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Absence of induced magnetic monopoles in Maxwellian magnetoelectrics
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The electromagnetic response of topological insulators is governed by axion electrodynamics, which features
a topological magnetoelectric term in the Maxwell equations. As a consequence magnetic fields become the
source of electric fields and vice versa, a phenomenon that is general for any material exhibiting a linear
magnetoelectric effect. Axion electrodynamics has been associated with the possibility to create magnetic
monopoles, in particular, by an electrical charge that is screened above the surface of a magnetoelectric material.
Here we explicitly solve for the electromagnetic fields in this geometry and show that while vortexlike magnetic
screening fields are generated by the electrical charge their divergence is identically zero at every point in space,
which implies an absence of induced magnetic monopoles. Nevertheless magnetic image charges can be made
explicit in the problem, and even if no bound state with electric charges yielding a dyon arises, a dyonlike
angular momentum follows from our analysis. Because of its dependence on the dielectric constant this angular
momentum is not quantized, which is consistent with a general argument that precludes magnetic monopoles to
be generated in Maxwell magnetoelectrics. We also solve for topologically protected zero modes in the Dirac
equation induced by the point charge. Since the induced topological defect on the topological insulator’s surface
carries an electric charge as a result of the axion term, these zero modes are not self-conjugated.
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I. INTRODUCTION

A remarkable feature of three-dimensional topological in-
sulators (TIs) is their so-called magnetoelectric (ME) effect, a
collection of phenomena where magnetic fields become the
source of electric fields and vice versa [1]. This topologi-
cal electromagnetic response is governed by so-called axion
electrodynamics, which features a magnetoelectric term La =
αθ/(4π2)E · B in the Lagrangian density La, with E and B
being the electric and magnetic fields, respectively; θ being
a 2π -periodic parameter, and α being the fine-structure con-
stant. In a topological insulator, θ is a parameter that follows
from the band-structure topology, being given by a Berry
non-Abelian flux in the Brillouin zone [1,2]. By symmetry the
magnetoelectric coupling term is actually present in any mate-
rial that exhibits a linear magnetoelectric effect—induction of
magnetization by an electric field or of electric polarization by
a magnetic field. However, in ordinary magnetoelectric mate-
rials such as Cr2O3, BiFeO3, and GdAlO3 the magnetoelectric
coupling constants are quite small [3]. The topological ME
effect has been recently measured using Faraday and Kerr
rotations [4,5], which were shown to be quantized according
to the prediction of axion electrodynamics of TIs.
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A number of further interesting consequences of the ax-
ion term have been predicted, for instance, that a cylindrical
TI becomes electrically polarized under an applied magnetic
field parallel to the cylinder symmetry axis [6]. An interesting
possible experimental setup exploring this effect is a flux tube
piercing the interior of a TI, perpendicular to its surfaces [7].
If the surfaces are coated with thin-film ferromagnets with
opposite magnetizations, the surface states become gapped
and a topological electromagnetic response ensuing the axion
term in the Lagrangian occurs. In this scenario the cylinder
becomes an Aharonov-Bohm flux tube and an electrical po-
larization is induced, leading to fractional charges ±e/2 on
the top and bottom surfaces, respectively [7]. In the case of
a magnetic vortex that enters from a superconductor (SC)
into a time-reversal invariant TI, it was shown that the vortex
induces a charge of e/4 [8,9] at the SC-TI interface. In this
situation also the vortex angular momentum, which deter-
mines the vortex statistics, is fractional [9]. The emergence
of fractional charges is reminiscent of the Witten effect [10],
which predicts that the axion term causes electric charge frac-
tionalization in the presence of magnetic monopoles. When
real magnetic monopoles were to be present in an axion mag-
netoelectric, fractional electric charges would occur not only
at surfaces but also in the bulk of a magnetoelectric, since in
this case the Maxwell equations are modified despite the axion
Lagrangian La being a total derivative [11].

In this context it is highly interesting that the presence of a
magnetoelectric term in the Maxwell Lagrangian has been as-
sociated with the possibility of creating magnetic monopoles.
In particular, the situation has been considered in which a
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FIG. 1. Point charge q at a distance d above the surface of
a (topological) magnetoelectric with θ �= 0 and dielectric constant
ε > 1 occupying the region z < 0. The region z > 0 is (topologically
trivial) a vacuum. The electric field lines are shown.

magnetic monopole emerges from the screening of an electri-
cal charge that is situated outside a magnetoelectric material,
at a certain distance d from its the surface [12,13] (see Fig. 1).
This would be quite remarkable as it would imply that the
condition that the magnetic field be divergence-free is lifted
by the axion term in one way or another. Here we revisit this
very well-defined geometry and determine the unique solu-
tion for the electric and magnetic fields by direct evaluation,
without resorting to an image charge construction [12] or a
Green’s function formalism [14] and determine also the angu-
lar momentum of this dyonlike object carrying both electric
and magnetic charges. The resulting divergence of the mag-
netic field vanished at every point in space. Induced magnetic
monopoles are thus absent and instead the electrical charge
generates a magnetic vortex structure near the magnetoelectric
surface which in turn generates magnetic screening fields in
all of space. In the limit that the electrical charge is placed
at the TI surface (d → 0) it almost behaves like a magnetic
monopole, but actually corresponds to a point vortex, or Pearl
vortex [15], still satisfying the local constraint ∇ · B = 0.
Although the solution can be cast in terms of image electric
and magnetic charges, the latter are not related by a Dirac
duality quantization characteristic of magnetic monopoles and
hence cannot be interpreted as such. We will show that despite
this difficulty dyonlike behavior occurs. Dyons are dipoles
constituted of an electric charge and a magnetic charge and
are well known to have an angular momentum [16] with
the following properties: (i) its value is independent of the
separation between the electric and magnetic charges, (ii) it is
nonzero even if the dyon is at rest, and (iii) it is quantized

