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Abstract A generalized theory of electroweak interaction
is developed based on the underlying geometrical structure
of the tangent bundle with symmetries arising from trans-
formations of tangent vectors along the fiber axis at a fixed
spacetime point given by the SO(3,1) group. Electroweak
interaction beyond the standard model (SM) is described by
the little groups SU (2)⊗Ec(2) (Ec(2) is the central extended
Euclidian group) which includes the group SU (2)⊗U (1) as
a limit case. In addition to isospin and hypercharge, two addi-
tional quantum numbers arise which explain the existence of
families in the SM. The connection coefficients yield the SM
gauge potentials but also hypothetical gauge bosons and other
hypothetical particles as a Higgs family as well as candidate
Dark Matter particles are predicted. Several important con-
sequences for the interaction between dark fermions, dark
scalars or dark vector gauge bosons with each other and with
SM Higgs and Z-bosons are described.

1 Introduction

The formal equivalence of gauge theories with the geometry
of fiber bundles has been recognized since the 1960s [1–5]. In
the fiber bundle formalism, gauge potentials are understood
as a geometrical entity—the connections on the principal
bundles, and matter fields are described by associated fiber
bundles. The geometrical interpretation of gauge theories by
the mathematical fiber bundle theory is a beautiful and math-
ematically profound concept. However, in earlier investiga-
tions the transformation groups of the fibers were taken from
the phenomenologically determined internal gauge groups
of the Standard Model (SM). Therefore, up to now the fiber
bundle interpretation yields mainly a re-interpretation of the
gauge fields and did not effectuated a physical theory beyond
the SM.

a e-mail: jherrman@mbi-berlin.de

In this paper we consider the general hypothesis that the
fundamental physical interactions can be described within
the geometrical structure of the most fundamental fiber
bundle—the tangent bundle, and gauge transformations can
be identified with transformations at a fixed spacetime point
along the tangent vector axis leaving the scalar product invari-
ant. This means the gauge group is not assumed for phe-
nomenological reasons but is taken to arise self-consistently
from the invariance of the scalar product with respect to tan-
gent fiber transformations described by the group SO(3, 1).
Since the action of this group is not transitive, the vector space
decomposes into different orbits and the most general (pro-
jective) irreducible representations of SO(3,1) can be found
by the little groups SU (2), Ec(2) and SU (1, 1) where the
group Ec(2) is the central extended Euclidean group. Based
on differential geometry on the tangent bundle with covariant
derivatives determined by the generators of the transforma-
tion group G = SU (2)⊗ Ec(2) and corresponding connec-
tion coefficients (gauge potentials) a generalized theory of the
electroweak interaction is derived. In addition to the internal
quantum numbers (IQN) of isospin and hypercharge, the Ec-
charge � and the family quantum number n arise which could
elucidate the existence of families in the SM. In this approach
the known Z and W± gauge bosons can be found again, but
in addition new extra Ec and B± gauge bosons and other
hypothetical particles as e.g. a family of Higgs particles are
predicted. A notable feature of the theory presented is the pos-
sibility of identifying candidate stable or unstable hypothet-
ical Dark Matter (DM) vector bosons, DM scalars and DM
fermions with zero hypercharge and zero isospin but nonzero
Ec-charge � �= 0 without additional phenomenological
model assumptions. Here we present only the basics, specific
in-depth observable consequences are beyond the scope of
the present paper. Note that the more general transformation
group SO(3, 1)�T (3, 1) (where T (3, 1) is the translational
group and � represents the semi-direct product) includes
teleparallel gravity into the tangent bundle geometry based
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on translational transformations T (3, 1) of the tangent fibers.
According to this approach the interpretation of the SO(3, 1)
connection coefficients as electroweak gauge potentials is
compatible with teleparallel gauge gravity theory, which is
fully equivalent to Einstein’s general relativity theory.

2 Differential geometry on the tangent bundle

We start with a brief description of the geometry of the tan-
gent bundle on a manifold (see e.g. [6]). The tangent space
Tx (M) at the point x on the spacetime manifold M is the set
of all tangent vectors spanned by frame vectors in the coor-
dinate basis eμ = ∂μ (μ = 0, 1, 2, 3). The tangent bundle is
the union of all tangent spaces at all points x of the mani-
fold M : T M = ⋃

x∈MTx (M). In a coordinate description a
point in T M is described by the numbers of pairs X = (x, u)
with x = {x0, x1, x2, x3) as the coordinates of the spacetime
manifold and u = {u0, u1, u2, u3) are the coordinates of the
tangent vectors. Thus the tangent fiber bundle geometry intro-
duces four additional variables u for the description of the
tangent fiber. To aid understanding, it is convenient to con-
sider M as a pseudo-Riemannian spacetime manifold with
indefinite metric gμν(x). Besides the frame vectors in the
coordinate basis eμ = ∂μ (μ = 0, 1, 2, 3), one can introduce
the tetrads as another geometric object on the tangent space:

ea = eμa (x)∂μ. (1)

Each vector described in the coordinate basis eμ = ∂μ can be
expressed by a vector with respect to the tetrad frame basis
ea according to the rule

vν = eνa(x)v
a . (2)

The subscriptsa, b, . . .number the vectors (a, b = 0, 1, 2, 3)
and μ their components in the coordinate basis. The dual
basis of the frame fields ea are cotangent frame 1-forms ea =
eaμdx

μ satisfying the orthogonality relation eμa (x)eaν (x) =
δ
μ
ν . By using the tetrads of the pseudo-Riemannian mani-

fold, the scalar product of two vectors is given by the Lorentz
metric:

(v, u) = gμν(x)v
μuν = gμν(x)e

μ
a (x)e

ν
b(x)v

aub

= ηabvaub, (3)

where ηab = diag(−1, 1, 1, 1) is the metric of the Minkovski
space.

The geometric properties of manifolds are usually related
to the invariance of certain geometrical structure relations
under the action of certain transformation groups. The def-
inition of the scalar product (3) is the governing structure
relation defining the geometry of the tangent bundle. Tan-
gent vectors manifest two kinds of transformations which do

not change the scalar product in (3). Under general coordi-
nate transformations of the spacetime manifold xμ → yμ =
yμ(x) vectors transform as v′μ(x) = (∂yμ/∂xν)vν(x). On
the other hand, the vector components in the tetrad frame
basis remain unchanged: v′a(x) = va . A second type of
transformations exists that does not change the scalar prod-
uct. These are transformations at a fixed point x of the space-
time manifold M transforming the tangent vectors along the
tangent fiber directions as follows:

v′a = T a
b (x)v

b, éaμ = (T a
b (x))e

b
μ,

éμa (x) = (T b
a (x))

−1eμb (x), (4)

where T a
b (x) are matrices satisfying the conditions

ηabT a
c T

b
d = ηcd . On the other hand, the tangent vectors

which refer to the coordinate frame remain unchanged:
v′μ = vμ. The transformation group of tangent vectors along
the tangent fiber is the SO(3, 1) group of special linear trans-
formations, with matrix elements T a

b (x) ∈ SO(3, 1) depend-
ing on the spacetime point x as a parameter.

Note that the transformation of the tangent vectors by the
group SO(3, 1) is not the most general transformation. Actu-
ally, the fact that the group SO(3, 1) leaves the scalar product
of tangent vectors invariant is not sufficient because we need
the infinitesimal tangent vector line elements to be invariant.
We have

(dv, du) = gμν(x)dv
μduν = ηabdvadub. (5)

This allows us to add constant translations to the transforma-
tions in (4):

v′a = T a
b (x)v

b + aa(x), (6)

and this leads to the more general transformation group
SO(3, 1)� T (3, 1).

Poincaré transformations and the transformation group (6)
of tangent vectors T a

b (x) in the tetrad basis are described by
the same group SO(3, 1)� T (3, 1) but the two have a prin-
cipally different geometrical and physical meaning: the for-
mer transforms the spacetime coordinates of a flat manifold
while the latter describes transformations within the tangent
fiber F = Tx (M) leaving the spacetime point x unchanged.
The fact that Poincaré transformations (defined as coordi-
nate transformations of spacetime in a flat manifold) and the
transformation (6) are based on the same mathematical group
could lead to confusion, which can be avoided if the princi-
pally different meaning of the two transformations is taken
into account. As an example, the Coleman–Mandula theorem
[7] states that the combination of spacetime symmetries with
internal symmetries is not possible in any but the trivial way.
And this is what here is the case, the group SO(3, 1) in (4)
or SO(3, 1)� T (3, 1) in (6) are the internal groups and they
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are combined with spacetime transformations as explained
below (3) only in a trivial way.

