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Comparison of monomorphic and polymorphic approaches for
uncertainty quantification with experimental investigations

Martin Drieschner, Martin Eigel, Robert Gruhlke,
Dietmar Hömberg, Yuri Petryna

Abstract

Unavoidable uncertainties due to natural variability, inaccuracies, imperfections or lack of
knowledge are always present in real world problems. To take them into account within a nu-
merical simulation, the probability, possibility or fuzzy set theory as well as a combination of these
are potentially usable for the description and quantification of uncertainties. In this work, different
monomorphic and polymorphic uncertainty models are applied on linear elastic structures with
non-periodic perforations in order to analyze the individual usefulness and expressiveness. The
first principal stress is used as an indicator for structural failure which is evaluated and classified.
In addition to classical sampling methods, a surrogate model based on artificial neural networks
is presented. With regard to accuracy, efficiency and resulting numerical predictions, all methods
are compared and assessed with respect to the added value. Real experiments of perforated
plates under uniaxial tension are validated with the help of the different uncertainty models.

1 Introduction

This study has been performed within the research project MuScaBlaDes – „Multi-scale failure analysis
with polymorphic uncertainties for optimal design of rotor blades“ – which is part of the DFG Priority
Programme (SPP 1886) „Polymorphic uncertainty modelling for the numerical design of structures“.

Air void inclusions are unavoidable in many different materials resulting from manufacturing processes
or environmental conditions which lead to stress concentrations around them [9], see [18] for an exten-
sive overview with a broad spectrum of investigations. They can influence significantly the structural
integrity and in the worst case lead to structural failure.

For numerical investigations on the stress concentration and resulting structural failure, a 2D linear
elastostatic boundary value problem for a perforated structure is defined in Section 2. The first principal
stress is used as an indicator for structural failure which is evaluated and classified.

Two different perforated Plexiglas R© plates with previously determined material properties were loaded
experimentally by uniaxial tension, see Section 3.

The discrepancy between experimental results and deterministic numerical predictions leads to a prob-
lem description under uncertainties. Monomorphic models including probabilistic [12, 21] (stochastic)
and possibilistic [8, 19] (in terms of fuzzy arithmetic) techniques as well as a polymorphic model [7,
14, 20] in the sense of a hybrid fuzzy-stochastic framework are presented in Section 4. Furthermore,
a surrogate model based on artificial neural networks [6] is defined to overcome the computational
costly uncertainty propagations.

The application of the different monomorphic and polymorphic uncertainty models is given in Sec-
tion 5. The individual usefulness and expressiveness are analyzed and the methods are compared
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with regard to accuracy, efficiency and resulting numerical prediction.

Finally, conclusions and an outlook on the ongoing work are given in Section 6.

2 Deterministic elastic model for perforated bodies

Consider a (deterministic) linear elastostatic equation on a perforated reference body denoted by
DP ⊂ D ⊂ Rd, d = 2, an unperforated LIPSCHITZ domain D. In addition, a finite number of sets
Ei ⊂ Rd, i ∈ I := {1, . . . , NI} and Lj ⊂ Rd, j ∈ J := {1, . . . , NJ} is defined for NI , NJ ∈ N
representing elliptical and slotted holes as specified in Table 1 and as displayed in Figure 1. Denote by
P a set of perforations given as possible union of elliptical and slotted holes defined forNP ≤ NI+NJ

by

P := {Pk | k = 1, . . . , NP}, Pk =
⋃

i∈Ik⊂I

Ei ∪
⋃

j∈Jk⊂J

Lj, (1)

for disjoint index sets {Ik} and {Jk}. s.t.
⋃̇NP

k=1Ik = I and
⋃̇NP

k=1Jk = J . The perforated domain is
defined as

DP := D \ ∪P∈PP . (2)

When a = (a1, a2) = (w/2, w/2) and ` = w the elliptical or slotted hole becomes a circular
perforation labeled as B with simplified parameterization via midpoint M and diameter d defining
a = (d/2, d/2).

Table 1: Considered perforations for d = 2 specified by their parameters.

perforation elliptical hole E slotted hole L
parameters midpoint, stretch, rotation midpoint, length, width, rotation
max. range (M , a, θ) ∈ D × Rd

+ × [0, 2π) (M , `, w, θ) ∈ D × R+ × R+ × [0, 2π)

θ
a1

a2
M

θ

`

M

w

Figure 1: Illustration of involved perforations and its related parameters with a = (a1, a2).

The maximum ranges of the parameters are constrained due to the following assumptions on P :

(A1) Each perforation Pk ∈ P has an intersection with D of positive measure, |Pk ∩D| > 0.

(A2) All perforations inP are either piecewise disjoint with an uniform prescribed EUCLIDIAN distance
of at least δ > 0 or they overlap such that DP remains LIPSCHITZian.
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(A3) All perforations in P are bounded away from ∂D with distance at least δ > 0.

Then the linear elasticity boundary value problem of interest in strong form in DP reads

f = − divσ equilibrium equation }
ε =

[
∇u+∇Tu

]
/2 strain-displacement equation in DP ,

σ = C : ε constitutive equation
u = 0 Dirichlet boundary conditions on Γ0 ⊂ ∂D,

σ · n = h Neumann boundary conditions on Γσ := ∂D \ Γ0,
σ · n = 0 Neumann boundary conditions on Γσ,0 := ∂∪P∈PP .

