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Abstract In data science, one is often confronted with a time series representing measure-
ments of some quantity of interest. Usually, in a first step, features of the time series need to
be extracted. These are numerical quantities that aim to succinctly describe the data and to
dampen the influence of noise.

In some applications, these features are also required to satisfy some invariance prop-
erties. In this paper, we concentrate on time-warping invariants. We show that these corre-
spond to a certain family of iterated sums of the increments of the time series, known as
quasisymmetric functions in the mathematics literature. We present these invariant features
in an algebraic framework, and we develop some of their basic properties.

Keywords Time series analysis · Time warping · Standing-still invariance · Signature ·
Quasisymmetric functions · Quasi-shuffle product · Hoffman’s exponential ·
Area-operation · Hopf algebra

1 Motivation

Given a discrete time series

x = (x0, x1, . . . , xN) ∈ (Rd)N ,
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Fig. 1 Example of time warping in the case of a discrete time series in d = 1 dimensions.

where N ≥ 1 is some arbitrary time horizon, our foremost, and original, motivation stems
from the desire to extract features from x that are invariant to time warping.

The precise definition of the latter will be given in Section 4, but Figure 1 illustrates what
we mean by time warping: the time series is allowed to “stand still” or to “stutter” (this term
is used in [47]), which means that x has repetitions of values at consecutive time steps (here
at time t = 3).

Remark 1.1 In this section we consider the notationally simpler case d = 1, that is, when
x ∈ R

N .

Our interest is prompted, on the one hand by the extensive literature on the dynamic
time warping (DTW) distance [5], a distance on discrete time series that is invariant to time
warping. In [47] it is stated that

“the time warping distance . . . does not lead to any natural features”.
Our work aims to provide those missing “natural” features.

On the other hand the following example illustrates where such invariant features will
become useful.

Example 1.2 Assume that there is a deterministic time series x ∈ R
N which models some

“prototype” evolution of a quantity, say the prototype heartbeat in a patient’s ECG. This
prototype is unknown, but one records a lot of samples of it run at different speeds and
contaminated by noise (compare [6]). A model for these observations is then

y(�)
n = xh(�)(n) + w(�)

n , n = 1, . . . ,M, � = 1, . . . ,L.

Here L is the number of observations, M ≥ N is the time horizon we allow the prototype to
be “spread out” over, h(�) : [1, . . . ,M] → [1, . . . ,N ] are unknown non-decreasing, surjective
time changes and w(�)

n are independent and identically distributed (iid) random walks. The
goal is to recover x (up to time warping).

The currently used method [6, 31, 33], consists in first trying to align the different sam-
ples, i.e., to estimate the time-changes h(�), and to average afterwards. This seems to work
well in regimes where the noise w(�) is small (large signal-to-noise ratio), but will break
down if this is not the case.

Guided by invariant methods in cryo-EM [4] we then propose the following procedure.

(1) Calculate features of y(�) that do not see time warpings.
(2) Average those features over the independent samples, giving the law of large numbers a

chance to cancel out the noise and getting an approximation of the features of x.
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(3) Invert the averaged features to arrive at a candidate for x.

Our approach to Step (1) is new and will be presented in this paper. Step (2) and Step (3)
will be addressed in future work.

A moment’s thought reveals that iterated-sums of the increments of x are invariant in the
desired sense. For example, the simple sum

∑
i (xi − xi−1) or the more complex expressions

∑

i

(xi − xi−1)
2,
∑

i1<i2

(xi1 − xi1−1)(xi2 − xi2−1),
∑

i1≤i2

(xi1 − xi1−1)(xi2 − xi2−1), (1)

are features of the time series that do not change when warping time, i.e., when repetitions
of points, xi = xi+1 = · · · = xi+j occur in x.

Remark 1.3 To accommodate repetition of points, here we have conveniently written the
sum over an unspecified set of time-points. We can think of the sum taken over N+, with x

being extended constantly as xN after time N .

However, two questions immediately emerge

(A) The three expressions in (1) are already linearly dependent (adding the first and second
sum gives the third). How to store only linearly independent expressions?

(B) Do iterated-sums of increments give all (polynomial) time warping invariants?

Regarding the first item, it turns out that the above iterated-sums expressions are rem-
iniscent of quasisymmetric functions [39]. Consider the space R〈Y1, Y2, Y3, . . . 〉 of formal
power series in ordered commuting variables Y1, Y2, Y3, . . . . By definition, a power series
(of finite degree) Q ∈ R〈Y1, Y2, Y3, . . . 〉 is a quasisymmetric function if for all n ≥ 1, all
i1 < · · · < in, all j1 < · · · < jn and all α1, . . . , αn ≥ 1, the coefficient of the monomial
(Yi1)

α1 · · · (Yin )
αn in Q is equal to the one of (Yj1)

α1 · · · (Yjn)
αn . First examples are

∑

i

Yi,
∑

i

(Yi)
2,
∑

i1<i2

Yi1Yi2 ,
∑

i1≤i2

Yi1Yi2 ,

and we see that the invariants given above follow from the evaluation of these quasisym-
metric functions at Y1 �→ x1 − x0, Y2 �→ x2 − x1, . . . , YN �→ xN − xN−1, and Yi �→ 0 for
i ≥ N + 1.

Different linear basis for quasisymmetric functions are known. The one of monomial
quasisymmetric functions of [39] is indexed by compositions of integers. Anticipating the
multidimensional case, we write a composition c1 +· · ·+ck = n as [1c1 ] · · · [1ck ], and obtain
the correspondence

[1c1 ] · · · [1ck ] ←→ M(c1,...,ck) :=
∑

i1<···<ik

(Yi1)
c1 · · · (Yik )

ck .

Quasisymmetric functions are a refinement of symmetric functions and form a commuta-
tive unital algebra. The product is just the polynomial product in the power series represen-
tation. It amounts to a so-called quasi-shuffle product (see Section 2) in the representation
as compositions. For example, the abstract quasi-shuffle product

[1] ∗ [13][17] = [1][13][17] + [13][1][17] + [13][17][1] + [14][17] + [13][18]
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corresponds to the concrete product of power series

(
∑

i

Yi

)

·
⎛

⎝
∑

i1<i2

(Yi1)
3(Yi2)

7

⎞

⎠

=
∑

i1<i2<i3

Yi1(Yi2)
3(Yi3)

7 +
∑

i1<i2<i3

(Yi1)
3Yi2(Yi3)

7

+
∑

i1<i2<i3

(Yi1)
3(Yi2)

7Yi3 +
∑

i1<i2

(Yi1)
4(Yi2)

7 +
∑

i1<i2

(Yi1)
3(Yi2)

8.

The latter equality follows by case distinction for sums over the three indexing variables,
which amounts to a summation-by-parts formula. The last two terms in the above product
reflect the fact that multiplying sums requires the inclusion of sums over diagonal terms.

It is natural to store the iterated-sums invariants of the discrete time series x as a linear
map ISS(x) on the quasi-shuffle algebra of compositions, by defining the pairing

〈[1c1 ] · · · [1ck ], ISS(x)〉 :=
∑

i1<···<ik

(�xi1)
c1 · · · (�xik )

ck .

Here �xi := xi − xi−1 for 1 ≤ i ≤ N , and as above we extend x constantly, so that �xi := 0
for i ≥ N + 1. From the correspondence between the product of power series and the quasi-
shuffle product of compositions mentioned above we deduce that

〈[1p1 ] · · · [1pk ], ISS(x)〉 · 〈[1q1 ] · · · [1ql ], ISS(x)〉 = 〈[1p1 ] · · · [1pk ] ∗ [1q1 ] · · · [1ql ], ISS(x)〉.

Hence, ISS(x), which we call iterated-sums signature, is an algebra morphism (from the
quasi-shuffle algebra to the underlying base field F). Since compositions form a linear basis,
this answers Question (A) above – in the case d = 1. We will come back to Question (B) in
Section 4.

The commutative algebra of quasisymmetric functions is the free quasi-shuffle algebra
over one generator and it is - as we just saw - the correct framework to store iterated-sums
for a one-dimensional time-series. The appropriate generalisation of this algebra to arbitrary
dimension d ≥ 1, that is, the free quasi-shuffle algebra over d generators, was carried out by
Hoffman [27].

