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Structural Modelling
The overall structural complexity of Bi14Rh3I9 can be reduced by recovering the symmetry of the QSH layer [(Bi4Rh)3I]2+. In
the resulting model, a single QSH layer is isolated and sandwiched between iodide ions that substitute for the [Bi2I8]2− spacers.
This isolated-layer structure (ILS) has the hexagonal layer symmetry p6/mmm (Figure 1). We compensated the changes in
the total charge of the QSH layer that are induced by the modification of the spacer layer by reducing the charges of the
spacer iodide ions down to −0.25 via VCA: [(53.75I)4]−[(Bi4Rh)3I]2+[(53.75I)4]−. Here, the notation ZI means an iodine-like
pseudo-atom with the nuclear charge Z. The resulting Rh-ILS was relaxed using the FPLO program package under the restricted
p6/mmm layer symmetry and by varying the cell axes with a step width of 0.1Å. All atomic positions were optimised on each
step with a convergence criterion of 10−3eV/Å. The same procedure was used for all other model structures discussed in this
paper.

Already the fact that the density-of-states (DOS) in the original compound Bi14Rh3I9 close to the Fermi-level is dominated
by the DOS of the QSH-layer is a strong support for the creation of an ILS. Furthermore, comparing the features of the original
DOS and the ILS-DOS shows very good agreement (Figure S1). Direct comparison of the electronic band-structure of the ILS
with the one of the parent compound Bi14Rh3I9 is achieved by unfolding onto a hexagonal BZ (Figure S2). The unfolded bands
close to the Fermi-level can easily be identified in the band-structure of the hexagonal Rh-ILS (Figure S2). Also the topological
character of the various band gaps carries over directly to the ILS, in spite of a slight relative shift of the bands resulting in a
small increase of the lower topological gap at the expense of the upper one. This confirms that the influence of the spacer as
well as of the stacking of the QSH layers on the electronic structure is small. Having established a reliable method to model the
essentials of the Bi14Rh3I9 electronic structure, we now replace Rh by the other platinum group elements (Ru, Os, Ir, Pd, Pt)
in the QSH layer, keeping the number of valence electrons the same via the VCA and calculate the electronic structure and
the topological invariants for the corresponding M-ILSs. The atomic distances are almost the same for all relaxed M-ILSs
(Figure S3).
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Figure S1. Total density of states (DOS, black) for the original compound Bi14Rh3I9 (left) and the isolated layer model
(right) with the partial DOS for the intermetallic layer (red).
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Figure S2. Electronic band-structure and unfolded electronic band-structure for Bi14Rh3I9 (left) compared to the electronic
band-structure of the model (right), in a scalar-relativistic (upper line) and a full-relativistic approach (lower line), respectively.
For the gap at and above the Fermi-energy the topological invariants are given.
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Figure S3. Bond lengths for the Bi-M bonds and all Bi-Bi bonds in the ILSs.
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Electronic Structure

Ru Rh Pd

E
–

E
F

/ 
e
V

−1.0

−0.5

0.0

0.5

1.5

1.0

−1.0

−0.5

0.0

0.5

1.5

1.0

M Γ K M M Γ K M

−1.0

−0.5

0.0

0.5

1.5

1.0

−1.0

−0.5

0.0

0.5

1.5

1.0

E
–

E
F

/ 
e
V

M Γ K M

Os Ir Pt

−1.0

−0.5

0.0

0.5

1.5

1.0

−1.0

−0.5

0.0

0.5

1.5

1.0

E
–

E
F

/ 
e
V

M Γ K M M Γ K M

−1.0

−0.5

0.0

0.5

1.5

1.0

−1.0

−0.5

0.0

0.5

1.5

1.0

E
–

E
F

/ 
e
V

M Γ K M

Figure S4. Scalar-relativistic band-structures for the ILS-series, all with a valence-electron count equal to the one in the
original QSH-layer [(Bi4Rh)3I]2+, arranged as in the periodic table of elements.
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Figure S5. Partial DOS of the transition element d-states and the bismuth 6p-states for the six models with a valence-electron
count equal to the one in the original QSH-layer [(Bi4Rh)3I]2+.
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Ru Rh Pd
Band # Γ M M M Z2

