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ABSTRACT

We have developed the open-source toolbox custEM (cus-
tomizable electromagnetic modeling) for the simulation of com-
plex 3D controlled-source electromagnetic (CSEM) problems.
It is based on the open-source finite-element library FEniCS,
which supports tetrahedral meshes, multiprocessing, higher or-
der polynomials, and anisotropy. We use multiple finite-element
approaches to solve the time-harmonic Maxwell equations,
which are based on total or secondary electric field and gauged
potential formulations. In addition, we develop a secondary
magnetic field formulation, showing superior performance if
only magnetic fields are required. Using Nédélec basis func-
tions, we robustly incorporate the current density on the edges
of the mesh for the total field formulations. The latter enable
modeling of CSEM problems taking topography into account.

We evaluate semianalytical 1D layered-earth solutions with the
pyhed library, supporting arbitrary configurations of dipole
or loop sources for secondary field calculations. All system
matrices have been modified to be symmetric and solved in
parallel with the direct solver MUMPS. Aside from the
finite-element kernel, mesh generation, interpolation, and visu-
alization modules have been implemented to simplify and au-
tomate the modeling workflow. We prove the capability of
custEM, including validation against analytic-solutions, cross-
validation of all implemented approaches, and results for a
model with 3D topography with four examples. The object-ori-
ented implementation allows for customizable modifications
and additions or to use only submodules designed for special
tasks, such as mesh generation or matrix assembly. Therefore,
the toolbox is suitable for crossvalidation with other codes and
as the basis for developing 3D inversion routines.

INTRODUCTION

In the past few decades, marine, ground-based, and airborne con-
trolled-source electromagnetics (CSEM) have been undergoing a
steady development from simple 1D soundings to complex setups
with multiple sources and receivers for large-scale multidimen-
sional investigations. In the project Deep Electromagnetic Sound-
ings for Mineral Exploration (DESMEX), semiairborne surveys
have been conducted using multiple CSEM transmitters as well
as ground-based and airborne receivers. Such CSEM setups require
novel data-processing schemes as well as appropriate modeling and
inversion tools taking into account the surface and subsurface
geometry. Multidimensional numerical methods for Maxwell’s

equations in either the time- or frequency-domain were imple-
mented for approximately 50 years by using either the integral
equation (IE), finite difference (FD), finite volume (FV), or the
finite-element (FE) method. Disregarding the large number of re-
ported 1D and 2D techniques, we restrict the review to advances
in 3D CSEM modeling.
Raiche (1974) introduces the IE method for 3D CSEM problems,

which is still in use and improved (Zhdanov et al., 2006; Kruglyakov
et al., 2016). Although the implementation effort is nonnegligible,
this method can be preferred over FD or FEmethods (FEM) for mod-
eling the scattering of a limited number of simple anomalies in a 1D
layered background model. In this case, the size of the linear systems
of equations to be solved is comparatively small (Avdeev, 2005).
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In contrast, the FD method is most straightforward to implement,
but the computational costs can become high for regular meshes
with staggered grids. Within the past few decades, it was often ap-
plied in EM geophysics. Adhidjaja and Hohmann (1989) and Wang
and Hohmann (1993) present the first time-domain applications.
Commer and Newman (2004) and Streich (2009) report more recent
usage in the frequency domain. The recent application of multire-
solution techniques by Cherevatova et al. (2018) or using octree
meshes, such as, for instance, used with FV by Haber and Held-
mann (2007), overcomes discretization issues for structurally com-
plex model areas without a tremendous increase in the number of
degrees of freedom (dof).
The FV method (Madsen and Ziolkowski, 1990; Jahandari and

Farquharson, 2014) combines the advantages of a straightforward
implementation, similar to the FD method, with unstructured
meshes, such as FE (Jahandari and Farquharson, 2014). Recent re-
search shows that FV might be superior to FD in terms of computa-
tional effort, but inferior in terms of accuracy compared with FEM
(Jahandari et al., 2017).
FEM is commonly accepted as being most suited to account for

irregular geometries (Avdeev, 2005). Despite that FEM might be
computationally most expensive, the method becomes compara-
tively efficient when unstructured meshes are used. In addition,
the EM fields can be easily interpolated from the solution functions
defined on the complete computational domain.
Pridmore et al. (1981), Gupta et al. (1989), and Livelybrooks

(1993) show results of first FE implementations for CSEM prob-
lems on hexahedral meshes. For nearly two decades, FEM has
rarely been applied to 3D CSEM modeling for different reasons:
First, the implementation of curl-curl problems on nodal elements
can lead to so-called spurious solutions that do not account for dis-
continuities of the electric field components (Börner, 2010; Jin,
2015). Nédélec (1980) introduces the edge elements to overcome
this issue. Second, computational costs were prohibitively high
for former computer architectures. Third, effective and robust mesh
generators for tetrahedral elements became commonly available
later on, e.g., by the development of TetGen (Si, 2015) or Gmsh
(Geuzaine and Remacle, 2009).
Within the past few years, FEM has been first reconsidered in two

dimensions (Key and Weiss, 2006; Kong et al., 2007; Key and
Ovall, 2011; Minami and Toh, 2013) and remarkable progress
has been made in adapting the FEM for modeling 3D CSEM prob-
lems. Nowadays, the separation of total fields (TFs) into primary
(background) and secondary fields (SFs) is widely used to improve
modeling of complex subsurface geometries and reduce computa-
tional costs. The background fields are mostly derived by applying
semianalytic formulas for 1D layered-earth models. Overall, three
different FE strategies have been successfully applied to solve the
systems of equations for time-harmonic EM problems.
Badea et al. (2001) describe the first approach, which is based on

Coulomb-gauge potentials ðA −ΦÞ and enable the computation of
SF on nodal elements by using iterative solvers. This approach, re-
ferred to as An, has been taken up by Stalnaker (2005) and Puzyrev
et al. (2013), who present fast and robust iterative solvers.
Schwarzbach (2009) and Schwarzbach et al. (2011) report the first

successful application of the SF electric field approach, designated as
E, on tetrahedral elements with Nédélec basis functions. Schwarz-
bach (2009) accurately describes the handling of issues such as the
null-space ðω → 0Þ and discusses direct or iterative solvers, boun-

dary conditions, or the source implementation. The same approach
was applied using hexahedral elements (da Silva et al., 2012). Um
et al. (2013) and Cai et al. (2014) successfully implement iterative
solution techniques for the ill-conditioned system of equations on
tetrahedral and hexahedral meshes, respectively. Recently, Li et al.
(2016) use a TF formulation for E in the frequency domain and con-
version to the time domain for efficiently simulating moving-loop
setups on realistic 3D geometries. For expressing the current density,
they use multiple horizontal electric dipoles (HEDs) as introduced by
Chave and Cox (1982) or Streich and Becken (2011), but show only a
few details about the implementation. The electric field approach is
also frequently used in 3D FE magnetotelluric modeling, which be-
comes challenging for very low frequencies, although the implemen-
tation of plane-wave sources is less complicated compared with
CSEM. Farquharson and Miensopust (2011), Ren et al. (2013),
Grayver and Bürg (2014), Grayver and Kolev (2015), and Kordy et al.
(2017) demonstrate important improvements regarding the null-space
issue, the solution of the ill-conditioned sparse linear system of equa-
tions or adaptive mesh refinement.
Schwarzbach (2009) not only introduces E, but also a TF poten-