The aforementioned amounts to saying that iterated-sums signature ISS(x) is an element
of the dual space of the quasi-shuffle algebra over d generators. It can therefore be rep-
resented as an infinite word series with iterated-sums of the time series x as coefficients.
Its compatibility with the quasi-shuffle product together with the fact that the latter can be
seen as a deformation of the classical shuffle product [18] suggests to consider ISS(x) as
a discrete analog of Chen’s iterated-integrals signature over continuous curves [10, 44].
The latter plays an important role in the theory of controlled ordinary differential equations
(ODEs), stochastic analysis and Lyons’ theory of rough paths [19, 37]. Such a large spec-
trum of applications reflects the important property of iterated-integrals to provide - in some
sense - a complete representation of a curve, so that arbitrary functionals on curves should
be well approximated by functions on its signature. There is a caveat though. Iterated inte-
grals are tailor made to approximate functionals that stem from controlled ODEs. But as is
quickly realised, this does not mean that the iterated-integrals signature is an optimal repre-
sentation for other input-output systems. For example, since a controlled ODE – and hence
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also the signature – cannot see tree-like excursions, the iterated-integrals signature of a one-
dimensional path reveals nothing about the path, except for its increment.There are several
procedures to circumvent this shortcoming, and to obtain information even about tree-like
parts of a curve using signature. These procedures usually consists of lifting the path to a
higher-dimensional curve and calculating the signature of it. The aforementioned limitations
of the iterated-integrals signature with respect to tree-like paths prompts us to propose in-
stead the use of “discrete time signature” ISS(x), which, instead of storing iterated-integrals,
gathers iterated-sums.

Remark 1.4 For the precise definition of “tree-like” see [24]; but one can think of a curve
that completely “tracks back”. In particular in dimension 1, every curve that has coinciding
start- and endpoint is tree-like.

The paper is organised as follows. Section 2 recalls the notion of quasi-shuffle Hopf al-
gebra and quasisymmetric functions. In Section 3 we introduce the iterated-sums signature
and show its character property with respect to the quasi-shuffle Hopf algebra. Moreover,
we show that Chen’s property is satisfied, but that Chow’s Theorem does not hold. Hence,
while mirroring the setup of Chen’s iterated-integrals signature to some extent, interesting
differences emerge. It turns out that our description of the iterated-sums signature is nicely
related to the work [42] on “multidimensional” generalisation of quasisymmetric functions,
and we dwell on this briefly in Remark 3.5. In Section 4 we show the iterated-sums sig-
nature contains (almost) all time warping invariants. In Section 5 we use a specific Hopf
algebra isomorphism, known as Hoffman’s exponential, to relate the iterated-sums signa-
ture to Chen’s iterated-integrals signature (of an infinite-dimensional path). This includes in
particular relating the continuous and discrete area operations.

In the following all algebraic structures are defined over a base field F of characteristic
zero. The reader is invited to think of the field F as the reals, F = R, or the complex numbers,
F = C, throughout.

We denote N := {0,1,2, . . . } and N+ := {1,2, . . . }. All (co)algebras are (co)unital and
(co)associative unless otherwise stated. For details on Hopf algebras the reader is referred
to [9, 26, 36, 40, 46].

2 Quasi-Shuffle Hopf Algebra

The notion of quasi-shuffle product appeared first in a 1972 article by Cartier [8]. Its Hopf
algebraic relevance was explored in the 1979 paper [41]. Two decades later, Hoffman [27]
provided a comprehensive account of the quasi-shuffle product in a Hopf algebraic frame-
work. Meanwhile, quasi-shuffle products appeared under different names, i.e., modified
shuffle product [20, 34], sticky-shuffle [29, 30], overlapping shuffle [25], stuffle and har-
monic product [48].

We recall the inductive definition of the quasi-shuffle product following Hoffman [27].
See also [7, 16]. Our starting point is the alphabet A = {1,2, . . . ,d}, which we augment
to a free commutative semigroup, A, by defining a commutative product denoted by square
brackets, [−−]: A × A → A. For example, the product between the letters 1,2 ∈ A is
written [12] = [21]. Any iteration of the product in A can be simplified to an expression
containing a single pair of brackets, that is, [i1 · · ·in] := [i1[· · · [in−1in]] · · · ]. For in-
stance, [123] = [1[23]] in A. Elements in the tensor algebra T (A) over (the vector space
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spanned by) A are denoted by words, i.e., we denote the tensor product by concatena-
tion, or juxtaposition of basis elements. The neutral element for this product is the empty
word, denoted by e. The augmentation ideal is defined by T+(A) := ⊕n>0A

⊗n such that
T (A) = Fe ⊕ T+(A).

The commutative quasi-shuffle product m� : T (A) ⊗ T (A) → T (A), u � v := m�(u, v),
is introduced by inductively defining e � u := u =: u � e, for all u ∈ T (A), and

ua � vb := (u � vb)a + (ua � v)b + (u � v)[ab], (2)

for u,v ∈ T (A) and a, b ∈ A. For example, 2 � 3= 23+ 32+ [23] and

3 � 4[12] = 34[12] + 43[12] + 4[12]3+ [34][12] + 4[123]. (3)

The tensor algebra is naturally graded by the length of words, �(w1 · · ·wn) = n for
w1 · · ·wn ∈ T (A). However, in light of the new product (2), which is not homogenous with
respect to the number of letters, we introduce the weight grading on T (A), denoted | · |, by
declaring that |e| = 0, |a| = 1 for all a ∈ A and |[pq]| = |p| + |q| for all p,q ∈ A. Finally,
for a word w = w1 · · ·wn ∈ T (A) we define its weight to be |w| = |w1| + · · · + |wn|.

Let δ : T (A) → T (A) ⊗ T (A) denote the deconcatenation coproduct defined on a
nonempty word w = w1 · · ·wn ∈ T (A) by

δ(w) := w ⊗ e + e ⊗ w +
n−1∑

i=1

w1 · · ·wi ⊗ wi+1 · · ·wn, (4)

and δ(e) = e ⊗ e. It turns T (A) into a connected graded coalgebra, for both the length
and weight grading. For any word w ∈ T+(A) the reduced coproduct is defined by δ′(w) :=
δ(w)−w ⊗ e− e⊗w. “Sweedler’s notation” will be employed for both coproducts: δ(w) =
:∑

(w) w(1) ⊗w(2) and δ′(w) =:
∑′

(w)
w(1) ⊗w(2). The canonical counit map ε : T (A) → F

is defined to be ε(λe) = λ ∈ F and zero on T+(A). In [27] Hoffman showed the following

Theorem 2.1 (Quasi-shuffle Hopf algebra) 1. Hqsh = (T (A), �, δ, ε, | · |) is a graded, con-
nected, commutative, non-cocommutative Hopf algebra.

2. The antipode α : Hqsh → Hqsh is given by

α(w1 · · ·wn) = (−1)n
∑

I∈C(n)

I [wn · · ·w1]. (5)

Here C(n) is the set of all compositions of the integer n, i.e., tuples (i1, . . . , ip) of pos-
itive integers such that i1 + · · · + ip = n. Given I = (i1, . . . , ip) ∈ C(n) and a word
w = w1 · · ·wn ∈ T (A) of length �(w) = n > 0, we define a new word I [w] ∈ T (A) by

I [w] := [w1 · · ·wi1 ][wi1+1 · · ·wi1+i2 ] · · · [wi1+···+ip−1+1 · · ·wn].
Here (as well as later) we are using the suitable convention that [a] := a for all a ∈A.

Remark 2.2 (Shuffle Hopf algebra) If the semigroup A is trivial, i.e., if [ij] = 0 for any
letters i,j ∈ A, then the quasi-shuffle product (2) reduces to Chen’s commutative shuffle
product on T (A):

vi ��wj := (v ��wj)i+ (vi ��w)j,
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for v,w ∈ T (A) and i,j ∈ A. Observe that in this case |w| = �(w) for any word and H�� =
(T (A),�� , δ, ε, �) is the classical shuffle Hopf algebra over the alphabet A. From (5) it
follows that the antipode on H�� is given by α(i1 · · ·in) = (−1)nin · · ·i1. See [46] for a
comprehensive account on H�� .

