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Virtual Polytopes

Gaiane Panina 1 and Ileana Streinu 2

February 14, 2015

Abstract

Originating in diverse branches of mathematics, from polytope alge-
bra and toric varieties to the theory of stressed graphs, virtual polytopes
represent a natural algebraic generalization of convex polytopes. Intro-
duced as the Grothendick group associated to the semigroup of convex
polytopes, they admit a variety of geometrizations. A selection of appli-
cations demonstrates their versatility.

1 Introduction

Convex polytopes in the Euclidean space form a semigroup with respect to
Minkowski addition. This semigroup is not a group, since, in most cases, the
Minkowski difference of two polytopes is not convex. But the cancellation law
holds, and this allows for the unique extension of the semigroup to the Grothen-
dick group: this is, by definition, the group of virtual polytopes. From a purely
algebraic point of view, virtual polytopes are a most natural generalization of
convex polytopes: in short, a virtual polytope is defined as a formal Minkowski
difference of convex polytope.

The first goal of this survey is to bridge the gap between this formal, algebraic
definition and various interesting geometric interpretations. The second goal is
to present different applications of the geometrization machinery, insights into
the diverse questions that motivated their study, and to set up an appropriate
framework for problems lying beyond this theory.

The main message that will emerge is that virtual polytopes retain the structure
and many properties of convex polytopes, except convexity: a virtual polytope
has a well defined face lattice, support function, outer normal fan, volume,
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lattice points enumeration concept, etc. However, the support function is no
longer convex, the volume can be negative, the outer normal fan can contain
non-convex cones, etc.

It is not unusual in mathematics that different formalisms lead to essentially
equivalent concepts: homology theories, (oriented) matroids, combinatorially
rigid structures, abstract polytopes, etc. have a multitude of crypto-morphic
definitions, each with its own abstract structure and a set of axioms or consis-
tency rules to be satisfied. Each is motivated by a concept arising perhaps in
another part of mathematics, and each time there are rules for converting from
one formalism to the other.

Virtual polytopes also fit this pattern. As generalizations of convex polytopes,
they will be described as piecewise constant functions, collections of translated
cones, piecewise linear functions, invertible sheaves on a toric variety and, in
lower dimensions, stressed graphs on the unit sphere or special types of 2D
polygonal chains. In each setting we have one and the same group of virtual
polytopes5, up to a canonical isomorphism.

Specifically, for each of the representations we describe a group of geometric
objects which turns out to be canonically isomorphic to the group of virtual
polytopes. Canonical isomorphisms between all the representations appear au-
tomatically: we go from one representation to the group of virtual polytopes,
and from there to the other representation. However, in many situations direct
isomorphisms appear naturally between some of these representations.

Historical perspective. The first systematic study of virtual polytopes, re-
ferred to with this very name, appears in A.G. Khovanski and A.V. Puklikhov’s
paper [19]. They work is motivated by the algebraic geometry of toric varieties6.
It was known that invertible bundles on a projective toric variety form a group
(the Picard group); it was also known that very ample bundles correspond to
convex polytopes (and form a semigroup), so the natural question arose: “what
corresponds geometrically to the other elements of the Picard group, i.e. to bun-
dles that are not ample?”. Some technical details aside, the answer is: “The
Picard group is isomorphic to the group of virtual polytopes”. A more extended
discussion appears in G. Ewald’s book [12].

The idea of Minkowski subtraction of convex polytopes and convex sets can be
traced back even further. In an early paper from 1939, A.D. Alexandrov [1]
considered pointwise differences of support functions. Although not explicitly
stated in his paper, this point of view leads to another way of defining virtual
polytopes, which we describe in Section 4.3.

Another important observation comes from the work of H. Grömer [14], who
wrote in 1977: “It appears that an addition of non-convex sets ... must neces-

5The precise definition and further details appear in Section 2.
6We present this as an application in Section 6.5.
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sarily take into account multiplicities of points, and this leads immediately to
functions instead of ordinary sets.” He also wrote: “It turns out that Minkowski
addition is actually more akin to multiplication in a certain algebra than to ad-
dition.” We discuss this in Section 4.1.