by the Dirac duality relation eg/c = nh̄/2, n ∈ Z. For our
problem of a point charge a distance d apart from the TI
surface, the resulting angular momentum fulfills properties
(i) and (ii), but not (iii), which is signaled by the angular
momentum explicitly depending on the dielectric constant ε

of the TI. Insisting the angular momentum be quantized would
imply the (static) dielectric constant is negative, violating the
inequality ε > 1. This dependence on ε prevents the inter-
pretation of this dyonlike object as an anyon, a quasiparticle
having fractional statistics as quantum statistics is a universal
property of (quasi)particles and should not depend on the
details of the medium they are embedded in.

The outline of the paper is as follows. We first introduce
in Sec. II the axion Maxwell equations for a semi-infinite
magnetoelectric. In order to better understand the nature of the
actual topological defect being induced by the point charge on
the TI in Sec. III we derive an exact solution for a vortex of
finite length L in the London limit and obtain the Pearl vortex
solution in the limit L → 0 and large planar distances com-
pared to the London penetration depth. Such a Pearl vortex
regime will arise as a topological defect induced by a point
charge sitting precisely on the TI surface. This result will
be obtained as a special case of the more general solution
in Sec. IV. In Sec. III C we compare the solution of a very
thin solenoid of finite length L to the obtained solution for
a vortex of finite length and notice crucial differences. At
large distances the field profiles arising from the end points
of the solenoid behave precisely as magnetic monopoles. In
the vortex case the monopolelike field profiles do not quite
resemble actual monopoles due to Meissner screening inside
the superconductor. Such a screening is absent in the case of
a solenoid. The general solution of the electric and magnetic
fields and the associate angular momentum for a charge placed
at a distance d away from such a semi-infinite magnetoelectric
medium is detailed in Sec. IV. In Sec. V B we derive the
zero-energy-mode solutions of the Dirac equation on the TI
surface in the presence of the electromagnetic field induced by
the external point charge. A general argument for the absence
of magnetic monopoles is provided in Sec. VI and we end with
a brief summary and conclusions.

II. AXION MAXWELL EQUATIONS FOR A
SEMI-INFINITE MAGNETOELECTRIC

Given the textbook nature of the problem on one the hand
and the importance of its exact solution on the other, we
present the steps to obtain a direct solution for the elec-
tric and magnetic fields in a semi-infinite three-dimensional
Maxwellian magnetoelectric in some detail. The effective La-
grangian density is given by [1]

L = 1

8π

(
εE2 − 1

μ
B2

)
− La, (1)

where La is given above and Gaussian units are being used.
Similarly to Ref. [12], we assume that the (toplogical) magne-
toelectric medium occupies the region z � 0, with the surface
at z = 0 separating it from a trivial insulator, which we assume
to be the vacuum (see Fig. 1). Thus, we have a dielectric
constant ε = 1 and θ = 0 for z > 0. We further assume for
simplicity that the magnetic properties are such that μ = 1 for
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all z. The easiest way to obtain the field equations is to write
the standard Maxwell equations in the presence of matter and
recall that

D = 4π
∂L
∂E

, H = −4π
∂L
∂B

. (2)

We obtain in this way the general field equations in the forms

∇ ·
(

εE − αθ

π
B

)
= 4πρ, (3)

∇ ×
(

B + αθ

π
E

)
= 4π

c
j + 1

c
∂t

(
εE − αθ

π
B

)
, (4)

while the source-free Maxwell equations remain unchanged,

∇ × E = −1

c
∂t B, ∇ · B = 0, (5)

since the latter are actually constraints following from the
Bianchi identity for the electromagnetic field strength. In view
of the second Eq. (2) above, we have H = B + (αθ/π )E.
It follows that one way of solving the problem shown in
Fig. 1 is to use a magnetic image charge [12], since the
problem becomes analogous to the one of a semi-infinite
system with a magnetic permeability μ �= 1 [17]. Indeed, here
the role of magnetization is played by −αθE/(4π2), so we
can use the constraint ∇ · B = 0 to define a magnetic charge
density, ρM = ∇ · [αθE/(4π2)], leading to the equations ∇ ·
H = 4πρM and ∇ × H = 0, which is formally identical to
a problem in electrostatics [17,18]. We do not follow this
approach here and we proceed to solve the equations using
a vector potential, as this will help us to clarify the similarities
and differences of these image magnetic charges and actual
magnetic monopoles.