539 -1 -1 -1 -1 0

541 1 1 1 1 0

543 -1 1 1 1 1

545 -1 1 1 1 1

547 -1 1 1 1 1

549 -1 -1 -1 -1 0

551 -1 1 1 1 1

553 -1 -1 -1 -1 0

555 -1 -1 -1 -1 0

557 -1 1 1 1 1

559 1 1 1 1 0

561 1 1 1 1 0

563 1 -1 -1 -1 1

565 1 -1 -1 -1 1

Band # Γ M M M Z2

539 -1 -1 -1 -1 0

541 1 -1 -1 -1 1

543 -1 1 1 1 1

545 1 1 1 1 0

547 1 -1 -1 -1 1

549 -1 -1 -1 -1 0

551 1 1 1 1 0

553 1 -1 -1 -1 1

555 -1 -1 -1 -1 0

557 -1 1 1 1 1

559 -1 1 1 1 1

561 1 1 1 1 0

563 1 -1 -1 -1 1

565 1 1 1 1 0

Band # Γ M M M Z2

539 -1 -1 -1 -1 0

541 1 -1 -1 -1 1

543 1 1 1 1 0

545 1 1 1 1 0

547 -1 -1 -1 -1 0

549 1 -1 -1 -1 1

551 1 1 1 1 0

553 -1 -1 -1 -1 0

555 1 -1 -1 -1 1

557 -1 1 1 1 1

559 -1 1 1 1 1

561 1 -1 -1 -1 1

563 1 -1 -1 -1 1

565 1 1 1 1 0

Os Ir Pt
Band # Γ M M M Z2

581 -1 1 1 1 1

583 -1 1 1 1 1

585 1 -1 -1 -1 1

587 1 -1 -1 -1 1

589 -1 1 1 1 1

591 1 -1 -1 -1 1

593 -1 -1 -1 -1 0

595 1 -1 -1 -1 1

597 1 1 1 1 0

599 1 -1 -1 -1 1

601 -1 -1 -1 -1 0

603 -1 -1 -1 -1 0

605 -1 1 1 1 1

607 -1 1 1 1 1

Band # Γ M M M Z2

581 1 1 1 1 0

583 1 -1 -1 -1 1

585 -1 -1 -1 -1 0

587 1 -1 -1 -1 1

589 1 1 1 1 0

591 1 1 1 1 0

593 1 -1 -1 -1 1

595 1 1 1 1 0

597 1 1 1 1 0

599 -1 1 1 1 1

601 -1 -1 -1 -1 0

603 -1 -1 -1 -1 0

605 -1 -1 -1 -1 0

607 -1 1 1 1 1

Band # Γ M M M Z2

539 -1 -1 -1 -1 0

541 1 -1 -1 -1 1

543 1 1 1 1 0

545 -1 1 1 1 1

547 1 -1 -1 -1 1

549 1 -1 -1 -1 1

551 1 1 1 1 0

553 -1 -1 -1 -1 0

555 1 -1 -1 -1 1

557 -1 1 1 1 1

559 -1 1 1 1 1

561 1 1 1 1 0

563 1 -1 -1 -1 1

565 1 1 1 1 0

Table S1. Calculated Z2 invariants at the four time-reversal-inversion-invariant k-points (in two dimensions) for all ILSs with
a valence-electron count equal to the one in the original QSH-layer [(Bi4Rh)3I]2+ (blue: filled band; light blue: partially filled
band; orange: empty band). Energy gaps are marked with a black line.

electron-count as in the Rh-ILS +2 electrons per sum formula
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Figure S6. Full-relativistic band-structures for the Pd- and Pt-ILS for different valence electron counts in the intermetallic
layer with the calculated 2D-Z2 invariants for gaps close to the Fermi-energy.
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Origin of the topological nature
The tight-binding description
The essential parts of the Bi-M-I system can be understood by turning on interactions step by step.