Remark 2.3 (A remark on dimensions.) There is a simple way of computing the Hilbert
series

G(t) :=
∑

n≥0

tn dimT (A)n

of T (A), where T (A)n := F{w : |w| = n} is the homogeneous (for the weight grading)
component of degree n of the quasi-shuffle algebra. It is not hard to see that all such
words are of the form I [a1 · · ·an] for some composition I = (i1, . . . , ip) ∈ C(n) and letters
a1, . . . ,an ∈ A, in the notation of Theorem 2.1. In total, in each block of size i1, i2, . . . , ip

we are allowed to put a symmetric monomial of length ij of which there are exactly
(
d−1+ij

ij

)

– this is the dimension of the degree-ij part of the symmetric algebra S(A). Therefore

dimT (A)n =
∑

(i1,...,ip)∈C(n)

(
d − 1 + i1

i1

)

· · ·
(

d − 1 + ip

ip

)

.

A simple computation shows that in fact

(
d − 1 + i

i

)

= d(d + 1) · · · (d + i − 1)

i! = 1

i! (d)i,

where the Pochhammer symbol (or rising factorial) appears on the righthand side. It is well
known that their exponential generating function equals the hypergeometric function

1F0(d; t) = 1 +
∞∑

i=1

(d)i

t i

i! = (1 − t)−d .

Therefore

G(t) =
∞∑

n=0

tn
∑

(i1,...,ip)∈C(n)

(d)i1 · · · (d)ip

i1! · · · ip! = 1 +
∞∑

p=1

( ∞∑

i=1

(d)i

t i

i!

)p

=
∞∑

p=0

(
(1 − t)−d − 1

)p = (1 − t)d

2(1 − t)d − 1
.

The coefficients of these Hilbert series can be found in column d of the OEIS sequence
A261780.

Define the scalar product 〈−,−〉: T (A) ⊗ T (A) → F for any words u,v ∈ T (A) by
〈u,v〉 := 1 if u = v and zero else. It permits to identify the graded dual of Hqsh as word series,
i.e., c =∑w∈T (A)〈w,c〉w ∈ T ((A)) =: H ∗

qsh, which is a non-commutative (topological) Hopf
algebra with concatenation as convolution product, denoted by m� : H ∗

qsh ⊗ H ∗
qsh → H ∗

qsh,
c � c′ := m�(c ⊗ c′), and de-quasi-shuffling as coproduct [27]. In more concrete terms, this
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means that given two such series c, c′ ∈ T ((A)) their convolution product c � c′ := mF(c ⊗
c′)δ : Hqsh → F may be written as

c � c′ =
∑

w∈T (A)

∑

uv=w

〈u, c〉〈v, c′〉w =
∑

w∈T (A)

〈δ(w), c ⊗ c′〉w.

Of particular interest are characters, i.e., algebra morphisms c ∈ H ∗
qsh. They satisfy 〈e, c〉 = 1

and 〈u � v, c〉 = 〈u, c〉〈v, c〉, for u,v ∈ Hqsh. The first property requires that the coefficient
〈e, c〉 = 1 and the second is equivalent to c being group-like in H ∗

qsh, which means that for
u,v ∈ Hqsh

〈u � v, c〉 = 〈u ⊗ v,�qsh(c)〉 = 〈u ⊗ v, c ⊗ c〉,
where the de-quasi-shuffling coproduct is defined on words by

�qsh(w) :=
∑

u,v∈T (A)

〈u � v,w〉u ⊗ v.

The set of characters, denoted by G, forms a group with the inverse c−1 = c ◦ α. The cor-
responding Lie algebra, g ⊂ H ∗

qsh, consists of so-called infinitesimal characters, which map
the empty word and any non-trivial product in Hqsh to zero. One can define the exponen-
tial map as a power series with respect to the convolution product which maps g bijec-
tively to G, i.e., exp�(f ) := ε +∑j>0

1
j !f

�j ∈ G. Because T (A) is a graded connected Hopf
algebra, this expression becomes a finite sum when evaluated on homogeneous elements
of T (A), so we do not have to deal with convergence issues. Its inverse is the logarithm,

log�(ε + (c − ε)) =∑i≥1
(−1)i−1

i
(c − ε)�i ∈ g. Again, the sum applied to any word w ∈ T (A)

terminates after |w| terms, as (c − ε)(e) = 0.

Notation 2.4 We introduce a particular notation for words in T (A), which will be useful
in the sequel. The convention to identify [a] := a, for a ∈ A, permits to write any word in
T (A) as a concatenation of brackets, i.e., w = [u1] · · · [uk] ∈ T (A), for u1, . . . , uk ∈A.

We come back to the setting of the introductory section with only a single letter, A = {1}.
Then, in each degree n, T (A) has a single word of length one, [1n] ∈ A, and any basis
element (or word) is of the form w = [1k1 ][1k2 ] · · · [1kn ] for some integers k1, . . . , kn > 0.
It is easy to see that then the tuple (k1, . . . , kn) is a composition of the integer |w| of length
n = �(w). In [27] Hoffman describes a unital algebra isomorphism 	 between the quasi-
shuffle algebra Hqsh, for A = {1}, and the algebra QSym of quasisymmetric functions in the
ordered set of commuting variables {Yi}i∈N+ [21], defined by taking a word in T (A) to an
iterated sum

	
([1k1 ][1k2 ] · · · [1kn ]) :=

∑

1≤i1<···<in

(Yi1)
k1 · · · (Yin )

kn =: M(k1,...,kn). (6)

Here 	(e) = M0 = 1. Then, the correspondence of the introduction is explicitly given by

	 ([1]) · 	 ([13][17])=
(
∑

i

Yi

)

·
⎛

⎝
∑

i1<i2

(Yi1)
3(Yi2)

7

⎞

⎠

=
∑

i1<i2<i3

Yi1(Yi2)
3(Yi3)

7 +
∑

i1<i2<i3

(Yi1)
3Yi2(Yi3)

7 +
∑

i1<i2<i3

(Yi1)
3(Yi2)

7Yi3
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+
∑

i1<i2

(Yi1)
4(Yi2)

7 +
∑

i1<i2

(Yi1)
3(Yi2)

8

= 	
([1][13][17] + [13][1][17] + [13][17][1] + [14][17] + [13][18])

= 	
([1] � [13][17]) ,

where the second equality is an example of summation-by-parts for products of iterated
sums.

The M(k1,...,kn) of (6) are the monomial quasisymmetric functions, which form a basis for
QSym. The Hopf algebra QSym is a generalisation of the classical Hopf algebra Sym of
symmetric functions. It was defined and studied by Gessel [21], based on earlier work by
Stanley, and plays a rather distinguished role in modern algebraic combinatorics, with rami-
fications into several other fields of mathematics. Its graded dual is known as the connected
graded cocommutative Hopf algebra NSym of noncommutative symmetric functions. The
iterated-sums signature corresponding to a one dimensional discrete time series, alluded to
in the first section, is an element in NSym. Further below, in Section 3, we consider the
multidimensional generalisation of quasisymmetric functions (of level d in the terminology
of [42]) and its corresponding iterated-sums signature. We close this section by mentioning
that Malvenuto’s and Reutenauer’s Hopf algebra of permutations [39] plays an important
part in the understanding of the relation between the objects Sym, QSym and NSym. The
interested reader is referred to [1, 2] and to [36] for a readable introduction, including a brief
historical overview.

2.1 Half-Shuffles

Aiming at understanding the discrete analog of the area operation (to be introduced further
below), we take a more refined approach at the quasi-shuffle product by observing that m�

may be split into three products, i.e., left and right half-shuffles and a third product

ua �̇ vb := (ua � v)b, ua ≺̇ vb := (u � vb)a, ua � vb := (u � v)[ab], (7)

so that u � v = u ≺̇ v + u �̇ v + u � v. For instance (c.f. Example 3)

3 �̇ 4[12] = 34[12] + 43[12] + [34][12]
3 ≺̇ 4[12] = 4[12]3
3 � 4[12] = 4[123].

(8)

Noticing the particular relation ua �̇ vb = vb ≺̇ ua which is equivalent to m� being
commutative, it is not hard to show that the quasi-shuffle algebra Hqsh = (T (A), �) becomes
a commutative tridendriform algebra, (T (A), ≺̇, �̇,�), as defined by Loday and Ronco [35].