After setting E = −∇φ and B = ∇ × A, we obtain the
differential equations for the scalar and vector potentials,

−∇2φ − α

π
∇θ · (∇ × A) = 4πρ (z > 0), (6)

−ε∇2φ − α

π
∇θ · (∇ × A) = 4πρ (z < 0), (7)

−∇2A − α

π
∇θ × ∇φ = 0, (8)

where we have assumed the Coulomb gauge ∇ · A = 0. Since
∇θ = −θδ(z)ẑ for the system under consideration, we have to
actually solve the equations,

−∇ · (ε∇φ) = 4πρ, ∇2A = 0, (9)

subjected to boundary conditions reflecting the discontinuities
in the normal derivatives of the potentials at z = 0, implied
also by the change of θ at the interface. Translational invari-
ance in the xy plane implies

−d2Â
dz2

+ p2Â(p, z) = 0, (10)

where Â(p, z) is the Fourier transform of the vector potential
in the plane. The above equation is to be solved with the
boundary conditions

Â(p,+η) = Â(p,−η), (11)

dÂ
dz

∣∣∣∣
z=−η

− dÂ
dz

∣∣∣∣
z=+η

= αθ

π
(ẑ × Ê(p, z = 0)), (12)

where η → 0+. One finds after a straightforward calculation
that

A(r, z) = αθ

4π2

∫
d2r′ ẑ × E(r′, z′ = 0)√

(r − r′)2 + z2
, (13)

which yields

B(r, z) = ∇ × A = αθ

4π2

{
z
∫

d2r′ E(r′, z′ = 0)

[(r − r′)2 + z2]3/2

− ẑ
∫

d2r′ (r − r′) + zẑ
[(r − r′)2 + z2]3/2

· E(r′, z′ = 0)

}
. (14)

At this point it is important to observe that the magnetic field is
divergence-free everywhere in space as the above expression
obviously satisfies ∇ · B = 0 everywhere, irrespective of the
form of the electric field.

III. VORTEX OF FINITE LENGTH, SOLENOIDS,
AND ARTIFICIAL MONOPOLES

In order to put better in perspective what kind of solution
is actually obtained and understand how objects from a large
distance may look like a magnetic monopole, we first consider
a vortex line of finite length in the London limit. In the limit
where the length of the vortex line approaches zero, one
obtains the field of a so-called Pearl vortex at large planar
distances, r � λL, where λL is the London penetration depth.
We will see later that for a TI a Pearl vortexlike solution [15]
is obtained for the case where the point charge sits precisely
at the TI surface. The major difference from the actual Pearl
vortex in a thin superconducting slab is that the solution for
the TI will be exact and not only valid at large distances in the
plane.

A. Brief review of London theory

In the London limit the static superconducting current is
given by the well-known formula [19]

js(r, z) = 2eρsvs(r, z), (15)

where ρs is the superfluid density and vs is the superfluid
velocity, which in the case of a superconductor is given by

vs(r, z) = 1

m

[
h̄∇ϕ − 2e

c
A(r, z)

]
, (16)

where ϕ is the phase of the superconducting order field. For
later use, we are labeling the planar coordinates r = (x, y)
separately from z. Thus, the London equation is simply the
Maxwell equation,

∇ × B = 4π

c
js, (17)

supplemented by the constraint, ∇ · B = 0.
If the space is simply connected, we have ∇ × ∇ϕ = 0

everywhere, and the London equation simplifies to

−∇2B + m2
LB = 0, (18)

where

m2
L = 16πe2ρs

mc2
. (19)

013074-3



FLAVIO S. NOGUEIRA AND JEROEN VAN DEN BRINK PHYSICAL REVIEW RESEARCH 4, 013074 (2022)

The latter equation yields the London penetration depth λL =
m−1

L . Vortices make space multiply connected and the London
equation becomes more interesting. Generally a superconduc-
tor features both open and closed (loops) vortex lines [20]. If
vortex lines are accounted for, the phase gradient has the form
[21]

∇ϕ(R) = ∇ϕL + 1

2

Nv∑
i=1

∫
Li

dγ i × (R − γ i )

|R − γ i|3
, (20)

where R = (r, z). In the above equation ϕL denotes the longi-
tudinal part of the phase satisfying ∇ × ∇ϕL = 0, while the
second term corresponds to the contribution from vortex lines
Li, 1 � i � Nv , with the integral being along the ith vortex
line determined by the vector γ i. Due to the second term, we
have ∇ × ∇ϕ �= 0. For the simple case of a single infinite
straight vortex line, we have γ (z′) = z′ẑ, z′ ∈ (−∞,∞), such
that we obtain

∇ϕ = ∇ϕL + ẑ × r
r2

. (21)

Thus, ∮
C

dR · ∇ϕ =
∮

C
dr · φ̂

r
=

∫ 2πn

0
dφ = 2πn, (22)

where n ∈ Z is the vorticity winding number. From Stokes
theorem we can, therefore, write

∇ × ∇ϕ = 2πnδ2(r)ẑ, (23)

and the London equation becomes [19]

−∇2B + m2
LB = m2

Ln0δ
2(r)ẑ, (24)

where 0 = hc/(2e) is the elementary flux quantum for a su-
perconductor, corresponding to half of the usual flux quantum
arising in the Aharonov-Bohm effect. Therefore, for an in-
finite system the Abrikosov-Nielsen-Olesen solution [22,23]
for a single infinite vortex line is given in the London limit by
[19]

B(r) = n0

2π
m2

LK0(mLr)ẑ, (25)

where K0(x) is a modified Bessel function of the second kind.