For this purpose a minimal tight-binding (TB) model was constructed, which contains the Bi-couplings between Bi atoms
in the triangle and between the triangles (the in-cube hopping), the Bi bilayer hopping in vertical direction, the Rh-Rh direct
interaction and the NN Bi-Rh hopping. With this minimal model, which already contains a sizeable number of parameters the
scalar-relativistic band-structure of all 6 systems can be reproduced such that all important features around the Fermi level
are reproduced, most important of which are the energy position of the Dirac-cone at the K-point and the formation of band
crossings (second Dirac-cone) at the bottom of the conduction bands at the Γ-point. The TB-parameters of the model are
derived from maximally projected Wannier functions obtained from scalar-relativistic FPLO calculations and are set-up with
scaling factors to smoothly switch on various interactions.

The basic ingredient of the system are the planar networks of triangles and cubes formed by the Bi atoms. We first focus
on the pz orbitals, since those form the Dirac-cone at the K-point in graphene. It turns out that the in-triangle interaction
(−0.5eV) is larger than the inter-triangle (in-cube) interaction (−0.3eV), which corresponds to the slightly larger Bi-Bi distance
between triangles as compared to within the triangles. With only the Bi pz interaction non-zero and without Bi-Bi bi-layer
(BL) interaction the system has effectively 6 bands. These form two Dirac-cone like crossings at the K-point and two doubly
degenerate band crossings at the Γ-point. If one thinks of the orbitals in each triangle as a single object one obtains a graphene
lattice (of Bi-triangles). If all Bi pz orbitals form a maximally symmetric linear combination (equal phase) the two resulting
triangular molecular orbitals (MO) behave as the carbon pz orbital would do. At the K-point a twofold degeneracy must occur,
which leads to the scalar-relativistic Dirac point. To corroborate this picture we plot the band-structure resulting from the
interaction set-up discussed above coloured by band weights of the triangular molecular orbital in Figure S7.

Figure S7. The Bi-pz single layer system with band character of the triangular molecular orbital in red (light gray) and
general pz character in black. Right panel: a sketch of the triangular molecular orbital containing 3 pz-orbitals of equal phase.

As can be seen the 6 bands split into two band complexes of 2 and 4 bands respectively of which the lower 2-band manifold
has a dispersion very similar to the dispersion of the 2pz-bands in graphene, only that the MO of the three Bi pz orbitals at the
triangle corners replaces the carbon 2pz.

Now, we switch on the Bi pz-Bi pz bilayer coupling, which is of the order 1.9eV and hence much larger than the couplings,
which form the single layer band-structure. We therefore essentially expect a doubling of the single-layer band-structure with a
large gap. In our minimal model the inclusion of only vertical bi-layer coupling leads to an exact doubling without any further
hybridisations. We again use the projection onto single-atom like molecular orbitals. This time however the MO consist of 6
atoms belonging to one of the two triangular Bi-prisms. Within the prism we can chose the upper three atoms to be in phase or
in anti-phase to the lower three atoms, which basically corresponds to a bi-layer bonding (B)/anti-bonding (AB) molecular
orbital (Figure S8).

What matters here is that later we will see that the bi-layer anti-bonding MO ends up at the Fermi energy and forms a
Dirac-cone. This makes the connection to graphene more striking since the effective BL-AB MO has an all over pz-like nature.
(Although this is probably not necessary for the symmetry argument which leads to the cone at the K-point given that we have
two such cones: B and AB.)

We extracted the TB parameters independently for all 6 systems. However, it turns out that they have rather similar sets of
parameters. The differences, which turn out to be most significant are the onsite energies of the Bi pz and px,y orbitals and
of the transition metal (M) d-orbitals. For the M onsite terms and for the px,y orbitals the various onsite energies fall into a
certain range with the energy order for the M d-orbitals being dx2−y2 < dz2 < dxy < dyz,xz (see Table S2). From the difference
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Figure S8. The Bi-pz double layer system with bi-layer-bonding and anti-bonding triangular molecular orbital weights. The
sketch shows a side view of the unit cell with a BL anti-bonding and bonding triangular MO.

between the pz and d onsite energies one can conclude the order of compounds in terms of varying pz-d separation: Os, Ru, Ir,
Rh, Pt, Pd. The actual band-structures and the topological properties also follow this ordering scheme. (The order of Pd and Pt
is not very conclusive.) For instance the energy position of the scalar-relativistic Dirac-cone at the K-point is determined by this
sorting order of the compounds.

