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Abstract

Our focus are electro-reaction-diffusion systems consisting of continuity equations
for a finite number of species coupled with a Poisson equation. We take into account
heterostructures, anisotropic materials and rather general statistical relations.

We introduce a discretization scheme (in space and fully implicit in time) using a
fixed grid but for each species different Voronoi boxes which are defined with respect
to the anisotropy matrix occurring in the flux term of this species. This scheme has
the special property that it preserves the main features of the continuous systems,
namely positivity, dissipativity and flux conservation.

For the discretized electro-reaction-diffusion system we investigate thermodynamic
equilibria and prove for solutions to the evolution system the monotone and exponen-
tial decay of the free energy to its equilibrium value. The essential idea is an estimate
of the free energy by the dissipation rate which is proved indirectly.

1 Model equations, notation, and assumptions

Let Ω ⊂ R
2 be a bounded domain, Γ := ∂Ω. We consider m electrically charged species

Xi with charge numbers qi and initial densities Ui. These species underly drift-diffusion
processes and take part in chemical reactions. We assume that the free energy of the
system is a sum of a chemical and an (electrostatic) interaction part, where the chemical
part is a sum of 1-species free energies. This leads to state equations giving the relation
between the densities ui of the species Xi and the corresponding chemical potentials vi of
the type

ui = uigi(vi), i = 1, . . . ,m, (1.1)

where the reference densities ui may depend on the spatial position and expresses the
possible heterogeneity of the system under consideration. The functions gi reflect the
underlying statistics. (In the case of Boltzmann statistics each gi is the exponential func-
tion.) Our assumptions with respect to gi (see (A2)) are such that all cases of practical
interest are included, in particular the Fermi–Dirac statistics. Moreover, in the case where
the chemical part of the free energy is a sum of 1-species free energies the inverse Hessian
matrix is diagonal with its i-th component uig

′
i(vi).

Let v0 denote the electrostatic potential. To describe the fluxes ji of the species Xi we
need the electrochemical potentials ζi := vi + qiv0. According to [1, 8, 16], we assume
that the driving force for the flux is the antigradient of the electrochemical potential and
that the flux is proportional the inverse Hessian. In the simplest case, with Boltzmann
statistics and no anisotropies of the material, ji is proportional to −ui∇ζi. In this paper
we suppose that

ji = −uig
′
i(vi)Si(·)∇ζi, i = 1, . . . ,m, (1.2)

where the mobility Si is a pointwise given symmetric positive definite matrix function
which prescribes the anisotropy of the material.
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To describe chemical reactions we assume that R ⊂ Z
m
+ × Z

m
+ is a finite subset. A pair

(α, β) ∈ R represents the vectors of stoichiometric coefficients of reversible reactions,
usually written in the following form:

α1X1 + · · · + αmXm ⇋ β1X1 + · · · + βmXm.

We assume that the net rate of this pair of reactions is of the form kαβ(aα − aβ), where
kαβ is a reaction coefficient, ai := exp(ζi) is the electrochemical activity of Xi, and aα :=∏m

i=1 aαi

i . In this model we replaced the concentrations by activities. This is necessary
for the model to be in accordance with the Second Law of Thermodynamics (cf. Othmer
[15]). The net production rate of species Xi corresponding to the reaction rates for all
reactions taking place is

Ri :=
∑

(α,β)∈R

kαβ(aα − aβ)(βi − αi). (1.3)

The continuity equation for the concentrations taking into account reaction, diffusion, and
drift processes can be written as follows:

∂ui

∂t
+ ∇ · ji = Ri in R+ × Ω, ν · ji = 0 on R+ × Γ,

ui(0) = Ui in Ω, i = 1, . . . ,m.
(1.4)

The Poisson equation satisfied by the electrostatic potential has the form

−∇ · (S0∇v0) = f +

m∑

i=1

qiui in R+ × Ω, ν · (S0v0) + τv0 = fΓ on R+ × Γ, (1.5)

with a symmetric positive definite dielectric permittivity matrix function S0.

Now we collect assumptions which we suppose to be fulfilled in the paper.

(A1) Ω is a bounded Lipschitzian domain in R
2, Γ = ∂Ω;

(A2) gi ∈ C1(R), lim
y→∞

1
y gi(y) = +∞, 0 < δ min{1, gi(y)} ≤ g′i(y) ≤ δ−1gi(y),

δ min{1, exp(y)} ≤ gi(y) ≤ δ−1 exp(y), y ∈ R, i = 1, . . . ,m,

ui ∈ L∞
+ (Ω), ui ≥ δ, i = 1, . . . ,m;

(A3) Si ∈ L∞
+ (Ω, R2×2) symmetric and positive definite (uniformly w.r.t. x)

i = 1, . . . ,m;

(A4) R ⊂ Z
m
+ × Z

m
+ finite subset, kαβ ∈ L∞

+ (Ω),
∫
Ω kαβ dx > 0 for all (α, β) ∈ R;

(A5) Ui ∈ L∞
+ (Ω), qi ∈ Z, i = 1, . . . ,m;

(A6) S0 ∈ L∞
+ (Ω, R2×2) symmetric and positive definite (uniformly w.r.t. x),

τ ∈ L∞
+ (Γ),

∫
Γ τ dΓ > 0, f ∈ L∞(Ω), fΓ ∈ L∞(Γ).
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Existence results for special realizations of the electro-reaction-diffusion system (1.4), (1.5)
(no anisotropies, fluxes not necessarily related to the inverse Hessian of the free energy,
special statistics, restrictions concerning the reaction terms) in the sense of weak solutions
can be found in [6, 7, 13]. In this paper we are interested in energy estimates for a (time
and space) discrete version of (1.4), (1.5). For the continuous problem in special situations
we have already obtained such results (see [11] and [9, 12] (Boltzmann statistics only)).
The monotone and exponential decay of the free energy of weak solutions to (1.4), (1.5) in
the setting prescribed in Section 1 is proved in [10]. There is also obtained a first result for
a (time and space) discretized version of (1.4), (1.5). There is introduced a discretization
scheme and its dissipativity is shown. The present paper continues the investigations in
[10]. Section 2 gives a short overview on the notation, operators, energy functionals and
results for the continuous problem such that analogies for the discrete version of (1.4),
(1.5) can be found. Section 3 is the heart of the paper and contains the energy estimates
for the discretized problem. Finally, in Section 4 we collect some remarks concerning the
numerical treatment of heterostructures.

2 Continuous electro-reaction-diffusion systems

2.1 Weak formulation

To give a weak formulation of the equations (1.4), (1.5) we introduce the following spaces:

V := H1(Ω; Rm+1), W := {v ∈ V : exp(vi) ∈ L∞(Ω), i = 1, . . . ,m} ,

and the stoichiometric subspaces

S := span{α − β : (α, β) ∈ R}, S⊥ := orthogonal complement of S in R
m.

In addition to (A1) – (A6) we assume that we are given U ∈ V ∗ such that

(A7) U =
( m∑

i=1

qiUi, U1, . . . , Um

)
,

m∑

i=1

λi〈Ui, 1〉 > 0 if λ = (λ1, . . . , λm) ∈ S⊥
+\{0}.

V ∗ denotes the space dual to V , and 1 means the constant function on Ω taking the value
1. Note that (A7) with respect to U is satisfied if Ui ≥ 0, Ui 6= 0, i = 1, . . . ,m. The
element U represents an initial value for the vector function u := (u0, . . . , um), where

u0 =

m∑

i=1

qiui (2.1)

is the variable charge density. We define operators A : W → V ∗, and E : V → V ∗ by

〈Av, v̂〉 :=

∫

Ω

m∑

i=1

uig
′
i(vi)Si∇ζi · ∇ζ̂i dx

+

∫

Ω

∑

(α,β)∈R

kαβ(aα − aβ)(α − β) · ζ̂ dx, v ∈ W, v̂ ∈ V,
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where a := (exp(ζ1), . . . , exp(ζm)), ζi = vi + qiv0, ζ̂i = v̂i + qiv̂0, i = 1, . . . ,m,

Ev :=
(
E0v0, u1g1(v1), . . . , umgm(vm)

)
, v ∈ V, (2.2)

〈E0v0, v̂0〉 :=

∫

Ω

(
S0∇v0 · ∇v̂0 − f v̂0

)
dx +

∫

Γ

(
τv0 − fΓ

)
v̂0 dΓ, v0, v̂0 ∈ H1(Ω).