B. London theory in a superconducting slab

For a superconducting slab of thickness L, general vortex
line solutions in the London regime have been obtained by
Brandt [24] and Carneiro and Brandt [25]. For a straight
vortex line parallel to the z axis we have that vector potential
now depends on z and has the form

A(r, z) = A(r, z)
ẑ × r

r
. (26)

We assume that the slab occupies the region R = {(r, z) ∈
R3 | r ∈ R2 ∧ z ∈ [−L, 0]}. Thus, the London equation has to
be solved in cylindrical coordinates using boundary condi-
tions for A(r, z) both at z = 0 and at z = −L. These are the
continuity of A(r, z) of its derivative with respect to z at the
surfaces z = 0 and z = −L. The region outside the slab is as-
sumed to be a vacuum. The easiest way to obtain the solution

is to recall the vector potential leading to the magnetic field
(66) and generalize it to

A(r, z) = n0m2
L

2π

∫ ∞

0
d p

J1(pr)a(p, z)

p2 + m2
L

, (27)

where J1(x) is a Bessel function and a(p, z) is determined by
the boundary conditions. The infinite system has a solution
corresponding to a(p, z) = 1. In this case the integral can be
performed exactly to obtain

A(r) = n0

2π

[
1

r
− mLK1(mLr)

]
, (28)

which yields the vector potential whose curl produces the
magnetic field (66).

For a system of thickness L we obtain on the other hand the
following,

a(p, z) =

⎧⎪⎪⎨
⎪⎪⎩

ε(p)e−pz

ε(p)+p coth[Lε(p)/2] , z > 0,

1 − p cosh[ε(p)(z+L/2)]
p cosh[Lε(p)/2]+ε(p) sinh[Lε(p)/2] , −L < z < 0,

ε(p)ep(z+L)

ε(p)+p coth[Lε(p)/2] , z < −L,

(29)

where ε(p) =
√

p2 + m2
L. In this case the integral in Eq. (27)

cannot be performed in closed form.
A regime particularly interesting for us is the large distance

one, where r � λL. In this regime we obtain

A(r, z) ≈ n0

2πr

⎧⎪⎨
⎪⎩

1 − z√
r2+z2 , z > 0,

1, −L < z < 0,

1 + z+L√
r2+(z+L)2

, z < −L,
(30)

and thus,

B(R) ≈ n0

2π

⎧⎪⎨
⎪⎩

R
R3 , z > 0,

0, −L < z < 0,

− (R+Lẑ)
|R+Lẑ|3 , z < −L,

(31)

corresponding to the magnetic field of a magnetic monopole
of charge g = n0/(2π ) located at R0 = 0 for z > 0 and to
the magnetic field of a magnetic monopole of charge −g
located at R1 = (0, 0,−L) for z < −L. If, in addition, we
consider the thin-film limit L → 0 we obtain a point vortex
field profile, a so-called Pearl vortex [15],

B(R) ≈ n0

2π
sgn(z)

R
R3

. (32)

Note that, despite exhibiting for both z > 0 and z < −L
fields of magnetic monopoles, the interval restrictions guaran-
tee that ∇ · B = 0, as it should.

Another limit case of interest is the short distance one
corresponding to r � λL. In this case,

A(r, z) ≈ n0r

4πλ2
L

⎧⎪⎨
⎪⎩

1 − z√
r2+z2 , z > 0,

1, −L < z < 0,

1 + z+L√
r2+(z+L)2

, z < −L,
(33)

which leads to the typical thin-solenoid expression for the
magnetic field in the slab region R,

B(R) = n0

2πλ2
L

ẑ. (34)
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C. Comparison with a thin solenoid of length L

The asymptotic behavior of the vortex solution for a slab
geometry exhibited some similarities with a solenoid. There
are some crucial differences, however, which we analyze
below.

It is a well-known fact in classical electrodynamics that
a thin solenoid can be thought as a line of point magnetic
dipoles, an approximation valid at large distances [17]. The
vector potential is assumed to be a sum over infinitesimal
elements of vector potential associated with an element of
magnetic moment, dm = m0dz′ẑ, where m0 is the magnetic
moment per unit length of the solenoid, assumed to lie along
the z axis. Thus,

dA = dm × (R − z′ẑ)

|R − z′ẑ|3 . (35)

The vector potential for a thin solenoid of length L is, there-
fore, given by integrating the above equation in z′ ∈ (−L, 0),

A(r, z) = m0rφ̂
∫ 0

−L

dz′

[r2 + (z − z′)2]3/2

= m0φ̂

r

[
z + L√

r2 + (z + L)2
− z√

r2 + z2

]
. (36)

This yields the magnetic field

B(R) = m0

[
R
R3

− (R + Lẑ)

|R + Lẑ|3
]

+ 4πm0δ
2(r)[θH (−z) − θH (z + L)]ẑ, (37)

where θH (x) is the Heaviside unit step function. Thus, a thin
solenoid of length L at large distances appears as two mag-
netic monopoles of charges ±m0 connected by a Dirac string
of length L. Note that the presence of the string guarantees
that ∇ · B = 0 [26].

The magnetic field (37) is clearly very different from the
magnetic field of a vortex line at large distances, Eq. (31). In
the latter equation the magnetic fields of the monopoles are
completely screened inside the slab. This is not the case in
Eq. (37). Also the limit L → 0 does not yield the magnetic
field of a Pearl vortex, yielding instead

B(R)|L=0 = −4πm0sgn(z)δ2(r)ẑ. (38)

Interestingly, the result for a straight thin solenoid can
be generalized to any curved shape. This can be done by
exploring the similarity of Eq. (35) to Eq. (20) for the phase
gradient in a superfluid. Accordingly, we consider a line of
infinitesimal magnetic moments along a curved line C defined
by the vector function γ (s), s ∈ [0, 1], i.e., dm = m0dγ . Thus,
instead of Eq. (35) we have

dA = m0
dγ × (R − γ )

|R − γ|3 , (39)

so that

A(R) = m0

∫
C

dγ × (R − γ )

|R − γ|3 . (40)