3 Connections on the tangent bundle and teleparallel
gauge gravity theory

The geometric construction of tetrads is closely linked to the
conceptional basis of gravity theories and its extensions to
gravity gauge theories. To facilitate a proper understanding
of the underlying geometric structure and a unified descrip-
tion including gravity we first consider the general inhomo-
geneous transformation group SO(3, 1) � T (3, 1) and its
relationship with gravity. The differential geometry on the
tangent bundle can be obtained using the general rules for
principal fiber bundles P(M;G) requiring the definition of
connections and covariant derivatives on the bundle. The def-
inition of a covariant derivative demands considering vectors
which point from one fiber to the other at different points x
and x́ of the spacetime manifold. The generators La of the
group G are vertical vectors pointing along the fiber and
therefore belong to the vertical subspace Vu(P). Horizontal
vectors in the subspace Hu(P) which point away from the
fibers (i.e. elements of the tangent space of the fiber bun-
dle Tu(P) that complement the vertical vectors in Vu(P))
can be constructed by the definition of a connection as an
assignment to each point in the principal fiber such that [8,9]

Tu(P) = Hu(P)⊕ Vu(P). (7)

The definition of a connection can be used for the definition
of a covariant differentiation along the curves horizontally
lifted to the principal bundle:

d

dτ
= dxμ

dτ
Dμ, (8)

where

Dμ = ∂

∂xμ
+ i Ãa

μLa (9)

is the covariant derivative on the principal fiber bundle. The
La are the right-invariant fundamental vector fields (genera-
tors) on the group manifold G = {gi j } and Ãa

μ the connec-
tion coefficients of the group G. A connection on a principal
bundle induces a connection on the associated bundle. The
covariant derivative on the associated bundle is given by (9)
substituting the generators La by the left-invariant funda-
mental vector fields on the section of the associated bundle,
which describe matter fields.

The geometric transformations of tangent vectors in a tan-
gent bundle are described by the group G = SO(3, 1) �

T (3, 1). According to (9) the covariant derivative along the
horizontal lifted curve on the principal bundle P(M;G) of
this group is given by

Dμ = ∂

∂xμ
+ iωa.μPa + i

2
	ab
..μMab, (10)

where Mab are related with the six generators of the group
SO(3, 1) with Ja = εabcMbc,Ka = −Moa and Pa are the
generators of the translational group T (3, 1). Here ωa.μ and
	ab
..μ are connection 1-forms of the T (3, 1) and SO(3, 1)

group, respectively. The total field strength tensor can be
defined as

Fμν = [Dμ, Dν] = T a
.μν Pa + 1

2
Rab
..μνMab, (11)

with the torsion tensor

T a
.νμ = ∂νωa.μ − ∂μωa.ν + (	a

.eνω
e
.μ −	a

.eμω
e
.ν), (12)

and the curvature tensor

Ra
.bνμ = ∂ν	a

.bμ − ∂μ	a
.bν + (	a

.eν	
e
.bμ −	a

.eμ	
e
.bν). (13)

Through contraction with tetrads, tensors can be transformed
to spacetime indexed forms as e.g. vμ = eμa va, R

�
.λνμ =

e�a ebλR
a
.bνμ and the lower frame index va can be raised by

the Lorentz metric va = ηabvb. The connections ωa.μ and
	ab
..μ are fundamental structure functions characterizing the

specific tangent bundle.
Parallel transport of a tangent vector va from a point x in

the spacetime manifold to a neighboring point x́ is defined
by the covariant derivative

Dμv
a = ∂μva +	a

.μbv
b, (14)

where 	a
.μb is called a frame connection. On the other hand,

the covariant derivative of vectors which refer to the coordi-
nate basis can be written as

Dμv
ν = ∂μvν + 
ν.μρvρ, (15)

with the coordinate connection 
ν.μρ . The coordinate con-
nection 
ρ.μλ is connected with the frame connection 	a

.bμ

by requiring Dμeaν = ∂μeaν − 
ρ.μνea� + 	a
.μbe

b
ν = 0 from

which the following relation can be derived:

	a
.bμ = eaν ∂μe

ν
b + eaν


ν
.ρμe

�

b . (16)

For the description of gravity tetrads eνb and a specific coor-
dinate connection 
ρ.μλ has to be defined. For a manifold
with vanishing metricity described by the condition Dλgμν =
∂λgμν − 
ρ.μλg�ν − 
�.νλgμρ = 0 one gets [10]


ρ.μν = 
̃�.μν + K �.μν, (17)

where 
̃ρ.μν is the Levi-Civita connection and K �.μν is the
contortion tensor,

K �.μν = 1

2
(T .�ν.μ + T .�μ.ν − T �.μν), (18)

with the torsion tensor T �.μν = 

�
.μν − 


�
.νμ. The under-

lying geometric structure with respect to translational and
rotational transformations (6) of the tangent vectors leads to
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a Riemann–Cartan spacetime endowed with frame connec-
tions ωa.ν and 	a

.μb, nonvanishing curvature Ra
.bνμ, nonvan-

ishing torsion T a
.νμ but vanishing metricity. The special case

of a Riemann spacetime and the General Theory of Relativity
(GTR) can be obtained from the above formulas by setting
the torsion tensor to be identically vanishing. The coordinate
connection 
ν.ρμ then is given by the Levi-Civita connection

̃
�
.μν , related with the metric tensor gμν . The frame connec-

tion	a
.μb in this case is usually called a spin connection 	̃a

.bν ;

it is related with the Levi-Civita connection 
̃�.μν by Eq. (16).
On the other hand, based on the symmetry with respect of
translational transformations of tangent vectors a gauge the-
ory of gravity has been developed by analogy with the internal
symmetries [11–15]. This gauge gravity theory corresponds
to the teleparallel gravity theory, which is an alternative but
equivalent formulation of the GTR describing the very same
gravitational field. In teleparallel gravity, the torsion is non-
vanishing, acting as a gravitational force while the curvature
Ra
.bνμ vanishes identically. The translational connections ωaμ

and the tetrad coframe eaμ turn out to be conceptional dis-
tinct entities, since it does not transform inhomogeneously
with a gradient term under a gauge transformation [18]. The
coframes depend on the translational connection in the form
eaμ = ωaμ+Dμξa , Dμ = ∂μδab+	a

.μb where ξa = ξa(x) is a
coset vector. Locally at a given point x on the spacetime man-
ifold one can transform Dμξa by a gauge tansformation into
δaμ (where δ is the Kronecker symbol). Note that the coframe
eaμ induces a metric as an independent dynamically quantity.
In the geometry of teleparallel gravity the coordinate con-
nection 
ρ.μλ takes the form of the Weizenböck connection



‖ρ
.μλ =W 


ρ
.μν(x), defined as

W
ρ.μν(x) = e�a (x)∂νe
a
μ(x). (19)

If we consider only gravitational effects with the choice of
the Weizenböck connection in teleparallel gravity a vector
is parallel transported if its projection on the tetrads is pro-
portional, regardless of the path connecting the two tangent
spaces. This can we see from (15) with the substitution of


ρ
.μν(x) by W


ρ
.μν(x), which yields for the covariant deriva-

tive D�

μv
ν = eνa(x)∂μv

a . In teleparallel gravity the connec-

tion coefficients 	‖a
.bν represents a pure inertial effect [14]

where 	�a
.bν is the spin connection in teleparallel gravity.

There exist a class of inertial frames in which	�a
.bν vanishes:

	
�a
.bν = 0.
The Weizenböck torsion can be used to build up the

Lagrangian of teleparallel gravity with quadratic Weizen-
böck scalars [11,14,15], given by

L = − h

16π

[
1

4
T abcTabc + 1

2
T abcTbac − T aTa

]

, (20)

where h = det(eaμ) and Tb = T a
ab. The Lagrangian is up to a

divergence equivalent to the Lagrangian of Einstein’s GTR,
this means the two theories are simply alternative formula-
tions for the description of gravity but are based on different
principles.

A principal bundle P(M;G) encodes the essential data
of gauge transformations and the frame connection	a

.bν and
the ωa.μ are additional structure functions that are attached to
it and are in general independent defined on the existence of a
metric ([8,9]). If the structure groupG = SO(3, 1)�T (3, 1)
is restricted to the translational subgroup T (3, 1) Eqs. (12)
and (13) can be taken with 	a

.bμ everywhere put equal
to zero. The torsion tensor is now determined by T a

.νμ =
∂νω

a
.μ − ∂μωa.ν , which can be obtained by a specific gauge

fixing and describes gravitation in the so-called pure telepar-
allel gravity theory. Note that the structure group of the tan-
gent bundle is the larger group G = SO(3, 1) � T (3, 1).
This raises the question of the physical meaning of the other
subgroup SO(3, 1). If the 	a

.bμ do not vanish we find from
(13) a non-Abelian field strength tensor which in teleparallel
gauge gravity theory (based on the translational symmetry)
is not related to gravity. In this paper the main hypothesis
is elaborated that non-Abelian fields in electroweak interac-
tion can be identified with the connection coefficients 	a

.bμ
arising from transformations along the tangent fiber axis
described by the group SO(3, 1). This interpretation differs
from Poincaré gravity gauge theory based on the localization
of the Poincaré group as gauge group [16] (for a review see
[17]). In this theory both the translational part and the rota-
tional part of the local Poincaré group is related with gravity
leading to a hypothetical generalized gravity theory, denoted
as the Einstein–Cartan gravity theory. In the following we
use the terms connection coefficients and gauge potentials in
parallel as well as gauge transformations and tangent vector
transformations.