A weak formulation of the transient problem (1.4), (1.5) with (1.1), (1.2), (1.3) is given by

u′(t) + Av(t) = 0, u(t) = Ev(t) f.a.a. t ∈ R+, u(0) = U,

u ∈ H1
loc(R+;V ∗), v ∈ L2

loc(R+;V ) ∩ L∞
loc(R+;W ).



 (P)

The dissipation rate corresponding to Problem (P), D(v) := 〈Av, v〉, v ∈ W , is nonnegative
and has the form

D(v) =

∫

Ω

m∑

i=1

uig
′
i(vi)Si ∇ζi · ∇ζi dx +

∫

Ω

∑

(α,β)∈R

kαβ(eζ·α − eζ·β)(α − β) · ζdx.

To define the free energy of a state of the system under consideration we first introduce a
functional G : V → R as follows:

G(v) :=

∫

Ω

(1
2
S0∇v0 · ∇v0 − fv0

)
dx +

∫

Γ

(τ
2
v2
0 − fΓv0

)
dΓ

+

∫

Ω

m∑

i=1

∫ vi

0
uigi(y) dy dx.

(2.3)

The functional G is continuous, strictly convex and Gâteaux differentiable, hence subdif-
ferentiable and ∂G = E. The conjugate of the functional G is denoted by F ,

F (u) := sup
v∈V

{
〈u, v〉 − G(v)

}
. (2.4)

F is proper, lower semicontinuous and convex. Additionally, it holds u = Ev = ∂G(v) if
and only if v ∈ ∂F (u). For u ∈ V ∗ the value F (u) is to be interpreted as the free energy
of the state u. For u ∈ H1(Ω)∗ × L2

+(Ω)m we have

F (u) =

∫

Ω

m∑

i=1

ui

∫ ui/ui

gi(0)
g−1
i (w) dw dx +

∫

Ω

1

2
S0∇v0 · ∇v0 dx +

∫

Γ

τ

2
v2
0 dΓ,

where u0 = E0v0. The first summand represents the chemical part of the free energy which
is the sum of 1-species free energies. The last two terms give the electrostatic interaction
part. Moreover, we define the subspace

U :=
{

u ∈ V ∗ : u0 =

m∑

i=1

qiui, (〈u1, 1〉, . . . , 〈um, 1〉) ∈ S
}

. (2.5)

If (u, v) is a solution to (P) then u(t)−U ∈ U for every t > 0. Therefore, if u∗ := lim
t→∞

u(t)

exists, then we have necessarily u∗ ∈ U + U . The set U⊥ := {v ∈ V : 〈u, v〉 = 0 ∀u ∈ U}
can be characterized as follows:

U⊥ =
{

v ∈ V : ∇ζ = 0, ζi = vi + qiv0, ζ = (ζ1, . . . , ζm) ∈ S⊥
}

.
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2.2 Summary of some earlier results

Here we collect results concerning steady states and energy estimates which we have ob-
tained in [10, Theorem 2.1, Theorem 3.2].

Theorem 2.1 We assume (A1) – (A7). Then there exists a unique solution (u∗, v∗) to

Av∗ = 0, u∗ := Ev∗, u∗ ∈ U + U , v∗ ∈ W. (S)

It holds ∇ζ∗ = 0 and ζ∗ ∈ S⊥.

We define the set

M := {(a, v0) ∈ R
m
+ × H1(Ω) : aα = aβ for all (α, β) ∈ R, (E0v0, u1, . . . , um) ∈ U + U,

where ui = uigi(ln ai − qiv0) if ai > 0, ui = 0 else, i = 1, . . . ,m}
and assume

(A8) M∩ (∂Rm
+ × H1(Ω)) = ∅.

Remark 2.1 We assume (A1) – (A6). On the one hand, if (u, v) is a solution to (S)
then (a, v0) ∈ M, where a = (eζ1, . . . , eζm). On the other hand, if (a, v0) ∈ M and
ai > 0, i = 1, . . . ,m, then (u, v) defined by vi := lnai − qiv0, ui := uigi(vi), i = 1, . . . ,m,
u0 := E0v0 is a steady state of (P), that is a solution to (S). If in addition (A7) and (A8)
are fulfilled then M = {(a∗, v∗0)}.

Theorem 2.2 Let (A1) – (A8) be fulfilled, let (u, v) be a solution to Problem (P), and let

(u∗, v∗) be the thermodynamic equilibrium (cf. Theorem 2.1). Then the free energy along

the solution (u, v) decays monotonously and there exists a λ > 0 such that

F (u(t)) − F (u∗) ≤ e−λt(F (U) − F (u∗)) ∀ t ≥ 0.

The proof of Theorem 2.2 is mainly based on a Poincaré type inequality which gives an
estimate of the free energy by the dissipation rate as formulated in Lemma 2.1 (see [10,
Theorem 3.1], too).

Lemma 2.1 Let (A1) – (A8) be fulfilled. Moreover, let (u∗, v∗) be the thermodynamic

equilibrium according to Theorem 2.1. Then for every ρ > 0 there exists a constant cρ > 0
such that

F (u) − F (u∗) ≤ cρD(v) (2.6)

for all v ∈ Nρ = {v ∈ W : F (Ev) − F (u∗) ≤ ρ, u = Ev ∈ U + U}.

Remark 2.2 The proof of the exponential decay of the free energy to its equilibrium value
in [10] relys essentially on Lemma 2.1 which is validated by an indirect proof. Therefore
no explicit rate of convergence is obtained. But heterostructures, anisotropies, a wide class
of statistics and any final set of reversible reactions are taken into account.

There are other papers which prove for special situations an explicit rate of convergence.
Gajewski and Gärtner [4] did this for the van Roosbroeck system with magnetic field.
Desvillettes and Fellner [2] gave an explicit rate of convergence for a reaction-diffusion
system of two species and the reaction 2X1 ⇋ X2 and one invariant as well as for a
system of three species, the reaction X1 + X2 ⇋ X3 and two invariants.
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3 Discretized electro-reaction-diffusion systems

3.1 Space discretization

For all our considerations in Section 3 we make the following simplifying assumptions

(A9) ui = const, i = 1, . . . ,m, kαβ = const, (α, β) ∈ R, τ = const,

Si constant, symmetric, positive definite 2 × 2 matrices, i = 0, . . . ,m.

Let a Delaunay grid with M grid points {xk : xk ∈ Ω, k = 1, . . . ,M} be given. We use
the following sets of indeces

V :=
{

k : xk ∈ Ω
}

, T :=
{

k : xk ∈ Ω \ Ω
}

.

Due to (A9) the anisotropy matrices Si are invertible 2 × 2 matrices. For x, y ∈ Ω we
introduce new distances defined via the anisotropy matrices Si,

di(x, y) :=

√
(x − y)TS

−1
i (x − y), i = 0, . . . ,m.

By means of these we define anisotropic Voronoi cells for each species (see Labelle and
Shewchuk [14], cf. Figure 1, too)

V k
i =

{
x ∈ Ω : di(x, xk) ≤ di(x, xl) ∀l ∈ V

}
, i = 0, . . . ,m , k ∈ V.

For directly neighbored points xk and xl we denote the (outer) normal vector on V k
i at

∂V k
i ∩ ∂V l

i by νkl
i , i = 0, . . . ,m. Depending on the position of the grid points and the

anisotropy matrices Si there is a constant c > 0 such that

1

c
≤ |V k

i | ≤ c, |∂V k
i ∩ ∂V l

i | ≤ c, k, l ∈ V, i = 0, . . . ,m.

For k ∈ V we denote by uk
i and uk

0 the mass of the i-th species in V k
i and the charge in

V k
0 , respectively. Taking into account that the Voronoi cells can differ for the different

species, the relation (2.1) has to be substituted for the discrete situation by

uk
0 =

m∑

i=1

qi

∑

l∈V

|V k
0 ∩ V l

i |
|V l

i |
ul

i. (3.1)

Associated to the grid points we have electrostatic potentials vk
0 and chemical potentials

vk
i , i = 1, . . . ,m. The discrete version of the state equations (1.1) then is

uk
i = uigi(v

k
i )|V k

i |, k ∈ V , i = 1, . . . ,m. (3.2)

Electrochemical potentials ζk
i are determined by

ζk
i = vk

i + qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | vl
0, k ∈ V , i = 1, . . . ,m. (3.3)
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grid points

Si =

(
1 0
0 s

)

s = 1

s = 0.2

s = 5

Figure 1: Different shape of anisotropic Voronoi boxes for different anisotropy matrices Si

for a uniform equilateral triangle mesh.