The magnetic field is, therefore, derived as follows:

εi jk∂ jAk (R) = m0εi jk∂ j

∫
C

εklmdγl (xm − γm)

|R − γ|3

= m0(δilδ jm − δimδ jl )∂ j

∫
C

dγl (xm − γm)

|R − γ|3

= −m0

∫
C

dγ j
∂

∂x j

(xi − γi )

|R − γ|3

+ m0

∫
C

dγi ∇ · R − γ

|R − γ|3︸ ︷︷ ︸
=4πδ3(R−γ )

= m0

∫ 1

0
ds

dγ j

ds

∂

∂γ j

(xi − γi )

|R − γ|3

+ 4πm0

∫
C

dγiδ
3(R − γ )

= m0

∫ 1

0
ds

d

ds

(xi − γi(s))

|R − γ (s)|3

+ 4πm0

∫
C

dγiδ
3(R − γ ), (41)

which immediately leads to

B(R) = m0

[
(R − γ2)

|R − γ2|3
− (R − γ1)

|R − γ1|3
]

+ 4πm0

∫
C

dγδ3(R − γ ), (42)

where γ2 = γ (1) and γ1 = γ (0). Equation (42) obviously
includes Eq. (37) as a special case. Indeed, in this case we
have simply γ (z′) = z′ẑ, with γ2 = 0 and γ1 = −Lẑ, while
for the δ function term we have∫

C
dγδ3(R − γ ) = ẑδ2(r)

∫ 0

−L
dz′δ(z − z′)

= ẑδ2(r)
∫ ∞

−∞
dz′[θH (−z′) − θH (z′ + L)]δ(z − z′)

= δ2(r)[θH (−z) − θH (z + L)]ẑ. (43)

IV. SOLUTION FOR AN ELECTRIC POINT CHARGE
ABOVE A MAGNETOELECTRIC

A. Calculation of the electric field

We now consider for the charge density a point charge q
at z = d > 0 as indicated in Fig. 1. Since the Poisson equa-
tion is translation invariant in the xy plane, one can perform a
two-dimensional Fourier transform to obtain the differential
equations for the Fourier-transformed potential, φ̂(p, z), as
follows:

−d2φ̂

dz2
+ p2φ̂(p, z) = 4πqδ(z − d ) (z > 0), (44)

−ε
d2φ̂

dz2
+ εp2φ̂(p, z) = 0 (z < 0), (45)

The equations for the electric potential, Eqs. (44) and (45),
have to obey the following four boundary conditions:

013074-5



FLAVIO S. NOGUEIRA AND JEROEN VAN DEN BRINK PHYSICAL REVIEW RESEARCH 4, 013074 (2022)

(i) φ̂(p, z = −η) = φ̂(p, z = +η),
(ii) dφ̂

dz |z=+η − ε
dφ̂

dz |z=−η = κ|p|φ̂(p, z = 0),
(iii) φ̂(p, z = d − η) = φ̂(p, z = d + η),
(iv) dφ̂

dz |z=d−η − dφ̂

dz |z=d+η = 4πq,
where κ = (1/2)(αθ/π )2. The boundary condition (ii) above
follows directly by inserting Eq. (14) into the Poisson equa-
tions, Eqs. (6) and (7), and performing a Fourier transform in
the plane. These boundary conditions are used to determine
the unknown coefficients by matching the solutions in three
regions,

φ̂(p, z) = Ae|p|z (z < 0), (46)

φ̂(p, z) = Be|p|z + Ce−|p|z (0 < z < d ), (47)

φ̂(p, z) = De−|p|z (z > d ). (48)

After determining A, B, C, and D, we obtain

φ̂(p, z > 0) = 2πq

p

[(
1 − ε − κ

1 + ε + κ

)
e−p(z+d ) + e−p|z−d|

]
,

(49)

φ̂(p, z < 0) = 4πq

1 + ε + κ

e−p|z−d|

p
. (50)

Since

2π

∫
d2 p

(2π )2

eip·r−p|z−z0|

p
= 1√

r2 + (z − z0)2
, (51)

where z0 ∈ R, we easily obtain the electric potential

φ(r, z > 0) = q

[(
1 − ε − κ

1 + ε + κ

)
1√

r2 + (z + d )2

+ 1√
r2 + (z − d )2

]
, (52)

φ(r, z < 0) = 2q

1 + ε + κ

1√
r2 + (z − d )2

, (53)

yielding in turn the electric fields for z < 0 and z > 0,

E(r, z > 0) = q

[(
1 − ε − κ

1 + ε + κ

)
r + (z + d )ẑ

[r2 + (z + d )2]3/2

+ r + (z − d )ẑ
[r2 + (z − d )2]3/2

]
, (54)

E(r, z < 0) = 2q

1 + ε + κ

r + (z − d )ẑ
[r2 + (z − d )2]3/2

. (55)

Unremarkably, the above expressions reduce to the standard
textbook ones when θ = 0. Note that only E(r, z = 0) is
needed to determine the magnetic field via Eq. (14). In view of
the axion term, the electric field is discontinuous at z = 0, as
evidenced by the boundary conditions above. Thus, we have

E(r, z = +η) = 2q

[1 + ε + κ](r2 + d2)3/2
{r − d[ε − κ]ẑ},

(56)

E(r, z = −η) = 2q

1 + ε + κ

r − d ẑ
(r2 + d2)3/2

. (57)

