34, 35] within
these branches. To accelerate the wavelength switching time, we need to have a faster carrier
relaxation time within the gates (gate amplifiers on the basis of quantum dots or gates consisting
of (saturated or unsaturated) saturable absorbers nearby the well pumped amplifiers) and to find
a situation, where a small change of the field transmission through the branch implies a large
change of the related channel mode gain/damping (larger differential gain in the gates or possible
exploitation of phase conditions and nonlinearities). To improve the symmetry between different
channels (to equalize the detuning between the central channel mode and the channel filter peak
wavelengths), a slight change of the SRL length or the AWG spectral range could also be useful.
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