4 The generators on the little groups

From now on we neglect gravity arising from the transla-
tional part aa(x) of the transformation of tangent vectors in
(6). Since the action of SO(3, 1) on a tangent vector is not
transitive, the vector space decomposes into different orbits
with the little groups SO(3), E(2) and SO(1,2). The uni-
tary representations TL(g) of the little groups SO(3) and
E(2) are well known. The composition law of these so-called
vector representations TL(g) satisfy the functional equation
TL(g1)TL(g2) = TL(g1g2) and encode the law of group
transformations on the set of vector states. However, it is
well known that this composite law is too restrictive and
leads in special cases to certain pathologies, as e.g. the Dirac
equation is not invariant under the Poincaré group, but under
its universal covering group. In quantum theory the physical
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symmetry of a group of transformations on a set of vec-
tor states has to preserve the transition probability between
two vector states |≺ �, TL(g)� 
|2 = |≺ �,� 
|2. There-
fore, as shown by Wigner [19] and systematically studied
by Bargman [20], the problem of pathologies can be solved
if the composite law given above is replaced by a weaker
one: TL(g1)TL(g2) = ε(g1, g2)TL(g1g2) where ε(g1, g2) is
a complex-valued antisymmetric function of the group ele-
ments with |ε(g1, g2)| = 1. Such representations are called
projective representations. For the case of simply connected
groups like the rotation group SO(3) projective representa-
tions are obtained by replacing the group SO(3) by its univer-
sal cover SU (2). However, in the case of the non-semisimple
Euclidean group E(2) the covering group is not enough, one
has to substitute this group by a larger group: the univer-
sal central extension Ec(2), which includes in addition to
the group elements of E(2) the group U (1) of phases fac-
tors ε(g1, g2) with | ε(g1, g2) |= 1. In general a central
extension Gc of a group G with elements (g, ς) ∈ Gc and
g ∈ G, ς ∈ U (1) satisfies the group law [20]

(g, ς) = (g1, ς1) ∗ (g2, ς2)

= ((g1 ∗ g2, ς1ς2 exp[iξ(g1, g2)], (21)

where ξ(g1, g2) is the two-cocycle satisfying the relation
ξ(g1, g2) + ξ(g1 ∗ g2, g3) = ξ(g1, g2 ∗ g3) + ξ(g2, g3),

ξ(e, g) = ξ(g, e) = 0.
The two-dimensional Euclidian group E(2) = T (2) ⊗

SO(2) with E(2) = {(α, a) | α ∈ R, (mod 2π), a =
(a1, a2)T ∈ R2} is a semi-direct product of translations
and rotations of the two-dimensional Euclidian plane. Since
the invariant subgroup SO(2) is abelian, this group is not
semisimple and not compact and the unitary representations
are infinite dimensional. The representations of the group
E(2) constructed on the space of functions are well known.
The action of the group E(2) on a vector Z = (ξ1, ξ1) is
given by

(α, a)(ξ1, ξ2) = (ξ1 cosα−ξ2 sin α + a1,

ξ1 sin α+ξ2 cosα + a2). (22)

The most general (projective) representations of E(2) can-
not be obtained from its universal covering group but by the
central extended group Ec(2). This group has been studied
previously as e.g. in [20–22]. The central extension embod-
ies in addition a U(1) subgroup characterized by a complex
parameter ζ = exp(iω). Ec(2) consists of elements (α, a, ω)
with (α, a) ∈ E(2), ω ∈ R. The action of the group Ec(2)
on a vector Z = (ξ1, ξ2, β) is described by [20–22]

(α, a, ω)(ξ1, ξ2, β) =
(

ξ1 cosα−ξ2 sin α + a1,

ξ1 sin α+ξ2 cosα + a2,

β + ω + 1

2
m(α, a, ξ1, ξ2)

)

, (23)

where m(α, a, ξ1, ξ2) is the two-cocycle which gives the
desired central extension parametrized as

m(α, a, ξ1, ξ2) = (a1ξ1 + a2ξ2) sin α

−(a1ξ2 − a2ξ1) cosα. (24)

By using (23) and (24) we can find the infinitesimal transfor-
mations and the generators of the Lie algebra, which satisfy
the following communication rules:

[T1,T2] = iE,

[T1,T3] = −iT2,

[T2,T3] = iT1,

[Ta,E] = 0. (25)

Of particular interest are the generators on this group:

T1 = −i

(
∂

∂ξ1
+ 1

2
ξ2
∂

∂β

)

,T2 = −i

(
∂

∂ξ2
− ξ1 1

2

∂

∂β

)

,

T3 = −i

(

ξ1
∂

∂ξ2
− ξ2 ∂

∂ξ1

)

,E = −i
∂

∂β
. (26)

The group Laplacian (Casimir operator) is determined by

� = (T1)2 + (T2)2 + 2T3E. (27)

Accordingly, the operator E is the center of the group. To
derive a canonical basis we use the eigenfunction of E, T3

and the Laplace operator � of Ec(2). Using polar coor-
dinates ξ1 = ξ cosφ, ξ2 = ξ sin φ and hnm�(ξ, β, φ) =
exp(i�β)(exp(imφ)gnm�(ξ)we find with the Laplacian (27)
the following equation for gnm�(ξ) :
[(

−1

ξ

∂

∂ξ
ξ
∂

∂ξ
+ 1

ξ2 m
2
)

+ �2ξ2 − 2�m

]

gnm�(ξ)

= εnm�gnm�(ξ). (28)

With the solutions of (28) we find for hnm�(ξ, β, φ)

hnm�(ξ, β, φ) = Nnm� | � ||m|/2 exp(i�β)(exp(imφ)

× exp

(

−| � | ξ2

2

)

ξ |m|L |m|
n (| � | ξ2),

(29)

with Nnm� =
√
�
π
( n!
(|m|+n)! )

1
2 , εnm� = 4�(n + 1

2 + 1
2 (m +

|m|), with n = 0, 1, 2, . . . ,m = 0,±1,±2, . . . , � =
,±1,±2, . . .Here L |m|

n (x) are the associated Legendre poly-
nomials. The solutions hnm� form an ortho-normalized set
and have a form analogous to the solutions of the 2D
Schrödinger equation in the symmetric gauge for electrons
in a constant magnetic field [23]. The group Ec(2) is isomor-
phic to the quantum harmonic oscillator group studied e.g.
in [24].

The special eigenvalue � = 0 plays a particular role. The
solution of (28) for � = 0 is given by

hρm00 = 1√
2π

J|m|(ρξ) exp(imφ), (30)
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and it agrees with the results for the group E(2). J|m|(x) are
the Bessel functions. The eigensolutions fall into two classes:
the continuous series with ρ2 �= 0 and the discrete series with
ρ2 = 0 and

h0
0m0(φ) = 1√

2π
exp(imφ). (31)

As described later the generator T3 corresponds to the hyper-
charge generator in the SM. It is convenient to introduce for
T1 and T2 the generators T± = 1√

2
(T1 ± iT2). The action

of the operator T+ on the eigenfunctions gnm� increases the
hypercharge from m to m + 1, but it simultaneously gen-
erates states with different family numbers n: T+gnm� =
�n
i=0Ai gi,m+1,� . Correspondingly the generator T− reduce

the hypercharge: T−gnm� = �n
i=0Bi gi,m−1,� . Ai and Bi are

coefficients, respectively. The action of the operator product
(T−T+ + T+T−) on the eigenfunctions is given by

(T−T+ + T+T−)gnm�(ξ, φ, β) = qBgnm�(ξ, φ, β), (32)

with qB(n,m, �) = 4�[n + 1
2 (1+ | m |)].

The generators J1, J2, J3 on the group SU (2) are well
known and, by using the Laplacian � = (J2

1 + J2
2 + J2

3)

on this group, all finite-dimensional representations can be
found (see e.g. [25,26]. The application of the operatorsJ± =
2−1/2(J1±iJ2) and J3 on the eigenfunctions of the Laplacian
� leads to

J± f j
. j3

= 1

2
[ j ( j + 1)− j3( j3 ± 1]1/2 f j

j3±1, (33)

J3 f
j
j3

= j3 f j
j3
, (34)

where j = (− j3. − j3 + 1, . . . , j3) are the isospin quan-
tum numbers, j3 is the projection on the third isospin axis.
Moreover, we find

(J+J− + J−J+) f j
. j3

= qW f j
. j3
, (35)

with qW = [ j ( j + 1)− j2
3 ]. Using the parametrization z1 =

cos θ2 exp[i(ψ − ϕ)/2], z2 = i sin θ2 exp[i(ψ + ϕ)] we find

for j = 1/2, j3 = 1/2 from the SU(2) Laplacian f j
j3

= z1

and for j = 1/2, j3 = −1/2 : f j
j3

= z2. For the isospin

numbers j = 1, j3 = 1 we have f 1
1 = (z1)

2/
√

2, for j3 = 0
one finds f 0

1 = z1z2, and j3 = −1 yields f 1−1 = (z2)
2/

√
2.