3.2 A discretization scheme for electro-reaction-diffusion systems

(A10) Let Z = {t0, t1, . . . , tn, . . . } be a partition of R+ with t0 = 0, tn ∈ R+,

tn−1 < tn, n ∈ N, tn → +∞ as n → ∞, h := supn∈N(tn − tn−1) < ∞.

We introduce the discrete initial values

Uk
i :=

∫

V k
i

Ui dx, k ∈ V , i = 1, . . . ,m,

and Uk
0 is calculated via (3.1), where the ul

i have to be substituted by U l
i .

The space discrete version of the Poisson equation (1.5) and of the continuity equations
(1.4) is obtained by testing the corresponding equations with the characteristic function
of V k

0 and V k
i , respectively, and using Gauss theorem for the divergence terms. We obtain

the following discrete electro-reaction-diffusion system (PD) where the time discretization
is done fully implicitly

−
∑

l∈V

vl
0(tn) − vk

0 (tn)

|xl − xk| |S0ν
kl
0 ||∂V k

0 ∩ ∂V l
0 | + τvk

0 (tn)|∂V k
0 ∩ Γ| − fk = uk

0(tn),

u k
i (tn) −u k

i (tn−1)

tn − tn−1
+
∑

l∈V

Jkl
i (tn)|∂V k

i ∩ ∂V l
i | = Rk

i (tn), i = 1, . . . ,m, n ≥ 1,

uk
i (0) = Uk

i , i = 0, . . . ,m, k ∈ V,





(PD)

where

fk =

∫

V k
0

f dx +

∫

∂V k
0 ∩Γ

fΓ dΓ,

Jkl
i (tn) = −ui Z

kl
i (tn)

ζ l
i(tn) − ζk

i (tn)

|xl − xk| |Siν
kl
i |, Zkl

i (tn) =
g′i(v

k
i (tn)) + g′i(v

l
i(tn))

2
.
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The source terms Rk
i have to be calculated by

Rk
i (tn) =

∑

α,β∈R

(βi − αi)
∑

k1∈V

. . .
∑

ki−1∈V

∑

ki+1∈V

· · ·
∑

km∈V

Rαβ

[
ζk1
1 , . . . , ζ

ki−1

i−1 , ζk
i , ζ

ki+1

i+1 , . . . , ζkm

m

]
(tn)

× |V k1
1 ∩ · · · ∩ V

ki−1

i−1 ∩ V k
i ∩ V

ki+1

i+1 ∩ · · · ∩ V km

m |
with

Rαβ

[
ζk1
1 , . . . , ζkm

m

]
(tn) = kαβ

(
exp

{ m∑

i=1

αiζ
ki

i (tn)
}
− exp

{ m∑

i=1

βiζ
ki

i (tn)
})

(3.4)

and the expression for ζk
i given in (3.3).

We use the notation

~u = (~u0, . . . , ~um), ~v = (~v0, . . . , ~vm), ~ui =
(
uk

i

)
k∈V

, ~vi =
(
vk
i

)
k∈V

,

~U = (~U0, . . . , ~Um), ~Ui =
(
Uk

i

)
k∈V

, i = 0, . . . ,m.

By ‖·‖ we denote the 2-norm in R
M as well as in R

M(m+1), 〈·, ·〉 means the scalar product.
The discrete Poisson equation in (PD) forms a system of linear equations

P~v0 − ~f = ~u0, where ~f =
(
fk
)
k=1,...,M

.

The M × M matrix P is regular, for arbitrarily given ~u0 , ~f ∈ R
M there exists a unique

solution ~v0 ∈ R
M to P~v0 − ~f = ~u0 (see [10, Lemma 4.1]). The M × M matrix P is

symmetric and weakly diagonally dominant. For all ~y ∈ R
M we have

〈P~y, ~y〉 =
∑

k,l∈V , l<k

(yl − yk)2

|xl − xk| |S0ν
kl
0 ||∂V k

0 ∩ ∂V l
0 | +

∑

k∈V

τ (yk)2|∂V k
0 ∩ Γ| ≥ 0. (3.5)

Lemma 3.1 We assume (A1), (A6) and (A9). Then there exist constants γ1, γ2 > 0
such that

γ1‖~y‖2 ≤ 〈P~y, ~y〉 ≤ γ2‖~y‖2 ∀~y ∈ R
M . (3.6)

Proof. 1. Suppose the first inequality to be violated. Then there would exist sequences of
~yn ∈ R

M , cn ∈ R+, cn → 0 such that cn‖~yn‖2 = 〈P~yn, ~yn〉. Setting ~zn := ~yn/‖~yn‖ we have
〈P~zn, ~zn〉 = cn → 0. According to (3.5) we obtain zk

n → 0 for all k ∈ T . For all k̂ ∈ V we

find a finite path of neighboring Voronoi cells starting at V k̂
0 and ending at a V k∗

0 , k∗ ∈ T ,
which can be used in opposite direction to show cell by cell that the corresponding zk

n → 0

and finally zk̂
n → 0, too. In summary, ~zn → 0 in R

M . This gives the contradiction since
‖~zn‖ = 1.

2. The upper estimate follows by (3.5), (A6) and (A9). �

The discrete dissipation rate D̂ : R
M(m+1) → R corresponding to the Problem (PD) is

given by

D̂(~v) =

m∑

i=1

∑

k,l∈V , l<k

ui Z
kl
i

(ζ l
i − ζk

i )2

|xl − xk| |Siν
kl
i ||∂V k

i ∩ ∂V l
i |

+
∑

(α,β)∈R

∑

k1∈V

· · ·
∑

km∈V

Rαβ

[
ζk1
1 , . . . , ζkm

m

] m∑

i=1

(αi − βi)ζ
ki

i |V k1
1 ∩ · · · ∩ V km

m |.
(3.7)
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Due to (A2), (3.4) and the monotonicity of the exponential function this discrete dissipa-
tion rate is nonnegative, D̂(~v) ≥ 0 for all ~v ∈ R

M(m+1).

3.3 Discrete energy functionals

First, we define as a discrete version of E (cf. (2.2)) the operator Ê : R
M(m+1) → R

M(m+1),

Ê~v =
(
P~v0 − ~f,

((
uigi(v

k
i )|V k

i |
)
k∈V

)
i=1,...,m

)
.

The equation ~u = Ê~v then contains the discretized Poisson equation as well as the discrete
state equations. Corresponding to Ê, we obtain the discrete potential Ĝ : R

M(m+1) → R,

Ĝ(~v) =
1

2
〈P~v0, ~v0〉 − 〈~f,~v0〉 +

m∑

i=1

∑

k∈V

ui|V k
i |
∫ vk

i

0
gi(y) dy. (3.8)

As in (2.3), (2.4) we introduce the discrete free energy F̂ as the conjugate functional,

F̂ (~u) = sup
~v∈RM(m+1)

{
〈~u,~v〉 − Ĝ(~v)

}
.

Then F̂ : R
M(m+1) → R is convex and lower semicontinuous. F̂ is differentiable in argu-

ments ~u, where ~u k
i > 0, k ∈ V, i = 1, . . . ,m. If ~u = Ê~v, then ~u = Ĝ′(~v) and ~v = F̂ ′(~u). In

particular we obtain for ~u = Ê~v, ~v ∈ R
M(m+1) the inequality

F̂ (~w) − F̂ (~u) ≥ 〈~w − ~u, F̂ ′(~u)〉 ∀~w ∈ R
M(m+1), (3.9)

which is used to show that our (Euler backward in time) discretization scheme (PD) is
dissipative. Moreover, for ~u = Ê~v we calculate

F̂ (~u) = 〈Ê~v,~v〉 − Ĝ(~v)

=
1

2
〈P~v0, ~v0〉 +

m∑

i=1

∑

k∈V

ui|V k
i |
(
gi(v

k
i )vk

i −
∫ vk

i

0
gi(y) dy

)
.