More recently and in a different context, L. Rodriguez and H. Rosenberg [41]
introduced a class of polyhedral surfaces, called polyhedral hedgehogs7, which
turn out to be a subclass of virtual polytopes. Subsequently, V. Alexandrov
studied polyhedral hedgehogs in [2]. We present a similar (but not identical)
construction which covers the entire set of virtual polytopes in Sections 5. Y.
Martinez-Maure studied various aspects of hedgehogs and gave a sketch of an
inductive definition (by dimension) of virtual polytopes in [23]. In Section 5, we
present an approach inspired, partially, by his ideas.

Virtual polytopes also appeared, implicitly, in P. McMullen’s polytope algebra
[26]. In section 4.2, we extract from his algebraico-geometric formalism the
aspects relevant to the theory of virtual polytopes.

An important warning. The theory of virtual polytopes is built upon an
appropriate notion of Minkowski subtraction, but care must be exercised even
with this most primitive ingredient. Indeed, various other definitions have ap-
peared in the literature. For instance, the concept of Minkowski difference, as
described in R. Schneider’s book [43], is not the same as what we present in Sec-
tion 2. The problem is that Schneider’s straightforwad definition of Minkowski
subtraction does not turn the semigroup of convex polytopes into a group: in
his theory, P − P 6= 0.

Overview of the survey. We start in Section 2 with the basic definitions, and
treat virtual polytopes as formal Minkowski differences. Important properties
can already be defined in this setting; in particular we introduce faces of virtual
polytopes.

The first non-trivial geometrization is described in Section 3 for two-dimensional
virtual polytopes: we represent them as colored polygons. This kind of “toy”
representation is very intuitive but is possible only in dimension two.

Section 4 presents four types of geometrizations that work in all dimensions:
(1) piecewise constant functions, which are elements of A. Khovanskii and A.
Pukhlikov’s algebra, (2) elements of the first weight space of P. McMullen’s
polytope algebra, (3) support functions, and (4) systems of translated cones.

We return to lower dimensions in Section 5, where we present an approach based
on rigidity theory. Here a virtual polytope appears as a system of springs in
equilibrium on the sphere. A more intuitive representation is then done via what

7In French, hérissons.
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we call Maxwell polytopes, which are geometrizations of closed polyhedral sur-
faces whose faces are flat polygons which may not be convex; even worse, these
faces, as well as the whole “surface”, may have self-intersections and exhibit
other types of unusual features.

We conclude in Section 6 with several applications for virtual polytopes. We
discuss here: (1) generalizations of A.D. Alexandrov-type problems for convex
bodies and convex polytopes, (2) volumes and mixed volumes of virtual poly-
topes, (3) Minkowski decompositions of polytopes, and (4) the relationship to
algebraic toric geometry.

2 Main Definition

In this section we define virtual polytopes as formal Minkowski differences of
convex polytopes and state some important properties that follow directly from
the definition.

2.1 Convex polytopes and Minkowski summation

Throughout the paper, we assume that the ambient space for all our construc-
tions is the Euclidean space Rd with a fixed Cartesian coordinate system and
the standard scalar product denoted with 〈x, y〉.

Convex Polytopes. A convex polytope is the convex hull of a non-empty
finite point set in some Rd. When there is no risk of confusion, we may drop
“convex” and use the shorter term “polytope”. The set of all convex polytopes
in Rd is denoted by Pd. To keep the notation simple, we omit the “d” and use
P := Pd. However we emphasize that we always work in a fixed ambient space.

The dimension of a convex polytope K is the dimension of its affine hull, which
is the (minimal by inclusion) affine plane containing K. Thus the dimension of
a convex polytope in Rd is not necessarily d; in particular, the polytope can be
the degenerate zero-dimensional single point polytope.

Minkowski addition of convex polytopes. From two convex polytopes K
and L, the operation of Minkowski addition generates a new convex polytope
K ⊗ L defined by the pairwise addition of the points in the two sets:

K ⊗ L = {x+ y | x ∈ K, y ∈ L}.

An example in the plane is shown in Figure 1.
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Figure 1: Minkowski sum of a pentagon and a triangle.

A remark on notation. Most of the literature on Minkowski summation uses
the additive notation + or ⊕. It was however recognized, in the context of
the polytope algebra, that this operation behaves more like multiplication than
addition. For this reason, various multiplicative symbols have been employed: ×
in [14], ∗ in [19], and “·” in [26]. Here, we adopt the multiplicative ⊗ notation,
in order to be consistent with its multiplicative role in the polytope algebra
defined in Section 4.1, and to emphasize its relationship with the tensor product
of invertible bundles described in Section 6.5.