(3)

Let |Γ0| > 0 and assumption (A1) − (A3) hold true. Furthermore, let the data C,f and h be
regular enough such that the LAX-MILGRAM theorem applies to ensure existence and uniqueness of
a (weak) solution u ∈ V := H1

Γ0
(DP)d solving the variational formulation∫

D

σ(u) : ∇v dx =

∫
D

f · v dx+

∫
Γσ

h · vdS, for all v ∈ V. (4)

Consider the case of an isolated perforation P ∈ P and assume thatC is constant and f smooth in
a neighbourhood of P . Then, due to the smoothness of ∂P in that neighbourhood,C1 regularity holds
for u [4] and consequently pointwise σ(u)[x] is well-defined in that neighbourhood. For a qualitative
and quantitative comparison with experimentally determined failure mechanisms and ultimate loads
the computation of the maximum first principal stress and of its location is of interest:

σ1,max = ess sup
x∈DP

λmax(σ(u)[x]), (5)

xmax = arg max
x∈DP

σ1,max. (6)

Here λmax(A) denotes the largest eigenvalue of a matrix A. The structural failure is reached if σ1,max

in the structure exceeds the tensile strength ft. This criterion leads to the assumption that the first
crack location is equivalent to xmax.

For the application in mind the 2D model is derived from a 3D model of a thin Plexiglas R© cuboid
(L ×W × T ) with T � L,W s.t. D = [0, L] × [0,W ] is modeled rectangular with Γ0 = {0} ×
[0,W ], see Figure 2. Based on the calculated stress concentration, the given tensile strength and the
geometrical dimensions the ultimate load Fmax is calculated by

Fmax =
σN

σ1,max

ftWT ∈ [0; ftWT ] (7)

with uniaxial loading σN = ‖h(xmax)‖2. Furthermore f is modeled as f ≡ 0 and h as piecewise
constant s.t.

h =

{
Q[αF]e1, on Γrσ := {L} × [0,W ] ⊂ Γσ,

0, on Γσ \ Γrσ,
(8)

with a rotation matrix Q[αF] with deterministic load angle αF = 0 and e1 = (1, 0)T . The material
response is encoded in a constant stiffness tensorC = λI2⊗I2 +2µI4 with second- and forth-order
identity tensors I2 and I4 and Lamé constants λ = Eν/[(1 + ν)(1− 2ν)] and µ = E/[2(1 + ν)]
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with given Young’s modulus E and Poisson ratio ν describing isotropic material. The location xmax is
classified by

C (xmax) =

{
above perforation Pk, if xmax is associated and located above perforation Pk,

below perforation Pk, if xmax is associated and located below perforation Pk.
(9)

Note that in the prescribed model the value of Fmax is independend of the Young’s modulus E and
the Poisson ratio ν and linear proportional to the tensile strength ft. The classifier C is always inde-
pendend of E, ν and ft, due to the constant structure.

Γ0 Γrσ

DP

E1

L1 B2

B3

E4

E5

Figure 2: Schematical perforated domain and boundary conditions according to (3) and (8).

3 Experimental investigations

In the following the deterministic model type described in section 2 is investigated in an experimental
setting based on various tensile tests, each leading to different outcome of failure behaviour.

3.1 Determination of material properties

For the experimental investigations of perforated structures, Plexiglas R© – XT transparent – [5] is con-
sidered as isotropic material, described by Young’s modulus E and Poisson ratio ν. Linear-elastic
material behavior is assumed until the maximum first principal stress σ1,max reaches the tensile
strength ft. Then, brittle behavior leads immediately to structural failure. In [5], the material parameters
E = 3300MN/m2, ν = 0.37 and ft = 72MN/m2 are given.

For verification, 15 specimens are manufactured and tested according to [2], see Figure 3. During
the tensile testing, a force measurement system, optical extensometers and an optical strain field
measurement system were used for measuring the applied force F , the integral axial strain εg and the
continuous strain-field ε. With regard to defined standards in [2], the material properties are evaluated.
As can be seen in Figure 4, present uncertainties lead to a scattering in the material parameters,
especially inE. Nevertheless, the reference values forE and ν are validated and used in the following
investigations within this contribution since the considered quantities of interest are invariant under E
and ν, see Section 2. The discrepancy in the tensile strength ft is even more important according
to (7). Based on the conducted testing, a constant value of ft = 64N/m2 is assumed below.

3.2 Experimental failure analysis and deterministic numerical models

A perforated plate (L×W×T = 150mm×50mm×4mm) is loaded by uniaxial tension to investigate
the structural failure with the focus on the impact of the perforation properties. Ten specimens of
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(a) Plexiglas R© specimens

goodfellow2016deep
(b) Uniaxial tensile testing

Figure 3: Determination of material properties according to [2]

(a) Young’s modulus E (b) Poisson ratio ν (c) Tensile strength ft

Figure 4: Determined material properties

type 1 and 2 to be defined in Sections 3.2.1 and 3.2.2 were manufactured of the material described in
Section 3.1 under equivalent conditions.

3.2.1 Specimen type 1

The domain DP of specimen type 1 can be described mathematically as a rectangular plate D with
constant thickness perforated by three circular holes Bi, i = 1 . . . 3, with the values given in Table 2.

Table 2: Specimen type 1: Perforation parameters in [mm]

perforation 1: P1 = B1 (x1, y1, d1) = (63, 40, 10)
perforation 2: P2 = B2 (x2, y2, d2) = (69, 13, 8)
perforation 3: P3 = B3 (x3, y3, d3) = (84, 32, 16)

Figures 5a and 5b show the experimental setup and the specimen after testing with the associated
ultimate load Fmax and crack pattern that are called failure mechanism (FM).

As can be seen, the plates exhibit a scatter of ultimate loads Fexp,1 ∈ [2147N, 2791N] and various
crack patterns, i.e. quantitative and qualitative differences of failure mechanism.

DOI 10.20347/WIAS.PREPRINT.2579 Berlin 2019
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(a) Specimen type 1 before testing (b) Experimental results of specimen type 1

(c) Specimen type 2 before testing (d) Experimental results of specimen type 2

Figure 5: Specimen type 1 and 2 before and after testing

Analogously to the experiments in the numerical section, the left edge Γ0 is fixed and the right edge
Γrσ is loaded. The perforations are included as described in Section 2. The finite element model with
boundary conditions in Figure 6a as well as the resulting first principal stresses in Figure 6b are
displayed.