3.4 Steady states for the discretized electro-reaction-diffusion system

In analogy to the continuous situation we define

Û =
{
~u ∈ R

M(m+1) : uk
0 =

m∑

i=1

qi

∑

l∈V

|V k
0 ∩ V l

i |
|V l

i |
ul

i, k ∈ V,
(∑

k∈V

uk
1, . . . ,

∑

k∈V

uk
m

)
∈ S

}

and Û⊥ = {~v ∈ R
M(m+1) : 〈~u,~v〉 = 0 ∀~u ∈ Û} which can be characterized by

Û⊥ =
{
~v ∈ R

M(m+1) : ζk
i = vk

i + qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | vl
0 = ζi,

k ∈ V, i = 1, . . . ,m, (ζ1, . . . , ζm) ∈ S⊥
}

.
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Lemma 3.2 We assume (A1) – (A6), (A9) and (A10). Then

~u(tn) − ~U ∈ Û ∀n ∈ N

for any solution (~u,~v) to the discretized Problem (PD).

Proof. Let ~̂v ∈ Û⊥ be arbitrarily given and ζ̂k
i = v̂i + qi

∑
l∈V |V l

0 ∩ V k
i ||V k

i |−1 v̂ l
0 = ζ̂i,

k ∈ V, i = 1, . . . ,m. Then

〈~u(tn) − ~U,~̂v〉 =
n∑

r=1

〈~u(tr) − ~u(tr−1), ~̂v〉 =
n∑

r=1

m∑

i=1

∑

k∈V

(
uk

i (tr) − uk
i (tr−1)

)
ζ̂i

=
n∑

r=1

m∑

i=1

∑

k∈V

∑

l∈V

uiZ
kl
i (tr)

ζ l
i(tr) − ζk

i (tr)

|xl − xk| |Siν
kl
i | ζ̂i (tr − tr−1)

+

n∑

r=1

∑

(α,β)∈R

m∑

i=1

ζ̂i(βi − αi)
∑

k1∈V

· · ·
∑

ki−1∈V

∑

ki∈V

∑

ki+1∈V

· · ·
∑

km∈V

Rαβ[ζk1
1 , . . . , ζkm

m ](tr)|V k1
1 ∩ · · · ∩ V km

m |(tr − tr−1)

= 0. �

According to Lemma 3.2 we look for steady states (~u,~v) of the discretized Problem (PD)
fulfilling the property ~u − ~U ∈ Û , and consider the problem

∑
l∈V Jkl

i |∂V k
i ∩ ∂V l

i | − Rk
i = 0, k ∈ V, i = 1, . . . ,m,

~u = Ê~v, ~u − ~U ∈ Û .





(SD)

We introduce the functional Ĝ0 : R
M(m+1) → R,

Ĝ0(~v) := Ĝ(~v) + IÛ⊥(~v) − 〈~U,~v〉, ~v ∈ R
M(m+1),

where IÛ⊥ is the characteristic function of Û⊥. The functional Ĝ0 is proper, lower semi-
continuous, and strictly convex. Moreover, by the Moreau-Rockafellar theorem (see [3])

∂Ĝ0(~v) = Ê~v + ∂I
Û⊥(~v) − ~U, ~v ∈ R

M(m+1).

Lemma 3.3 We assume (A1) – (A7) and (A9). If (~u,~v) is a solution to (SD) then ~v is

the unique minimizer of Ĝ0. On the other hand, if ~v is a minimizer of Ĝ0 then (Ê~v,~v) is

a solution to (SD).

Proof. Let (~u,~v) be a solution to (SD). Then D̂(~v) = 0 and consequently ~v ∈ Û⊥.

Therefore Ĝ0(~v) < ∞ and ∂IÛ⊥(~v) = Û . Additionally we have ~u = Ê~v, ~u − ~U = ~̃u ∈ Û .

Thus we find that 0 = ~u−~̃u−~U ∈ ∂Ĝ0(~v) which ensures that Ĝ0(~v) = min~w∈RM(m+1) Ĝ0(~w).
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On the other hand, if ~v is a minimizer of Ĝ0 then ~v ∈ Û⊥, 0 ∈ ∂Ĝ0(~v), and there exists
~̃u ∈ ∂IÛ⊥(~v) = Û such that Ê~v − ~U = ~̃u ∈ Û . By ~v ∈ Û⊥ we conclude that

∑

l∈V

Jkl
i |∂V k

i ∩ ∂V l
i | − Rk

i = 0, k ∈ V, i = 1, . . . ,m.

Thus (Ê~v,~v) is a solution to Problem (SD). �

Theorem 3.1 We assume (A1) – (A7), (A9). Then there is a unique solution (~u ∗, ~v ∗)
to Problem (SD). This solution satisfies ~v ∗ ∈ Û⊥.

Proof. In the proofs in this paper the letter c denotes (possibly different) constants.
According to Lemma 3.3 it suffices to show that Ĝ0(~v) → ∞ if ‖~v‖ → ∞. We suppose
this growth condition to be violated. Then there exists K > 0, ~vn ∈ Û⊥ such that
‖~vn‖ → ∞ and

Ĝ0(~vn) = Ĝ(~vn) − 〈~U,~vn〉 ≤ K.

By the definition of Ĝ and Lemma 3.1 this ensures

c
{
‖~vn0‖2 +

m∑

i=1

∑

k∈V

|(vk
ni)

+|2
}
− 〈~U,~vn〉 ≤ K + c. (3.10)

For ~wn := ~vn/‖~vn‖ we find (for a subsequence) ~wn → ~̃w in R
M(m+1) and

c
{
‖~wn0‖2 +

m∑

i=1

∑

k∈V

|(wk
ni)

+|2
}
≤ K + c

‖~vn‖2
+

‖~U‖
‖~vn‖

.

This leads to ~wn0 → 0 = ~̃w0 in R
M , (wk

ni)
+ → 0 for n → ∞. And wk

ni = (wk
ni)

+ −
(wk

ni)
− → w̃k

i ensures −w̃k
i ≥ 0, k ∈ V, i = 1, . . . ,m. Since ~wn ∈ Û⊥, ~wn → ~̃w =

(0, ((w̃k
i )k∈V)i=1,...,m), and Û⊥ is closed we find that ~̃w ∈ Û⊥, too. Therefore w̃k

i = w̃i, k ∈
V, i = 1, . . . ,m, and (w̃1, . . . , w̃m) ∈ S⊥. Because of ‖~wn‖ = 1 there holds (w̃1, . . . , w̃m) 6=
0. We exploit again (3.10) and obtain

0 = lim
n→∞

K + c

‖~vn‖
≥ − lim

n→∞
〈~U, ~wn〉 = −〈~U, ~̃w〉 = −

m∑

i=1

∑

k∈V

Uk
i w̃k

i

= −
m∑

i=1

∑

k∈V

∫

V k
i

Ui dx w̃i = −
∫

Ω

m∑

i=1

Uiw̃i dx

which gives a contradiction to our assumption (A7). �

3.5 Energy estimates for the discretized electro-reaction-diffusion sys-

tem

In [10, Theorem 4.2] we proved the dissipativity of the (fully implicit in time) discretization
scheme (PD) for equidistant time steps and for a changed discretization Zkl

i of the inverse
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Hessian in the flux terms

Zkl
i =





gi(vl
i
)−gi(vk

i
)

vl
i
−vk

i

for vl
i 6= vk

i

g′i(v
k
i ) for vl

i = vk
i

.

An inspection of that proof shows that the used properties for Zkl
i are that Zkl

i = Z lk
i > 0,

k, l ∈ V, i = 1, . . . ,m. In other words that result remains true for Zkl
i as defined in

Subsection 3.2. Our aims now are to obtain this energy estimate for arbitrary time steps
(see (A10)) and especially to prove the exponential decay of the free energy as formulated
for the continuous problem in Theorem 2.2 for the discretized Problem (PD), too. We
start with three preparatory lemmas.