tial approach on mixed Nédélec and nodal elements, for the vector
and scalar potentials, respectively. This approach, referred to as Am,
is more stable against the null-space issue, the implementation of
sources for the TF approach, and the solution of large systems with
iterative solvers. Mukherjee and Everett (2011) successfully apply
this concept, also taking changes of the magnetic permeability into
account. Ansari (2014) and Ansari and Farquharson (2014) report
the implementation of electric and magnetic sources by integrating
the contribution of the current density to related elements and a sta-
ble iterative solver for Am. Um et al. (2010) demonstrate the first
application to 3D time-domain CSEM modeling by using the TF
E formulation with an explicit source term implementation and di-
rect solution techniques on tetrahedral meshes. Börner et al. (2015)
present advanced Krylov subspace methods to solve the E system
for transient EM data efficiently. Cai et al. (2017) report the imple-
mentation of the total electric field approach with inhomogeneous
Dirichlet boundary conditions.
Most recently, Castillo-Reyes et al. (2018) introduce the develop-

ment of PETGEM, the first open-source modeling toolbox for 3D
(marine) CSEM problems. It is fully parallelized, uses an edge-
based secondary E formulation, and can handle complex geometries
with unstructured meshes. Accordingly, there are lots of similarities
to customizable electromagnetic modeling (custEM), presented in
this work. However, currently only first-order polynomials, iso-
tropic conductivities, and HED sources without surface topography
seem to be supported in PETGEM.
Despite that significant progress has beenmade to model 3DCSEM

and MT problems, Miensopust (2017) recently summarizes ongoing
challenges in the field of geophysical EM data acquisition, modeling,
and inversion. Real dipole or loop sources are often approximated with
a single (infinitesimal) HED or a vertical magnetic dipole. This
approximation can be incorrect for real applications, depending on
the frequencies used and the subsurface conductivity distribution
(Streich and Becken, 2011). Resistivity changes beneath finite trans-
mitters are mostly not taken into account (Miensopust, 2017). Most
importantly, crosschecking of forward modeling solutions for compli-
cated 3D MT models including topography and bathymetry has
revealed huge discrepancies and for marine CSEM, 3D modeling
and inversion has been reported rarely (Miensopust, 2017).

F18 Rochlitz et al.
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The reasons might be that most implementations have been opti-
mized for, or are restricted to, either land, marine, or airborne
applications and use either SF or TF formulations. SF formulations
are particularly powerful for modeling scattering of 3D anomalies
embedded in a horizontally layered-earth background model. This
leads to highly accurate solutions in the vicinity of transmitters,
but as soon as topography or bathymetry effects occur, errors can
become significant (Stalnaker, 2005). TF formulations are necessary
to take topography or bathymetry into account, but they are assumed
to be inferior in terms of accuracy and computational costs. The lack
of open-source developments for complex 3D geophysical EM prob-
lems makes it difficult to establish crossvalidation. Miensopust
(2017) clearly shows the necessity of enhancing the reliability of
numerical solutions and making more codes openly available with
a proper documentation, such as the multigeophysics modeling
and inversion tools provided by SimPEG (Cockett et al., 2015)
and pyGIMLi (Rücker et al., 2017). Important developments for
geophysical EM purposes are the P223F suite (Raiche et al., 2007),
Dipole1D (Key, 2009), AarhusInv (Auken et al., 2014), empymod
(Werthmüller, 2017), and PETGEM. However, none of these tools
is capable or suited for modeling arbitrary 3D setups.
For this reason, we developed the custEM toolbox. It is written in

the programming language Python and based on the well-estab-
lished and constantly evolving open-source FE library FEniCS
(Logg et al., 2012). FEniCS supports nodal, vector and mixed
elements, higher order basis functions, source implementation in
terms of current density or primary fields, anisotropy, paralleliza-
tion, and more. However, deriving equivalent real-valued formula-
tions for complex arithmetics is required.
This paper focuses on the methodology and implementation. We

modified and implemented the approaches E, Am, and An as SF and
TF formulations with the quasistatic approximation. In addition, we
introduce a secondary magnetic field approach on Nédélec-
elements, which is designated as H. The resulting symmetric linear
systems of equations accelerate the solution process. For TF formu-
lations, we incorporate the source-current density on dof of the
Nédélec-function-space as an alternative to known techniques (An-
sari, 2014; Li et al., 2016). For SF formulations, we implemented
1D layered-earth solutions for arbitrarily shaped grounded and un-
grounded transmitters. Apart from the FEM framework, meshing
tools were implemented that feature automated mesh generation
for various modeling setups. Interpolation and visualization tools
support presenting and validating the FEM results. First, the differ-
ent FE approaches for the time-harmonic Maxwell’s equations are
introduced. Afterward, implementation details of custEM are de-
scribed. Four examples are presented for validation and comparison
and to demonstrate the capabilities. All results can be reproduced by
executing the corresponding python scripts in the attached “exam-
ples” directory in the custEM repository.

METHODOLOGY

E-field approach — E

Because CSEM methods use frequencies < 10 kHz, the quasi-
static approximation of Maxwell’s equations is valid. Combining
Ampere’s and Faraday’s law yields the Helmholtz equation in terms
of the electric field

∇ × μ−1∇ × Eþ iωσE ¼ −iωje; (1)

where E denotes the total electric field, ω is the angular frequency, σ
is the electric conductivity, μ is the magnetic permeability, and je is
the source current density. For implementation reasons, only
sources in terms of electric current density je are considered for de-
riving the underlying FE equations. Because superposition is valid
for E, it can be split into a primary (background) field E0 and a
secondary (anomalous) field Es (e.g., Newman and Alumbaugh,
1995; Alumbaugh et al., 1996), corresponding to a split of the con-
ductivity σ ¼ σ0 þ Δσ. Incorporating these terms into equation 1,
the Helmholtz equation for the secondary electric field is derived
(e.g., Grayver and Bürg, 2014)

∇ × μ−1∇ × Es þ iωσEs ¼ −iωΔσE0: (2)

For a comprehensive instruction on FEM for electromagnetic appli-
cations, we refer to Monk (2003) or Jin (2015). The weak FE
formulations are solved using the Galerkin method (Schwarzbach,
2009). We only present the final real-valued, symmetric system of
equations with the structure Ax ¼ b that needs to be solved
(Grayver and Bürg, 2014). The symmetric submatrices C and D
contain terms including trial and test functions ðϕÞ on a Nédélec
function space for the contributions of the coupled real and imagi-
nary parts

�
C −D
−D −C

��
Er

Ei

�
¼

�
br

bi

�
; (3)

with

Cij ¼
Z
Ω
ðμ−1∇ × ϕiÞ · ð∇ × ϕjÞdΩ; (4)

Dij ¼
Z
Ω
ωðσϕiÞ · ϕjdΩ: (5)

The system matrix is identical for SF and TF. Analogously, the sol-
utions Er and Ei correspond to the TF E and the SF Es, respectively.
For TF, we assumed the current density to be comprised in the
imaginary part of the right-side vector

br ¼ 0; (6)

bi ¼
Z
Ω
ωje · ϕidΩ; (7)

or the primary fields for SF

br∕i ¼
Z
Ω
ωðΔσE0i∕rÞ · ϕidΩ: (8)

Nonnormalized complex-valued currents are currently not consid-
ered, but adding this feature is possible. The magnetic field H is
related to E by