Properties of the Minkowski sum. The following basic properties set the
foundation for the theory surveyed in this paper:

1. The sum of a polytope K with a point p is a translation of the polytope
K by the vector p, which we write as K + p.

2. The operation of Minkowski addition allows to factor out translations.
That is, for p1 and p2, we have:

(K1 + p1)⊗ (K2 + p2) = (K1 ⊗K2) + (p1 + p2).

3. (Cancellation law) If K ⊗ L = K ′ ⊗ L then K = K ′.

With a few (explicitly stated) exceptions, we will factor out translations, i.e.,
we will identify a polytope K and its translate K + p.

The operation of Minkowski addition turns the set P of convex polytopes, fac-
tored by translations, into a commutative semigroup in which the above can-
cellation law holds. The unit element E is the convex polytope containing
exactly one point. Since all such polytopes differ by a translation, we may
assume that the unit element is represented by the origin: E = {O}.

5



2.2 Virtual polytopes as Grothendieck groups

Grothendieck group: the general construction. Whenever we have a
commutative semi-group S (whose operation we denote multiplicatively) with
a unit element e, it can be extended to a group iff it satisfies the cancellation
law:

kl = ml implies that k = m

The unique minimal abelian group containing S as a sub-semigroup, up to
isomorphism, is called the Grothendick group of S. Its elements are equivalence
classes of formal expressions (or formal fractions) kl−1, with k, l ∈ S, identified
by the the following rule: two formal expressions k1l

−1
1 and k2l

−1
2 are identified

whenever k1l2 = k2l1.

The elements k of the semigroup are identified with fractions ke−1.

An elementary example of this construction is the group of non-zero rational
numbers under multiplication, which extends the semi-group of non-zero inte-
gers. Using this analogy, the convex polytopes will be our “integers”, while the
virtual polytopes will correspond to the “rational numbers”.

Virtual polytopes: main definition. The discussion in the previous para-
graph justifies the following:

Definition 1. The group P∗ of virtual polytopes is the Grothendick group as-
sociated to the semigroup P of convex polytopes under Minkowski addition.

The inverse in this group of a convex polytope K is denoted by K⊗−1. For
further reference, we list a few simple but useful consequences of the definition:

1. A virtual polytope is a formal fraction K ⊗ L⊗−1.

2. Two virtual polytopes represented by expressions K1 ⊗ L⊗−1
1 and K2 ⊗

L⊗−1
2 are identified whenever K1 ⊗ L2 = K2 ⊗ L1.

3. The group operation literally repeats the rules of multiplication of two
fractions. That is, we define

(K1 ⊗ L⊗−1
1 )⊗ (K2 ⊗ L⊗−1

2 ) := (K1 ⊗K2)⊗ (L1 ⊗ L2)⊗−1.

4. The unit element is represented by E⊗E⊗−1, where E is the unit element
in P, that is, the one-point polytope. The unit element also may be
represented by any K ⊗K⊗−1.

The natural inclusion of convex polytopes into the group of virtual polytopes:

P ↪→ P∗

takes a convex polytope K ∈ P to the formal fraction K1 ⊗ E⊗−1.
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Dimension of a virtual polytope. Since a virtual polytope is not a pointset,
the concept of dimension requires some care. We define the dimension of a
virtual polytope P to be the smallest number k such that P can be expressed as
P = K⊗L⊗−1, with K and L convex polytopes lying in the same k-dimensional
subspace of Rd.

In geometric representations of virtual polytopes, the dimension will correspond
to its geometrical counterpart: as expected, a k-dimensional polytope will be
represented by a k-dimensional geometrical object.

Various geometric realizations of virtual polytopes are presented in subsequent
sections. As a warm-up, we discuss now briefly the simplest cases, in dimensions
zero and one8.

Virtual polytopes in dimension zero. This is the trivial group with only
one element (the unit element E), which corresponds, geometrically, to the
unique zero-dimensional polytope.