Therefore,

ẑ × E(r, z = 0) = 2q

1 + ε + κ

ẑ × r
(r2 + d2)3/2

. (58)

B. Calculation of the magnetic field

The most straightforward way to calculate the magnetic
field is by inserting the expression for the electric field directly
in Eq. (27) and performing the resulting integral. The calcula-
tion is considerably easier using a Fourier transform on the TI
surface, in which case we obtain the following from Eq. (27),

Â(p, z) = αθ

2π

e−p|z|

p
ẑ × Ê(p, z = 0)

= −Ne−p(|z|+d ) ẑ × ip
p2

, (59)

where we have assumed q = Ne, N ∈ Z, and,

 = α2θ0

π (1 + ε + κ )
, (60)

with 0 = hc/e being the elementary flux quantum. Thus, we
obtain the Fourier representation for the vector potential,

A(r, z) = −N[ẑ × ∇a(r, z)], (61)

where

a(r, z) =
∫

d2 p

(2π )2

e−p(|z|+d )+ip·r

p2
. (62)

Performing the angular integration in the above equa-
tion yields

a(r, z) = 1

2π

∫ ∞

0

d p

p
e−p(|z|+d )J0(pr), (63)

where J0(x) is a Bessel function. Thus,

∇a = − r
2πr

∫ ∞

0
d pJ1(pr)e−p(|z|+d )

= − r
2πr2

[
1 − (|z| + d )√

r2 + (|z| + d )2

]
. (64)

Thus, by performing the inverse Fourier transform, we
obtain

A(r, z) = N

2π

ẑ × r
r2

[
1 − (|z| + d )√

r2 + (|z| + d )2

]
, (65)

whose curl yields

B(r, z) = N

2π

∑
s=±

sH (sz)
r + (z + sd )ẑ

[r2 + (z + sd )2]3/2
, (66)

where H is the Heaviside step function. It immediately fol-
lows that

∇ · B = N

2π
δ2(r)[H (z)δ(z + d ) − H (−z)δ(z − d )]

= N

2π
δ2(r)[H (−d )δ(z + d ) − H (−d )δ(z − d )]

= 0, (67)

since H (−d ) = 0. Although the total magnetic flux through
any closed surface containing a sphere of radius d centered
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FIG. 2. Schematic depiction of a Pearl vortex [15] as the small
thickness limit of an Abrikosov-Nielsen-Olesen vortex [22,23] inside
a superconducting slab of thickness D. As D → 0, the vortex line
approaches a point vortex in a very thin superconducting thin film.

at the origin vanishes, we note that the flux through the TI
surface yields precisely  for all z. For d → 0 we obtain from
Eq. (65) that

A(r, z) = N

2π

ẑ × r
r2

(
1 − |z|√

r2 + z2

)
. (68)

We see that if |z| were replaced by z in Eq. (68), it would
precisely yield the vector potential of a straight vortex line
(or Dirac string) over the negative z axis ending at a magnetic
monopole at z = 0. This fact is crucial and it is what makes
Eq. (68) correspond to the magnetic field of a Pearl vortex,

B(r, z) = N

2π
sgn(z)

r + zẑ
(r2 + z2)3/2

, (69)

where for a superconductor  = n0/2. An important differ-
ence between the magnetic field above and the actual Pearl
vortex arising in superconductors is that the former holds
for all r, no matter how small, while the actual Pearl vortex
field profile of Eq. (32) follows from the large distance limit
r � λL for a flux line of vanishing length. In other words,
Eq. (69) describes an exact Pearl vortex.

By removing the sgn(z) factor in Eq. (69) we obtain pre-
cisely the magnetic field of a Dirac magnetic monopole: in
other words the magnetic field (69) behaves as a monopole
for z > 0 and as an antimonopole for z < 0, yielding in this
way ∇ · B = 0 (see Fig. 2).

The stream density plot associated with the magnetic field
components above is shown in Fig. 3 for the reduced coor-
dinates z/d and r/d . We note the presence of an extended
solitonic object near z = 0, indicating that the point vortex
becomes for d �= 0 a kind of pancake vortex.

The magnetic field (66) can be interpreted as correspond-
ing to image magnetic charges of strength g± = ±N/(2π )
located at z± = ∓d , respectively. Thus, the magnetic charge
g+ at z = −d mirrors the magnetic field at z > 0, while the
magnetic charge g− at z = d mirrors the magnetic field at
z < 0. However, we have seen in Eq. (67) that ∇ · B vanishes
everywhere.

V. ANGULAR MOMENTUM

A. Electromagnetic field contribution to the angular momentum

The electromagnetic momentum density � = (E×B)/
(4πc) is nonzero for all z > 0, vanishing otherwise. Thus,
the angular momentum carried by the electromagnetic field is
obtained by integrating over all space the angular momentum
density, (r + zẑ) × �. The components Lx and Ly vanish due

FIG. 3. Stream density plot of the magnetic field for an elec-
tric charge q at a d �= 0 above the surface of a (topological)
magnetoelectric.

to rotational invariance in the plane, so we obtain

Lz= − N2ed

2πc

∫ ∞

0
dz

∫ ∞

0

dr r3

[r2+(z−d )2]3/2[r2+(z+d )2]3/2
.