H ¼ −
1

iωμ
∇ × E; (9)

where H is calculated on the same Nédélec-function-space as used
for E by solving the FE problem

custEM: customizable 3D CSEM modeling F19
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Z
Ω
ϕi · ϕjdΩ · Hr∕i ¼ �ω−1

Z
Ω
ðμ−1∇ × Ei∕rÞ · ϕjdΩ:

(10)

H-field approach — H

The Helmholtz equation in terms of magnetic fields H reads

∇ × σ−1∇ ×Hþ iωμH ¼ ∇ × σ−1je: (11)

Similar to the electric field, the magnetic fieldH can also be split into
a primary (background) field H0 and a secondary (anomalous) field
Hs related to the contributions of σ0 and Δσ. After rearranging equa-
tion 11, the secondary magnetic field can be calculated by solving

∇ × σ−1∇ ×Hs þ iωμHs ¼ ∇ × ðσ−10 − σ−1Þ∇ ×H0: (12)

Equation 12 is derived in Appendix A. Similar to the E-field ap-
proach, the resulting linear system of equations reads

�
CH −DH

−DH −CH

��
Hr

Hi

�
¼

�
brH
biH

�
; (13)

where

CHij ¼
Z
Ω
ðσ−1∇ × ϕiÞ · ð∇ × ϕjÞdΩ; (14)

DHij ¼
Z
Ω
ωðμϕiÞ · ϕjdΩ: (15)

Again, the submatrices CH and DH are equal for SF and TF formu-
lations. The solutions Hr and Hi either correspond to H or Hs,
respectively. The right side for the TF formulation reads

brH ¼ 0; (16)

biH ¼
Z
Ω
∇ × σ−1 · je · ϕidΩ; (17)

and for the SF formulation

b
r∕i
H ¼

Z
Ω
ð∇ ×H0r∕iÞ · ð∇ × ðσ−10 − σ−1ÞϕiÞdΩ; (18)

where E can be calculated using Ampere’s law in absence of external
sources by

E ¼ 1

σ
∇ ×H: (19)

Note that, alternatively, equation 18 can be expressed in terms of the
primary electric field as derived in equation A-9 in Appendix A. Vice
versa, H0 can be used for the E-field and A −Φ approaches.

The A −Φ approach on mixed elements — Am

Expressing the electric field in terms of a vector potential A and a
scalar potentialΦ is a known approach (Nabighian, 1988) to modify
equation 1 into

E ¼ iωðA − ∇ΦÞ; (20)

μH ¼ ∇ × A: (21)

Applying this method, Ansari and Farquharson (2014) derive the
following FE formulation based on potential equations:

∇ × ∇ × Aþ iωμσAþ μσ∇Φ ¼ μje; (22)

iω∇ · ðσAÞ þ ∇ · ðσ∇ΦÞ ¼ −∇ · je: (23)

Contributions to A are incorporated, identically to the E-field
approach, by trial and test functions on a Nédélec space, whereas
contributions of Φ use functions on a nodal space. The assembled
system for the TF approach is larger, but more suited for iterative
solvers in contrast to the ill-conditioned system of the E-field
approach, even for low frequencies (Ansari, 2014). The SF formu-
lation reads (Badea et al., 2001)

∇ × ∇ × As þ iωμσAs þ μσ∇Φs ¼ iωμΔσA0; (24)

iω∇ · ðσAsÞ þ ∇ · ðσ∇ΦsÞ ¼ −iω∇ · ðΔσA0Þ: (25)

Ansari and Farquharson (2014) derive the resulting real-valued
system of equations, which we modified to be symmetric

2
64

C −D G 0

−D −C 0 −G
GT 0 0 H

0 −GT H 0

3
75
2
64
Ar

Ai

Φr

Φi

3
75 ¼

2
64
cr

ci

di

dr

3
75; (26)

where C and D are identical to E before (equations 14 and 15).
Introducing additional test-functions η on a nodal space, the other
submatrices are defined by

Gik ¼
Z
Ω
ð∇ϕiÞ · ðσηkÞdΩ; (27)

Hkl ¼
Z
Ω
ω−1ηl · ðσηkÞdΩ: (28)

Even thoughG is not symmetric, the complete system matrix (equa-
tion 26) for either total potentials ðA −ΦÞ or secondary potentials
ðAs −ΦsÞ. The right side reads for the TF

cr ¼
Z
Ω
je · ϕidΩ; (29)

ci ¼ 0; (30)

di ¼ 0; (31)

dr ¼ −
Z
Ω
ω−1ð∇ · jeÞ · ηidΩ: (32)

For the SF formulation, there is no contribution from Φ0, which is
zero for sources used in CSEM applications (Puzyrev et al., 2013)
and the right side reads

F20 Rochlitz et al.
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cr∕i ¼
Z
Ω
ωΔσA0i∕r · ϕidΩ; (33)

di∕r ¼ ∓
Z
Ω
ΔσA0i∕r · ∇ηidΩ: (34)

The A −Φ approach on nodal elements — An

Badea et al. (2001) derive a formulation for the potential
approach based on nodal elements, thus reducing implementation
effort. By using vector identities and the Coulomb gauge condition
∇ · A ¼ 0, which is fulfilled if zero-Dirichlet boundary conditions
are used, equations 24 and 25 can be modified to (Badea et al.,
2001; Puzyrev et al., 2013)

∇2As þ iωμσAs þ μσ∇ΦsÞ ¼ −iωμΔσA0; (35)

iωμ∇ · ðσAsÞ þ ∇ · ðσ∇ΦsÞ ¼ −∇ · ðiωμΔσA0Þ: (36)

The curl-curl operator is replaced by the Laplace operator. There-
fore, curl-conforming Nédélec-elements are not required anymore.
Similar to Am on the mixed Nédélec-nodal space, a TF formulation
can be derived for equations 35 and 36:

∇2Aþ iωμσAþ μσ∇Φ ¼ −μje; (37)

iωμ∇ · ðσAÞ þ ∇ · ðσ∇ΦÞ ¼ −∇ · je: (38)

As before, we derived the following real-valued system of
equations:

2
66666666664

−P Q 0 0 0 0 0 X

Q P 0 0 0 0 X 0

0 0 −P Q 0 0 0 Y

0 0 Q P 0 0 Y 0

0 0 0 0 −P Q 0 Z

0 0 0 0 Q P Z 0

0 XT 0 YT 0 ZT 0 R

XT 0 YT 0 ZT 0 R 0

3
77777777775

2
66666666664

Ar
x

Ai
x

Ar
y

Ai
y

Ar
z

Ai
z

Φr

Φi

3
77777777775
¼

2
66666666664

srx
six
sry
siy
srz
siz
tr

ti

3
77777777775
:

(39)

The matrices P, Q, R and X, Y, Z are

Pij ¼
Z
Ω
μ−1ð∇ · ηiÞ · ð∇ · ηjÞdΩ; (40)

Qij ¼
Z
Ω
ωðσηiÞ · ηjdΩ; (41)

Rkl ¼ −
Z
Ω
ωð∇ · σηkÞ · ð∇ · ηlÞdΩ; (42)

fX;Y;Zgik ¼
Z
Ω
ωðσηiÞ ·

∂ηk
∂fx; y; zg dΩ: (43)

The right sides are for the TF formulation

s
r∕i
fx;y;zg ¼

Z
Ω
jeêfx;y;zg · ηidΩ; (44)

tr∕i ¼ −
Z
Ω
ð∇ · jeÞ · ηidΩ; (45)

and for the SF formulation

s
r∕i
fx;y;zg ¼

Z
Ω
ωΔσA0i∕r

fx;y;zg · ηidΩ; (46)

tr∕i ¼ −
Z
Ω
ωΔσA0i∕r · ð∇ηiÞdΩ; (47)

where êfx;y;zg are the unit vectors toward {x, y, z}. Similar to Am, the
submatrices X, Y, and Z are not symmetric but the overall system of
equations is.