According to Table 3 the crack initiation xmax is located at the maximum first principal stress σ1,max

above perforation 1 which leads to a failure mechanism 1 or 1/2. Based on (7) with a tensile strength
of ft = 64MN/m2 from Section 3.1, the resulting ultimate load is computed to be Fdet,1 = 2767N in
the deterministic case. Obviously, geometrical imperfections and experimental inaccuracies influence
the ultimate load as well as the failure mechanism and therefore they have to be taken into account to
investigate the structural failure in a realistic manner, see Section 5.

Table 3: Specimen type 1: Stress concentration factors Ktg = λmax(σ(u))/σN.

Ktg location Ktg location
4.626 above perforation 1 2.844 below perforation 1
4.062 above perforation 2 3.717 below perforation 2
3.755 above perforation 3 3.923 below perforation 3
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(a) Mesh of specimen type 1 (b) Stress concentration in specimen type 1

(c) Mesh of specimen type 2 (d) Stress concentration in specimen type 2

Figure 6: Deterministic numerical model of specimen type 1 and 2

3.2.2 Specimen type 2

Additionally to specimen type 1, a plateD perforated by three different types of holes was investigated.
The perforations are given as follows: Perforation 1 is a circular hole B1, perforation 2 is a rotated
slotted hole L2 and perforation 3 is an overlapping of two circular holes B3∪B4. Note that these types
of perforations also fulfill the assumptions (A1) − (A3). The corresponding geometric parameters
are given in Table 4. Figures 5c and 5d display again the experimental setup and the specimens after
testing.

Table 4: Specimen type 2: Perforation parameters in [mm] or [◦]

perforation 1: P1 = B1 (x1, y1, d1) = (63, 40, 10)
perforation 2: P2 = L2 (x2, y2, l2, w2, θ2) = (69, 13, 11, 5, 30)
perforation 3: P3 = B3 ∪ B4 (x3, y3, d3, x4, y4, d4) = (82, 34, 14, 87, 28, 10)

The failure mechanisms of the ten specimens are very similar with a crack through perforation 3. Com-
pared with specimen type 1, the ultimate loads are smaller and in a range ofFexp,2 ∈ [1708N, 2440N].

By contrast, the deterministic numerical model as shown in Figure 6d leads to a maximum stress
concentration at perforation 2 with a resulting different crack growth. The associated ultimate load is
computed to be Fdet,2 = 2557N which is greater than all experimental values. As a consequence the
deterministic model is not able to explain the experimental outcome.

As can be seen in Table 5, the stress concentration factors are observed to be very close to each
other at different locations. Consequently, the considered quantities of interest in (7) and (9) may be
sensitive under slight changes of the present perforations. This assumption has to be validated within
the uncertainty quantification approaches, see Sections 4 and 5.

4 Monomorphic and polymorphic uncertainty models

In order to explain the different outcomes of structural failure in the experiments of Section 3, this
section sets its focus on modeling uncertainties of the underlying linear elastic model (3). The nature

DOI 10.20347/WIAS.PREPRINT.2579 Berlin 2019
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Table 5: Specimen type 2: Stress concentration factors Ktg = λmax(σ(u))/σN

Ktg location Ktg location
4.802 above perforation 1 2.805 below perforation 1
5.007 above perforation 2 4.447 below perforation 2
4.195 above perforation 3 4.918 below perforation 3

of uncertainty arising for this problem alone can be arbitrarily complex, e.g. due to the fine scale shape
of the Plexiglas R© plate D, shape, location and size of perforations, material properties or description
of source and force terms f and h.

In what follows, the modelling of uncertainties is simplified and restricted to the location and size of
perforations and the force term h. The shape (slotted hole L / circular hole B), material properties
encoded inC, the source term f and the unperforated domain D remain fixed.

Within this section two types of uncertainty models are considered. The monomorphic model includes
probabilistic (stochastic) and possibilistic (in terms of fuzzy arithmetic) techniques and is discussed
in section 4.1. The polymorphic uncertainty modeling is employed in the sense of a hybrid fuzzy-
stochastic framework, see section 4.2.

Let p be an abstract parameter representing all uncertain input. Then there is a direct influence on the
outcome of the maximum first principal stress (5) and the location classifier (9), both now depending
on p:

p 7→ σ1,max(p) := σ1,max(up), p 7→ C(p) := C(xmax,p), (10)

where up and xmax,p denote the solution and the location of the maximum first principal stress for

given p ∈×M

i=1
[ai, bi] for some ai, bi ∈ R and M ∈ N. Note that the evaluation of the maps

in (10) involves a computation of a (approximate) solution of the underlying elastic problem. In the
uncertainty propagation this becomes the most expensive aspect and therefore it becomes necessary
to construct surrogate maps. In our approach surrogates based on Artifical Neural Networks (ANNs)
are constructed in Section 4.3.

4.1 Monomorphic uncertainty models

A common approach to model uncertainties is by means of a pure probabilistic or possibilistic formal-
ism. Such an approach is called monomorphic uncertainty modeling. The following Sections 4.1.1 and
4.1.2 give a brief overview about both concepts.

4.1.1 Stochastic modeling

In this section a pure stochastic model in a randomly perforated domain is considered. Let (Ω,Σ,P)
be a complete probability space [10]. Then for P-a.e. ω ∈ Ω let DP = DP(ω) := D \ P(ω), with
P(ω) := {Pk(ω) ∈ P : k = 1, . . . , NP} begin P-a.e. of type P from (1). This is realized by letting
the parameters (see Figure 1) of P = P (ω) be (possibly correlated) random variables.