Remark 2.5 A similar splitting holds for the shuffle algebra in Remark 2.2. We can write
the shuffle product m�� on T (A) as a sum of the two half-shuffles

ua� vb := (ua ��v)b, ua≺ vb := (u ��vb)a,

so that ua�� vb= ua≺ vb+ ua� vb. Again, we check quickly that the commutativity of
the shuffle product is equivalent to ua � vb= vb ≺ ua. In fact, the triple (T (A),≺,�) is
also known as a commutative dendriform or Zinbiel algebra.
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2.2 Hoffman’s Exponential

Shuffle and quasi-shuffle Hopf algebras are more tightly related than Remark 2.2 may ad-
umbrate. Indeed, Hoffman proved in [27] that H�� = (T (A),�� , δ) and Hqsh = (T (A), �, δ)

are isomorphic as Hopf algebras. We briefly recall this result. Let T (A) be equipped
with the commutative shuffle product m�� : T (A) ⊗ T (A) → T (A) inductively defined by
u[a]��v[b] := (u��v[b])[a] + (u[a]��v)[b], for u,v ∈ T (A) and a, b ∈ A. The empty
word, e, is the unit for this product. Recall the notation I [w] introduced in Theorem 2.1.

Theorem 2.6 (Hoffman’s isomorphism) [27] There exists a Hopf algebra isomorphism

H : (T (A),�� , δ) → (T (A), �, δ), given explicitly by the so-called Hoffman exponential


H(w) :=
∑

(i1,...,ip)∈C(�(w))

1

i1! · · · ip! I [w]. (9)

Its inverse also admits an explicit expression, namely the Hoffman logarithm


−1
H (w) :=

∑

(i1,...,ip)∈C(�(w))

(−1)�(w)−p

i1 · · · ip I [w]. (10)

Some examples: 
H([i]) = [i] and for the words [1][2] ∈ T (A) and [1][23][4] ∈ T (A)

we find


H([1][2]) = [1][2] + 1

2
[12]


H([1][23][4]) = [1][23][4] + 1

2
[123][4] + 1

2
[1][234]

+ 1

6
[1234]


H([1] �� [2]) = 
H([1][2] + [2][1]) = [1][2] + 1

2
[12] + [2][1] + 1

2
[21]

= [1][2] + [2][1] + [12] = 
H([1]) � 
H([2]).

In the second example, the terms correspond to the compositions (1,1,1), (2,1), (1,2)

and (3) of the integer 3, in that order. Recall that the particular Notation 2.4 for words
w = [u1] · · · [uk] ∈ T (A), for u1, . . . , uk ∈A, is in place. Also, note that the number of letters
in each of the terms corresponds to the length of the composition. The reader is referred to
[27, 28] for more details. See also [16] for an application in stochastic analysis.

In Section 5 we will show that 
H is nicely compatible with comparing the iterated-sums
signature on one side with the iterated-integrals signature on the other. The following two
lemmas are going to be used in Section 5.1, where we address the area operation in the
context of the iterated-sums signature.

Lemma 2.7 The image of any nonempty word w = w1 · · ·wn ∈ T (A) under Hoffman’s iso-
morphism can be split into two parts as follows:


H(w) = 
H(w1 · · ·wn−1)wn + RH(w), (11)
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where the remainder term

RH(w) =
∑

I=(i1,...,ip)∈C(�(w))

ip>1

1

i1! · · · ip! I [w].

The verification of the lemma is left to the reader. This splitting of Hoffman’s isomor-
phism implies the following important result.

Lemma 2.8 Let u ∈ T (A) and a, b ∈ A. Then


H

(
u([a][b] − [b][a]))= 
H(u[a])[b] − 
H(u[b])[a]. (12)

Proof From Lemma 2.7 and linearity of 
H, we deduce that


H

(
u([a][b] − [b][a]))= 
H(u[a])[b] − 
H(u[b])[a] + RH(u[a][b]) − RH(u[b][a]).

Since the semigroup A is commutative, for any composition I = (i1, . . . , ip) ∈ C(n) with
ip ≥ 2 we have that

I
[
u[a][b]]= [u1 · · ·ui1 ][ui1+1 · · ·ui1+i2 ] · · · [ui1+···+ip−1+1 · · ·un−2ab]

= [u1 · · ·ui1 ][ui1+1 · · ·ui1+i2 ] · · · [ui1+···+ip−1+1 · · ·un−2ba]
= I
[
u[b][a]].

Therefore, the equality RH(u[a][b]) = RH(u[b][a]) holds, which implies the identity (12).
�

3 Iterated-Sums Signatures

We consider a discrete time series x ∈ (Fd)N as an element of

(Fd)N+
c := {x :N+ → F

d : ∃N ≥ 1 such that xN = xn ∀n ≥ N
}
,

the space of infinite time series that are eventually constant, by extending it constantly. In this
section we will see that the appropriate algebraic setting for iterated-sums, combined into
the map ISS(x), is that of a character on the quasi-shuffle Hopf algebra Hqsh = (T (A), �, δ,

ε, | · |) over the semigroup A corresponding to the alphabet A = {1,2, . . . ,d}, introduced in
Section 2.

The following notation for elements in the time series x is put in place:

xj = (x
[1]
j , . . . , x

[d]
j ) ∈ F

d .

Next we define the corresponding time series

�x = ((�x)1, (�x)2, . . . , (�x)N)

with increments (�x)n := xn −xn−1 ∈ F
d , for n ≥ 1, as entries. The new notation is extended

to include all brackets in A by defining

x
[a1···ap ]
j := x

[a1]
j · · ·x[ap ]

j .
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Definition 3.1 The iterated-sums signature of the time series x is the two-parameter family
(ISS(x)n,m | 0 ≤ n ≤ m ∈ N) of linear maps from T (A) to F such that ISS(x)n,n = ε, and
defined recursively by 〈e, ISS(x)n,m〉 := 1, and for a1 · · ·ap ∈ T (A)

〈[a1] · · · [ap], ISS(x)n,m〉 :=
m∑

j=n+1

〈[a1] · · · [ap−1], ISS(x)n,j−1〉�x
[ap]
j .

Hence, the iterated-sums signature is a word series in H ∗
qsh

ISS(x)n,m =
∑

[u1]···[uk ]∈T (A)

〈[u1] · · · [uk], ISS(x)n,m〉[u1] · · · [uk] (13)

with iterated sums over increments of x as coefficients, defined as

〈[u1] · · · [uk], ISS(x)n,m〉 =
∑

n<i1<i2<···<ik≤m

�x
[u1]
i1

�x
[u2]
i2

· · ·�x
[uk ]
ik

. (14)

For example

〈[1][12], ISS(x)n,m〉 =
∑

n<i1<i2≤m

�x
[1]
i1

�x
[1]
i2

�x
[2]
i2

.

We extend this definition to all n,m ∈ N by setting 〈w, ISS(x)n,m〉 = 0 whenever m < n.

Remark 3.2 An easy consequence of this definition is that the coefficient 〈w, ISS(x)n,m〉
vanishes whenever �(w) > m − n.

The proof of the following lemma is straightforward.

Lemma 3.3 Let x = (xn)n≥0 and x ′ = (x ′
n)n≥0 be two time series, and denote by xx ′ :−

(xnx
′
n)n≥0. Then the increment of the product xx ′ is given by a generalised Leibniz rule

(�xx ′)n = x ′
n−1(�x)n + xn−1(�x ′)n + (�x)n(�x ′)n.

More importantly, we have the following:

Theorem 3.4 (1) (Quasi-shuffle identity) For each n ≤ m, the map ISS(x)n,m : Hqsh → F is
a quasi-shuffle Hopf algebra character.

(2) (Chen’s property) For any three n < n′ < n′′ ∈ N we have

ISS(x)n,n′ � ISS(x)n′,n′′ = ISS(x)n,n′′ .