Boundary conditions

We implemented the common homogeneous Dirichlet or Neu-
mann boundary conditions. With n being the normal vector on
the domain boundary δΩ, these are defined as (Schwarzbach, 2009)

Homogeneous Dirichlet∶n × E ¼ 0; (48)

Neumann∶n × μ−1∇ × E ¼ 0: (49)

Alternatively, inhomogeneous Dirichlet conditions can be used for
TF computations. The implementation follows directly the concept
of Cai et al. (2017). Improved concepts using absorbing boundary
conditions (ABCs) or perfectly matches layers (PMLs) are
described by Jin (2015) and Schwarzbach (2009), respectively.

Incorporation of current density

For the total electric field approach on Nédélec spaces, relevant
dof for implementing the source currents are located on the edges. If
those contain segments of the source wire, the corresponding dof
can be regarded as HED with the current density je, which is (Ward
and Hohmann, 1988)

je ¼ IdlδðxÞδðyÞδðzÞ; (50)

where I is the current, dl is the length of the HED or accordingly,
the edge length, and δ is the Dirac delta function. This expression
can be inserted into the source term of the weak formulation (equa-
tion 7)

bi ¼
Z
Ω
ωIdlδðxÞδðyÞδðzÞ · ϕidΩ: (51)

The integral over the Dirac function equals one. Furthermore, the
inner product of parallel or antiparallel vectors ðjek � ϕiÞ equals
�1. Hence, every element bk of the right side vector b can be
expressed, after assembly, as

bk ¼ �ωIdl: (52)

This term is zero for nonsource dof, whereas it equals the constant
�ωIdl for all dof belonging to the source. The sign needs to be
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evaluated with respect to the local directions of the Nédélec func-
tions on corresponding edges. When using Nédélec spaces of higher
(pth) polynomial order, the source contribution on each edge needs
to be distributed on p dof, and therefore, equation 52 is to be
divided by p.
This source-incorporation technique can be also applied to Am.

No modification is necessary for loop sources, but the contribution
of the divergence term in equation 32 needs to be incorporated at the
two nodes corresponding to the ends of a grounded source in an
analogous way.

Incorporation of primary fields

For all SF approaches, background fields are required. In prin-
ciple, custEM is independent of the algorithm used for calculating
background fields. An overview on 1D layered-earth EM field cal-
culations can be found in Key (2009) or Werthmüller (2017) along
with a summary of recent developments. In custEM, the fully par-
allelized Python library pyhed is used for deriving primary fields
based on dipole calculations according to Ward and Hohmann
(1988) and optimized for irregular discretization. The semianalyt-
ical solution for the magnetic field is found using Bessel transfor-
mations for HED sources. Hankel factors according to Christensen
(1990) are applied to solve the Bessel integrals. The complete
source term is discretized by multiple HEDs to allow for arbitrarily
shaped sources.

IMPLEMENTATION

custEM

Following the concept of reproducible research (Broggini et al.,
2017), custEM is open-source and available under the GNU lesser

general public license, also used by FEniCS. The complete code
was documented using the Python application programmer’s inter-
face. The documentation is available on ReadtheDocs. We also pro-
vide test, example, and tutorial files introducing the usage of
custEM. Please see the “Data and materials availability” section
for links.
The custEM toolbox is arranged in several submodules in the

form of Python classes for different categories of tasks, as presented
in Figure 1. The meshgen submodule is designed for automated
high-quality tetrahedral mesh generation using TetGen (Si, 2015)
and pyGIMLi (Rücker et al., 2017). In core, the core of each
FEM computation, i.e., the MOD class, is implemented as well
as solvers import, export, and conversion routines. The fem
submodule is used to set up function spaces, define the weak for-
mulations with FEniCS, filling the right-side vector for TF formu-
lations and calling a wrapper for pyhed (or potentially other codes)
for primary field calculations. Note that a stable version of the
independent development of pyhed is currently located in the
repository until it is going to be added to pyGIMLi. Interpolation
and visualization tools were implemented in the post submodule. In
misc, supporting functions for checking the model parameter con-
sistency, prints and serial/parallel computation switches are imple-
mented. The serial submodule contains functionalities that can
(currently) only be conducted in serial because not every compu-
tation step is supported in parallel by FEniCS, although all core
components are designed for multiprocessing (MPI) using the
mpi4py library.

Mesh generation

In most publications, meshes are assumed being generated by
appropriate mesh generators. In contrast, the focus is on optimizing
the boundary value problem and on solving the resulting system of
equations. Nevertheless, the accuracy of the solution and conver-
gence rates of the iterative solvers heavily depend on the underlying
mesh (Schwarzbach, 2009). Therefore, it is necessary to carefully
generate (tetrahedral) meshes with sufficient quality and dimen-
sions. This is straightforward for simple half-space or layered-earth
models, but it becomes challenging if arbitrary CSEM setups are
taken into account.
We developed a mesh generation approach, using a similar pro-

cedure as those Rücker et al. (2006) and Udphuay et al. (2011) dem-
onstrate for ERT with 3D topography. It allows for automatically
designing layered earth models of user-defined quality for land-
based, airborne, or marine setups including 3D structures and arbi-
trary source and receiver configurations. Not only topography, but
also varying depths for the subsurface layers can be incorporated.
For even more complex geologic models, there are several suited
(commercial) tools available, such as, e.g., used by Zehner
et al. (2015).
The mesh generation procedure with custEM is illustrated in

Figure 2. First, surface and subsurface interfaces are meshed in
2D using the triangle algorithm (Shewchuk, 1996). Within the sur-
face, source wires or receiver locations need to be already included
(Figure 2a). Afterward, a third dimension (z) is added to the 2D
mesh coordinates (Figure 2b), and the height for the surface is ad-
justed by either interpolating from a digital elevation model or using
synthetic topography functions (Figure 2c). The surface mesh is ex-
tended to the computational domain corners by adding polygons
with each two of the corners and all the nodes on the corresponding

Figure 1. Design of the custEM toolbox: The red capital letters in-
dicate third-party dependencies; note that most parts of custEM are
only based on FEniCS.

F22 Rochlitz et al.

D
ow

nl
oa

de
d 

02
/2

3/
22

 to
 9

4.
13

4.
19

7.
20

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

20
8.