� Example: Let P = {Bk(ω), k = 1, . . . NP} s.t. each ball Bk(ω) is modeled by a random
midpoint Mk and diameter dk yielding a total random dimension dim = (1 + d)NP with
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d = 2. Hence, p ∈×NP
k=1

imgMk × img dk and a surrogate of the maps (10) has to be
designed to tackle the curse of dimensionality.

For the present application the general random force field h in (8) is spatially constant modeled as

h(x, ω) := Q[αF(ω)]e1, x ∈ Γrσ, (11)

with a random variable αF : Ω 7→ R with imgαF(Ω) ⊂ [0, 2π). For the sake of simplicity the
material tensorC and the source term f remain non-random and constant. In this situation, σ1,max =
σ1,max(ω) and C = C(ω) from (10) become random variables. A prominent type of random variables
ξ follows a uniform distribution U(a; b), in short ξ ∼ U(a; b) for a, b ∈ R, a < b. For numerical
experiments, a perforation Pk is parametrized with ξ = (ξ) with independent ξ ∼ U(a; b), s.t.
Pk(ω) = Pk(ξ(ω)).

4.1.2 Fuzzy modeling

In this section a pure possibilistic model is presented in terms of fuzzy arithmetic [22, 15, 13]. Let
Z ⊂ RM be a non-empty set and consider a map

µz̃ : Z 7→ [0, 1] (12)

called a (joint) membership function on Z describing a fuzzy set

z̃ := {(z, µz̃(z)) : z ∈ Z}. (13)

Moreover, if Z is bounded and convex, µz̃ is quasi-concave and upper semi-continuous and, addition-
ally, there is a unique z∗ ∈ Z with µz̃(z∗) = 1, then z̃ is called a fuzzy vector for M > 1 or a fuzzy
number forM = 1. Denote by F(Z) the set of all fuzzy vectors/numbers on Z and writeZ ∈ F(Z).
A special case is the non-interactive setting of a fuzzy vector z̃: Let z̃i ∈ F(Zi) with Zi ⊂ R for
i = 1, . . . ,M > 1 and a fuzzy set z̃ = (z̃1, . . . , z̃M) given with a joint membership function of the
form

µz̃(z) = min
i=1,...,M

µz̃i(zi), z = (z1, . . . , zM) ∈ Z :=
M×
i=1

Zi. (14)

Then the fuzzy vector z̃ is called non-interactive according to ZADEH [22]. The propagation of fuzzy
vectors/numbers through maps is defined by means of the extension principle: Let f : Z 7→ V be
a function and z̃ be a fuzzy set on Z , then ṽ := f(z̃) defines a fuzzy set on V with membership
function µṽ defined as

µṽ(v) :=

{
supf(z)=v µZ(z), f−1(v) 6= ∅,
0, f−1(v) = ∅. (15)

Moreover if f is continuous and V ⊂ R, the fuzzy propagation may be characterized via constrained
optimization on α-cuts due to a function-set identity [16] on compact sets. Let Cα[z̃] := {z ∈
Z : µz̃(z) ≥ α} for α ∈ [0, 1] denote the α-cut of a fuzzy set z̃ and Cα[ṽ] the α-cut of ṽ, then
it holds

Cα[ṽ] =

[
min
z∈Cα[z̃]

f(z), max
z∈Cα[z̃]

f(z)

]
. (16)
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The most prominent example of a fuzzy set is the so called triangular fuzzy number

z̃ = 〈l; z∗; r〉, −∞ < l < z∗ < r <∞, (17)

for a fuzzy number described by a triangular membership function, see Figure 7. The optimization
required due to the extension principle (15) may become a complicated task in computations. Thus
three main concepts to realize the propagation are considered:

� Semi sampling in V : Directly solve the constrained optimization problem with a global optimizer.
For a given sequence (vk)k ⊂ V , compute the supremum over Zk := {z ∈ Z : f(z) = vk},
see red line in Figure 7.

� Full sampling approach: Choose a sequence (zk)k ⊂ Z and compute (fk)k = [f(zk)]k and
(µk)k = [µz̃(zk)]k. Use the data sample pairs (vk, µk) and reconstruct µf̃ , e.g. by convex hull
or an envelope approach, see orange/purple graphics in Figure 7.

� α-cut optimization: Based on (16) with V = R for a given discretization α ∈ {α1, . . . , αl} ⊂
[0, 1], compute Cα[f̃ ] and build µf̃ based on interpolation between the obtained points, see
blue graphics in Figure 7.

C0[z̃]
Z0

1

α
Cα[z̃]

l r

µz̃

z̃ =< l, z∗, r >

z∗

f : Z → V

V
C0[ṽ]

Cα[ṽ]

µz̃(f−1(v))

v

µf̃

sample based
envelope reconstruction

{(vk, µz̃(zk)}k

0

α

1

v∗

ṽ = f(z̃)

Figure 7: Fuzzy propagation via α-cuts or full-sampling and membership reconstruction with vk =
f(zk), for Z = V = R.

Within the uncertainty parametrization in a possibilistic framework, all parameters describing the per-
forations and the force term direction αF as in (11) are modeled as triangular fuzzy numbers, all other
parameters remain deterministic.

4.2 Polymorphic uncertainty model

The modeling with both stochastic (probabilistic) and fuzzy (possibilistic) dependency is denoted as
polymorphic uncertainty modeling. By what follows assume a parametric description by a parameter
p of the uncertain model motivated by the quantities of interests considered in (10). In this setting, the
dependency of a random variable ξ and a fuzzy variable z̃ may be divided into two cases [3]:

� Separated dependence: p = (ξ, z̃) with a random vector ξ and a fuzzy set z̃.

� Coupled dependence: p = ξ(z̃) with a random vector ξ depending on fuzzy input.

DOI 10.20347/WIAS.PREPRINT.2579 Berlin 2019



Polymorphic approaches for uncertainty quantification 11

The latter structure may occur, when random variables follow a distribution defined by parameters
that are fuzzy variables [7, 17], e.g. mean and variance for a normal distribution. Both cases are
abbreviated by the notation p = p(ξ, z̃). While the propagation for both structures can be carried
out similarly, possible underlying surrogates may be adapted with the coupled or separated parameter
structure itself, e.g. with tensor-based surrogates for the latter case.