(70)

Performing the integral above yields

Lz = −N2 

0

h̄

2
. (71)

As with the angular momentum of dyons [16], the above
angular momentum is independent of the distance of the
point charge to the TI surface. However, in contrast to the
dyon, the above angular momentum is neither an integer
nor a half-integer multiple of h̄. In order for this to happen,
 = n0, n ∈ Z, would have to be satisfied. But this would
then, in general, imply a negative dielectric constant for all
n as according to Eq. (60). Interestingly however, Lz features
a quantization ∼N2 characteristic of the angular momentum
of Chern-Simons vortices [27]. Despite this similarity, it is
important to emphasize that the integer squared arising in
the latter corresponds to the vortex quantum number rather
than the number of particles N as used here in connection
with the point charge q = Ne. This fact has experimental
consequences and we will come back to this point below.

It might be tempting to associate the result of Eq. (71) with
a dyon exhibiting anyon behavior [12]. As  ∝ (1 + ε + κ )−1

with ε being the dielectric constant of the magnetoelectric
medium and κ ∝ α2, this would imply a dependence of Lz on
the dielectric and fine-structure constant. Such nonuniversal
behavior in the process of exchanging two particles is rather
not expected in quantum statistics.

Let us compare the result of Eq. (71) with the one obtained
for a vortex at the interface of a SC-TI heterostructure. For the
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latter it has been demonstrated that [9]

LSC-TI
z = −n2θ

4π

h̄

2
, (72)

where n is the vortex quantum number. The integer number
squares appearing in both Eqs. (71) and (72) have a com-
pletely different origin. In Eq. (71) N refers to the number
of electron charge units contained in the charge q at a distance
d from the TI surface, while n in Eq. (72) is a winding number
associated with flux quantization in superconductors. It turns
out that n is rarely larger than the unity. On the other hand, it is
easily possible to have considerably larger values of N . Thus,
in spite of the small factor α2 in Eq. (72), Lz is not necessarily
small and it can actually be of the same order or even larger
than the induced angular momentum in SC-TI systems.

Another important difference between Eqs. (72) and (71)
is that the former refers to the total angular momentum rather
than just the one due to the electromagnetic field. Equa-
tion (72) actually contains also the mechanical contribution,
i.e., one corresponding to the orbital motion of Cooper pairs
around the vortex. In the next subsection we address the
contribution of the surface fermions to the total angular mo-
mentum.

Interestingly, conservation of angular momentum would
imply that the induced magnetoelectric angular momentum be
counterbalanced by a mechanical rotation of the TI. This can,
in principle, be detected experimentally.

B. Angular momentum contribution from surface
Dirac fermions

The Dirac equation on the TI surface is given by

HψE = E

vF
ψE , (73)

with the Hamiltonian,

H = α ·
[

− ih̄∇ − e

c
A(r, 0)

]
+ �

vF
+ e

vF
φ(r, 0), (74)

where vF is the Fermi velocity and in terms of Pauli matrices
α = (−σy, σx ). The Pauli matrix σz multiplies � = −μBLz

(μB is the Bohr magneton), which is a Zeeman term induced
by the angular momentum of the electromagnetic field. Were
we to have φ = 0 and � = 0, the state σzψE would be an
eigenstate of the Dirac operator with energy −E , and therefore
σzψE = ψ−E [28]. This property fails when φ �= 0, which
is precisely the case we are dealing with here. This implies
that any underlying zero modes in this problem are not self-
conjugate.

There are two distinct situations to be considered here,
depending on whether d = 0 or not. From Eq. (65), we have

A(r, 0) = N

2π

ϕ̂

r

(
1 − d√

r2 + d2

)
, (75)

so we see that for d �= 0 the vector potential vanishes for r →
0 and behaves as A(r, 0) ∼ ϕ̂/r for r � d . For d = 0, on the
other hand, the potential is singular at r = 0, but the Dirac
equation can still be solved by employing a singular gauge
transformation.

Let us consider the case where the charge lies exactly on
the TI surface, so that we can set d = 0. In this case, per-
forming the unitary transformation U = eiN (/0 )ϕ casts the
Hamiltonian in the form

U †HU = −ih̄α · ∇ + �

vF
σz + e

vF
φ(r, 0) (76)

and induces a multivalued phase factor in the spinor field,
ψE = eiN (/0 )ϕ�E . Hence, the Dirac equation becomes(

−iα · ∇ + mσz + Nb

0r

)
�E = ω

vF
�E , (77)

where b = 2πc/(αθvF ), m = �/(h̄vF ), and ω = E/h̄. Solu-
tions of the Dirac equation above have the form

�E =
[

u
v

]
=

[
ei(n−1/2)ϕ f (r)
ei(n+1/2)ϕg(r)

]
, (78)

where n is an integer. Note that �E satisfies antiperiodic
boundary conditions. It follows that ψE is an eigenstate of the
angular momentum operator

Jz = −ih̄
∂

∂ϕ
+ h̄

2
σz, (79)

and thus,

JzψE = h̄

(
n + N

0

)
ψE . (80)

The total angular momentum of the system is given by
adding the above result to the electromagnetic field contribu-
tion of Eq. (71),

J tot
z = h̄

[
n − N

(
N

2
− 1

)


0

]
. (81)

The ansatz (78) leads to the following pair of equations,

dg

dr
+ 1

r

(
n + 1

2

)
g + β

r
f = (� − m) f , (82)

df

dr
− 1

r

(
n − 1

2

)
f − β

r
g = −(� + m)g, (83)

where we have defined � = ω/vF and β = Nb/0 =
2N (c/vF )α/(1 + ε + κ ). Because of the way the equa-
tions are coupled, it is more convenient to find solutions by
introducing the new variables F = f + g and G = f − g, in
which case the equations are recast in the forms

dF

dr
+ F

2r
+ 1

r
(β − n)G = −mF + �G, (84)

dG

dr
+ G

2r
− 1

r
(β + n)F = −mG − �F. (85)