1



surface edge. Finally, the closing bottom and top
quadrangle faces are added to build two con-
forming piecewise linear complexes (PLCs) for
the air space and the subsurface (Figure 2c).
For the layered-earth case, the 3D extension pro-
cedure is conducted iteratively for each subsur-
face layer.
Within the subsurface layers, arbitrary

anomalies (PLCs) can be added, which are al-
lowed to reach the surface but not to intersect
subsurface interfaces (for now) (Figure 2d).
Domain markers are always automatically in-
cluded. Only for illustrating the raw mesh
(Figure 2b and 2c), TetGen divides every poly-
gon into triangles. In the final mesh with using
quality options for the TetGen call, all faces are
well-shaped (Figure 2e). The ability to enclose
the original mesh with a coarse tetrahedral
boundary mesh is important for adjusting the
overall domain size to fit the physical parame-
ters. In this case, the tetrahedral element type
showed its most significant advantage in the
form of a rapid increase of the element size to-
ward the boundary without reducing the mesh
quality. Approximately 2%–10% of the prior
amount of nodes is needed to increase a finely
discretized domain with several layers by a
factor of 10–1000, respectively (Figure 2f).
Code examples for generating meshes can be re-
viewed in the tutorials and examples directories
in the custEM repository.

FEM implementation using the FEniCS
framework

The implementation of the FE kernel using
FEniCS is automated, robust, parallelized, and straightforward. This
can be shown by a few basic commands, covering most of the effort
needed for manually implementing the FE kernel.
At first, the python backend dolfin and a mesh need to be

imported:

Afterward, function spaces, trial and test functions, as well as
boundary conditions need to be defined:

Figure 3. Crooked loop source incorporated on edges in the mesh:
The red and black edges in the box indicate the cell sizes of the fine
and coarse meshes used for example 2 (results).

Figure 2. Mesh generation workflow using custEM: (a) Create the surface mesh includ-
ing the transmitter, refined observation areas and outcrops of anomalies reaching the
surface, (b) extend the surface mesh to 3D world Ω, (c) apply topography to the surface
and subsurface layer interfaces, (d) incorporate anomaly bodies, (e) create high-quality
tetrahedra from the PLCs defined in Ω, and (f) append the tetrahedron boundary to sig-
nificantly increase the domain size.

import dolfin as df

mesh = df.Mesh(‘My_mesh.xml’) # load existing mesh

V = df.FunctionSpace (mesh, ‘N1curl’, 2) # 2nd poly order

W = df.MixedFunctionSpace([V, V]) # syntax FEniCS v. 2016.1

(v_r, v_i) = df.TestFunctions(W) # real, imaginary

(u_r, u_i) = df.TrialFunctions(W)

bc = df.DirichletBC(W, zero_function, boundary_function)

custEM: customizable 3D CSEM modeling F23
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The mixed function space is required for the coupled real-valued
systems of equations introduced by equation 3. The greatest benefit
of using FEniCS is the ability of readily implementing complicated
weak formulations with help of the unified form language, below
presented for the total E-field approach

This FEM system can be solved automatically and exported
afterward:

The code snippet above includes only a few
basic commands, but covers the complete TF
E-field approach solution for a homogeneous do-
main, disregarding missing definitions of the
physical parameters and the zero, source, and
boundary functions. However, the implementa-
tion to solve arbitrary 3D CSEM problems re-
quires the incorporation of multiple physical
domains as well as real finite sources that could
be achieved by using advanced functionalities of
FEniCS.

Source terms and primary fields

Our technique of directly imposing the source
current on Nédélec-dof requires incorporating
the transmitter wire(s) as edges in the mesh,
which are still allowed to differ in length. A
crooked loop transmitter, incorporated in the sur-
face-mesh, is presented in Figure 3. This source
is used in example 2 subsequently. In principle, it
is possible to implement borehole, marine, sur-
face, or airborne sources anywhere in the mod-
eling domain. Considering the transmitter
location(s) as defined, the workflow for incorpo-
rating je is structured as follows:

1) Find all dof with coordinates on the
source wire.

2) For each of these dof, find one element con-
taining the dof.

3) Use dof and coordinates of 1, elements of 2,
and local definitions of basis functions
(Touma Holmberg, 1998) to identify the
direction (�1) of the Nédélec dof(s) within
the corresponding elements.

4) Fill the right side vector according to equa-
tion 52 for all dof of step (1).

Because this procedure is completely parallel-
ized, it takes little time compared with solving
the system of equations. Primary fields for the
SF formulations are calculated on the fly with
pyhed for each mesh and parametrization (e.g.,
source and frequency) on the first run and cached
for repeated use because the computational effort
is not negligible.

Figure 4. Example 1: Comparison of the p1 E-field approach FE computation with
semianalytic solutions obtained with pyhed, empymod, and Dipole1D: Real (left) and
imaginary (right) parts of the nonzero electric and magnetic field components on the
10 km observation line, model: 1–1000 Hz, y-directed HED transmitter at origin,
half-space with 100 Ωm.

L = (df.inner(df.curl(u_r), (1/mu) * df.curl(v_r)) * dx –
omega * df.inner(sigma * u_i, v_r) * dx –
omega * df.inner(sigma * u_r, v_i) * dx –
df.inner(df.curl(u_i), (1/mu) * df.curl(v_i)) * dx)

R = –(omega * df.inner(zero_function, v_r) * dx +

omega * df.inner(source_function, v_i) * dx)

U = df.Function(W)

df.solve(L == R, U, bcs=bc)

E_r, E_i = U.split() # get real and imaginary fields

df.File(export_name + ‘_E_r.pvd’) << E_r

df.File(export_name + ‘_E_i.pvd’) << E_i

F24 Rochlitz et al.
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Postprocessing

Once the main solution is calculated, conversion to either secon-
dary or total electric or magnetic fields can be automatically con-
ducted. Generating interpolation meshes in the form of either
straight or crooked lines and interfaces (e.g., surface with topogra-
phy) is automated as well. For interpolation, multithreading is ap-
plied, which leads to a rapid decrease of interpolation time. This
procedure is suitable because, usually, multiple processes are in
use anyway to solve the main problem. The model configuration
is stored to make relevant information available for the visualization
and record. The post submodule provides plot tools with utility
functions for basic comparison and error computation.

EXAMPLES

Example 1: HED on half-space

First, we present a comparison with primary
field solutions derived using pyhed (the dashed/
dotted lines), Dipole1D (Key, 2009) (the dotted
lines), and empymod (Werthmüller, 2017) (the
dashed lines) in Figure 4. Electric and magnetic
fields were calculated for 1, 10, 100, and
1000 Hz on a half-space ð100 ΩmÞ with a y-
directed HED source in the origin. The observa-
tion line extends �5 km perpendicular to the
HED. Results from TF E (the colored lines indi-
cating the frequencies) p1 computations were
added in Figure 4. The underlying mesh for this
FEM solution has a comparatively fewer amount
of dof ðapproximately 37 kÞ to provide a simple
example that requires only a few minutes com-
putation time and <8 GB RAM with <4 MPI
processes. Therefore, high accuracy of the FEM
solution cannot be expected.
The pyhed, Dipole1D, and empymod refer-

ence solutions match well aside from IðEyÞ
for 1000 Hz and RðHzÞ for 100 and 1000 Hz.
The differences occur at offsets >1 km. Here, the
RðHzÞ amplitude is already six orders of magni-
tude smaller than in the vicinity of the HED.
These variations are assumed to originate from
different Hankel factors used. Even though the
FEM mesh is minimalistic, the TF E solutions
match well to the semianalytical references.
The FEM solution differs significantly from
the analytic ones at 1 Hz for IðHxÞ, which results
from boundary effects. Further discrepancies are
mainly noticeable at 100 and 1000 Hz for IðEyÞ
and RðHzÞ, which indicates an insufficient dis-
cretization.