In the separated case, let Ξ := img ξ and recall the notation Z to be the underlying domain of the
fuzzy variable z̃. For a set V consider a measurable map

f : Ξ× Z 7→ V, (y, z) 7→ f(y, z). (18)

Then, ṽ(ω) := f(ξ(ω), z̃) is a random fuzzy set in V denoted as polymorphic field : For P-a.e.
ω ∈ Ω

µṽ(ω)(ξ(ω); ·) : V 7→ [0, 1], v 7→ µṽ(ω)(ξ(ω); v), (19)

indexed by ξ(ω) defines a membership of ṽ(ω) ∈ F(V ) via ZADEH’s extension principle, see (15).
Thus, on the one hand, the membership function itself is a random field

µY : Ω× Y 7→ [0, 1]. (20)

On the other hand, for fixed z ∈ Z , ω → f(ξ(ω), z) is a random variable. An abstract propagation
concept of polymorphic input is summarized in Algorithm 1.

Algorithm 1: Abstract uncertainty propagation of polymorphic uncertainty
input : ◦ parameter p = p(ξ, z̃), random vector ξ, fuzzy input z̃ with membership function µz̃

◦ point evaluation selection strategy in fuzzy spaceAF
◦ point evaluation selection strategy in stoch. spaceAΩ

◦ polymorph uncertainty modelM =M(p) with values in Y

output: discrete data set of V -valued polymorphic field ṽ := f(M)
1 collect evaluation points based onAF into F := {zi ∈ Z, zi ∈ suppµZ , i = 1, . . . , NF <∞}
2 collect evaluation points based onAΩ into S := {ξk, k = 1, . . . , NS <∞}
3 foreach ξk ∈ S do
4 reconstruct µY (ξk, ·) based on (15) via evaluation of fZ : Z 7→ Y, fk(z) = f(p(ξk, z)) onAF
5 define fuzzy set ṽk := {(fk(z), µṽk(ξk, fk(z))) : z ∈ Z}

return discrete fuzzy set data {ṽk, k = 1, . . . , NS}.

Note that the selection strategiesAF andAΩ are rather abstract and may depend on one another.

For the stochastic coordinate space,AΩ may be chosen as interpolation or quadrature possibly used
for functional representations (sparse grid interpolation, generalized polynomial chaos) or any sam-
pling scheme involving Monte-Carlo or quasi Monte-Carlo simulation for stochastic coordinates.

The strategy for the fuzzy coordinate may be chosen based on iterations of an underlying min/max
optimization routine within an α-cut discretization. Recall that for the latter case to be possible, the map
fk needs to be continuous and V = R. In the special case that fk from Algorithm 1 is continuous and
monotone, the propagation of fuzzy input further simplifies as the optimization problem (16) becomes
simpler. This observation is intensively used in the numerical examples in Section 5.2. In the general
case of fk, sampling approaches directly based on (15) and reconstruction of the output membership
functions may be considered, see Section 4.1.2 and Figure 7.

In Algorithm 1 it is assumed that one is interested in a polymorphic field ṽ. In practise often only
statistics of f are relevant, e.g. moments E[fm] for some m ∈ N. In this case, a partial stochastic
propagation can be performed leading to (deterministic) fuzzy outputs.
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Within the framework of considered quantities of interests, the maximum first principal stress and
the classifier in (10) are now fuzzy-stochastic outcomes, i.e. random variables that depend on fuzzy
input as well. The parameters describing the size of the perforations are modeled with triangular fuzzy
numbers, the remaining parameters are random variables. A separated dependence is considered
with non-interactive fuzzy numbers and mutual independent random variables.

4.3 Surrogates based on ANNs

In the last sections the need of surrogates for the map f : Ξ × Z → V was emphasized, assuming
that each evaluation of f is expensive. In this work Artifial Neural Networks (ANNs) are chosen as
a particular type of surrogate. The successful application of ANNs and its variants like Convolutional
Neural Networks for image classification, e.g. [11], and Recurrent Neural Networks for audio recog-
nition [6] has been demonstrated extensively in the literature. Among the vast of literature, it is only
refered to [6] and references therein for a broader overview.

In this work, regression based classical feed forward Neural Networks are considered for predict-
ing both the maximum first principal stress p 7→ σ1,max(p) and the location classifier p 7→ C(p)
from (10). Any presented ANN is realized with the open source software Keras [1]. These network
structures yield promising results as demonstrated in Section 5. In Figure 8 the used network topology
is illustrated, consisting of an input an output layer as well as hidden layers denoted as

H = H(n), n = (n1, . . . , nH) ∈ NH , (21)

consisting of H ∈ N layers and nk ∈ N denoting the number of neurons in the k-th hidden layer for
k = 1, . . . , H , and an output layer. For the maximum first principal stress map p 7→ σ1,max(p), an
ELU activation function is considered, see red path in Figure 8 and the parameters W 1

` , ` = 0, . . . , L
of the ANN are trained by minimizing mean square error (MSE) functional, given a set of training
samples. The classifier map p 7→ C(p) will be approximated using RELU activation functions and a
softmax activation on the output layer, see blue path in Figure 8. For the classification minimizing a
categorial cross entropy (CE) loss is used to fit the parameters W 2

` in the ANN for ` = 0, . . . , L =
H + 1.

p 7→

input layer

ELU /RELU

weights

W i=1,2
0 W i=1,2

1

W i=1,2
L−1

ELU /RELU

ELU

≈ σ1,max

output layer

≈ C

SOFTMAX

W 1
L

W 2
L

hidden layer

Figure 8: Schematical dense feed forward network used as surrogate in
Section 5 with decreasing number of neurons inside the hidden layers.