The eigenfunctions for the general case for the isospin j are
given by [26]

f j j3 =
(

1

( j + j3)!( j − j3)!
)1/2

z j+ j3
1 z j− j3

2 . (36)

In traditional quantum field theory the internal degrees of
freedom, such as isospin, hypercharge or color, are described
by spacetime depending multi-component fields taking into
account the vertical structure given by the internal gauge
groups by the corresponding Lie-algebra representation. In

the TB description, different from the two-component for-
malism, the basic objects on the group SU (2) (which here is
interpreted as the isospin group) are functions �(x, z1, z2)

depending both on the coordinate x of the spacetime man-
ifold and the complex coordinates z1 = z1(θ, ϕ, ψ), z2 =
z2(θ, ϕ, ψ). General functions on the group manifold can be
decomposed into the form

�(x, z1, z2) =
2 j∑

j3=0

φ j3(x) f
j
j3
(z1, z2). (37)

The standard description for j3 = ± 1
2 by two-component

functions (φ1(x), φ2(x))T is obtained from (37) by the pro-
jection into the configuration space by using the relation

�(x, z1, z2) = (z1, z2)

(
φ1(x)

φ2(x)

)

. (38)

For finite-dimensional representations of the group SU (2)
the above presented description by using coordinates on
the group manifold z1 and z2 is equivalent to the multi-
component description in nonabelian field theory. How-
ever, for a noncompact group as the group Ec(2) a multi-
component representation is not favorable and the tangent
bundle approach using coordinates of the tangent space is
more convenient.

5 Lagrangians on the tangent bundle

5.1 Lagrangian of Gauge fields on the group
SU (2)⊗ Ec(2)

Based on the above described orbit decomposition and using
the group G = SU (2)⊗ Ec(2) the covariant derivative (10)
with ωaμ = 0 can be rewritten as

Dμ = ∂

∂xμ
+ ig1A

a
μ(x, u)Ja + ig2

1

2
Ba
μ(x, u)Ta

+ ig3Cμ(x, u)E, (39)

where Ja are the generators of the group SU (2) andTa andE
are the operators (26) on the group Ec(2). Aa

μ(x, u), B
a
μ(x, u)

and Cμ(x, u) are the frame connection coefficients (gauge
potentials). The gauge field strength tensors can be obtained
from the commutators [Dμ,Dν]. Let us first consider the
gauge fields for the group Ec(2). The following relations
for the field strength tensors Ba

μν(x, u) and Cμν(x, u) of the
generators Ta and E can be derived:

B±
μν = ∂

∂xμ
B±
ν − ∂

∂xν
B±
μ

±g2i(B
±
μ B3

ν − B3
μB

±
ν ),

B3
μν = ∂

∂xμ
B3
ν − ∂

∂xν
B3
μ,
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Cμν = ∂

∂xμ
Cν − ∂

∂xν
Cμ − g2i(B

+
μ B−

ν − B−
μ B+

ν ), (40)

where B±
μ = 2−1/2(B1

μ ± i B2
μ).

Recently the non-semisimple group Ec(2) was found to
be relevant in 1 + 1 gravity theory [27], for the construction
of string background in the Wess–Zumino–Witten (WZW)
model, in 3D Chern–Simon theory [28–30], and in Yang–
Mills theory [29]. Gauge theory for a group with generators
La and commutators [La,Lb] = i f cab Lc requires a bilinear
form gab which is symmetric, invariant with respect of gauge
transformations, and non-degenerate so that there exists an
inverse matrix. For semisimple groups the invariant bilinear
form is given by the Killing form and it is proportional to
the Kronecker symbol gKab = f dac f

c
bd = δab. For the non-

semisimple group Ec(2) the Killing form is degenerate and it
is given by gKab = δa3. Nevertheless there exists another form
of an invariant product for this gauge group. Let us determine
the general conditions for a non-degenerate invariant product.

The Lagrangian of the gauge fields must be a quadratic
combination of the field strength tensor Ba

μν . Lorentz covari-
ance restricts its form to

Lg = −1

4
gabB

a
μνB

bμν, (41)

with the invariant symmetric metric gab (gab = gba). Under
an infinitesimal gauge transformation the field strengths
transform like δBa

μν = − f abcB
b
μνθ

c. The Lagrangian must
be gauge-invariant, therefore the following condition has to
be fulfilled:

gabB
a
μν f

b
deB

dμνθe = 0. (42)

Accordingly the metric gab must satisfy the following con-
dition:

gac f
c
bd + gbc f

c
ad = 0. (43)

For the group Ec(2) with the commutation rule (25) for the
generators La = Ta(a = 1, 2, 3) and L4 = E the nonzero
coefficients f cab are given by f 4

12 = − f 4
21 = 1, f 1

23 =
− f 1

32 = 1, f 2
13 = − f 2

31 = −1. Accordingly one can derive a
non-degenerate symmetric invariant bilinear form gab = gba
given by [27–29]

g0
ab =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦ . (44)

The most general invariant quadratic form is a linear com-
bination of the metric g0

ab and the Killing form gKab = δa3

given by

gab =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 k 1
0 0 1 0

⎤

⎥
⎥
⎦ , g

ab =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −k

⎤

⎥
⎥
⎦ , (45)

with an arbitrary parameter k. The metric gab induces a fam-
ily of non-degenerate invariant quadratic forms of Lorentz-
invariant vectors vaμ:

I = v1
μv

1μ + v2
μv

2μ + kv3
μv

3μ + 2v3
μv

4μ. (46)

With a scaling of gab → 1
k g̃ab and k 
 1 the invariant

product is given by

I0 = v3
μv

3μ. (47)

The generator T3 of the group Ec(2) corresponds to the
hypercharge operator in the SM and the Lagrangian of the
corresponding gauge field is described by the U (1) group:

LEc

g = −1

4
B3
μνB

3μν. (48)

In the general case the invariant product can be diagonal-
ized by the transformation v3

μ = 1√
2
(cosαv′3

μ − sin αv′4
μ),

v4
μ = 1√

2
(sin αv′3

μ + cosαv′4
μ) with tan 2α = 2

k . Then the
quadratic form is given by

I = gabv
a
μv

bμ,

= v1
μv

1μ + v2
μv

2μ + a3v
′3
μv

′3μ − a4v
′4
μv

′4μ, (49)

with a3 = k cos2 α + 2 cosα sin α, a4 = −k sin2 α +
2 sin α cosα. With the choicea3 = a4 we get k = 0,α = π/4
and a3 = a4 = 1.

Using (45) the gauge Lagrangian of the Ec(2) model is
given by

LEc = −1

4
gabB

a
μνB

bμν

= −k

4
B3
μνB

3μν − 1

2
(B+
μνB

−μν + B3
μνC

μν). (50)

The Lagrangian is invariant under the gauge transformations

δB±
μ = ∂μθ

± ∓ g2i(B
3
μθ

± − θ3B±
μ ),

δB3
μ = ∂μθ

3,

δCμ = ∂μθ
C + g2i(θ

+B−
μ − θ−B+

μ ), (51)

where θ3, θ±, θC are arbitrary spacetime depending func-
tions.

The Lagrangian (50) is not positive definite and leads to
negative terms in the Hamiltonian and to the occurrence of
particles with un-physical negative norm. This situation is
analogical to the case of gauge field quantization in covariant
gauge of the SM with the gauge group SU (2)⊗U (1), where
due to the form of the Lorentz metric the time-like component
B́a

0 must correspond to negative metric particles. Quantiza-
tion requires one to choose a specific gauge by adding terms
like (∂μBa

μ)
2 and (∂μCμ)2 to the Lagrangian for a covari-

ant gauge which breaks the gauge invariance and introduce
new un-physical fields. These so-called Fadeev–Popov ghost
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fields cancel the un-physical gauge field components with
negative norm.

A diagonal form of the Lagrangian (50) can be achieved
by the transformations

Cμ = (C+
μ − C−

μ )

B3
μ = (C+

μ + C−
μ ) (52)

or the corresponding field strengths

Cμν = (C+
μν − C−

μν),

B3
μν = (C+

μν + C−
μν). (53)

The Lagrangian of gauge particles with a gauge fixing
term and the Fadeev–Popov ghosts is for k = 0 given by

LEc = −1

4

{

2B+
μνB

−μν + C+
μνC

+μν − C−
μνC

−μν

+ 1

2ξ
(∂μB+

μ )
2 + 1

2ξ
(∂μB−

μ )
2 + 1

2ζ
(∂μC+

μ )
2

+ 1

2ζ
(∂μC−

μ )
2 − (∂μc3)c3

−∂μc+c− − (∂μc−)c+

−(∂μc4)c4 + ig2(∂μc
4)(c+B−μ − c−B+μ)

−ig2[(∂μc+)c− − (∂μc−)c+](C+μ + C−μ)

−ig2[(∂μc+)B−μ − (∂μc−)B+μ]c3
}

, (54)

where c± = 1√
2
(c1 ± ic2), c3, c4 and c±, c3, c4 are the anti-

commuting ghost fields and ζ is the gauge parameter. The
cancellation of the un-physical gauge particles with negative
norm by the Fadeev–Popov ghost particles can be proven by
the BRST symmetry in a gauge-invariant form. Quantization
of non-semisimple gauge groups has been studied in [29,31–
33]. In [29] one-loop radiative corrections for the Yang–Mills
model with the Ec(2) gauge group were computed. It was
shown that there is no two- and higher-loop re-normalization
and the full quantum effective action is given by the one-loop
term with the divergent part that can be eliminated by a field
redefinition.