Lemma 3.4 We assume (A1) – (A7) and (A9). Let ~u = Ê~v ∈ ~U + Û and let (~u ∗, ~v ∗)
be the discrete thermodynamic equilibrium according to Theorem 3.1. Then there exists a

c > 0 such that

F̂ (~u) − F̂ (~u ∗) ≥ c
{
‖~v0 − ~v ∗

0 ‖2 +

m∑

i=1

∑

k∈V

∣∣
√

uk
i −

√
u∗k

i

∣∣2
}
.

Proof. Using the assumptions of the lemma, 〈~u − ~u ∗, ~v ∗〉 = 0 and (3.8) we evaluate

F̂ (~u) − F̂ (~u ∗) = 〈~u,~v〉 − Ĝ(~v) − 〈~u ∗, ~v ∗〉 + Ĝ(~v ∗) = 〈~u,~v − ~v ∗〉 − Ĝ(~v) + Ĝ(~v ∗)

=
1

2
〈P (~v0 − ~v ∗

0 ), ~v0 − ~v ∗
0 〉 +

m∑

i=1

∑

k∈V

ui|V k
i |
∫ vk

i

v∗k
i

(gi(v
k
i ) − gi(y)) dy.

(3.11)

Estimating

∫ vk
i

v∗k
i

(gi(v
k
i ) − gi(y)) dy ≥ δ

∫ vk
i

v∗k
i

(gi(v
k
i )

gi(y)
− 1
)
g′i(y) dy

= δ
(
gi(v

k
i ) ln

gi(v
k
i )

gi(v∗ki )
− gi(v

k
i ) + gi(v

∗k
i )
)

≥ δ
∣∣
√

gi(vk
i ) −

√
gi(v∗ki )

∣∣2,

(since x ln x
y − x + y ≥ (

√
x −√

y)2 for x, y > 0) we derive by (3.2) and (3.6) the desired
assertion. �

Lemma 3.5 We assume (A1) – (A7) and (A9). Let ~u = Ê~v ∈ ~U + Û and let (~u ∗, ~v ∗) be

the thermodynamic equilibrium according to Theorem 3.1. Then there is a constant c > 0
such that

F̂ (~u) − F̂ (~u ∗) ≤ c
{
‖~v0 − ~v ∗

0 ‖2 +
m∑

i=1

∑

k∈V

|uk
i − u∗k

i |2
}

.
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Proof. According to (3.11) and Lemma 3.1 it only remains to show that

∫ vk
i

v∗k
i

(
gi(v

k
i ) − gi(y)

)
dy ≤ c

(
gi(v

k
i ) − gi(v

∗k
i )
)2

, k ∈ V, i = 1, . . . ,m.

Omitting the indeces k and i and having in mind that δ min(1, g(y)) ≤ g′(y) (see (A2)),

∫ b

a

(
g(v) − g(y)

)
g′(y) dy = g(v)

(
g(b) − g(a)

)
− 1

2
g(b)2 +

1

2
g(a)2,

∫ b

a

(g(v)

g(y)
− 1
)
g′(y) dy = g(v) ln

g(b)

g(a)
− g(b) + g(a),

x ln x
y − x + y ≤ 1

y (x − y)2 for x, y > 0, and discussing the different cases for the relations
between the points v, v∗ and ṽ := arg {g(y) = 1} we find that

∫ v

v∗

(
g(v) − g(y)

)
dy ≤ c

(
g(v) − g(v∗)

)2
. �

In analogy to the set M for the continuous problem, we define now the set

M̂ :=
{

(a,~v0) ∈ R
m
+ × R

M : aα = aβ for all (α, β) ∈ R, (P~v0 − ~f, ~u1, . . . , ~um) ∈ Û + ~U,

where uk
i = uk

i (ai, ~v0) = ui|V k
i |gi

(
ln ai − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | vl
0

)
if ai > 0,

uk
i = uk

i (ai, ~v0) = 0 else, k ∈ V, i = 1, . . . ,m
}

.

Remark 3.1 On the one hand, if (~u,~v) is a solution to (SD) then (a,~v0) ∈ M̂, where
a = (eζ1 , . . . , eζm),

ζi = ζk
i = vk

i + qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | vl
0, k ∈ V, i = 1, . . . ,m.

On the other hand, if (a,~v0) ∈ M̂ and ai > 0, i = 1, . . . ,m, then (~u,~v) defined by

vk
i := ln ai − qi

∑
l∈V

|V l
0∩V k

i
|

|V k
i
|

vl
0, uk

i := uigi(v
k
i )|V k

i |, i = 1, . . . ,m, k ∈ V, ~u0 := P~v0 − ~f , is

a solution to (SD). If M̂ ∩ (∂R
m
+ × R

M ) = ∅ then M̂ = {(a∗, ~v ∗
0 )}.

Lemma 3.6 Let (A1) – (A7) and (A9) be satisfied. Then

M∩ (∂R
m
+ × H1(Ω)) = ∅ ⇐⇒ M̂ ∩ (∂R

m
+ × R

M ) = ∅.

Proof. We prove here the direction M∩ (∂R
m
+ ×H1(Ω)) = ∅ =⇒ M̂∩ (∂R

m
+ × R

M) = ∅
in great detail. At the end of the proof we give the essential hints how to show the
opposite direction. The ideas then are similar to the case we discuss here. Now we show:
If M̂ ∩ (∂R

m
+ × R

M ) 6= ∅ then M ∩ (∂R
m
+ × H1(Ω)) 6= ∅, too. Let now be (a,~v0) ∈

M̂ ∩ (∂R
m
+ × R

M ).
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1. Case a = 0: Then

( ∫

Ω
U1 dx, . . . ,

∫

Ω
Um dx

)
=
(∑

k∈V

Uk
1 , . . . ,

∑

k∈V

Uk
m

)
∈ S.

Let v̆0 ∈ H1(Ω) be the solution to E0v̆0 = 0 which is uniquely defined since E0 is strongly
monotone and Lipschitz continuous. Having in mind that U0 =

∑m
i=1 qiUi we find thus

that (E0v̆0, 0, . . . , 0) − U ∈ U and (ă, v̆0) := (0, v̆0) ∈ M∩ (∂R
m
+ × H1(Ω)).

2. Case ai 6= 0 for some i ∈ {1, . . . ,m}: Without loss of generality we assume that ai 6= 0,
i = 1, . . . , p, ai = 0, i = p + 1, . . . ,m, with 1 ≤ p < m. From aα = aβ for all (α, β) ∈ R
we conclude that for all (α, β) ∈ R with αi > 0 for at least one i ∈ {p + 1, . . . ,m} there
must be at least one βj > 0, j ∈ {p + 1, . . . ,m} and vice versa. Especially we have for all
(α, β) ∈ R

m∑

i=p+1

αi > 0 ⇐⇒
m∑

i=p+1

βi > 0. (3.12)

We define

R̃ :=
{

(α̃, β̃) = (α1, . . . , αp, β1, . . . βp) : (α, β) ∈ R, αi = βi = 0, i = p + 1, . . . ,m
}
,

S̃ := span
{

α̃ − β̃ : (α̃, β̃) ∈ R̃
}

.

Now we consider a dimension reduced electro-reaction-diffusion problem for the first p
species with the reactions from R̃ and new initial values Ũ which are related to the
element (a,~v0) of M̂ ∩ (∂R

m
+ × R

M) as follows

Ũ = (Ũ0, Ũ1, . . . , Ũp), Ũi(x) =
uk

i (ai, ~v0)

|V k
i | if x ∈ V k

i , i = 1, . . . , p, Ũ0 =

p∑

i=1

qiŨi.