pz − pz BL M d-onsite Bi pz-onsite Bi pxy-onsite
Ru 1.84 −0.4 . . .−1.0 −0.4 −0.18 . . .0.0
Rh 1.92 −1.3 . . .−1.8 −0.07 −0.13 . . .0.07
Pd 1.79 −2.5 . . .−2.8 0.07 −0.18 . . .0.23
Os 1.82 −0.18 . . .−0.97 −0.41 −0.17 . . .0.06
Ir 1.88 −1.15 . . .1.82 −0.18 −0.15−0.06
Pt 1.76 −2.3 . . .−2.8 0.0 −0.18 . . .0.18

Table S2. Most distinguishing terms in the TB-models.

Because of the similarity of the parameter sets it is possible to mimic the actually calculated models of the whole series of
compounds using only the Rh-model simply by shifting the onsite energies of the d-orbitals relative to the Bi orbitals. There
are small differences between the native model and the modified Rh-model but the features are certainly similar in both cases.
After all we consider a minimal model only, which shows small deviations from the real band-structure calculations. This
approach allows us to follow the development of the band-structure throughout the whole series by using just one model but
with varying M d-orbital onsite energies. Note, that in the following we do not fix the Fermi level to account for the proper
band filling. We only focus on the development of the band-structure with respect to varying parameters.

Figure S9. Comparison of (a) the actual scalar-relativistic FPLO band-structure with (b) the native minimalistic TB-model for
the Ru-system and with (c) the Rh TB-model with Ru-like 4d-onsite energies.

For the Ru-system Figure S9 shows the comparison between the actual FPLO calculation, the native minimalistic TB-model
derived from the Ru calculation and the Rh TB-model with altered Ru-like 4d-onsite energies. The three band-structures all
show the important feature that the cone-forming pz bands are separated by a gap from the higher lying bands. It shall be noted
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here that the pz bands near the Fermi energy contain px,y and 4d-character as well (hidden under the pz weight). These bands
are not pure Bi pz-bands. In fact the development is such that the pz-character decreases when going from Ru to Pd and Os to
Pt. This can be understood from a simple model as discussed below.

An unfortunate fact is that the Bi px,y-orbitals heavily mix into the other bands, which makes it impossible to ignore them.
A pure Bi-pz, M-d model is very appealing in its simplicity but does not reproduce the qualitative features and trends of the
series.

Owed to the complexity of the compounds the parameter space of even a minimalistic model is rather large. There are many
possible ways of switching on interactions, some of which obfuscate the formation of the cones at the K-point. We chose to
cluster interaction parameters into groups and to scale/shift the corresponding interactions simultaneously (e.g. we scale all
interactions between Bi px,y orbitals and all other orbitals by a single factor.)

Figure S10 shows some stages of the development of the band-structure with switching on of certain interactions. Figure
S10 a) shows the starting point with Ru-like 4d-onsite energies and full d-d and pz-pz couplings. All other couplings are zero.
The pz-framework bands (in red) discussed above are clearly visible. In b) we switched on all couplings except for d − pxy and
d − pz. As can be seen the pxy bands do not form a nice gap, which maybe is not so surprising since graphene without a 2s
orbital would have 2px,y bands crossing the Fermi energy. It is the sp2 hybrid formation, which creates the huge gap between
the bonding and anti-bonding 2px,y bands in graphene. In Bi the 6s bands are fully filled and hence cannot form sp2 hybrids as
is possible for carbon. However, the BL-anti-bonding triangle MO-bands at +1eV are clearly visible.

Figure S10. Model with Ru d-onsite energies for various couplings. Explanation in text.

When switching on the M d-px,y interactions (Figure S10 c) the px,y bands around the Fermi level become hybrids with the
d-orbitals, which pushes the px,y spectral weight away from the Fermi level. The MO-pz bands are still discernible although the
cone at the K-point got hybridised away. Instead we get two tiny cones of mixed character (Figure S11(a)).