Normalized zero-mode solutions (� = 0) are obtained in
the forms F (r) = F0e−mrrs and G(r) = G0e−mrrs, assum-
ing m > 0. These normalized solutions are obtained for s =√

n2 − β2 − 1/2. The boundary conditions at r = 0 require
that

n2 > β2 + 1
4 . (86)
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The constants f0 = (F0 + G0)/2 and g0 = (F0 − G0)/2 are
easily determined from the normalization condition to be
given by

f 2
0 = (n − β )(2m)1+2

√
n2−β2

2πn�(1 + 2
√

n2 − β )
, (87)

g2
0 = β(2m)1+2

√
n2−β2

2πn�(1 + 2
√

n2 − β )
. (88)

Finally, let us comment on an aspect of zero modes that is
usually true in most topological systems but that does not hold
in the present case, namely, the existence of an index theorem
[29] or, more specifically, the Atiyah-Patodi-Singer (APS)
index theorem [30,31]. This theorem states that the number of
positive-energy modes minus the negative-energy ones is an
integer topological invariant, the so-called η invariant. In order
for this theorem be applicable it is necessary to be able to map
one-to-one the positive-energy modes to the negative-energy
ones, with the zero modes being self-conjugate. When φ = 0
this mapping is provided by the Pauli matrix σz, similarly to
the situations encountered in Refs. [28,32] (see also Ref. [29]),
where the Pauli matrix σz acts as conjugation matrix. As
already mentioned, in our case σz does not map ψE into ψ−E ,
so we are unable to apply the APS index theorem in this case.

VI. GENERAL ARGUMENT FOR ABSENCE OF INDUCED
MAGNETIC MONOPOLES

The constraint ∇ · B = 0 not being violated in the gen-
eral axion magnetoelectric screening problem can also be
argued on the basis of more general considerations. Due
to the ∇ · B = 0 constraint, a string singularity has to be
attached to a Dirac monopole. Monopoles without strings
are only possible if topologically nontrivial gauge transfor-
mations are allowed [33], in which case two nonsingular
vector potentials can be used, A±(r, z) = ±gr−2(ẑ × r)(1 ∓
z/

√
r2 + z2), defined in the regions of a sphere around a point

monopole g excluding the south and north poles, respectively.
These gauge potentials differ by a singular gauge transfor-
mation, since A+ − A− = 2g∇ϕ, ϕ ∈ [0, 2π ]. Indeed, ∇ ×
∇ϕ = 2πδ2(r)ẑ. As a consequence, ∇ · B = 4πgδ2(r)δ(z).
The corresponding topologically nontrivial gauge transforma-
tion is, therefore, G = exp[2iegϕ/(h̄c)], which leads to the
Dirac condition eg/(h̄c) = n/2, n ∈ Z. Such a scenario is not
realizable within the axion electrodynamics discussed here,
where gauge transformations are topologically trivial. In this
case magnetic monopoles would require nonvanishing cur-
rents at large distances, contradicting one of the basic tenets
of electromagnetism.

VII. CONCLUSION

We have obtained the induced magnetic field due to a
charged particle above the surface of a topological insulator or

any magnetoelectric material in general. The exact magnetic
field has been obtained directly without using image magnetic
charges. The solution allows, nevertheless, for a clear iden-
tification of the reflection and transmission image magnetic
charges. However, the latter cannot be interpreted as induced
magnetic monopoles, since the vector potential does not allow
for topologically nontrivial gauge transformations and there
is no flux tube connecting the magnetic image charges. In
the limit case where the charge lies exactly at the surface,
the field of a point vortex, also known as the Pearl vortex
[15], is obtained. Such a point vortex resembles a monopole,
but it is quite different from it, as it does not allow for the
topologically nontrivial gauge transformations necessary to
make ∇ · B �= 0.

We have found that the vortexlike solution features a non-
trivial angular momentum for the electromagnetic field, in a
situation reminiscent of the vortex solution for a TI proximate
to a type II superconductor obtained in Ref. [9]. As in the
latter reference, we calculated the angular momentum ex-
actly. However, there is an essential difference between them;
namely, the result we have obtained in Eq. (71) has a de-
pendence on the dielectric constant, while such a dependence
cancels out in the calculation leading to Eq. (72), correspond-
ing to the results obtained in Ref. [9]. The lack of dependence
on the dielectric constant in Eq. (72) is due to the fact that
this angular momentum corresponds to both mechanical and
electromagnetic contributions. However, accounting for the
mechanical contribution from the surface Dirac fermions in
the presence of an external point charge does remove the ε

dependence in the total angular momentum. For this reason,
one cannot claim that the system exhibits fractional statistics,
since quantum statistics should be a universal property of the
system and not be dependent on specific material properties
like the dielectric constant. Nevertheless the result of an in-
duced total angular momentum is a very interesting one, since
it indicates that a point charge in proximity to a TI would
induce a compensating mechanical torque that can be detected
experimentally.

Since the Dirac equation is known to favor zero-mode
solutions in the presence of topological defects like vortices
or monopoles [32], we have also investigated this possibility
here and obtained that zero modes indeed exist. However, the
fermions have to be gapped and thus break TR, otherwise no
normalized zero modes can be found.
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