The field strength tensor for the group SU (2) is given by

W±
μν = ∂

∂xμ
W±
ν − ∂

∂xν
W±
μ

±g1i(W
±
μ B3

ν − B3
μW

±
ν ),

B3
μν = ∂

∂xμ
B3
ν − ∂

∂xν
B3
μ − g1i(W

+
μ W−

ν − W−
μ W+

ν ).

(55)

The total gauge Lagrangian on the TB is Lg = LEc +
LSU (2) where the Lagrangian of the group SU (2) with the
inclusion of ghost fields is given by

LSU (2) = −1

4

{

2W+
μνW

−μν + A3
μν A

3μν + 1

2ξ
(∂μW+

μ )
2

+ 1

2ξ
(∂μW−

μ )
2 + 1

2ζ
(∂μA3

μ)
2

−(∂μω3)ω3 − ∂μω+ω− − (∂μω−)ω+

+ig2(∂μω
3)(ω+W−μ − ω−W+μ)

−ig2[(∂μω+)ω− − (∂μω−)ω+]B3μ

−ig2[(∂μω+)W−μ − (∂μω−)W+μ]ω3
}

, (56)

with the field strength tensors of the SU (2) gauge fieldW±
μ =

2−1/2(A1
μ±i A2

μ) and A3
μ.ωa andωa are a set of independent

anticommuting variables of the ghosts.

5.2 Lagrangians of matter fields on the group
SU (2)⊗ Ec(2)

In the Lagrangian of the Higgs scalar particles LH =
(Dμ�H )

†(Dμ�H ) the electromagnetic field should not cou-
ple to the neutrino and should be diagonalized. Substitut-
ing (39) into the Lagrangian of the Higgs boson new mix-
ing terms appear and the diagonalization requires that the
fields A3

μ, B3
μ and Cμ have to be transformed to new fields

expressed by the relations

B3
μ = cos θW Aμ − sin θW (cos θDZμ − sin θDE

c
μ),

A3
μ = sin θW Aμ + cos θW (cos θDZμ − sin θDE

c
μ),

C3
μ = sin θDZμ + cos θDE

c
μ, (57)

where θW is the Weinberg angle, g2 = g sin θW , g1 =
g cos θW , g = ((g1)

2 + (g2)
2)1/2, e = g cos θW sin θW and

θD is defined by tan 2θD = gg3mH�H/[(g3�H )
2−(mH

2 g)2],
mH and �H are the IQNs of the Higgs particle. The covariant
derivative (39) can be rewritten as

Dμ = ∂

∂xμ
+ i[W+

μ QW− + W−
μ QW+)+ B+

μQB−

+B−
μQB+ + ZμQZ + AμQ + Ec

μQEc ], (58)

with W±
μ = 2−1/2(W 1

μ± iW 2
μ) and B±

μ = 2−1/2(B1
μ± i B2

μ).
The following operators are introduced:

Q =
(

J3 + 1

2
T3

)

,

QZ = g cos θD

(

cos2 θWJ3 − sin2 θW
1

2
T3

)

+ g3 sin θDE,

QW± = g1J±,QB± = g2
1

2
T±,

QEc = g

(

− cos2 θWJ3 + sin2 θW
1

2
T3

)

sin θD

+ g3 cos θDE. (59)

Any scalar function �(x, u) defined on the fiber bundle
can be expanded into the form � = ∑

M (φM (x)χM (u) +
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φ
†
M (x)χ

∗
M (u)) depending on the coordinates of the spacetime

manifold x and the eigenfunctions χM (u) = hlm�(ξ, φ, β)
f j j3(z1, z2) of the Laplacian of the group SU (2) ⊗ Ec(2)
defined by (29) and (36). Besides we introduced the follow-
ing symbol for the IQNs: M = (n,m, �, j, j3). The total
Lagrangian can be presented by

L = Ll + LH + Lg + LYuk. (60)

Here the Lagrangian of the leptons Ll is defined in the chiral
representation as

Ll = i�l†
s (x, u)σ

μ
s

×
{
∂

∂xμ
+ i[W+

μ QW− + W−
μ QW+

+ ZμQZ + AμQ + Ec
μQEc ]

}

�l
s(x, u), (61)

with the helicity s = {L , R} and σμR = (σ 0, σ i ), σ
μ
L =

(σ 0,−σ i ) and �l
s(x, u) = ∑

M (ψ
−
M,s(x)χM (u) + ψ+

M,s
(x)χ∗

M (u)). Note that gauge fields and fermions or scalars
can carry different IQNs. As shown below, the known SM
gauge particles as the Z and W± bosons and the Ec gauge
boson carry the IQN � = 0, but due to the existence of fam-
ilies of SM leptons they carry nonzero Ec-charges � �= 0.
The interaction of leptons with the B± bosons is forbidden
because of a selection rule, as discussed below.

The Lagrangian of the SM Higgs particles �H =
�H (x, u) (with I3 = −1/2,m = 1) in the unitary gauge
is given by

LH = ∂μ�†
H∂

μ�H+ | �H |2

×
[
g2

1

2
W+
μ Wμ− + g2

2qB B
+
μ Bμ− + Ec

μE
cμ | QEc |2

+ | QZ |2 ZμZ
μ

]

+ V (�H ), (62)

with QZ = − 1
2 cos θDg+g3�H sin θD, QEc = g sin θD/2+

g3�H cos θD, qB = 4�H (n + 1). The interaction of the SM
Higgs with the W bosons remains the same as in the SM.
The Ec and B± gauge bosons are not decoupled from the
SM particles; according to (62) there is a coupling of the
new Ec and B±

μ bosons to the SM Higgs boson. In (62) the
SM Higgs self-interaction potential V (�H ) = −μ2 | �H |2
+λ | �H |4 is included.

We denote the left- handed lepton family by EL =
(eL, μL, τL) and the right-handed family by ER = (eR,

μR, τR). The SM Yukawa interaction LYuk term is given by

LYuk = −�n1n2σn1n2�
†
MEL

�MH�NER
+ h.c. (63)

with σn1n2 as constant coupling coefficient and with the IQNs
MEL = {n1,m = −1, j = j3 = 1

2 , �EL }, NER = {n2,m =

−2, j = 0, �ER } and with the IQN of the Higgs particle:
MH = {nH ,mH = 1, j3 = − 1

2 .�H }. An assumption con-
cerning the IQN � of leptons and the Higgs particles will be
discussed later.

The self-interaction term V (�S) and LYuk do not arise
in the TB tree-level approximation but are included for phe-
nomenological reasons in the same way as in the SM. The
microscopic foundation of these phenomenological terms is
an unsolved problem in the SM as well as in the approach
here presented.

6 Quantization on the tangent bundle

On the tangent bundle one-particle states of the fermion Dirac
field � f (x, u) = ∑

M,s(ψM,s(x)χM (u) + ψ†
M,s(x)χ

∗
M (u))

labeled by the three-momentum p are described by

� f (x, u) =
∑

K

1
√

2E f
MV

[a f
K u

f
M (p)χ

f
M (u) exp(ipx)

+ b† f
K v

f
M (p)χ

f ∗
M (u) exp(−ipx)], (64)

where the index s characterizes the helicity s = {L , R} and
K = {M,p, s}. a f

K (t) is the annihilation operator for a par-

ticle in the interaction representation and b† f
K (t) the antipar-

ticle creation operator satisfying the anti-commutation rules.
E f
M is the single particle energy and V the volume. u f

M (p)

and v f
M (p) are the plane wave solutions of the Dirac equation

for particles and antiparticles, respectively and the eigen-
functions χM (u) are given in (29) and (36). The general
construction of states in the TB indicates that not only
leptons but also scalars and gauge bosons carry the IQN
MA = {n,m, �, j, j3}. This means that scalar fields and
gauge fields can be expanded in a form analogous to (64).

The structure of the theory based on the TB geometry sug-
gests the identification of an elementary particle as a state
with specific internal quantum numbers M and a specific
mass analogous to quantum mechanics of atoms where dis-
crete quantum states with different quantum numbers and
energy levels exist. Therefore we do not fix the particle con-
tent from the beginning but allow for the existence of “exotic”
particles which do not appear in the SM and have not been
observed so far. The potential observation of such particles
depends on its parameters, such as mass and lifetime, but also
on selection rules as discussed below.