Virtual polytopes in dimension one. A convex polytope in R1 is a seg-
ment. After factoring out the translations, we can identify a segment with a
positive real number: its length. In this setting, the Minkowski addition of
segments amounts to addition of positive real numbers. Thus, the semigroup of
convex polytopes P in R1 is isomorphic to the semigroup R≥0 of non-negative
real numbers with the group operation “+”. The semigroup isomorphism maps
a segment to its length. This implies that the group of virtual segments P∗ is
isomorphic to R.

For further reference, we state explicitly the three types of virtual segments:

• The segment of zero length, i.e., a one-point polytope. It is the unit
element E.

• Segments of positive lengths, that is, usual convex segments, and

• Inverses (in the sense of Minkowski addition) of convex segments.

The inverses of convex segments may be conceived as having an associated
negative sign, but a more intuitive convention makes use of colors instead of
signs.

Virtual 1D polytopes as colored segments. A simple visual representa-
tion of virtual segments is obtained by coloring regular segments: the convex
segments (which correspond to positive numbers) are colored in red. Their
inverses (corresponding to negative numbers) are represented by convex seg-
ments colored in blue. This way of visualizing virtual segments will be used
in the next section for colored stars and polygons, and form the basis of an
inductive construction leading to virtual polytopes in higher dimensions.

8We refer to one, two and three-dimensional objects as being in 1D, 2D and 3D.
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For further reference, we formulate now the Minkowski addition ⊗ of virtual
segments in terms of colored segments:

• the sum of two segments of the same color has length equal to the sum of
the lengths of the summands, and inherits the color;

• two segments of different colors and equal length add up to the one-point
segment, and

• two segments of different colors add up to a segment whose color is inher-
ited from the longer of the two segments, and whose length is the difference
of the two lengths. In particular, the inverse of a colored segment is a seg-
ment of the same length and opposite color.

An example for two convex segments K and L is shown in Figure 2: the
Minkowski difference K ⊗ L−1 is a convex segment, and therefore is colored
red; its inverse, the Minkowski difference L⊗K−1, is colored blue.

Figure 2: Two 1D convex polytopes (segments) K and L and their Minkowski
differences K ⊗ L⊗−1 and L⊗K⊗−1.

2.3 Facial structure of virtual polytopes

Virtual polytopes, just like the convex ones, have a well defined facial structure.
We start by reviewing a few important properties of faces of convex polytopes.
Many of them carry through to virtual polytopes, except topology and convexity.

Faces of convex polytopes. Let K be a convex polytope in dimension d.
For a given direction vector v ∈ Rd, the face Kv of K in the direction v is the set
of points p where the scalar product 〈v, . 〉 attains its maximum value, over all
points p ∈ K. When v = 0, we get Kv = K. Otherwise, Kv is the intersection
of K with the support hyperplane to K whose outer normal vector is v.

Theorem 1. Faces of convex polytopes satisfy the following properties [12]:

• Convexity of faces: A face of a convex polytope is a convex polytope.

• “To be a face” is a hereditary property: a face of a face of a convex
polytope K is itself a face of K.

8



• Faces behave additively: A face in the direction v of a Minkowski sum
K ⊗L is the Minkowski sum of the faces in direction v of the summands:

(K ⊗ L)v = Kv ⊗ Lv.

The faces of a convex polytope, ordered by inclusion9, form a partially ordered
set called the face lattice. The face lattice captures the connectivities between
faces of all dimensions, and contains information about the combinatorics and
topology of the polytope.

We turn now to a preliminary discussion of the facial structure for virtual poly-
topes. Concrete examples, geometric interpretations and specific properties are
interspersed throughout the rest of the paper.

Faces of virtual polytopes. For a given direction vector v, we have a semi-
group homomorphism K → Kv taking convex polytopes from Rn to convex
polytopes lying in the corresponding hyperplane Hv with v as normal vector.
In [33] it was shown that this map has a unique extension to a group homomor-
phism.

This allows us to define the face of P in the direction v of a virtual polytope P
as the image P v of K by this unique group homomorphism. As an immediate
consequence, we have the following explicit formulation:

Definition 2. Let P = K ⊗ L⊗−1 be a virtual polytope, where K and L are
convex polytopes, and v be a direction vector. The face P v is defined as

P v = Kv ⊗ (Lv)⊗−1

This definition makes possible an analog of Theorem 1.

Theorem 2. Faces of virtual polytopes satisfy the following properties [33]:

• Faces are “virtual”: A face of a virtual polytope is a virtual polytope.