Remark 3.5 1. Observe that point (i) in Theorem 3.4 amounts to a generalisation of the
algebra isomorphism defined in (6) to the multidimensional case, i.e., for an alphabet A =
{1, . . . ,d}. Indeed, defining the map 	d on Hqsh

	d([u1][u2] · · · [un]) :=
∑

1≤j1<···<jn

Y
[u1]
j1

· · ·Y [un]
jn

, (15)

where u1, . . . , un ∈ A and for u = [a1 · · ·al] ∈A we have set

Y
[u]
j := Y

[a1]
j · · ·Y [al ]

j ,
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we obtain a quasi-shuffle algebra isomorphism into the algebra of quasi-symmetric functions
of level d , as introduced by Novelli and Thibon in [42]. For the sake of briefness we only
remark that

〈w, ISS(x)〉 = 	d(w)

∣
∣
∣
Y

[1]
1 =�x

[1]
1 ,...,Y

[d]
1 =�x

[d]
1 ,Y

[1]
2 =�x

[1]
2 ,...

2. Specialising to F = R, Theorem 3.4 matches the corresponding result for the iterated-
integrals signature S(X) of a curve of bounded variation in R

B , where B is a (possibly
countable) alphabet. The iterated-integrals signature is also called Chen’s signature, rough
path signature, continuous-time signature or just signature in the literature.

Here, the underlying Hopf algebra is H�� = (T (B),�� , δ, ε). Indeed (see for example
[23]),

(1) (Shuffle identity) For fixed s < t , S(X)s,t is a character on H�� , that is for all v,w ∈ H��

〈v,S(X)s,t 〉 · 〈w,S(X)s,t 〉 = 〈v ��w,S(X)s,t 〉.
(2) (Chen’s property) For s < u < t

S(X)s,u � S(X)u,t = S(X)s,t .

Before proving Theorem 3.4 we need the following abstract result, which is a particular
case of the setting presented in [42, Section 5.1].

Lemma 3.6 Let M[u1]···[uk ](Y ) := 	d([u1] · · · [uk]) denote the level d monomial quasisym-
metric functions defined in (15). Then, the “generating series”

σ(Y ) :=
∑

w∈A
Mw(Y )w

admits the factorisation

σ(Y ) = �∏
j≥1

(

ε −
∑

a∈A

Y
[a]
j [a]
)−1

= �∏
j≥1

⎛

⎝ε +
∑

[u]∈A
Y

[u]
j [u]
⎞

⎠ . (16)

Let us look at the first few terms in (16):

σ(Y ) =
⎛

⎝ε +
∑

[u]∈A
Y

[u]
1 [u]
⎞

⎠

⎛

⎝ε +
∑

[u]∈A
Y

[u]
2 [u]
⎞

⎠

⎛

⎝ε +
∑

[u]∈A
Y

[u]
3 [u]
⎞

⎠ · · ·

= ε +
∑

[u]∈A

(
Y

[u]
1 + Y

[u]
2 + Y

[u]
3 + · · · ) [u] +

∑

[u][v]∈A⊗2

(
Y

[u]
1 Y

[v]
2 + Y

[u]
1 Y

[v]
3 + · · · ) [u][v] + · · ·

Instead of elaborating on this lemma, we refer to reference [42] for details about multi-
variable generating series. Note, however, that after evaluating σ(Y ) in Y

[a]
j = �x

[a]
j , we

obtain ISS(x) and the factorisation (16) takes place in the convolution algebra (T ((A)), �).
We further remark that the expansion of the geometric series on the righthand side of the
first equality in (16) takes place in A, which explains the summation over A in the second
equality.
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Remark 3.7 Equality (16) bears resemblance to [32, Definition 4.1] (c.f. also [38, Theorem
32]. We would like to thank Harald Oberhauser (Oxford) for pointing us to these references).
At first sight though, only coefficients for words in letters of weight one are considered in the
aforementioned reference (e.g. in our notation [1], [2], . . . , [d], [1][1], [1][2], . . . , [1][1][1],
. . . ). Preprocessing the underlying time series through a nonlinear function (i.e. a kernel in
the terminology of [32]), one can introduce additional polynomial expressions. But, note
that in their setting then nonetheless sums of increments of polynomials appear, whereas in
the iterated-sums signature (i.e. in (16) evaluated at Yi = �xi ) polynomials of increments
show up.

The differences between the two approaches may be summarized by saying that incre-
ments of polynomials differ from polynomials of increments. Saying this, it is an interesting
question how these two approaches could be combined fruitfully. In particular, we hope to
investigate the application of kernelization techniques to the iterated-sums signature.

Finally, we would like to mention that the work of Hoffman–Ihara (see Section 5 and
[28], as well as [18]) permits to define for any positive integer a linear automorphism of
T (A) which gives rise to a family of “feature maps” interpolating between the iterated-
sums signature and the iterated-integrals signature. This relates to a modification of (16) in
the spirit of [32, Appendix B]. These new feature maps define characters over Hopf algebras
equipped with new quasi-shuffle type products. The corresponding family of linear automor-
phisms define algebra maps between these quasi-shuffle type products and the quasi-shuffle
product (2). We postpone the details of this construction to a follow-up paper, and would
like to thank the anonymous referee for hinting at this direction.

Proof of Theorem 3.4 1. We need to show that for words w,w′ ∈ T (A)

〈w � w′, ISS(x)n,m〉 = 〈w, ISS(x)n,m〉〈w′, ISS(x)n,m〉.
We use the recursive definition of the quasi-shuffle product (2) and induction on �(w) +
�(w′), the base case (i.e., w = e or w′ = e) being trivial. If u,v ∈ T (A) and a, b ∈A, define
the auxiliary time series

sk := 〈u[a], ISS(x)n,n+k〉, s ′
k := 〈v[b], ISS(x)n,n+k〉

for 0 ≤ k ≤ m − n, and zero else. Observe that the increments

(�s)k = 〈u, ISS(x)n,n+k−1〉�x
[a]
n+k, (�s ′)k = 〈v, ISS(x)n,n+k−1〉�x

[b]
n+k.

By the induction hypothesis we then get

s ′
k−1(�s)k = 〈u, ISS(x)n,n+k−1〉〈v[b], ISS(x)n,n+k−1〉�x

[a]
n+k

= 〈u � v[b], ISS(x)n,n+k−1〉�x
[a]
n+k,

and similarly

sk−1(�s ′)k = 〈u[a], ISS(x)n,n+k−1〉〈v, ISS(x)n,n+k−1〉�x
[b]
n+k

= 〈u[a] � v, ISS(x)n,n+k−1〉�x
[b]
n+k.

Also, by a similar argument we also have

(�s)k(�s ′)k = 〈u � v, ISS(x)n,n+k−1〉�x
[a]
n+k�x

[b]
n+k.
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Finally, we summate these relations by using Lemma 3.3 to get

〈u[a], ISS(x)n,m〉〈v[b], ISS(x)n,m〉 =
m−n∑

k=1

�(ss ′)k

= 〈(u � v[b])[a] + (u[a] � v)[b] + (u � v)[ab], ISS(x)n,m〉
= 〈u[a] � v[b], ISS(x)n,m〉.

2. The proof of Chen’s property can be pursued using a pedestrian approach. However, it
also follows from Lemma 3.6. Indeed, we may split the product in the factorisation (16) as

σ(Y ) = �∏
1≤j≤n′

(

ε −
∑

a∈A

Y
[a]
j [a]
)−1

� �∏
j>n′

(

ε −
∑

a∈A

Y
[a]
j [a]
)−1

.

The desired identity follows upon evaluation at Y
[a]
j = �x

[a]
j as in the previous remark. �

We note that the iterated-sums signature, ISS(x)n,m, introduced in this work is similar
to the discrete Chen(–Fliess) series defined and studied in [22] in the context of nonlinear
control theory.