Inserting the expansion (64) into the fermion Laplacian
(61) the Hamiltonian is easy to build with an interaction term
with gauge particles g. For the unperturbed fermion Hamil-
tonian we get
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H f
0 = 1

2

∑

P

εp[a† f
P a f

P − b f
Pb

f †
P ], (65)

with P = {M,p, s} and with the one-particle energy εp =
| p |. For a compact representation we introduce for the gauge
particles the notation g = (g0, gc) with g0 = (A, Z , Ec)

and gc = (W±, B±) and for the gauge potentials Agμ =
A+
gμ+ A−

gμ with A±
gμ = a±

gμ(x)χ
±
Mg
(u), χ+

Mg
= (χ−

Mg
)∗. For

the interaction Hamiltonian H f
I one gets

H f
I =

∑

PRK ,g

(cg
0

K V g0

PRK + cg
0†

K V g0∗
PRK̃

+ ag
c

K V gc

PRK

+ bg
c†

K V gc∗
PRK̃

)a f †
P a f

R + (cgKUg
PRK + cg†

K Ug∗
PRK̃

+ ag
c

K Ugc

PRK + bg
c†

K Ugc∗
PRK̃

)b f
Rb

f †
P , (66)

with R = {N , r, s}, K = {Mg,k, λ}, K̃ = {Mg,−k, λ} and

V g
PRK =

u f
Pσ

μ
s u

f
Rεμ(k)I

f
MNMg

δr,p−k

2
√

2E f
p E

f
r E

g
kV

, (67)

Ug
PRK =

v
f
Pσ

μ
s v

f
Rεμ(k)I

f
MNMg

δr,p+k

2
√

2E f
p E

f
r E

g
kV

. (68)

Here we introduced the matrix elements

I f
MgM f N f

=
∫

dμχ g
Mg
(u)χ f ∗

M f
(u)Qgχ

f
N f
(u), (69)

with the integration measure dμ(u) = dμSU (2)dμEc ,

dμSU (2) = (16π2)−1 sin θdθdψdϕ and dμEc = (4π2)−1

ξdξdφdβ. The compact representation (66) includes all pos-
sible interactions with gauge bosons g = A, Z ,W±, Ec and
B±.

The interaction Hamiltonian of scalar particles in the uni-
tary gauge is described by

HS
I = −

∑

PQK R

(cS†
P cSQ + cS

P̃
cS†
Q̃
)

×�g[(cg
0†

K cg
0

R + cg
0

K̃
cg

0†
R̃
)Mg0

PQK R

+ (agc†
K ag

c

R + bg
c

K̃
bg

c†
R̃
)Mgc

PQK R]. (70)

Here we introduced the symbols P = {MS,p}, P̃ =
{MS,−p}, Q = {MS,q}, Q̃ = {MS,−q}, K={Mg,k, λ}, ,
K̃ = {Mg,−k, λ}, R = {Mg, r, σ }, R̃ = {Mg,−r, σ } and
the matrix elements

Mg
PQK R = 1

8
qg

I SMSMg
δλσ δ(p − q + k − r)

V
√
ES
p E

S
q E

g
r E

g
k

, (71)

with qA = Q2
A, qZ = Q2

Z , qEc = Q2
Ec , QA = e( j3 + 1

2m),
QZ = g cos θD(cos2 θW j3−sin2 θW

1
2m)+g3 sin θD�, qB =

4�[n + 1
2 (1+ | m |)], qW = [ j ( j + 1) − j2

3 ], QEc =
(−g cos2 θW j3 + g sin2 θW

1
2m) sin θD + g3 cos θD� and

I SMSMg
=

∫

dμ(u)χ S∗
MS
(u)χ S

MS
(u)χ g∗

Mg
(u)χ g

Mg
(u). (72)

The dependence of the quantized field operators (64) on
the eigenfunctionsχM (u) and on the coordinates u of the tan-
gent vectors is a specific trait of the approach, here presented,
based on the underlying geometric structure of the TB. The
internal symmetries arise here from the inherent geometrical
symmetries of the TB in an analogous way to the symmetries
in quantum mechanics originating from spacetime symme-
tries in a given physical system. This differs in a principal
way from standard QFT, therefore we call the theory here
presented a tangent bundle quantum field theory.

Finally, we consider the SM Yukawa interaction
√
LYuk

term given by (63). Inserting the expansion (64) into (63)
one gets expressions analog to the SM but including matrix
elements

I YMH ML NR
=

∫

dμχH
MH
(u)χ l∗ML

(u)χ lNR
(u). (73)

The TB eigenfunctions differ for different n and � but from
(73) we see that the Yukawa interaction is nonzero only if not
only leptons and quarks but also the Higgs particles carry
a nonzero Ec-charge �H . The matrix element I YMH ML NR

is
nonzero if the relations for the hypercharges −mEL +m�+
mER = 0 and for the Ec-charges −�EL + �� + �ER = 0
are fulfilled. The solution of these equations is not unique.
Since interaction processes favor the lowest magnitude of
� and m, we assume here the special solution m = � for
the above given two equations. For the left-handed lepton
family we obtain �EL = −1, for the right-handed lepton
family �ER = −2 and for the Higgs family �H = 1. An
important consequence is that with �H �= 0 analogous as
lepton families also Higgs families should exist.

7 Lepton families, lepton universality and Higgs
interaction beyond the Standard Model

7.1 Lepton interaction and lepton universality

SM leptons are distinguished by the IQNs of isospin j and
j3 and weak hypercharge m. Leptons consist of three fam-
ilies, electrons and electron neutrinos are members of the
first family, muons and muon neutrinos of the second and
taus and tau neutrinos of the third family. Different families
exhibit in the SM identical IQNs and properties in the elec-
troweak interaction with the exception of its masses. In the
TB approach in addition to isospin I and hypercharge m the
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Ec-charge � and the family quantum number n exist. Here
the up to now unexplained fact in the SM that three lepton
families exist differentiated only by its mass find an explana-
tion by the additional family quantum number n for a nonzero
Ec-charge �. Besides, a larger number of families than three
could exist, but its possible observation depends on the mass
of these states with n 
 3, or possibly other physical effects.

The interaction of fermions via gauge potentials is
described by (66) with analog expressions to the SM but
with inclusion of the matrix elements I f

MgM f N f
given in (69)

depending on the eigenfunctions of the Laplacian on the
group. From (69), selection rules can be derived for fermion
interactions. If the value of the integral I f

MgM f N f
is zero the

interaction is forbidden. These selection rules arise in a sim-
ilar way to the selection rules in atomic systems if the tran-
sition moment integral is vanishing, which constrains the
possible transitions of a system from one quantum state to
another. From these matrix elements we see that in the elec-
troweak interaction leptons (with Me = Ne) couple only to
photons and Z-bosons with �g = 0, jg = 0,mg = 0 and
therefore with hMg (u) ≡ 1 we find I lMAMlMl

= Q and

I lMZ MlMl
= QZ . This means that a family universal elec-

troweak coupling of leptons with photons and Z-bosons is
regained in the approach here presented . For the coupling of
the families of left-handed charged leptons and neutrinos to
the charged W±-bosons we substitute for Ml the IQN of the
lef-handed charged leptons and for Nl that of the neutrinos.
The operator QW± = g1J± shifts the isospin component j3
in such a way that the matrix element (69) is again indepen-
dent on the family number n. Lepton flavor universality is one
of the distinctive features of the SM and experiments have
set stringent limits on processes that violate this universality.
Although now every family is connected with a different IQN
n and different eigenfunctions, the coupling of the photons
to the leptons remains independent on the family number n.

The same behavior we can find for the interaction with the
Ec-boson with SM leptons. The matrix element (69) with
g = Ec is nonzero only if the Ec-boson carries the IQN
values �Ec = 0, jEc = 0,mEc = 0.

The mass of leptons and its large difference for electrons,
muons and τ -leptons as well as the nonzero neutrino masses
cannot be explained as a tree-level effect. But the occurrence
of a family quantum number n and different eigenfunctions in
the approach here presented could open up a route towards
its physical understanding beyond the tree level in a non-
perturbative treatment. This problem is beyond the scope of
the present paper.

7.2 The interaction of Higgs particles with gauge bosons

The interaction of scalar particles with gauge bosons is
described by (70) with matrix elements given in (71) and

(72). Let us first discuss the weak interaction of the Z and
W± bosons with the SM Higgs particle. As explained above
the Ec-charges � of the Z and the W bosons are necessarily
zero (�Z = 0, �W± = 0). However, as described in Sect. 6
the Higgs particles carry a nonzero Ec-charge (here �H = 1
is assumed), therefore the coefficients qZ in (71) show a very
small deviation from their values in the SM proportional to
g2

3.
An interesting feature of the presented approach refers to

the interaction of the extra gauge bosons Ec and B± with
the SM Higgs described by (70), (71) and (72). As seen the
coupling of the Higgs to Ec and B± bosons is allowed.

Note that the existence of a new vector boson is a common
feature of many extensions of the SM (for a review see [37]).
In particular models with an extra gauge group U (́1) are
studied in a large number of papers (see e.g. [37–40]).