At last, we slowly increase the coupling between the d-orbitals and the pz-orbitals in a few steps. As shown in Figure S11,
the 4d-pz coupling starts to separate the BL-AB MO bands. The lower one moves down and forms a new cone at the K-point
with the help of px,yand 4d hybridisation, while all the time retaining the pz character. In contrast the BL-bonding MO bands at
−3eV stay rather untouched (not shown). This is certainly partially due to the energy separation between the 4d-bands (band
centre at around 0eV for Ru) and the bonding MO bands (at −3eV).

However, an insight can be gained from a simple 3-level system, which mimics the situation of the combined Bi-pz M-d
system. Let there be two levels at 0 with a BL interaction of B = 2 eV (Bi pz-system) and one level at some energy ∆ with a
coupling to the two levels of t = 0.4eV (M-d-Bi-pz coupling). The Hamiltonian is

H =

 0 B t
B 0 t
t t ∆


and has the solutions shown in Figure S12(a). One peculiarity is that the bonding part of the 2-level (Bi) sub-system does not
interact with the third level (M), which could be an additional reason for the absence of strong interaction between the d-system
and the bonding MO in the TB-model discussed above. The Ru system corresponds to ∆ = 0 in this simple scheme, while Rh
corresponds to ∆ =−1.3 and Pd to ∆ =−2.5. It is clear that the amount of Bi weight in the lower of the two hybridizing levels
(blue) decreases when decreasing ∆ (going from Ru to Pd), which is one reason why the Bi-pz weight in the cone at the K-point
decreases when increasing the nuclear charge and hence lowering the d-band centre (see Figure S13f).

In Figure S13 the M d-orbital onsite energies are shifted relative to the pz band centre from ∆ = 0.0 (Ru) over ∆ =−0.8
(Ir) ∆ =−1.3 (Rh) to −2.3 (Pd,Pt). (These ∆-element correspondences are only approximately related to the parameters in
Table S2, and chosen such that the band-structure around the cone in the resulting model most resembles the actual FPLO
calculations.) Clearly the Dirac cone at the K-point stays in the gap but it’s upper band reconnects with the conduction bands
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Figure S11. Model with Ru d-onsite energies switching on the final d-pz coupling.

at the Γ-point. Interestingly the touching happens to occur for the Rh system, such that another “cone” with pz character
appears at the Γ-point. For ∆ =−2.3 (Pd) the pz spectral weight has risen even further than the conduction band bottom, while
the cone at the K-point starts immersing into the valence band continuum. In the process of tuning from “Ru” to “Pd” the
BL-anti-bonding triangular MO bands around +1eV are restored again, while the bonding counterparts at −3eV are weakened
since they fall into the M d-band centre. After all the 3-level model is rather simplistic. It however predicts that the energy
position of the BL-bonding and anti-bonding MO bands stays rather constant in the parameter region applicable for our systems
([−2.5 . . .0.0]). This is illustrated in another series of pictures with the same parameter variation as in Figure S13 but this time
the triangular MO spectral weight is shown. This also clearly shows that the cone at the K-point is not merely a shifted version
of the MO-bands of Figure S8 but rather created through hybridisation with the other orbitals. Especially the px,y system cannot
be ignored. For instance for Ru parameters without the px,y bands there would be no gap. A mechanism of how the bands
forming the cone at the Fermi level come about is sketched in Figure S12(b). If the BL levels have dispersion the third level
(d-orbital) will lead to (modified) replicas of the BL bands at energies corresponding to the 3-level spectrum.

The evolution of the system discussed above shows how the graphene like part of the simple Bi pz framework band-structure
turns into the cones observed in the scalar-relativistic band-structures of our series of systems. The cone is a consequence of
several hybridisations but essentially contains spectral weight of the MO, which clusters 6 Bi pz orbitals together. Because of
this one can speculate that the similarities with graphene also transfer to the topological properties of the system.

Finally, as an illustration we show the real space picture of a band with BL-triangular MO weight at the Γ-point in Figure
4d.