We denote this problem by (P̃) and apply results concerning steady states from Section 2
to that problem (P̃). Note that for (P̃) the assumptions (A1) – (A7) are valid. Especially,
due to the choice of Ũ we have Ũi > 0, i = 1, . . . , p, and the Slater condition (A7) for
that dimension reduced electro-reaction-diffusion problem is fulfilled trivially. According
to Theorem 2.1 there exists a unique steady state (ũ, ṽ) to (P̃). Remark 2.1 supplies that

there exists a unique (ã, ṽ0) ∈ M̃,

M̃ =
{

(ã, ṽ0) ∈ R
p
+ × H1(Ω) : ãα̃ = ãβ̃ ∀(α̃, β̃) ∈ R̃, (E0ṽ0, ũ1, . . . , ũp) − Ũ ∈ Ũ ,

ũi = uigi(ln ãi − qiṽ0) if ãi > 0, ũi = 0 else, i = 1, . . . , p
}

with ãi > 0, i = 1, . . . , p. (Here Ũ is defined analogously to U in (2.5) substituting m by
p and S by S̃.) Especially we have E0ṽ0 =

∑p
i=1 qiũi and

( ∫

Ω
(u1g1(ln ã1 − q1ṽ0) − Ũ1) dx, . . . ,

∫

Ω
(upgp(ln ãp − qpṽ0) − Ũp) dx

)
∈ S̃. (3.13)
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Setting (ă, v̆0) := (ã, 0, . . . , 0, ṽ0) ∈ R
m
+ × H1(Ω) we find aα = aβ for all (α, β) ∈ R (see

(3.12)) and E0v̆0 =
∑m

i=1 qiŭi where ŭi = ũi = uigi(ln ăi − qiv̆0), i = 1, . . . , p, ŭi = 0,
i = p + 1, . . . ,m. Because of

∫

Ω
Ũi dx =

∑

k∈V

uk
i (ai, ~v0),

∫

Ω
Ui dx =

∑

k∈V

Uk
i ,

(3.13) and (a,~v0) ∈ M̂ ∩ (∂R
m
+ × R

M ) we can verify that

(∫

Ω
(ŭi − Ui) dx

)
i=1,...,m

=
((∫

Ω
(ũi − Ũi) dx

)
i=1,...,p

, 0, . . . , 0
)

+
((∑

k∈V

(uk
i − Uk

i )
)
i=1,...,p

,
(∑

k∈V

(0 − Uk
i )
)
i=p+1,...,m

)
∈ S

since both summands belong to S. In summary we obtain that (ă, v̆0) belongs to M ∩
(∂R

m
+ × H1(Ω)).

For the opposite direction one has to prove (a, v0) ∈ M ∩ (∂Rm
+ × H1(Ω)) 6= ∅ =⇒

M̂∩ (∂R
m
+ ×R

M) 6= ∅. The case a = 0 is trivial. If the first p components of a are positive

we have to discuss a dimension reduced discretized problem (S̃D) with reactions from R̃
and initial values

~̃
U = (

~̃
U0,

~̃
U 1, . . . ,

~̃
Up), Ũk

i :=

∫

V k
i

uigi(ln ai − qiv0) dx, i = 1, . . . , p,

Ũk
0 :=

p∑

i=1

qi

∑

l∈V

|V k
0 ∩ V l

i |
|V l

i |
Ũ l

i , k ∈ V.

We use results concerning steady states for the dimension reduced discretized problem
from Section 3. Note that (A1) – (A6) and (A9) are fulfilled for the reduced problem.
Due to ∫

Ω
uigi(ln ai − qiv0) dx > 0, i = 1, . . . , p,

(A7) is valid, too. According to Theorem 3.1 and Remark 3.1 we find a solution (~̃u, ~̃v) to

(S̃D) and (ã, ~̃v0) ∈ ̂̃M. Then (ă, ~̆v0) := (ã, 0, . . . , 0, ~̃v0) belongs to M̂ ∩ (∂R
m
+ × R

M ). �

In analogy to Lemma 2.1 we prove a Poincaré type inequality which gives for the discretized
situation an estimate of the free energy by the dissipation rate.

Theorem 3.2 Let (A1) – (A9) be fulfilled. Moreover, let (~u ∗, ~v ∗) be the thermodynamic

equilibrium according to Theorem 3.1. Then for every ρ > 0 there exists a constant cρ > 0
such that

F̂ (~u) − F̂ (~u ∗) ≤ cρD̂(~v) (3.14)

for all ~v ∈ N̂ρ :=
{
~v ∈ R

M(m+1) : F̂ (Ê~v) − F̂ (~u ∗) ≤ ρ, ~u = Ê~v ∈ ~U + Û
}

.



16 A. Glitzky

Proof. 1. Let ρ > 0 be arbitrarily given. For ~v ∈ R
M(m+1), ~a = (~a1, . . . ,~am), ~ai =

(
ak

i

)
k∈V

,

and ak
i = exp(ζk

i ), where ζk
i is defined via (3.3) we can estimate

D̂(~v) ≥ δ

m∑

i=1

∑

k,l∈V , l<k

Zkl
i

(ζ l
i − ζk

i )2

|xl − xk| |∂V k
i ∩ ∂V l

i |

+
∑

(α,β)∈R

∑

k1∈V

· · ·
∑

km∈V

kαβ

(
exp

{ m∑

i=1

ζki

i

αi

2

}
− exp

{ m∑

i=1

ζki

i

βi

2

})2
|V k1

1 ∩ · · · ∩ V km

m |

=: D1(~v).

Here we used (A2), (A3), (A4) and the inequality (x − y) ln x
y ≥ |√x −√

y|2 for x, y > 0.
Therefore it suffices to prove the inequality

F̂ (~u) − F̂ (~u ∗) ≤ CD1(~v) ∀~v ∈ N̂ρ. (3.15)

2. If (3.15) would be false, then we find ~vn ∈ N̂ρ, n ∈ N, such that

~un = Ê~vn, F̂ (~un) − F̂ (~u ∗) = CnD1(~vn) > 0, (3.16)

and limn→∞ Cn = +∞. Let ~ζn denote the vector of the corresponding electrochemical
potentials and ak

ni = eζk
ni the electrochemical activities. From F̂ (~un) − F̂ (~u ∗) ≤ ρ we

obtain by Lemma 3.4 that ‖~uni‖ ≤ c, ‖~vn0‖ ≤ c, and by (3.2) and (A2) it results vk
ni ≤

c, 0 ≤ ak
ni ≤ c, k ∈ V, i = 1, . . . ,m. In summary we find subsequences such that ak

ni → âk
i ,

k ∈ V, i = 1, . . . ,m, ~vn0 → ~̂v0.

3. We write

(ak
ni − al

ni)
2 =

(eζk
ni − eζl

ni

ζk
ni − ζ l

ni

)2 2

g′i(v
k
ni) + g′i(v

l
ni)

g′i(v
k
ni) + g′i(v

l
ni)

2

(
ζk
ni − ζ l

ni

)2
.

Because of |vk
n0| ≤ c and (A2) we can estimate

(eζk
ni − eζl

ni

ζk
ni − ζ l

ni

)2 2

g′i(v
k
ni) + g′i(v

l
ni)

≤ e2max{ζk
ni

,ζl
ni
} 2

g′i(max{vk
ni, v

l
ni})

≤ ec+2max{vk
ni

,vl
ni
} 2

δ min{1, gi(max{vk
ni, v

l
ni})}

≤ ec+2max{vk
ni

,vl
ni
}

{
2
δ2 e−max{vk

ni
,vl

ni
} if gi(max{vk

ni, v
l
ni}) < 1

2
δ if gi(max{vk

ni, v
l
ni}) ≥ 1

≤ c

since vk
ni are bounded from above. Taking into account that 1

c ≤ ui, |Siν
kl
i | ≤ c we

therefore conclude that

∑

k,l∈V , l<k

(ak
ni − al

ni)
2 |∂V k

i ∩ ∂V l
i |

|xl − xk| ≤ cD1(~vn) → 0.

Thus, ak
ni − al

ni → 0 for all k, l with |∂V k
i ∩ ∂V l

i | > 0. Using a path argument we end up
with

ak
ni → âi = âk

i ∀k ∈ V, i = 1, . . . ,m.
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For (α, β) ∈ R we have

m∏

i=1

(aki

ni)
αi/2 −

m∏

i=1

(aki

ni)
βi/2 →

m∏

i=1

â
αi/2
i −

m∏

i=1

â
βi/2
i .