Example 2: Crooked-loop source on a
three-layer earth

We verified the TF E implementation for a
three-layer model with a crooked loop (Tx)
source because this is one of the most com-
plex problems to be solved semianalytically.

Reference solutions obtained with the pyhed module were used
for validation.
The uppermost two layers had thicknesses of 300 and 700 m; the

resistivities from top to bottom were 103, 102, and 104 Ωm. The air-
space resistivity was set to 107 Ωm because we found that for usual
CSEM setups, a conductivity contrast of four orders of magnitude
between the airspace and the subsurface is completely sufficient to
obtain accurate models. The randomly distorted loop source had a
circumference of approximately 4 km (Figure 3) and was located in
the center of a 200 × 200 × 200 km mesh.
In Figure 5, the TF E solution at the surface based on second-

order polynomials (p2), is depicted component-wise and compared

Figure 5. Example 2: Comparison of the total E-field approach with analytic solutions:
Real (left) and imaginary (right) parts of the (a and b) electric and (c, d, and e) magnetic
field components as well as (f) vector magnitudes at the surface, model: 10 Hz, crooked-
loop transmitter, three-layered earth, second-order polynomials, and coarse mesh.
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with the 1D solution for a typical base frequency of 10 Hz. The
underlying mesh, referred to as a coarse mesh, was parameterized
by a maximum facet size of 1000 m2 within the 4 × 4 km obser-
vation area (Figure 3, the red lines) and a TetGen quality of 1.4
in terms of the radius-edge ratio for the elements.
The single vector-components Ex, Ey, Hx, Hy, and Hz

(Figure 5a–5e) of the FEM solution match well with the analytic
solution. The overall magnitude errors (Figure 5f) are smaller than
1%, disregarding the vicinity of Tx. The value Ez was not presented
because the E-field is discontinuous at the surface. For gaining
the first estimates of relations between various frequencies, mesh
discretization, polynomial orders, computation times, and memory

requirements, we calculated the crooked-loop
model at four frequencies (1, 10, 100, and
1000 Hz) for the three different mesh configura-
tions listed in Table 1. The computation times are
based on 32 parallel processes used on a Dell
PowerEdge R940 server with four Intel Xeon
Gold 6154 processors and 48 LRDIMM
64 GB, DDR4-2666, Quad Ranks. First, we used
the same coarse mesh for p1, which results in a
significantly smaller number of dof. Second, an
inter(mediate) mesh with a quality of 1.3 and a
10th of the maximum facet size in the observa-
tion area was used. Third, we added a fine mesh
(Figure 3, the black lines) with a quality of 1.2
for and a maximum facet size of 50m2 in the ob-
servation area to evaluate the development of er-
rors with increasing quality and discretization
(Table 1). For each mesh, the overall domain size
amounts to 200 × 200 × 200 km.
Figure 6 shows the errors of the p1 results on

the coarse and the fine mesh in comparison with
the p2 results on the coarse mesh at the surface.
Only errors of the real part of Ey and imaginary
part of Hz are shown as these components are
representative for the overall results. A system-
atic misfit (the bluish or reddish areas) can be
distinguished from randomly distributed errors
(the red-white-blue pattern). Regarding effects
and all frequencies, the results for p2 polyno-
mials (Figure 6c and 6f) were significantly more
accurate compared with all p1 computations.
Furthermore, the p1 results on the fine mesh
(Figure 6d and 6e) exhibited smaller randomly
distributed errors but equal systematic misfits
compared with the coarse mesh (Figure 6a and
6d). Note that the computational effort for p2
on the coarse mesh is even lower than for p1
on the inter mesh (Table 1).
With respect to the different frequencies, the

smallest systematic offsets occurred at 100 Hz
and increased slightly at 10 Hz for all three con-
figurations (Figure 6). At 1 Hz, the overall misfit
became significant. At 1000 Hz, the amount of
randomly distributed errors was highest. Table 2
contains mean error estimates for real and imagi-
nary parts of E and H for the above configura-
tions at 10 and 1000 Hz. Because of extreme

Figure 6. Example 2: Relative misfit of (a-c) RðExÞ and (d-f) IðHzÞ between the total
E-field approach and the analytic solutions at 1, 10, 100, and 1000 Hz (columns) at the
surface, (a and d) first-order polynomials (p1) on the coarse mesh, (b and e) p1 on the
fine mesh, and (c and f) second-order polynomials on the coarse mesh; both meshes are
200 × 200 × 200 km.

Table 1. Example 2: Computational parameters corresponding
to each 32 MPI processes used: polynomial order, maximum
cell area Amax, maximum radius-edge-ratio (q), number of
nodes, dof, time for solution of main problem, total memory
required.

Mesh p Amaxðm2Þ q Nodes (k) dof (k) t (min) RAM (GB)

Coarse 1 1000 1.4 60 858 <1 ≈32
Inter 1 100 1.3 502 7545 ≈6 ≈307
Fine 1 50 1.2 1283 18635 ≈29 ≈972
Coarse 2 1000 1.4 60 4675 ≈5 ≈284

F26 Rochlitz et al.
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deviations close to Tx, we calculated the mean error only consid-
ering data points with a relative error <100%. The resulting number
of outliers is listed in Table 2 as well. This corresponds to the qual-
ity of the solution in the proximity to Tx. The mean errors of p2
were far below all values of p1. For the latter, the “inter” compared
with the “coarse” mesh lead to a remarkable improvement. The
“fine” mesh led to a further increase in accuracy, but the computa-
tional effort was significantly higher.

Example 3: Finite dipole source on a
two-layer earth with 3D anomalies

All implemented approaches were compared
on a half-space model with a 1 km dipole Tx and
two embedded conductive 3D anomalies, as
illustrated and specified in Figure 7. The 1 km
long brick on one side of the Tx has an aniso-
tropic conductivity structure, and it was shifted
by 200 m in the y-direction. Therefore, both
anomalies are expected to reveal strong 3D
effects.
The computations of all SF approaches using

p1 polynomials are based on a mesh (approxi-
mately 258 k nodes) with fine discretization
for the observation line with 10 m node separa-
tion and the anomalies (maximum cell volume:
1000 m3). The p2 mesh uses a maximum cell
size of 10;000 m3, resulting in approximately
64 k nodes. The computational parameters are
listed in Table 3. The complete domain size
was 2000 × 2000 × 2000 km (only approxi-
mately 3% more nodes compared with a 1000th
of this size), needed to suppress boundary effects
for the H and An approaches. The computation
times and memory requirements are based on
32 parallel processes for p1 and p2. The given
times refer only to the assembly and solution
process of the main systems of equations on the
machine already used for example 2.
Figures 8 and 9 present magnetic field results

for 10 Hz. Considering the SF computations in
Figure 8, all approaches exhibited equal amplitudes for the domi-
nant Hz component and only slight mismatches for the slightly
weaker component Hx. Minor discrepancies between the four ap-
proaches could be observed for Hy, which can be attributed
to numerical differences, i.e., nodal or edge functions and interpo-
lation on the observation line. The best results could be achieved
with p2 (black line in Figure 8), especially for the weak Hy

component.
We compared the TF E and Am approaches only with the

(summed) TFs from the SF H-p2 approach (black line) in Figure 9.
The match of the obtained SFs was already shown in Figure 8. As
expected, the mismatch of the TFs is most prominent for Hy. The
real part revealed mismatches in the vicinity of the source and the
imaginary part above the brick anomaly. As already observed in
example 2, p2 for the TF approach led to increased accuracy in form
of significantly smoother results for the weak Hy component.
Another mismatch between the TF and SF computations can be ob-
served at x ¼ −3 km for IðHxÞ. In general, mismatches occur only

in the nondominant horizontal components, whose amplitudes are
at maximum 1% of the vector magnitude for this model setup.