This section is closed with an intriguing observation. Up to this point it may seem that
iterated-sums signatures, ISS(x)n,m, and Chen’s signatures, S(X)s,t (see Remark 3.5), be-
have in the same way, but as the next example shows this is not at all the case. Recall
that EndF(Hqsh), the space of linear maps on Hqsh, together with the convolution product
ψ ∗γ := m�(ψ ⊗γ )δ, is a non-commutative algebra with unit ι := η ◦ε, where η : F → Hqsh

is the unit map, η(λ) := λe. Define

e := log∗(id) = J − 1

2
J ∗ J + 1

3
J ∗ J ∗ J + · · · , (17)

where J := id−ι ∈ EndF(Hqsh) is the projection onto the augmentation ideal T+(A). It is the
adjoint of the classical Eulerian Lie idempotent [46], that is, the concatenation logarithm of
the identity map, log�(id). Observe that the sum (17) terminates when evaluated in homoge-
neous elements since J (e) = 0, thus it is well defined for arbitrary elements of T (A). Then,
for any character c ∈ T ((A)) and word u ∈ T (A) we have that

〈u, log� c〉 = 〈e(u), c〉,

where log� c ∈ g. Indeed, by definition

〈e(u), c〉 =
∞∑

k=1

(−1)k−1

k
〈J ∗k(u), c〉 =

∞∑

k=1

(−1)k−1

k

∑′

(u)

〈u(1) � · · · � u(k), c〉

=
∞∑

k=1

(−1)k−1

k

∑′

(u)

〈u(1) ⊗ · · · ⊗ u(k), c
⊗k〉 =

∞∑

k=1

(−1)k−1

k
〈u, (c − ε)�k〉

= 〈u, log� c〉.
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In the third equality we used that c is a character. In the second equality the reduced coprod-
uct is applied

〈J ∗k(u), c〉 = 〈m�(J ⊗ J ∗k−1)δ′(u), c〉 = 〈
∑′

(u)

u(1) � J ∗k−1(u(2)), c〉.

Now, if x is an arbitrary time series, for its iterated-sums signature this means that

〈[12], log� ISS(x)〉 = 〈[12], ISS(x)〉 =
∑

j

(
�x

[1]
j

)2 ≥ 0.

Therefore, the image of the logarithm of iterated-sums signatures only reaches a certain
subset of the Lie algebra of infinitesimal characters on Hqsh. This is in contrast to Chen’s
iterated-integrals signature, for which Chow’s Theorem [19, Theorem 7.28] holds, showing
that any character over the shuffle Hopf algebra may be realised as the Chen signature of a
piecewise linear path. The implications of this observation will be studied in a forthcoming
paper.

Still, the following positive statement on the linear span of iterated-sums signatures
holds.

Lemma 3.8 For every n ≥ 1, span
F
{proj≤n ISS(x) : x ∈ (Fd)

N+
c } = proj≤n H ∗

qsh.

Remark 3.9 The corresponding result for iterated-integrals signatures was shown in [13,
Lemma 3.4], which is sometimes useful for proving statements about the underlying algebra
that are easily verified when tested against signatures.

Proof Fix n ≥ 1 and let P1, . . . ,PL, ordered in some way, be the quasisymmetric monomial
functions with degree smaller or equal to n.

By [42, Section 5.1] they are independent as elements of the space of formal power series.
This implies that, for some m ≥ 1 large enough, evaluating at Ym = (y1, . . . , ym,0,0, . . .),

the expressions P1(Ym), . . . , PL(Ym) are independent as elements of F
[
y1, . . . , ym

]
. Denote

Y (�)
m =
(
y

(�)

1 , . . . , y(�)
m ,0,0, . . .

)
, � = 1, . . . ,L,

copies in new variables of Ym, that is Pi

(
Y (�)

m

) ∈ R := F

[
y

(1)

1 , . . . , y(1)
m , . . . , y

(L)

1 , . . . , y(L)
m

]
.

Then, the independence of the Pi implies independence, in R, of the rows of

⎛

⎜
⎜
⎜
⎜
⎜
⎝

P1

(
Y (1)

m

)
P1

(
Y (2)

m

)
. . . P1

(
Y (L)

m

)

P2

(
Y (1)

m

)
P2

(
Y (2)

m

)
. . . P2

(
Y (L)

m

)

...
...

. . .
...

PL

(
Y (1)

m

)
PL

(
Y (2)

m

)
. . . PL

(
Y (L)

m

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

A fortiori, also the columns must be independent in R. Hence, the columns must be inde-
pendent for some realisation of the Y (�). This finally implies that we can find x(�) ∈ (Fd)m+1,
� = 1, . . . ,L such that the columns of
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⎛

⎜
⎜
⎜
⎜
⎜
⎝

P1
(
�x(1)
)

P1
(
�x(2)
)

. . . P1
(
�x(L)
)

P2
(
�x(1)
)

P2
(
�x(2)
)

. . . P2
(
�x(L)
)

...
...

. . .
...

PL

(
�x(1)
)

PL

(
�x(2)
)

. . . PL

(
�x(L)
)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

are independent. Here, as before, we extend the x(�) constantly to an element of (F)
N+
c . �

4 Invariants

In the previous section, we defined the iterated-sums signature, following the introduction.
We now return to our original motivation, and first put the concept of “time warping” in
a precise mathematical framework. For each index n ≥ 0 we define an operator acting on
sequences by repeating once the value at time n. More precisely, given a time series, x, we
define τn(x) as the time series given by

τn(x)j :=
{

xj j ≤ n

xj−1 j > n
.

Observe that with this definition we have τn(x)n = τn(x)n+1 = xn, and the rest of the values
are unchanged save for a time shift after time n.

Definition 4.1 We call a functional F : (Fd)
N+
c → F invariant to time warping if F ◦ τn = F

for all n ≥ 1.

From applications to data analysis, such as, e.g., moment corrections, we are mostly
interested in polynomial invariants, i.e., invariant functionals that can be expressed by con-
sidering only polynomial expressions in a time series.

Definition 4.2 We call F : (Fd)
N+
c → F polynomial, if for all N ≥ 1, F(x0, . . . , xN ,0,0, . . .)

is a polynomial in the xi , and the polynomial degree is uniformly bounded in N .

From the factorisation (16) in Lemma 3.6 it follows that for any word w ∈ T (A) the
coefficient 〈w, ISS(x)〉 is a polynomial invariant in this sense. It turns out these are all the
polynomial invariants, if we additionally demand invariance with respect to space translation
of the entire series.

Lemma 4.3 Let F be polynomial, invariant to both time warping and space translations.
Then: F is realised as a quasisymmetric function.

Proof We do the one-dimensional case, d = 1, to avoid notational clutter. By translation
invariance, for any N ≥ 1,

F(x0, x1, . . . , xN ,0,0, . . .) = F(0, x1 − x0, x2 − x0, . . . , xN − x0,0,0, . . .).

Now, by assumption, this is a polynomial in x1 − x0, x2 − x0, . . . , xN − x0, hence it is a
(different) polynomial in x1 − x0, x2 − x1, x3 − x2, . . . , xN − xN−1. Therefore, F can be
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realised as a formal power series of bounded degree: there is F̂ ∈ F〈Y1, Y2, . . . 〉 of bounded
degree such that for x ∈ (Fd)

N+
c we have that F(x) = F̂ (�x).

It remains to show that F̂ is quasisymmetric. Let n ≥ 1, i1 < · · · < in and α1, . . . ,

αn ≥ 1. We show that the coefficient of the monomial Y
α1
i1

· · ·Y αn

in
in F̂ is equal to the one of

Y
α1
1 · · ·Y αn

n .
Indeed: by using repeatedly the invariance to time warping, we get that for all x ∈R

n,

F̂ (�x1,�x2, . . . ,�xn,0,0, . . .) = F̂ (0, . . . ,0, �x1︸︷︷︸
i1

,0, . . . ,0, �x2︸︷︷︸
i2

,0, . . . ,0, �xn︸︷︷︸
in

,0, . . .).

Hence, both sides coincide as polynomials. So that the coefficient of Y
α1
i1

· · ·Y αn

in
and

Y
α1
1 . . . Y αn

n must coincide. This finishes the proof. �

5 Hoffman’s Isomorphism and Signatures

In this section we relate the iterated-sums signature of a time series with the usual iterated-
integrals signature of the piecewise linear interpolation of an associated infinite dimensional
time series.

Starting again with the extended alphabet A, we build the tensor algebra T (A) and define
the shuffle product �� : T (A) ⊗ T (A) → T (A) inductively by

u[a] ��v[b] := (u ��v[b])[a] + (u[a] ��v)[b].
Recall Hoffman’s isomorphism [27] defined in Theorem 2.6, which shows that H�� =
(T (A),�� , δ) and Hqsh = (T (A), �, δ) are isomorphic as Hopf algebras. Next we compute
explicitly the image by the iterated-integrals signature S of a linear path.