Because of

0 ≤ kαβ

( m∏

i=1

(aki

ni)
αi/2 −

m∏

i=1

(aki

ni)
βi/2
)2

|V k1
1 ∩ · · · ∩ V km

m | ≤ D1(~vn) → 0

for all ki ∈ V, i = 1, . . . ,m we have for â := (â1, . . . , âm) necessarily that

âα = âβ ∀(α, β) ∈ R. (3.17)

4. For k ∈ V, i = 1, . . . ,m, we introduce

ûk
i := ui|V k

i |gi

(
ln(âi) − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | v̂ l
0

)
if âi 6= 0, ûk

i := 0 if âi = 0. (3.18)

Due to 0 < g′i(θ) ≤ δ−1gi(θ) ≤ δ−2eθ the generalized mean value theorem ensures

|gi(x) − gi(y)|
|ex − ey| ≤ sup

θ∈[x,y]

g′i(θ)

eθ
≤ c, (3.19)

and we can estimate for ûk
i 6= 0 that

|uk
ni − ûk

i | ≤ c
∣∣∣gi

(
ln(ak

ni) − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | vl
n0

)
− gi

(
ln(âi) − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | v̂ l
0

)∣∣∣

≤ c
∣∣∣ exp

(
ln(ak

ni) − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | vl
n0

)
− exp

(
ln(âi) − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | v̂ l
0

)∣∣∣

≤ c
(
|ak

ni − âi| + (ak
ni + 1)

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | |vl
n0 − v̂ l

0|
)
→ 0.

Such an estimate for |uk
ni − ûk

i | is true also if ûk
i = 0.

5. According to (3.1), we set ûk
0 :=

∑m
i=1 qi

∑
l∈V

|V k
0 ∩V l

i
|

|V l
i
|

ûl
i and ~̂u := (~̂u0, ~̂u1, . . . , ~̂um).

Because of ~un − ~U ∈ Û we obtain ~̂u− ~U ∈ Û . Let ~v o
0 denote the solution to P~v o

0 − ~f = ~̂u0.

Since uk
n0 → ûk

0 we find P−1(~un0− ~̂u0) = ~vn0−~v o
0 → 0. Together with ~vn0 → ~̂v0 this yields

~̂v0 = ~v o
0 and P~̂v0 − ~f = ~̂u0. Thus, (â, ~̂v0) ∈ M̂, and according to (A8) and Lemma 3.6

this is possible only if âi > 0, i = 1, . . . ,m. Defining

ζ̂i := ln(âi), v̂ k
i := ζ̂i − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | v̂ l
0, i = 1, . . . ,m,

we get ~̂v := (~̂v0, ~̂v1, . . . , ~̂vm) ∈ R
M(m+1), ~̂u = Ê~̂v ∈ ~U + Û , and

∑

l∈V

Jkl
i |∂V k

i ∩ ∂V l
i | − Rk

i = 0, k ∈ V, i = 1, . . . ,m.
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Thus, (~̂u, ~̂v) is a solution to (SD). By Theorem 3.1 we conclude that ~̂v = ~v ∗ and ~̂u = ~u ∗.

6. Due to the convergence of the sequences (~vn0) and (~un) and Lemma 3.5 we have

λn :=

√
F̂ (~un) − F̂ (~u ∗) → 0 as n → ∞. (3.20)

Additionally (according to (3.16)) we find

1

Cn
=

1

λ2
n

D1(~vn) → 0 as n → ∞. (3.21)

We introduce the quantities

~wn0 :=
1

λn
(~vn0 − ~̂v0), ~yn :=

1

λn
(~un − ~̂u), bk

ni :=
1

λn

(
√

ak
ni

âi
− 1
)
, k ∈ V, i = 1, . . . ,m.

The relation

(
bk
ni − bl

ni

)2
=

(√ak
ni

âi
−
√

al
ni

âi

ζk
ni − ζ l

ni

)2
2

g′i(v
k
ni) + g′i(v

l
ni)

g′i(v
k
ni) + g′i(v

l
ni)

2

(ζk
ni − ζ l

ni)
2

λ2
n

and the estimate

(√ak
ni

âi
−
√

al
ni

âi

ζk
ni − ζ l

ni

)2
2

g′i(v
k
ni) + g′i(v

l
ni)

=

(
exp

ζk
ni
−ζ̂i

2 − exp
ζl
ni
−ζ̂i

2

ζk
ni − ζ l

ni

)2
2

g′i(v
k
ni) + g′i(v

l
ni)

≤ 1

2âi
exp{max{ζk

ni, ζ
l
ni}}

1

g′i(max{vk
ni, v

l
ni})

≤ c exp
{
c + max{vk

ni, v
l
ni}
}
{

1
δ2 exp{−max{vk

ni, v
l
ni}} if gi(max{vk

ni, v
l
ni}) < 1

1
δ if gi(max{vk

ni, v
l
ni}) ≥ 1

together with vk
ni ≤ c, k ∈ V guarantee that

∑

k,l∈V , l<k

(
bk
ni − bl

ni

)2 |∂V k
i ∩ ∂V l

i |
|xk − xl| ≤ c

D1(~vn)

λ2
n

→ 0.

Thus, bk
ni − bl

ni → 0 for all k, l with |∂V k
i ∩ ∂V l

i | > 0. By a path argument we end up with

bk
ni → b̂i ∀k ∈ V, i = 1, . . . ,m.

Lemma 3.4 ensures that ‖~wn0‖ ≤ c. Since

|yk
ni| =

|uk
ni − ûk

i |
λn

≤ |
√

uk
ni +

√
ûk

i |
|
√

uk
ni −

√
ûk

i |
λn

and |uk
ni|, |ûk

i | ≤ c (see step 2 and 4) we find by Lemma 3.4 that ‖~yni‖ ≤ c, i = 1, . . . ,m.

Thus there are subsequences and elements ~̂w0 and ~̂y such that

~wn0 → ~̂w0, ~yni → ~̂yi, i = 0, . . . ,m.
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7. In view of ~un − ~U ∈ Û we have ~yn ∈ Û . Passing to the limit we find that ~̂y ∈ Û , thus
(
∑

k∈V

ŷk
1 , . . . ,

∑

k∈V

ŷk
m

)
∈ S. (3.22)

By the definition of bk
ni and â we obtain for all (α, β) ∈ R,

â−α

(
m∏

i=1

(aki

ni)
αi/2 −

m∏

i=1

(aki

ni)
βi/2

)2

=
( m∏

i=1

(λnbki

ni + 1)αi −
m∏

i=1

(λnbki

ni + 1)βi

)2

=
(
λn

m∑

i=1

bki

ni(αi − βi)
)2

+ Qn(k1, . . . , kn)

(3.23)

where
|Qn(k1, . . . , kn)| ≤ cλ3

n(‖bn‖ + 1)p0 ∀k1, . . . , kn ∈ V,

0 ≤ p0 ≤ 2 max
(α,β)∈R

max
{ m∑

i=1

αi,
m∑

i=1

βi

}
.

Taking into account that λn → 0 as n → ∞, we find

1

λ2
n

|Qn(k1, . . . , kn)| ≤ cλn(‖bn‖ + 1)p0 → 0 as n → ∞ ∀k1, . . . , kn ∈ V.

This together with (3.21) and (3.23) gives

lim
n→∞

∑

k1∈V

· · ·
∑

km∈V

kαβ

( m∑

i=1

bki

ni(αi − βi)
)2

|V k1
1 ∩ · · · ∩ V km

m | = 0 ∀(α, β) ∈ R.

Therefore, for b̂ = (̂b1, . . . , b̂m) where b̂i = limn→∞ bk
ni, k ∈ V, we arrive at

b̂ ∈ S⊥. (3.24)

8. Letting n → ∞ in

yk
ni =

ui|V k
i |

λn

(
gi

(
ln(ak

ni) − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | vl
n0

)
− gi

(
ln(âi) − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | v̂ l
0

))

we find

ŷk
i = ui|V k

i |g′i
(
ln(âi) − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | v̂ l
0

)(
2b̂i − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | ŵ l
0

)

= ui|V k
i |g′i(v̂k

i )
(
2b̂i − qi

∑

l∈V

|V l
0 ∩ V k

i |
|V k

i | ŵ l
0

)
.

(3.25)

Lemma 3.1 and the equations satisfied by ~vn0 and ~̂v0, respectively, imply

c‖~vn0−~̂v0‖2 ≤ 〈P (~vn0−~̂v0), ~vn0−~̂v0〉 =

m∑

i=1

qi

∑

k∈V

∑

l∈V

|V k
0 ∩ V l

i |
|V l

i |
(ul

ni−ûl
i)(v

k
n0−v̂ k

0 ). (3.26)
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Dividing by λ2
n and passing to the limit as n → ∞, we obtain

c‖~̂w0‖2 ≤
m∑

i=1

qi

∑

k∈V

∑

l∈V

|V k
0 ∩ V l

i |
|V l

i |
ŷ l

i ŵ k
0 dx.