Example 4: Loop Tx, sinusoidal topography, and
conductive dike

The capability of custEM with regard to realistic 3D modeling is
demonstrated by the fourth example. We computed E and H fields

Table 2. Example 2: k�dFEM − dana�∕danak (%) — considering all relative
errors <100% — for the real and imaginary parts of E and H, n specifies
the amount of data points with a relative error <100% out of 40,401 values in
total; meshes are introduced in Table 1.

Mesh p RðjEjÞ N IðjEjÞ n RðjHjÞ n IðjHjÞ n f

Coarse 1 3.53 0 2.01 39 4.28 669 3.28 0 at 10 Hz

Inter 1 2.40 0 1.70 24 1.92 207 1.84 0 –
Fine 1 1.53 0 0.76 23 1.34 142 1.21 0 –
Coarse 2 0.12 0 0.16 25 0.99 222 0.10 0 –
Coarse 1 2.70 0 5.68 43 5.18 657 6.00 0 at 1000 Hz

Inter 1 1.41 0 3.04 24 2.08 206 1.74 0 –
Fine 1 0.68 0 1.75 25 1.34 143 1.18 0 –
Coarse 2 0.22 0 0.30 25 0.90 222 0.38 0 –

Figure 7. Model parameters for example 3: Two conductive anomalies are embedded in
a resistive half-space, the observation line strikes over both 3D anomalies.

Table 3. Example 3: Computational parameters for different
modeling approaches: polynomial order p, doF, runtime, and
memory at 32 parallel processes.

Approach P dof (k) t (min) RAM (GB)

TF E 1 3887 ≈1.9 108

TFAm 1 4421 ≈3.9 207

SF E 1 3887 ≈1.9 124

SF H 1 3887 ≈1.9 133

SFAm 1 4421 ≈4.0 223

SFAn 1 2137 ≈1.9 228

TF E 2 5228 ≈3.3 240

SF E 2 5228 ≈3.4 250

SF H 2 5228 ≈3.4 260
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with the TF E approach and p2 for a half-space-like model with
sinusoidal-topography and a 1 × 1 km large loop source, placed
on the surface in the center of the model. Crossing the Tx at the
surface, a crooked conductive dike with varying thickness was in-
corporated, as illustrated in Figure 10.
The E and H fields (Figure 10c–10f) were interpolated on the

surface and on a level 50 m above the surface, respectively
(Figure 10). The interpolation grids are regular in the horizontal
directions and were chosen to simulate a semiairborne survey setup
with a transmitter on the surface, ground-based E-field, and air-
borne H-field receiver locations. The influence of topography
and in particular, the effect of the conductive dike, can be observed
in all field magnitudes. The complete code required for the mesh
generation, FEM solution, and interpolation can be viewed in
Appendix B.

DISCUSSION

Reliability of the FEM solutions

Examples 1 and 2 provided a verification of the primary fields
and the source term incorporation. The availability of different ap-
proaches allowed for crossvalidation of the solutions in example
3 up to a certain extent because the physics and the mathematical
description of the original FE problem are differing. This results

in unique linear systems of equations after assembly for all
approaches. In this context, the overall match for example 3 is re-
markable, aside from variations in the nondominant horizontal com-
ponents. Although only magnetic fields were presented, example 3
implicitly showed the correct implementation of each FE approach
because for E, Am, and An, the H-fields are derived from the main
quantities E or A.
Both examples clearly indicate significant advantages of

p2, particularly in the vicinity of the source. Because EM
fields decay exponentially, it is plausible that quadratic interpola-
tion functions can approximate the real field behavior significantly
better in the near-field zone of the transmitter or scattering
anomaly. In contrast, if only the far field is of interest, i.e.,
for SF formulations without anomalies in the uppermost subsur-
face, the difference in accuracy is exiguous and using p1 is
sufficient.
For p1 and p2, there is no possibility of designing a pair of

meshes with identical dof positions. Furthermore, the matrix spar-
sity patterns, and thus the bandwidth, are different for an equal num-
ber of dof. However, the most reasonable way for comparing
accuracy and performance might be to use either the same mesh
or a similar number of dof as well as equal mesh quality. According
to Tables 1 and 2, it can be inferred that p2 is not only superior in
terms of accuracy. The computational effort can be significantly
lower compared with p1, if certain accuracy for a larger observation

Figure 8. Example 3: Secondary magnetic field Hs at 10 Hz on
10 km x-directed observation line, calculated with the secondary
E, H, Am, and An approaches using p1 as well as E and H with
p2, model: half-space, 1 km y-directed dipole transmitter, dipping
plate, and either the isotropic or anisotropic brick anomaly
(Figure 6).

Figure 9. Example 3: Total magnetic field H at 10 Hz on 10 km
x-directed observation line, calculated with the total E and Am ap-
proaches using p1 as well as total E with p2: The results are cross-
checked against SF H with p2, model: half-space, 1 km y-directed
dipole transmitter, dipping plate, and either the isotropic or aniso-
tropic brick anomaly (Figure 6).
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area ð4 × 4 kmÞ is required. At 1 Hz, the systematic errors became
significant even for p2, which is an indication for an insufficient
domain size. At high frequencies, the systematic misfit increased
strongly toward the observation area boundaries, which is probably
related to the rapid decrease of the field amplitudes within the
4 × 4 km domain.
Using polynomials of third (p3) or even higher order would fur-

ther increase the accuracy on even coarser meshes. However, the
solution of the system matrices requires significantly more resour-
ces and time as was tested for a HED in fullspace with p3. We
assume that p2 gives the optimum balance between a good
approximation of the exponential EM-field decay behavior
with quadratic elements and the computational effort. Grayver
and Kolev (2015) conclude an identical statement from their
investigations.
Further performance analysis and validation of the FEM results

calculated with custEM are already in progress. The focus is espe-
cially on crosschecking with other codes for CSEM data, e.g.,
PETGEM.

Performance

The direct solver MUMPS had shown to be robust and efficient
for all approaches with a maximum memory requirement of
1000 GB. Alternative direct solvers provided by FEniCS (i.e.,
UMFPACK and PETSc LU solver) are not appropriate for MPI
and do not support symmetric matrices. Solution of the E or H ap-
proaches with direct solvers showed the highest performance due to
the reduced size and bandwidth of the matrices. A machine with
256 GB RAM is recommended for realistic simulations of models
with multiple layers and anomalies.

Regarding computation times and memory requirements, the
provided values vary with the number of parallel processes. Even
though the computation times decrease with more processes, the
scaling becomes worse and the memory requirements increase. For
instance, the RAM overhead using 40 instead of 20 processes can
become very high (>100 GB) for a secondary E computation with
10 M dof and p1, whereas the computation time is reduced only
by ≈20%. Hence, simultaneously running multiple jobs (e.g., for
different frequencies) with a smaller number (12–32) of processes
performs better than consecutive computations with more parallel
processes.
Besides the main problem, there might be a significant overhead

in time when initially computing primary fields for SF formulations.
Even though this procedure is parallelized, computation times can
become even higher than for solving the main system of equations,
if the source discretization requires a large number of HEDs (>100)
and the subsurface consists of many layers. In addition, postpro-
cessing in the form of converting E to H or vice versa requires
20%–50% of the time needed to solve the main problem. For the
potential approaches, conversion to H is fast but deriving E takes
even more time. Therefore, the SF H approach can be used to
significantly reduce computation times, if no electric fields are re-
quired, because neither the calculation of E0 nor the postprocessing
conversion is necessary anymore. Suitable applications are inver-
sion procedures for airborne EM data or multidimensional nuclear
magnetic resonance data.