Let p ∈ Rd. Then all considered dense feed-forward structures are chosen, s.t. the first hidden layer
contains n1 = d neurons. This is motivated by the idea that the ANN is able to reorder the input
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parameters in a non-linear manner to improve the approximation quality. Successively each follow up
hidden layer consists of a not larger number of neurons, i.e. n1 ≥ n2 ≥ . . . ≥ nH . Details on the
explicit construction and training for the present application are given below.

The following subsections briefly describe the training and validation process of the involved ANNs
each based on N = 10000 = 7500 + 2500 = Ntrain + Ntest uniform distributed samples within
the parameter range, see Table 6 for specimen type 1 and Table 7 for specimen type 2, respectively.
An Adams optimization scheme is used for all involved ANNs with a learning rate of 0.001. In the
optimization routine a model checkpoint based on a save best strategy with a patience of 50 iterations
is used for the resulting surrogate ANNs.

4.3.1 Specimen type 1

The uncertainity model of specimen type 1 involves a total of 10 parameters. The surrogate ANN
structure for the maximum principal stress is specified byH(n) with n = (10, 8, 6, 4, 4, 2) and ELU
activation per layer. The model is trained in a sequence of batches/epochs of (20, 300)→ (50, 1000),
resulting in about 1% training loss and 2% validation loss. The overall sample data consists of 4
classes (A1,A2,B2,A3), see Figure 9 for illustration. The classifier ANNs topology consists of n =
(10, 8, 6, 4) with RELU activation and softmax output layer. It is trained with class weight of w =
(1, 1.2, 1.1, 1) using a sequence of batches/epochs of (150, 5) → (120, 40) → (120, 100) →
(150, 200). Within the optimization a training loss of 2% and 97% validation accucary was archieved.

4.3.2 Specimen type 2

The uncertainity model of specimen type 2 involves a total of 15 parameters. The surrogate ANN
structure for the maximum principal stress is specified by H(n) with n = (15, 10, 8, 6, 2) and ELU
activation per layer. The model is trained in a sequence of batches/epochs of (20, 300)→ (50, 400),
resulting in about 2% training loss and 3% validation loss. The overall sample data consists of 4
classes (A1,A2,B2,A3,B3), see Figure 10 for illustration. The classifier ANNs topology consists
of n = (15, 8, 6, 4) with RELU activation and softmax output layer. It is trained with equals class
weights using a sequence of batches/epochs of (20, 5) → (40, 40) → (100, 100) → (150, 200).
Within the optimization a training loss of 1.8% and 96% validation accucary was archieved.

5 Comparison of different uncertainty quantification approaches
with experimental investigations

Regarding the experimental investigations of perforated structures described in Section 3.2, uncer-
tainties are identified during the fabrication and the experiments. Manufacturing inaccuracies and im-
perfections influence the locations and sizes of the perforations while the experimental conditions lead
to a scattering load angle. In the following, the same ranges for the uncertain parameters are used
independently of the uncertainty quantification approach formulated in Section 4.
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5.1 Monomorphic uncertainty models

In the presented experiments, the deterministic model from Section 2 is enriched by a monomorphic
description of geometric and load angle parameters for both specimens.

5.1.1 Stochastic modeling

For the probabilistic approach, the described uncertainties are quantified by uniform distributed stochas-
tically independent variables, see Table 6 for specimen type 1 and Table 7 for specimen type 2, re-
spectively.

Table 6: Specimen type 1: stochastic variables in [mm] or [◦]

P1 = B1 P2 = B2 P3 = B3 load angle
x1 ∼ U(61; 65) x2 ∼ U(67; 71) x3 ∼ U(82; 86) αF ∼ U(−2; 2)
y1 ∼ U(38; 42) y2 ∼ U(11; 15) y3 ∼ U(30; 34)
d1 ∼ U(9.5; 10.5) d2 ∼ U(7.5; 8.5) d3 ∼ U(15.5; 16.5)

Table 7: Specimen type 2: stochastic variables in [mm] or [◦]

P1 = B1 P2 = L2 P3 = B3 ∪ B4 load angle
x1 ∼ U(61; 65) x2 ∼ U(67; 71) x3 ∼ U(80; 84) αF ∼ U(−2; 2)
y1 ∼ U(38; 42) y2 ∼ U(11; 15) y3 ∼ U(32; 36)
d1 ∼ U(9.5; 10.5) l2 ∼ U(9; 13) d3 ∼ U(13.5; 14.5)

w2 ∼ U(4.5; 5.5) x4 ∼ U(85; 89)
θ2 ∼ U(28; 32) y4 ∼ U(26; 30)

d4 ∼ U(9.5; 10.5)

By applying a classical Monte Carlo sampling approach with N = 104 direct model problem simu-
lations and N = 106 surrogate forcasts obtained from the trained ANNs, the numerical outputs for
specimen type 1 in Figure 9 and for specimen type 2 in Figure 10 are obtained.

For both specimen types, the numerical results cover the range of experimental ones even though a
shift is recognizable. The peak is on the right of the experimental range, leading to the conclusion that
some other uncertainties have to be taken into account additionally which reduce the ultimate load
Fmax. However, the empirical mean is located inside the experimental range and different locations of
the maximum first principal stress occurs in the numerical simulations, like it has been assumed due
to the different crack patterns in the experimental investigations. The stochastic output arised from
the classical sampling approach and the surrogate modeling are qualitatively as well as quantitatively
quite similar. The deviation of the empirical mean is less than 1% for both specimens. A benefit of
this approach is the direct visibility of partial probabilities of different locations of the maximum first
principal stress, e.g. within a certain range of ultimate loads.