According to (3.22), (3.24) we have
∑m

i=1

∑
l∈V ŷ l

i b̂i = 0, and additionally using (3.25) we
derive from the previous inequality

c‖~̂w0‖2 ≤
m∑

i=1

∑

l∈V

ŷ l
i

(
qi

∑

k∈V

|V k
0 ∩ V l

i |
|V l

i |
ŵk

0 − 2b̂i

)

= −
m∑

i=1

∑

l∈V

ui|V l
i |g′i(v̂ l

i )
(
qi

∑

k∈V

|V k
0 ∩ V l

i |
|V l

i |
ŵ k

0 − 2b̂i

)2
≤ 0.

Thus it follows ~̂w0 = 0, b̂ = 0, and ~̂y = 0.

9. By the definition of λn (see (3.20)) and Lemma 3.5 we find

1 =
1

λ2
n

(
F̂ (~un) − F̂ (~u ∗)

)
≤ c
(
‖~wn0‖2 +

m∑

i=1

‖~yni‖2
)
.

Because of ~wn0 → 0, ~yni → 0 the right hand side converges to 0 as n → ∞. This
contradiction shows that the assumption made in the beginning of step 2 of the proof was
wrong, i.e., (3.15) holds, and the proof is complete. �

Now we are able to prove the main result of the paper which concerns the (monotone and)
exponential decay of the free energy on solutions to the discretized Problem (PD).

Theorem 3.3 We assume (A1) – (A10). Then the (fully implicit in time) discretization

scheme (PD) is dissipative, i.e. solutions (~u,~v) to (PD) fulfil

F̂ (~u(tn2)) ≤ F̂ (~u(tn1)) ≤ F̂ (~U ) for all tn1 ≤ tn2.

Moreover, there exists a λ > 0 such that

F̂ (~u(tn)) − F̂ (~u ∗) ≤ e−λtn
(
F̂ (~U) − F̂ (~u ∗)

)
∀n ≥ 1.

Proof. 1. According to Lemma 3.2, a solution (~u,~v) to the discrete Problem (PD) fulfills
the invariance property

~u(tn) − ~U ∈ Û , n ≥ 1.

2. F̂ is differentiable in arguments ~u, where uk
i > 0, k ∈ V, i = 1, . . . ,m. If ~u = Ê~v, then

~u = Ĝ′(~v) and ~v = F̂ ′(~u) and we obtain the inequality

F̂ (~w) − F̂ (~u) ≥ 〈~v, ~w − ~u〉 ∀~w ∈ R
M(m+1). (3.27)
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3. Let n2 > n1 ≥ 0 and λ ≥ 0. Using ~u(tr) = Ê~v(tr), (3.27), the discrete continuity
equations in (PD), and the definition of the discrete dissipation rate (3.7) we estimate

eλtn2

(
F̂ (~u(tn2)) − F̂ (~u ∗)

)
− eλtn1

(
F̂ (~u(tn1)) − F̂ (~u ∗)

)

=

n2∑

r=n1+1

{
(eλtr − eλtr−1)

(
F̂ (~u(tr)) − F̂ (~u ∗)

)
+ eλtr−1

(
F̂ (~u(tr)) − F̂ (~u(tr−1))

)}

≤
n2∑

r=n1+1

{
eλtr−1(eλ(tr−tr−1) − 1)

(
F̂ (~u(tr))− F̂ (~u ∗)

)
+ eλtr−1〈~u(tr)− ~u(tr−1), ~v(tr)〉

}

≤
n2∑

l=n1+1

eλtr−1 (tr − tr−1)
{
eλhλ

(
F̂ (~u(tr)) − F̂ (~u ∗)

)
− D̂(~v(tr))

}
.

(3.28)

4. Since D̂(~v) ≥ 0 for ~v ∈ R
M(m+1), we obtain by setting λ = 0 in (3.28) that

F̂ (~u(tn2)) ≤ F̂ (~u(tn1)) ≤ F̂ (~U) ∀n2 ≥ n1 ≥ 0.

5. Setting ρ := F̂ (~U )− F̂ (~u ∗) we find F̂ (~u(tr))− F̂ (~u ∗) ≤ ρ, ~u(tr) = Ê~v(tr) ∈ ~U + Û . This
means ~v(tr) ∈ N̂ρ for r ≥ 1. Theorem 3.2 supplies a cρ > 0 such that (3.14) is fulfilled.

Choosing now λ > 0 such that λeλ hcρ < 1 (see (A10), too) and n1 = 0, the estimate (3.28)
proves the second part of the theorem. �

Remark 3.2 Gajewski and Gärtner [5] use a Crank-Nicholson like time discretization to
show the dissipativeness for a discrete scheme for a nonlocal phase segregation model.
This there is necessary due to the fact that the free energy functional in that model is not
convex. In our convex situation we can apply an Euler backward scheme because we can
exploit inequality (3.27) to proceed in the proof of Theorem 3.3.

4 Remarks on the numerical treatment of heterostructures

We consider a 2D heterostructure, where in subregions the material parameters are con-
stants and intend to apply the techniques from Section 3 to this situation in a suitable
way. Let Ω ∈ R

2 be composed by a finite number of connected, bounded, nonempty poly-
hedral open subsets ΩI , I ∈ I, with common edges ΓAB = ΩA ∩ΩB, Ω = ∪I∈IΩI . On ΩI

we assume constant material parameters uI
i , kI

αβ , S
I
i , I ∈ I (see (A9), too). The mobility

and dielectric permittivity matrices S
I
i have the form

S
I
i = QI

i
T

diag (µ1I
i , µ2I

i )QI
i ,

where 0 < µ1I
i , µ2I

i < c are constants and QI
i are orthogonal 2 × 2 matrices, i = 0, . . . ,m,

I ∈ I. We define

ϕI
0 := max

i=0,...,m
arccos

min(µ1I
i , µ2I

i )

max(µ1I
i , µ2I

i )
, ϕ∗

0 := max
I∈I

ϕI
0. (4.1)
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ΩA

ΩB

ΓAB

ΩA

ΩB

ΓAB

Figure 2: Discretization near a heterostructure interface ΓAB. Left: Compensation of
fluxes through the heterostructure interface by two opposite laying Voronoi boxes is guar-
anteed. Right: Compensation of fluxes by two opposite laying Voronoi boxes only can not
be achieved.

We consider a grid {xk : xk ∈ Ω, k = 1, . . . , M̃} which respects all interfaces ΓAB,
A, B ∈ I, with |ΓAB | > 0. Especially, the end points of ΓAB are grid points. To apply
the methods from Section 3 we want to evaluate fluxes through inner heterostructure
interfaces by compensation arguments for the fluxes at the boundary of Voronoi boxes
laying opposite to each other with respect to the interface. Figure 2, left shows the
desired situation, the compensation can be achieved by the two opposite laying Voronoi
boxes only. Figure 2, right depicts an undesired situation which must be excluded. In
[10, Lemma 4.2, Remark 4.3] we proved the following criterion for the grid such that
compensation by the two opposite laying Voronoi boxes only is possible for all Voronoi
boxes defined by the different S

I
i , i = 0, . . . ,m, I ∈ I.

For A, B ∈ I with |ΓAB | > 0 we denote by κAB the quotient of the maximal Euclidian
distance of two directly neighboring grid points on the heterostructure interface ΓAB and
of the minimal Euclidian distance of inner grid points to the heterostructure interface
ΓAB. Then the condition

κ := max
A, B∈I, |ΓAB |>0

κAB ≤
√

2 − 2 sin ϕ∗
0 (4.2)

where ϕ∗
0 is defined in (4.1) allows to handle general heterostructures and boundary con-

ditions. The severe restriction (4.2) on the placement of vertices on and close to interfaces
and boundaries guarantees that the integration procedure described in Section 3 can be
applied independently on each ΩI and the fluxes and potentials fulfill the continuity con-
ditions.
For QI

i = QI and for straight line interfaces the restriction can be seriously relaxed. But
still the largest eigenvalue ratio for each ΩI defines a forbidden region for interior vertices
around the interfaces or boundaries.
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