Potential of custEM and FEniCS

Various combinations of iterative solvers and preconditioners
available in FEniCS were tested, but no method showed sufficient

Figure 10. Example 4: E-field (top) and H-field (bottom) at 11.4 Hz, interpolated on the surface (E) and 50 m above (H), calculated with the
TF E approach using p2, 4 × 4 km observation area, model: half-space-like, steep dipping conductive dike crossing the (a) 1 × 1 km loop
transmitter on (b) sinusoidal topography.
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convergence rates yet. Robust iterative solution techniques have
been applied successfully to solve the ðA −ΦÞ systems (Puzyrev
et al., 2013; Ansari, 2014) and the SF E system of equations
(Grayver and Bürg, 2014). We assume that iterative solvers can
be applied for custEM as well, if effort is spent on analyzing the
assembled system matrices and finding appropriate preconditioners.
The use of iterative solvers can result in a reduction of computation
time and memory requirements, especially for the potential ap-
proaches, which would make them not only valuable for crosscheck-
ing solutions obtained with the E or H approaches. Advanced
boundary conditions such as ABC or PMLmight reduce (systematic)
errors or can decrease the modeling domain size (Schwarzbach,
2009). Another important improvement in custEM would be the ap-
plication of adaptive mesh refinement, which is in principle sup-
ported by FEniCS.
Aside from frequency-domain CSEM, it stands to reason to adapt

custEM for transient electromagnetic modeling, either in the time
domain or by using effective transformations on multiple fre-
quency-dependent results. Moreover, the support of magnetotelluric
modeling would require a manageable implementation effort on
modifying the FE modules. In general, FEniCS is well-suited for
multigeophysics modeling. The submodules of custEM can be fur-
ther used for special tasks, e.g., high-performance assembly of the
systems of equations and export of the matrix in the CRS format for
custom solvers. Due to the modular design, additional features can
be easily implemented for user-specific requirements.
The number of available forward modeling codes for 3D CSEM

data is low, but the number of inversion codes is even smaller.
The custEM toolbox can be the basis for 3D inversion, particularly
because anisotropy or changes in the magnetic permeability can
be easily implemented with FEniCS. Following the concept
of Günther et al. (2006), the TF formulation could be applied to
calculate sufficiently accurate primary fields on a fine-discretized
3D mesh, including topography or bathymetry. Afterward, the
computational effort for inversion might be reduced drastically
with using SF approaches on a mesh with a lesser number of
dof, when only changes of resistivity in the subsurface are of
interest.

CONCLUSION

We verified the implementation and provided insights into the
capability of custEM. It was shown that four different SF and two
TF approaches, based on varying physical and mathematical
concepts, led to remarkably consistent results, even though smaller
misfits, probably due to interpolation and boundary effects, can be
observed. For TF formulations, we successfully incorporated the
source current density on the edges of the mesh as an alternative
technique to existing concepts. In any event, corresponding advan-
tages and disadvantages should be further investigated. The use of
second-order polynomials clearly outperformed p1 in terms of ac-
curacy and computational effort, especially for TF approaches. With
p2, sufficient accuracy at the observation points could be achieved
by using a comparatively coarse discretization and intermediate
mesh quality.
The E- and H-field approaches have revealed highest perfor-

mance in terms of accuracy and computational costs. The potential
approaches were valuable for validating the implementation. We in-
troduced the H-field approach for modeling 3D CSEM problems
with FE, which saved 20%–50% of the overall calculation time

without the transformation from E to H, if only magnetic fields
are of interest as, e.g., in airborne EM applications.
Aside from the FE modules, mesh generation, interpolation, and

visualization tools enable automated workflows. The developed
toolbox custEM is freely available and provides not only the ability
for customizable CSEM modeling and crossvalidation, but also the
potential to be used for inversion or other geophysical methods.

ACKNOWLEDGMENTS

We thank the developers of FEniCS, TetGen, and pyGIMLi for
their effort on developing software tools for the community over the
years. The project DESMEX was funded by the German Federal
Ministry of Education and Research (BMBF) in the framework
of the research and development program Fona-r4 under grant
033R130D. We highly appreciate the thorough comments from
R.-U. Börner, D. Werthmüller, and an anonymous reviewer that
helped to significantly improve the code and manuscript.

DATA AND MATERIALS AVAILABILITY

The custEM toolbox is open-source and available at https://gitlab
.com/Rochlitz.R/custEM under the GNU Lesser General Public
License (LGPL). The complete code is documented utilizing the
Python Application Programmer’s Interface (API). The documen-
tation is available on ReadtheDocs at https://custem.readthedocs.io/
en/latest/. Instructions, notes and tutorials are available on this page
as well. The results of all presented examples can be reproduced
using the provided scripts in the “examples” directory of the cus-
tEM repository.

APPENDIX A

DERIVATION OF THE SECONDARY MAGNETIC
FIELD APPROACH

Faraday’s law and Ampere’s law, disregarding magnetic source
terms, read

∇ × E ¼ −iωμH; (A-1)

∇ ×H − σE ¼ je; (A-2)

for the TF and

∇ × E0 ¼ −iωμH0; (A-3)

∇ ×H0 − σ0E0 ¼ je; ðA4Þ (A-4)

for the primary field. With Es ¼ E − E0, Hs ¼ H −H0, and
Δσ ¼ σ − σ0, subtracting equation A-3 from equations A-1 and
A-4 from equation A-2 gives

∇ × Es ¼ −iωμHs; ðA5Þ (A-5)

∇ ×Hs − σEs ¼ ΔσE0: (A-6)
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Next, multiply σ−1 and equation A-6

σ−1∇ ×Hs − Es ¼ σ−1ΔσE0; ðA7Þ (A-7)

and take the curl of equation A-7

∇ × σ−1∇ ×Hs − ∇ × Es ¼ ∇ × σ−1ΔσE0: (A-8)

Inserting equation A-5 into equation A-8 leads to the governing
equation for the secondary magnetic field approach in terms of pri-
mary electric fields

∇ × σ−1∇ ×Hs þ iωμHs ¼ ∇ × σ−1ΔσE0: (A-9)

In terms of primary magnetic fields, the following equation can be
derived:

∇ × σ−1∇ ×Hs þ iωμHs ¼ ∇ × ðσ−10 − σ−1Þ∇ ×H0:

(A-10)

APPENDIX B

COMPLETE CODE FOR GENERATING THE
EXAMPLE 3 MESH: MESH_EXAMPLE_3.PY

COMPLETE CODE FOR CALCULATING THE
EXAMPLE 3: RUN_EXAMPLE_3.PY
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from custEM.meshgen.meshgen_utils import loop_r

from custEM.meshgen.meshgen_tools import BlankWorld
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example_4_topo_cos_sin
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surface_anomly_outcrop_3
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