The topology
Based on the analysis of the band-structure we come to the conclusion that the Dirac-cone occurring at the K-point in a
calculation without spin orbit coupling is related to an effective molecular orbital which combines 6 Bi 6pz orbitals into a
pseudo-carbon pz orbital . Because of the known topological properties of the graphene lattice, we speculate that the topological
nature of the Bi-M-I compounds is similarly related to the lattice arrangement of the pseudo pz MO. This would indicate that
the Dirac-cones must evolve into a gapped band-structure under inclusion of spin-orbit coupling. Indeed we observe that the
cones follow this scheme although in a more complicated matter. One complication arises from the hybridisation with other
bands which leads to the fact that the topological active bands need not be the bands, which form the cone. Topological active
we call bands, for which formally the Z2 invariant switches from trivial to non-trivial or back provided it was the last band
below a gap. Of course this is not always given. One can formally calculate the invariants using the Fu&Kane formula for
inversion symmetric systems. If the last band for which we multiply the parities is separated by a gap from higher bands, the
phase continuity condition for all bands below can be fulfilled and the thus calculated invariant is correct. If the last included
band is not separated by a gap from bands above, we still calculated the parity changes but the phase continuity condition can
be fulfilled after a few bands above the last included if a gap opens above those bands. In such a case the topology effectively
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Figure S12. (a): the spectrum of the 3-level system d-system onsite energy ∆. (b): schematics of a three level system with
additional dispersion.

changes at the lower gap boundary although the band inversions/parity changes happened several bands below the gap. With this
definition of topological active bands we can at least mark those bands above which the next gap will have changed topology. It
turns out that in the Bi-M-I-systems many topologically active bands have Bi pz character. Of course in such a multi bands
system there is no reason why other bands could not be topologically active.

The series of compounds can now be understood by observing the bands with Bi pz spectral weight around the Fermi level.
By tuning the spin-orbit coupling to a small value one can compare the full relativistic bands with the nearly scalar-relativistic
bands. Figure 3 is a sketch of the most distinguished cases. For the Os and Ru compounds the two bands forming the cone at
the K-point both are topologically active. Above the higher of the two bands there is a gap. With increasing SO coupling the
cone develops into a gap and two non-crossing topologically active bands develop. The first switches to non-trivial and the
second back to trivial. Since there is a gap above the second band the topologically non-trivial energy region is quite narrow.
In fact the two bands are so close that no real gap opens. Instead we just have non-crossing bands forming a gap “warped in
k-space”. The next compound in the order of bonding features (explained in Sec. The tight-binding description ) would be Ir.
In this case the cone forming bands cover a larger energy region. Yet there still persists an energy gap above the cone forming
bands. Increasing SO coupling opens the cone and two topologically active bands form. Owed to the larger energy spread of
the original cone bands a real topologically non-trivial gap appears between the two bands.

This brings us to the remaining three compounds Rh, Pt and Pd. They are essentially different in that the cone forming
bands spread so widely that a second band crossing (cone-like) happens, this time at the Γ-point. This second cone allows
for a second band inversion to take place at the Γ-point cone, which now means that the lower band forming the cone at K is
active but the upper one is not. Instead, the bands forming the upper part of the Γ-point cone are topologically active. Now, SO
coupling will gap both cones without changing the “activeness”, which results in a parasitic topologically in-active band in
a large gap between active bands stemming from the lower part of the K-cone and the upper part of the Γ-cone. This is the
origin of the large non-trivial gap for the Rh, Pt and Pd compounds. In fact it seems that the Rh system is just at the verge of
this scenario for Rh (Sec. The tight-binding description). The pz spectral weight is moving to higher and higher energy in the
conduction bands when going from Rh to Pt and Pd. At the same time the same weight in the occupied sector moves lower,
which results in more and more bands being parasitic bands within a large non-trivial gap along this series.

To conclude, for a large topological gap with possibly several trivial (parasitic) bands within the gap a double cone structure
at the K and Γ-points is needed, which in turn depends on the position of the Bi pz anti-bonding spectral weight, which evolves
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Figure S13. Model with varying onsite energies. ∆ = 0.0 corresponds to Ru, ∆ =−0.8 to Ir, ∆ =−1.3 to Rh and ∆ =−2.3
to Pd.

favourably with a downward shift of the M d-band centre.
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Figure S14. Model with varying onsite energies. The spectral weight of the BL-bonding and anti-bonding triangular MO is
shown.
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