The following lemma is an immediate extension of [19, Example 7.21] to a countable
index set.

Lemma 5.1 Consider a countable set B and let zt = z0 + at for some z0, a ∈ R
B and all

t ∈ [0,1]. Then for w = w1 · · ·wn ∈ T (B)

〈w,S(z)s,t 〉 = (t − s)�(w)

�(w)!
�(w)∏

j=1

awj .

At the level of the tensor algebra this simply means that S(z)s,t = exp�((t − s)a). An
analogue of this result holds for discrete signatures, which follows from Lemma 3.6, i.e.,
Chen’s property.

Lemma 5.2 Let x = (0, v, v, . . .) be a time series having a single non-zero increment v =
(v[1], . . . , v[d]) ∈R

d . Then

〈w, ISS(x)〉 =
{

(v[1])k1 · · · (v[d])kd , w = [1k1 · · ·dkd ]
0, else

.

Now we look for a relation between the iterated-integrals signature and the iterated-
sums signature. For this, let x = (0, x1, x2, . . .) be a time series and consider the (infinite
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dimensional!) path X = (Xa : a ∈ A) where, for a = [1k1 · · ·dkd ] ∈ A, the component path
Xa is the linear interpolation of the time series

n �→
n∑

j=1

�xa
j =

n∑

j=1

(�x
[1]
j )k1 · · · (�x

[d]
j )kd . (18)

Theorem 5.3 We have 〈
H(w), ISS(x)〉 = 〈w,S(X)〉.

Remark 5.4 We note that the iterated-integrals signature of the d-dimensional path consist-
ing in the piecewise linear interpolation of x is not enough to obtain ISS(x). Instead, the
theorem shows that the iterated-integrals signature of the piecewise linear interpolation of
the infinite dimensional time series (18) is sufficient.

Proof Without loss of generality let the interpolation of (18) happen at the time points
0,1,2, . . . ,N . Then, by Chen’s property,

S(X) = exp�(X1) � exp�(X2 − X1) � · · · � exp�(XN − XN−1).

We first investigate what happens for a single time step. Let a word w = [a1] · · · [ap] ∈
T (A) be given, and write ai = [1ki

1 · · ·dki
d ] ∈ A, i = 1, . . . , p. According to Lemma 5.1,

〈w, exp�(Xj − Xj−1)〉 = 1

p!�x
[a1]
j · · ·�x

[ap ]
j = 1

p! (�x
[1]
j )K1 · · · (�x

[d]
j )Kd

= 1

p!�x
[1K1 ···dKd ]
j .

where Km := k1
m + · · · + kp

m . In other words, Km is the number of times the letter m ∈
{1, . . . ,d} is repeated in w.

Now the only term in 
H(w) containing a single letter is 1
p! [1K1 · · ·dKd ], i.e., the full

“contraction”. Then, by Lemma 5.2,

〈
H(w), ISS(x)j−1,j 〉 = 〈 1

p! [1
K1 · · ·dKd ], ISS(x)j−1,j 〉

= 1

p!�x
[1K1 ···dKd ]
j

= 〈
H(w), ISS(x)j−1,j 〉.
Therefore, we have shown the claim for a single time step.

Now, since 
H is a Hopf algebra map, the statement of the theorem is equivalent to show-
ing that 
∗

H(ISS(x)) = S(X), where 
∗
H is the adjoint of Hoffman’s isomorphism. Since 
∗

H

is an algebra morphism, we calculate


∗
H(ISS(x)0,N ) = 
∗

H(ISS(x)0,1) � · · · �
∗
H(ISS(x)N−1,N ) = S(X)0,1 � · · · � S(X)N−1,N

= S(X)0,N .

So the result is valid for the full signature. �

Finally, we show a consistency result.
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Proposition 5.5 Let X : [0,1] →R
d be a continuous path of finite variation, meaning that

sup
π

∑

[s,t]∈π

‖Xt − Xs‖ < ∞

where the supremum is taken over all partitions π of [0,1].
Given such a partition π = {t0 = 0 < t1 < · · · < tN−1 < tN = 1}, define x(π) by x(π)j =

Xtj . Then

lim
|π |→0

〈w, ISS(x(π))0,N 〉 =
{

〈w,S(X)0,1〉 w ∈ T (A)

0 w �∈ T (A)
.

Proof We use induction on the length �(w). If �(w) = 1 and w = i ∈ A, then

〈i, ISS(x(π))0,N 〉 =
∑

[s,t]∈π

(x(π)it − x(π)is ) = Xi
1 − Xi

0 =
∫ 1

0
dXi

s

which is independent of π . If, on the other hand, w = a ∈ A \ A then a = [1k1 · · ·dkd ] with
k1 + · · · + kd ≥ 2. Therefore

|〈a, ISS(x(π))0,N 〉| =
∣
∣
∣
∣
∣
∣

N∑

j=1

d∏

i=1

(�x(π)i
j )

ki

∣
∣
∣
∣
∣
∣

≤
N∑

j=1

d∏

i=1

|�x(π)i
j |ki

=
N∑

j=1

d∏

i=1

∣
∣
∣Xi

tj
− Xi

tj−1

∣
∣
∣
ki

=
N∑

j=1

‖Xtj − Xtj−1‖k1+···+kd

≤ ‖X‖1 sup
j=1,...,N

‖Xtj − Xtj−1‖k1+···+kd−1

which vanishes in the limit since X is uniformly continuous on [0,1].
Now suppose w = w′a for some w ∈ T (A) and a ∈ A. We have 3 cases

(1) w′ ∈ T (A \ A): in this case, no matter what a is, we have

|〈w, ISS(x(π))0,N 〉| ≤
N∑

j=1

|〈w′, ISS(x(π))0,j 〉||�x(π)a
j |

≤ sup
j=1,...,N

‖Xtj − Xtj−1‖|a|
N∑

j=1

|〈w′, ISS(x(π))0,j−1〉| → 0

as |π | → 0, by the induction hypothesis.
(2) w′ ∈ T (A) and a ∈ A \ A: the same argument as before gives that the corresponding

entry in ISS(x(π)) vanishes in the limit.
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(3) w′ ∈ T (A) and a ∈ A: again by definition we have

〈w, ISS(x(π))0,N 〉 =
N∑

j=1

〈w′, ISS(x(π))0,j−1〉(Xa
tj

− Xa
tj−1

)

which converges to the Young (or Riemann–Stieltjes) integral

∫ 1

0
〈w′, S(X)0,s〉dXa

s = 〈w,S(X)0,1〉.

Therefore, we have that

lim
|π |→0

〈w, ISS(x(π))0,N 〉 = 〈w,S(X)0,1〉

if w ∈ T (A), and vanishes otherwise. �

5.1 The Area Operation

It is well known that for the iterated-integrals signature certain linear combinations of the
entries have a precise geometric interpretation. Indeed, for any i,j ∈ A

〈ij− ji, S(X)s,t 〉 =
∫∫

s<u1<u2<t

(dXi
u1

dXj
u2

− dXj
u1

dXi
u2

) =: Area(Xi,Xj)s,t ,

represents (two times) the signed area (or Lévy area) between the curves u �→ Xi
u and u �→

Xj
u for u ∈ [s, t], and the cord between the points (Xi

s ,Xj
s ) and (Xi

t ,X
j
t ).

We abstract this operation to the shuffle algebra by using the notion of half-shuffles in-
troduced in Section 2.1. In fact, one verifies that at this level the area operation may be
represented in terms of half-shuffle operations as

ij− ji= i� j− j� i=: area(i,j),

so that in particular Area(Xi,Xj)s,t = 〈area(i,j), S(X)s,t 〉.
We extend this by defining area operations on H�� = (T (A),�� , δ) and Hqsh =

(T (A), �, δ).

Definition 5.6 The area map area : H�� ⊗ H�� → H�� is defined by

area(u, v) := u � v − v � u.

Next, the discrete analogue is given in terms of the first half-shuffle product in (7).

Definition 5.7 (Discrete area) The discrete area map area : Hqsh ⊗Hqsh → Hqsh is defined
by

area(u, v) := u �̇ v − v �̇ u.