The possible existence of the Ec and B± bosons leads to
a fundamental fifth interaction. The parameter space of Ec

and B± masses and the coupling coefficient g3 (or the mixing
angle θD) are constrained by existing data from experiments,
and they could be found in a similar way to U (́1) extended
models (see e.g. [34–36,52–56]). Many of these data hint
to the assumption that the coupling coefficient g3 and the
mixing angle θD are small: g3 � 1, θD � 1. This means
that the fifth fundamental interaction mediated by the Ec-
boson is much weaker than the SM weak interaction.

8 Dark Matter candidates

Astrophysical and cosmological observations show that the
largest part of matter in our universe is constituted by
unknown non-luminous particles, called DM particles, that
have a very weak interaction with the visible sector of
the universe. Such particles do not exist in the SM, but
there have been many attempts of an extension of the
SM with possible DM candidates such as weakly interact-
ing massive particles (WIMPs), sterile neutrinos, the light-
est neutralinos in super-symmetric models or axions (see
e.g. [41,42]). Recently alternative phenomenological mod-
els have been developed, like the dark sector model (see
e.g. [36,47–51]) or the Higgs portal model [46,47,52,53,
55,56].

One of the most notable features of the generalization of
the SM by the gauge group SU (2) ⊗ Ec(2) is the possibil-
ity that DM candidates lie within the new gauge sector. In
the present approach for the derivation of the corresponding
Lagrangians of DM particles no additional phenomenologi-
cal model assumptions are required, but only the particle con-
tent with the choice of appropriate IQNs for the DM is neces-
sary. An obvious way for the assignment of the IQNs to left-
and right-handed dark fermions and dark scalars can be made
by the choice of zero hypercharge (m = 0) and isospin ( j =
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0) but nonzero Ec-charge � �= 0. As a result one may expect
that, similar to the SM leptons, DM fermions and DM scalars
are grouped in families with the IQN n = 1, 2, 3. In the
Laplacian (61), (62) and (63) we substitute for the lepton and
Higgs wavefunctions�l

s(x, u)→ �l
s(x, u)+�D

s (x, u) and
�H (x, u) → �H (x, u) + �S(x, u). According to (29) the
eigenfunctions of the Laplacian on the group SU (2)⊗Ec(2)
with j = m = 0 take the form

χD
M = h00�(ξ, φ) =

√
�

π
exp(i�β)

× exp

(

−| � | ξ2

2

)

L0
n(| � | ξ2). (74)

With these extensions the Laplacian (60) now is substituted
by L → LSM+LD where LSM describe the SM particles and
LD = L f

D + LS
D + LYuk

D includes the Lagrangians of dark
fermions, dark scalars and the dark Yukawa term, respec-
tively. In the following we discuss these Lagrangians.

8.1 Dark vector gauge bosons

In the present approach new vector bosons Ec and B± arise
naturally by the geometric TB symmetry described by the
group Ec(2). These particles can be interpreted as DM vec-
tor gauge bosons. The Lagrangian of the DM gauge bosons
is given by (54) where the fields C+

μ and C−
μ are related with

the Ac
μ, Z

c
μ and the Ec

μ gauge potentials by the relation (52)
and (57). The Ec and B± gauge bosons are not decoupled
from the SM particles, according to (62) there is a coupling to
the SM Higgs, but also the interaction of the Ec boson with
leptons with a very small coupling constant g3 is allowed.
Note that leptons interact also directly with the Higgs parti-
cles due to the Yukawa interaction in (63) and therefore via
(62) they indirectly couple to the Ec and B±

μ bosons.
From (40), (50), (54) and (57) we can see that the non-

Abelian DM vector bosons with the gauge potentials Ec
μ

and B±
μ interact with each other but also with the SM gauge

bosons A, Z and W±.
Note that the hypothesis of self-interacting DM (in con-

trast to collisionless cold DM) enables to resolve a number of
conflicts between observations and predictions of collision-
less DM simulations [43,44] and has also been assumed as
light thermal DM relicts [45].

8.2 Dark fermions

We assume that DM fermions with vanishing hypercharge
and isospin ( j = 0,m = 0) but nonzero Ec-charge (� �= 0)
could exist. The Lagrangian of the family of DM fermions is
given by

LD
f = i

∑

Ms

�
D†
Msσ

μ
s

×
[
∂

∂xμ
+ ig3�D(sin θDZμ + cos θDE

c
μ)

]

�D
Ms,

(75)

with MD = (n, 0, �D, 0, 0). As one can see, different types
of DM fermions with nonzero Ec-charges �D are predicted.
For every DM fermion with given Ec-charge �D a DM
fermion family with n = 1, 2, . . . could exist which couple
to the SM Z gauge potential with the coupling coefficient
g3�D sin θD and to the Ecgauge potential with the coupling
coefficient g3�D cos θD . Analogously to Eq. (69) one can
derive corresponding selection rules for the interaction of
dark fermions with gauge bosons.

The construction of a gauge and Lorentz-invariant mass
term for DM fermions in a renormalizable Lagrangian can
be done in a similar way to the SM using a modified Yukawa
interaction term and different IQNs for right- and left-handed
DM fermions. Since the SM Higgs particles carry isospin
and hypercharge a DM Yukawa interaction term LD

Yuk cannot
be constructed from the SM Higgs but instead a scalar DM
with vanishing hypercharge and isospin ( j = 0,m = 0) but
nonzero Ec-charge (�S �= 0). Therefore the Yukawa interac-
tion term for scalar DM can be expressed as

LD
Yuk = −�n1n2σ

D
n1n2
�

†
MDL

�MS�NDR
+ h.c. (76)

where the sum is over the DM fermion family members
with identical �, and σ D

n1n2
are constant coupling coeffi-

cients. For the vacuum IQNs of the dark scalar we assume
the IQNs MS = {nS = 0,mS = 0, j3 = 0, �S = 1}.
This suggests that the following be assigned for the IQN
values for the family of left-handed and right-handed dark
fermions: MDL = {n1,m = 0, j = j3 = 0, �DL = −1},
NDR = {n2,m = 0, j = 0, �DR = −2}.

8.3 Dark scalars

The Lagrangian of DM scalars with j = 0,m = 0 but
nonzero � �= 0 and the family number n is given by

LD
S = ∂μ�D†

S ∂
μ�D

S + | �D
S |2

×
[

g2
24�

(

n + 1

2

)

B+
μ Bμ−

+ZμZ
μ(g3� sin θD)

2+Ec
μE

cμ((g3� cos θD)
2
]

+ V (�D
S ,�H ), (77)

where V (�D
S ,�H ) is the nonlinear Higgs-type potential for

the DM scalar including a possible coupling of the SM Higgs
particle to the DM scalar:
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V (�D
S ,�H )

= −μ2
S | �S |2 +λS | �S |4 +λSH | �H |2| �S |2 .

(78)

As seen in (77) coupling of DM scalars to the DM gauge
vector bosons Ec and B± is allowed. But with a very small
coefficient g3 sin θD there exists also a coupling to the SM
Z boson arising from the diagonalization of the Laplacian
for the Higgs particle. The coupling of a DM scalar particle
to gauge bosons g = (Ec, Z , B±) is described by (70), (71)
and (72) and by the eigenfunctions χD

M (u) as given in (74).
In order to generate the gauge boson and DM fermion mass

the potential for the scalar DM should develop a nonzero
VEV. Taking the extremum of V (�D

S ,�H ) + V (�H ) a
nonzero VEV ≺ �H 
= �0

H and ≺ �S 
= �0
S can be

calculated:

(�0
H )

2 = 4μ2
HλS − 2μ2

SλSH

4λSλH − λ2
SH

,

(�0
S)

2 = 4μ2
SλH − 2μ2

HλSH

4λSλH − λ2
SH

. (79)

Choosing the unitary gauge and expanding the Higgs field
and the DM scalar around their VEVs by �H = �0

H +�h ,
�S = �0

S + �s the mass squared matrix for the SM Higgs
and for the DM scalars is given by

M2 =
[

2λH (�0
H )

2 λSH�
0
H�

0
S

λSH�
0
H�

0
S 2λS(�0

S)
2

]

. (80)

This matrix can be diagonalized by

�́h = cosβ�h + sin β�s,

�́s = − sin β�h + cosβ�s . (81)

We have the mixing angle

tan β = λSH�
0
H�

0
S

λS(�
0
S)

2 − λH (�0
H )

2 + (82)

with =
√
(λS(�

0
S)

2 − λH (�0
H )

2)2 + (λSH�0
H�

0
S)

2. The
masses for the diagonalized mass eigenstates are

Mh́ = λS(�
0
S)

2 + λH (�0
H )

2 + ,
Mś = λS(�

0
S)

2 + λH (�0
H )

2 −�. (83)

Spontaneous symmetry breaking of the SM Higgs field
and the DM scalar leads to the generation of masses for the
gauge bosons Z , W± as well as for the dark vector bosons
Ec and B± which contain contributions from the Higgs VEV
as well as from the DM scalar VEV,

M2
W± = (�0

H )
2g2

1/2 (84)

M2
Z = 2(�0

H )
2
[

1

2
g cos θD − g3 sin θD

]2

+2(g3� sin θD)
2(�0

S)
2, (85)