For specimen type 1, the maximum stress location above perforation 1 is most probable and is repre-
sented over the whole range of the ultimate load. The location above or below perforation 2 depends
mainly on the distance to the other perforations as well as to the lower edge and is represented for
higher values of Fmax. The location above perforation 3 is least probable and also related to higher
ultimate loads caused by larger edge distance even if perforation 3 is the largest. Within the numerical
simulations, the maximum first principal stress was not located either below perforation 1 or 3.
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(a) Empirical distribution (sampling approach) (b) CDF (sampling approach)

(c) Empirical distribution (surrogate modeling) (d) CDF (surrogate modeling)

Figure 9: Stochastic output for specimen type 1.
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(a) Empirical distribution (sampling approach) (b) CDF (sampling approach)

(c) Empirical distribution (surrogate modeling) (d) CDF (surrogate modeling)

Figure 10: Stochastic output for specimen type 2.
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For specimen type 2, all locations except the ones below perforation 1 are reproducible. The locations
associated to perforation 2 and 3 are more represented compared to specimen type 1 and related to
lower ultimate loads. The location above perforation 1 is again visible over the whole range of Fmax,
however, for higher values, a location associated to perforation 2 or 3 is more probable.

5.1.2 Fuzzy modeling

In the possibilistic approach, the described uncertainties are quantified by independent triangular fuzzy
numbers, see Table 8 for specimen type 1 and Table 9 for specimen type 2, respectively.

Table 8: Specimen type 1: fuzzy numbers in [mm] or [◦]

P1 = B1 P2 = B2 P3 = B3 load angle
x1 = 〈61; 63; 65〉 x2 = 〈67; 69; 71〉 x3 = 〈82; 84; 86〉 αF = 〈−2; 0; 2〉
y1 = 〈38; 40; 42〉 y2 = 〈11; 13; 15〉 y3 = 〈30; 32; 34〉
d1 = 〈9.5; 10; 10.5〉 d2 = 〈7.5; 8; 8.5〉 d3 = 〈15.5; 16; 16.5〉

Table 9: Specimen type 2: fuzzy numbers in [mm] or [◦]

P1 = B1 P2 = L2 P3 = B3 ∪ B4 load angle
x1 = 〈61; 63; 65〉 x2 = 〈67; 69; 71〉 x3 = 〈80; 82; 84〉 αF = 〈−2; 0; 2〉
y1 = 〈38; 40; 42〉 y2 = 〈11; 13; 15〉 y3 = 〈32; 34; 36〉
d1 = 〈9.5; 10; 10.5〉 l2 = 〈9; 11; 13〉 d3 = 〈13.5; 14; 14.5〉

w2 = 〈4.5; 5; 5.5〉 x4 = 〈85; 87; 89〉
θ2 = 〈28; 30; 32〉 y4 = 〈26; 28; 30〉

d4 = 〈9.5; 10; 10.5〉

In this approach, a classical sampling approach with n = 104 simulations is also compared to a
surrogate model with n = 106 simulations in total. In addition to the deterministic case on the core
for µ = 1.0, ten equidistantly distributed α-cuts are used to ensure a homogeneous distribution of
the samples over the height of the membership function. The numerical outputs are displayed for
specimen type 1 in Figure 11 and for specimen type 2 in Figure 12, respectively.

As in the probabilistic approach, the experimental range is completely covered by the numerical results
despite the shift to the left side. The core of the output membership function represents the determin-
istic solution which is for specimen type 1 at the upper bound and for specimen type 2 outside of
the experimental range. Also, 4 resp. 5 different locations of the maximum first principal stress are
recognizable in the numerical simulations. The output membership function is tilted to lower ultimate
loads Fmax even though all input membership functions are symmetrical triangular fuzzy numbers.
Comparing the output of the sampling approach with the surrogate solution, a good agreement of the
membership functions as well as of the different locations is shown whereby the surrogate modeling
lead to a higher range of ultimate loads, e.g. visible in the support of Fmax. Furthermore, the possi-
bilities of the different locations depend on the output membership function value, thus they can be
related to the range of input uncertainties, which is an added value of this pure fuzzy approach.

For specimen type 1, small input uncertainties lead to a stress concentration above perforation 1 since
it is represented over the entire height of the membership function. With increasing input uncertain-
ties, also the locations above perforation 2, below perforation 2 and above perforation 3 successively
become possible, mainly related to higher ultimate loads Fmax.
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(a) Empirical membership function (sampling approach) (b) Individual components (sampling approach)

(c) Empirical membership function (surrogate modeling) (d) Individual components (surrogate modeling)

Figure 11: Fuzzy output for specimen type 1
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(a) Empirical membership function (sampling approach) (b) Individual components (sampling approach)

(c) Empirical membership function (surrogate modeling) (d) Individual components (surrogate modeling)

Figure 12: Fuzzy output for specimen type 2
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For specimen type 2, the locations above perforation 1, above perforation 2 and below perforation 3
appear almost over the entire height of the membership function independently of the input uncertainty
ranges. While lower valued ultimate loads are mainly caused by the first perforator 1 the two other
perforations are more represented for higher values. Consequently for small input uncertainties and
consequently higher output membership function values, a stress concentration below perforation 2 or
above perforation 3 is not expected.

5.2 Polymorphic uncertainty model

In a polymorphic approach, stochastic and fuzzy variables are applied simultaneously. As an example,
the described uncertainties except the size parameters are described by uniformly distributed stochas-
tically independent variables like in Section 5.1.1, whereas independent triangular fuzzy numbers are
used for the size parameters like in Section 5.1.2, see Table 10 for specimen type 1 and Table 11 for
specimen type 2, respectively.

Table 10: Specimen type 1: stochastic and fuzzy variables in [mm] or [◦]

P1 = B1 P2 = B2 P3 = B3 load angle
x1 ∼ U(61; 65) x2 ∼ U(67; 71) x3 ∼ U(82; 86) αF ∼ U(−2; 2)
y1 ∼ U(38; 42) y2 ∼ U(11; 15) y3 ∼ U(30; 34)

d1 = 〈9.5; 10; 10.5〉 d2 = 〈7.5; 8; 8.5〉 d3 = 〈15.5; 16; 16.5〉

Table 11: Specimen type 2: stochastic and fuzzy variables in [mm] or [◦].