We compare the two areas by considering the words u = [3] and v = [4][12]. Then

area([3], [4][12]) = [3][4][12] + [4][3][12] − [4][12][3],
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area([3], [4][12]) = [3][4][12] + [4][3][12] + [34][12] − [4][12][3]

as follows from Example 8.
Both area and area can be iterated. We now make this precise: define D1 = D1 := FA,

the vector space spanned by the set A. Then, inductively define vector spaces

Dn+1 := span
F
{area(Dn+1−m, ,Dm) : m ≤ n}

Dn+1 := span
F
{area(Dn+1−m, ,Dm) : m ≤ n}.

We finally set

D :=
⊕

n≥1

Dn, D :=
⊕

n≥1

Dn.

Neither the area nor the discrete area operations are associative. One can show, how-
ever, that area satisfies a fourth-order relation, known as tortkara, introduced by Dzhu-
madil’daev in the 2007 paper [14]. In [15] the image of iterated applications of the area
map is characterised. (Compare also [45, Theorem 28]).

Theorem 5.8 ([15, Theorem 2.1]) The space D is spanned by the set

A∪ {u([a][b] − [b][a]) : a, b ∈ A, u ∈ T (A) }.

From Lemma 2.7 and Lemma 2.8 we deduce the following morphism property of Hoff-
man’s isomorphism with respect to area and area.

Theorem 5.9 
H : D → D is a tortkara morphism, i.e., for ϕ,ψ ∈ D


H(area(ϕ,ψ)) = area(
H(ϕ),
H(ψ)).

Remark 5.10 1. Note that 
H is not a (quasi-)half-shuffle morphism. Only the anti-
symmetrisation to area respectively area is nicely compatible with it.

2. The set D (the set of “areas-of-areas”) is known to generate T (A) as a shuffle-algebra,
see [12]. Applied to iterated-integral signatures this means that all their information is al-
ready contained in areas-of-areas. The area operation (X,Y ) �→ Area(X,Y ) has an immedi-
ate geometric interpretation, whereas the operation of integration (X,Y ) �→ ∫ XdY .1 More-
over, the area operation is related to antisymmetrised lead-lag correlation in time series
analysis, see [13, Section 3.2]. We refer to [12, Section 6] for more applications.

Proof By Dzumadil’daev’s theorem (Theorem 5.8) it suffices to prove the claim for the case
when ϕ = u([a][b] − [b][a]) and ψ = v([c][d] − [d][c]). We first observe that in this case
the area operation can be written more explicitly:

area(ϕ,ψ) = ϕ � ψ − ψ � ϕ

= (ϕ ��v[c])[d] − (ϕ ��v[d])[c] − (ψ ��u[a])[b] + (ψ ��u[b])[a].
1The authors would be hard-pressed to explain the latter to a non-mathematician, whereas the former can be
explained by a simple drawing.
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Each of these terms can be further expanded into three terms. For example, the first one
equals

(ϕ ��v[c])[d] = (ϕ ��v)[c][d] + (u[a] ��v[c])[b][d] − (u[b] ��v[c])[a][d].
In total there are 12 terms, the remaining 9 terms are

−(ϕ ��v[d])[c] = −(ϕ ��v)[d][c] − (u[a] ��v[d])[b][c] + (u[b] ��v[d])[a][c]
−(ψ ��u[a])[b] = −(ψ ��u)[a][b] − (v[c] ��u[a])[d][b] + (v[d] ��u[a])[c][b]

(ψ ��u[b])[a] = (ψ ��u)[b][a] + (v[c] ��u[b])[d][a] − (v[d] ��u[b])[c][a].
For each of these terms we can find exactly one other term such that their sum is of the form
w([x][y]−[y][x]), for [x], [y] ∈ {[a], [b], [c], [d]}, and thus by Lemma 2.8 the image of this
sum has the form 
H(w[x])[y]−
H(w[y])[x]. To summarise, the image 
H(area(ϕ,ψ)) is
a linear combination of 6 terms, each of them having the form 
H(w[x])[y]−
H(w[y])[x].
Now, if we pick any [x] ∈ {[a], [b], [c], [d]} there are exactly three terms containing [x] as
the last letter. For example, for [a] these terms are


H

(
(v[c] ��u[b])[d]

)
[a] + 
H

(
(ψ ��u)[b]

)
[a] − 
H

(
(v[d] ��u[b])[c]

)
[a]

= 
H(ψ ��u[b])[a],
where the last identity is easy to check using that ψ = v([c][d]− [d][c]). Applying a similar
argument to all letters we see that


H(area(ϕ,ψ)) = 
H(ψ ��u[b])[a] − 
H(ψ ��u[a])[b] − 
H(ϕ ��v[d])[c]
+ 
H(ϕ ��v[c])[d]

=
(

H(ψ) � 
H(u[b])

)
[a] −
(

H(ψ) � 
H(u[a])

)
[b]

−
(

H(ϕ) � 
H(v[d])

)
[c] +
(

H(ϕ) � 
H(v[c])

)
[d]

= 
H(ϕ) �̇
(

H(v[c])[d] − 
H(v[d])[c]

)

− 
H(ψ) �̇
(

H(u[a])[b] − 
H(u[b])[a]

)

= 
H(ϕ) �̇ 
H(ψ) − 
H(ψ) �̇ 
H(ϕ)

= area(
H(ϕ),
H(ψ)). �

6 Conclusion

In this work we have

• introduced a new set of features for multidimensional time series consisting in iterated
sums (Section 3);

• shown that these features are invariant to time warping and that these in fact are all the
(polynomial) invariants in this sense (Section 4);
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• described a Hopf algebraic framework to compute these features (Section 2);
• shown how this setting mirrors the one of iterated-integrals in some aspects and differs in

others (Section 2).

There are several possible generalisations of our work.

• Let f,g : F→ F be such that f (0) = g(0) = 0. Then iterated-sums of the form
∑

i1<i2

f
(
�xi1

)
g
(
�xi2

)
,

are also invariant to time warping (and analogously for higher order iterated-sums). These
are, in general, not polynomial in the time series anymore, but might still be relevant for
certain applications. For smooth f , g this should be related to the expansion of nonlinear
functionals on stochastic word series [11], but the non-smooth case (for example f (x) =
x, g(x) = |x|) is particularly interesting.

• Multi-parameter data. An object of interest are for example “images” I : [0,N ] ×
[0,N ] → R and the time warping invariance becomes an invariance to stretching of the
image.

We are also interested in exploring the possible applications of these invariants in data
science.

• Retrieval of similar time series, invariant to time warping: see [47] (and references
therein), where it is stated that “the time warping distance . . . does not lead to any natural
features”. The invariants presented in our work should provide those missing features,
but a mathematical rigorous proof of this statement is left for future work.

• Statistical inference in problems involving unknown time warping, as in Example 1.2.
• Time series clustering: the features of this work can be used to cluster time series accord-

ing to their “shape”, i.e., independent of time warping. Sometimes a “prototype” for each
cluster is looked after, see for example [43]. In this case - as in the previous point - recon-
struction of a time series from an (averaged) iterated-sums signature would be necessary.
A detailed study of this ostensibly hard problem is left for future research.

We close with some open questions. At the end of Section 3 we showed that an equivalent
of Chow’s theorem does not hold for the iterated-sums signature ISS(x).

• Can we understand {ISS(x) : x ∈ (Fd)
N+
c } as a semi-algebraic set? (Compare [3] for the

investigation of the image of iterated-integrals signatures as algebraic sets.)
• For x ∈ (Fd)N denote by ←−

x the time series run backwards. Then (as might surprise read-
ers familiar with Chen’s signature) ISS(

←−
x ) � ISS(x) �= ε. What are the implications?

• The lead-lag procedure of [17] lifts a discrete time series of dimension d to a piece-
wise smooth curve of dimension 2d . Since the resulting iterated-integrals signature is
invariant to time warping as well as space translations, and is polynomial in the original
time series, by Lemma 4.3 it must be contained in the iterated-integrals signature ISS(x).
Conversely, is the signature of the resulting 2d curve enough to recover the iterated-sum
signature? This would give a finite dimensional smooth curve whose iterated-integrals
signature contains the invariants presented in this paper (compare Theorem 5.3 for an
infinite dimensional smooth curve doing the job).
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