M2
Ec = 2(�0

H )
2
[

1

2
g sin θD + g3 cos θD

]2

+2(g3� cos θD)
2(�0

S)
2, (86)

M2
B± = 2g2

2[2(�0
H )

2 + (�0
S)

2]. (87)

The mass of the W± bosons is identical to its value in
the SM. For the Z-boson we obtain from (85) a mass with
a small deviation from the SM proportional to (g3)

2 for
g3 � 1 : δMZ = (�0

H )4g
2
3/

√
2g, which can be used for the

determination of experimental bounds of the coupling coeffi-
cient g3. As seen in (87) with �H = 1,mH = 1, nH = 0, the
B± boson gets a mass proportional to the SM coupling con-
stant g2. Without the VEV of the dark scalar (with�0

S → 0)
one gets MB± = �0

Hg22 � 116.24 GeV (using �0
H = 180

GeV). According to (86) the mass of the Ec boson given by
MEc � 2�0

Sg3 for g3 � 1 is proportional to g3.
Albeit on a different theoretical basis, the described

predictions show some similar features that arise in var-
ious scenarios for DM physics denoted as the dark sec-
tor (see e.g. [36,47–51]), the vector Higgs portal (see e.g.
[46,47,52,53,55,56] and the Z-portal (see e.g. [54,55]).
The dark sector hypothesis assumes that DM interacts only
through a new UD(1) force with a hypothetical “dark pho-
ton” as gauge boson but SM matter does not interact directly
with DM particles but can interact indirectly via a kinetic
mixing term in the Lagrangian [48]. In the Higgs portal
model a DM massive vector boson associated with a hidden
U’ (1) symmetry couples to the SM Higgs and in the Z-
portal DM model a DM fermion interacts directly with the
SM Z-boson. Reference [55,56] reports that the Higgs portal
model is compatible with the available data. Besides in [55]
also acceptable regions of parameters for the Z-portal model
for the interaction of DM fermions with the SM Z-boson
were reported. From these results similar conclusions can be
drawn for the acceptable parameter region of the Lagrangians
(75) and (77).

A comparison of the approach here presented with the
Higgs portal and the Z-portal models shows some common
properties but also clearly distinct features and principal dif-
ferences. Whereas the majority of DM models can be con-
sidered as a minimal extension of the SM based on a phe-
nomenological model assumption to understand the mecha-
nism of annihilation, scattering and possible decays of SM
particles the idea of the present approach is to describe fun-
damental interactions of SM particles as well as DM par-
ticles in a uniform way without phenomenological model
assumption within the geometrical structure of the TB with
the same symmetry group SU (2) ⊗ Ec(2). As seen in the
Lagrangian (62) the SM Higgs particle interacts with the dark
vector bosons Ec and B±, and in the Lagrangian (77) a DM
scalar and in (75) a DM fermion with the SM Z boson. The
extra DM vector bosons Ec and B± are nonabelian gauge
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bosons and interact with the SM gauge bosons. Due to the
existence of families the SM leptons carry an Ec-charge. A
nonzero Yukawa interaction term hints that also the Higgs
particle carries a nonzero Ec-charge � and therefore a fam-
ily of Higgs particles could exist. The coupling of the Higgs
and DM scalars in (62) and (77) with the Ec and B± arise in
an intrinsic way by the symmetry group, while interactions
of the Z-Boson with the DM Ec and B± boson or a scalar
DM particle arise due to the diagonalization of the Higgs
Lagrangian by the transformations (57).

Above we discussed only DM candidates with zero isospin
and hypercharge, but there exists the possibility that DM par-
ticles basically interact by the weak coupling to SM particles.
This means they are electrically neutral but carry hypercharge
and isospin satisfying the relation QA = e( j3 + 1

2m) = 0.
This includes right-handed sterile neutrinos with j3 = 1

2 and
m = −1.

9 Conclusions

The present paper is based on the hypothesis that the tangent
bundle is the underlying geometrical structure for the descrip-
tion of the fundamental physical interactions. The internal
(gauge) symmetries are not inserted as an extra theory con-
stituent given externally a priori by phenomenological rea-
sons like in the SM but emerge from the inherent geometrical
structure of the TB with symmetries described by the group
SO(3, 1). Projective irreducible representations of this group
can be constructed by using the little groups SU (2), Ec(2)
and SU (1, 1). Using the covariant derivative given by the
operators on the transformation group G = SU (2)⊗ Ec(2),
and the corresponding connection coefficients (gauge poten-
tials) a generalized theory of the electroweak interaction
is derived. Since the SM arises (without phenomenological
assumptions) as a limit case the presented approach answers
the question why the gauge group of the electroweak inter-
action in the SM is G = SU (2)⊗U (1).

In the TB approach wave functions depend on the space-
time coordinates x as well as on the coordinates of the tan-
gent fibers u. The well-known SM Z and W± gauge bosons
can be found again but in addition new extra gauge bosons
Ec and B± are predicted which constitute a fifth fundamen-
tal interaction. In addition to the SM quantum numbers of
isospin and hypercharge, the Ec-charge � and the family
quantum number n exist. The existence of the family IQN
n in the TB approach sheds light on the mysterious appear-
ance of lepton families in the SM requiring a distinct IQN
for every family. However, the large mass difference of dif-
ferent families cannot be explained as a tree-level effect but
requires a non-perturbative quantum loop treatment which
is beyond the scope of the present paper. The existence of

families requires that leptons carry a nonzero Ec-charge �l .
A selection rule from the Yukawa interaction indicates that
also the Higgs particle carries the Ec-charge �H = 1 and
therefore in the present approach a family of Higgs parti-
cles is predicted. In contrast, SM and Ec gauge bosons carry
zero Ec-charge, �g = 0. The derived selection rule reveals
that a family universal coupling of leptons persists for the
interaction with the SM gauge bosons.

An important prediction of the theory presented is the
possibility of identifying candidate stable or unstable hypo-
thetical DM fermions and DM scalars with zero hypercharge
and zero isospin but nonzero Ec-charge � �= 0 which should
necessarily be grouped in different families with different
family numbers n = 1, 2, . . . The new non-Abelian vector
bosons Ec and B± can be interpreted as DM vector gauge
bosons. These hypothetical bosons are not decoupled from
the SM particles, but there is a weak coupling to the SM
Higgs and to the SM Z-boson. Moreover, also the coupling
of leptons with the Ec bosons with a small coupling coef-
ficient g3 is allowed. DM vector bosons interact with each
other but also with the SM gauge bosons. Spontaneous sym-
metry breaking of the SM Higgs and the DM scalar predicts
not only the masses of the Z and W± bosons but also that
of the dark gauge bosons Ec and B±. The precondition of
nonzero Ec-charges � �= 0 of DM fermions and DM scalars
indicates that analogous to lepton families also DM fermion
and DM scalar families should exist.

Finally, the approach presented is linked with the geometri-
zation program of physics based on the single hypothetical
principle that the tangent bundle with the symmetry group
SO(3, 1)�T (3, 1) is the fundamental geometrical structure
for an unified description of all fundamental physical inter-
actions. On the one hand as briefly explained in Sect. 3 the
tangent bundle is the geometrical fundament for teleparal-
lel gravity gauge theory based on translational transforma-
tions T (3, 1) of tangent vectors along the fiber axis [11–
15] which is fully equivalent to the Einstein gravity theory.
On the other hand here a generalized theory of electroweak
interaction and dark matter is presented based on the little
groups of SO(3, 1). Therefore gravity, electroweak interac-
tion and DM are described by the same fundamental geomet-
rical structure of the TB. Note that strong interaction with
the gauge group SU (3) is in this frame still missing. The
color group SU (3) of quantum chromodynamics cannot be
described as a geometrical symmetry in the TB in the same
way as the SU (2)⊗ Ec(2) group leaving the scalar product
(3) invariant. However, the SU (3) symmetry could be hid-
den in the fundamental of the tangent bundle geometry in a
surprising way arising as an emergent symmetry similar to
Chern–Simon gauge fields that originate by the anomalous
quantum Hall effect in solid state theory (see e.g. [57–60].
The key for this assumption is the fact that the eigenfunc-
tion of the Ec(2) group given in (29) has the same form as
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the solution of the 2D Schrödiner equation for electrons in
a perpendicular external magnetic field. The solution (29)
describes the vertical subspace for a single tangent fiber at a
fixed spacetime point, but if we combine all tangent fibers at
all spacetime points we get an equation with an analog form
to the multi-particle Schrödinger equation of a 2D quantum
Hall system and, with the account of the three iso-spin com-
ponents of fermions, that of a three-layer quantum Hall sys-
tem [58]. This explains the astonishing analogy of fractional
charge quantization of quarks with the anomalous qantum
Hall effect [57]. In this approach emergent effective fields
[58,59,61,62] (arising here in the vertical subspace of tan-
gent vectors in the TB) originate in an intrinsic way and
bound the bare quarks to two vortices constituting compos-
ite quarks. These gauge fields and the SU(3) symmetry are
assigned to the base spacetime of the TB via the density distri-
butions and could appear as the local SU(3) color symmetry
of quantum chromodynamics.
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