P1 = B1 P2 = L2 P3 = B3 ∪ B4 load angle
x1 ∼ U(61; 65) x2 ∼ U(67; 71) x3 ∼ U(80; 84) αF ∼ U(−2; 2)
y1 ∼ U(38; 42) y2 ∼ U(11; 15) y3 ∼ U(32; 36)

d1 = 〈9.5; 10; 10.5〉 l2 = 〈9; 11; 13〉 d3 = 〈13.5; 14; 14.5〉
w2 = 〈4.5; 5; 5.5〉 x4 ∼ U(85; 89)
θ2 ∼ U(28; 32) y4 ∼ U(26; 30)

d4 = 〈9.5; 10; 10.5〉

Monotony of Fmax with regard to the size parameters is presumed which enables the reduced trans-
formation method [8] for the analysis in the fuzzy space. For the stochastic parameters, a classical
Monte-Carlo sampling approach with n = 1000 samples on each point in fuzzy space is imple-
mented. Additionally, a surrogate model as described in section 4.3 with n = 106 simulations in total
is also used. The resulting fuzzy-stochastic outputs are displayed for specimen type 1 in Figure 13
and for specimen type 2 in Figure 14, respectively.

Similar to the approaches under monomorphic uncertainties shown above, the experimental results
are covered by the numerical predictions even if a shift to smaller ultimate loads Fmax is present.
The empirical fuzzy mean is almost completely inside the experimental range for specimen type 1. For
specimen type 2, it is partly outside for smaller output membership function values, equivalent to larger
deviations in the size parameters. Furthermore, the fuzzy CDF of specimen type 2 is steeper than of
specimen type 1 which shows a smaller influence of the stochastic parameters (location and load
angle) on the ultimate load. Also in the approach with polymorphic uncertainties, the application of the
proposed surrogate based on ANNs is justified, comparing the numerical predictions with those from
the classical sampling approach. The deviation is always negligible. The combination of stochastic
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(a) Empirical fuzzy mean (sampling approach) (b) Empirical fuzzy CDF (sampling approach)

(c) Empirical fuzzy mean (surrogate modeling) (d) Empirical fuzzy CDF (surrogate modeling)

Figure 13: Fuzzy-stochastic output for specimen type 1.
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(a) Empirical fuzzy mean (sampling approach) (b) Empirical fuzzy CDF (sampling approach)

(c) Empirical fuzzy mean (surrogate modeling) (d) Empirical fuzzy CDF (surrogate modeling)

Figure 14: Fuzzy-stochastic output for specimen type 2.
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and fuzzy variables allows the output evaluation on each stochastic sample regarding the fuzzy input
parameters (size) and on each fuzzy sample regarding the stochastic input parameters (location and
load angle). The simultaneous information about probabilities as well as possibilities (in terms of fuzzy
sets) of the location of the maximum first principal stress concerning the ultimate load and the input
uncertainties is an added value, see Figure 15.

The solutions for the deterministic size parameters in Figures 15a and 15c correspond to the solu-
tions on the core (µ = 1.0) of the fuzzy-stochastic output due to the definition of the size parameters
as triangular fuzzy numbers. It is remarkable that these figures are almost identical to those in Sec-
tion 5.1.1 which shows that the quantities of interest (Fmax and C(xmax)) are nearly unaffected by
the underlying uncertainty in the size parameters. Nevertheless, minor deviations like larger empirical
means, smaller ranges of the stochastical output and steeper CDFs can be observed.

In contrast, Fmax and C(xmax) are sensitive to the location parameters and the load angle. For the
deterministic location and load angle values given in Section 3, the fuzzy outputs in Figures 15b
and 15d have been determined. Compared to the results in Section 5.1.2, solely the deterministic
solutions on the core (µ = 1.0) are equal. For specimen type 1, only one instead of four first crack
locations is identifiable and the ultimate load Fmax is now given in a smaller range of about 300N
on the support (µ = 0.0). Also for specimen type 2, the amount of identified first crack locations is
reduced, now from five to three, with a considerable smaller range of Fmax as well. As a consequence,
the output membership functions are slimmer which shows once more the minor influence of the size
parameter uncertainty in the present applications.

6 Conclusions

The structural failure of perforated Plexiglas R© plates was investigated experimentally and numerically
in this contribution. Both the failure mechanism as well as the ultimate load are generally affected by
uncertainties in material, geometry and boundary conditions. Different uncertainty models, monomor-
phic and polymorphic ones, have been applied successfully for the problem description with slightly
different results. Within the polymorphic model, a combined statement about probabilities and possi-
bilities also regarding the quantified inputs was shown. To overcome the high computational costs of
the uncertainty propagation, a surrogate reponse method based on Artificial Neural Networks were
employed in addition to classical sampling approaches. The numerical results for the ultimate loads,
independent of the uncertainty description, cover the range of experimental ones that is generally
expected. Furthermore, different locations of the maximum first principal stress can be depicted in
the numerical simulations which lead to different failure mechanisms, detectable in the experiments.
However, the range of numerical and experimental ultimate loads exhibit a shift. Consequently, other
uncertainties like material inhomogeneities, thickness variation and hole shape irregularities have to
be taken into account additionally in future considerations.
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(a) Specimen type 1: stochastic output for
deterministic size

(b) Specimen type 1: fuzzy output for
deterministic location without load angle scattering

(c) Specimen type 2: stochastic output for
deterministic size

(d) Specimen type 2: fuzzy output for
deterministic location without load angle scattering

Figure 15: Exemplary filtered pure stochastic and pure fuzzy outputs.
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