• “To be a face” is a hereditary property: A face of a face of a virtual
polytope P is itself a face of P .

• Faces behave additively: A face in the direction v of a Minkowski sum
of two virtual polytopes is the Minkowski sum of the faces in direction v
from the summands: (K ⊗ L)v = Kv ⊗ Lv.

The theorem allows us to introduce in a natural way a partial order on the set
of faces, where a face F of a virtual polytope P is smaller than a face F ′ of the
same virtual polytope P whenever F is a face of F ′. The faces can be ranked by
dimension. As usual, a k-dimensional face is shortly referred to as a a k-face,
0-faces are called vertices, 1-faces are edges and the (d− 1)-faces are facets.

With these preliminaries in place, we turn to a detailed investigation of the 2D
case.

9For convex polytopes, face inclusion F < F ′ means that face F is a subset of face F ′.
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3 Virtual polygons

This section is devoted to the first non-trivial example of virtual polytopes: the
2D virtual polygons. Because convex polygons have very simple representations,
we can quickly introduce the concepts leading to their “virtualization”. This is
not just a useful exercise to build up the intuition of what a virtual polytope
might be, but it also covers the basic cases of an inductive construction that
will be presented later in Section 5.

3.1 Preliminaries: polygons, stars and weighted units

We start by making precise, fixing the notation and illustrating simple corre-
spondences between a few basic concepts used throughout the paper: polygons
and stars, convex polygons and their Minkowski sums.

(a) (b) (c)

Figure 3: (a) An oriented polygon, (b) its associated balanced star and (c)
associated weighted units.

Polygons. A polygon is a cyclically ordered set of points in the plane P =
{p1, · · · , pn} so that either n = 1 or consecutive points pi and pi+1 are pair-
wise distinct10. The cyclical ordering of the points means that we consider two
polygons to be identical if one is obtained from the other by a cyclic permuta-
tion. In other words, our polygons have an induced orientation, and the reverse
orientation yields (in most cases considered in this paper) a different polygon.
The consecutive pairs of points determine the edges of the polygon, which have
non-zero length. To visualize the cyclic ordering of points, we draw a polygon
with its edges oriented in the direction of the underlying cycle (Figure 3). We
emphasize from the outset that we work here with arbitrary polygons, which
may not be simple: they may self-intersect or have overlapping edges.

10Index arithmetic is done modulo n in the set {1, 2, · · · , n}
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Balanced stars. A star is a cyclically ordered set of non-zero vectors V =
{v1, · · · , vn}. A star is balanced if the vectors sum up to zero:

n∑
i=1

vi = 0

The star associated to an arbitrary polygon is obtained by translating to the
origin all the oriented edge vectors vi = pi+1 − pi, as in Figure 3(a,b). The
star is balanced, since the edge vectors of a polygon always satisfy the balance
equation.

Balanced sets of weighted points on the unit circle. A vector v ∈ R2

can be represented in polar coordinates as a pair (αi, wi), where 0 ≤ αi < 2π is
the defining angle and wi > 0 is the length of the vector, viewed as a positive
weight. Each defining angle corresponds to a point on the unit circle S1. A
polygon is thus represented as an arbitrarily ordered set

W = {(α1, w1), · · · , (αn, wn)}

of balanced, positively weighted points on the unit circle. An example is shown
in Figure 3(c).

Converting between polygon representations. Simple one-to-one corre-
spondences (illustrated in Figure 3) exist between polygons P = {p1, · · · , pn}
(modulo translations), balanced stars V = {v1, · · · , vn} and balanced, posi-
tively weighted points on the unit circle. We retain for further reference the two
transformations:

• Polygon-to-star: The star V = {v1, · · · , vn} is defined by the vectors
vi = pi+1 − pi, for i = 1, · · · , n.

• Star-to-polygon: The polygon P = {p1, · · · , pn} is defined by placing
p1 at an arbitrary point in the plane, and the subsequent points as pi+1 =
pi + vi.

3.2 Convex polygons as stars and weighted units

For convenience, sometimes both the 2D convex polytope and its boundary will
be referred to as a convex polygon. For the boundary, we use the convention
that it be presented as an ordered set of its extremal points (vertices) P =
{p1, · · · , pn} taken in counter-clockwise11 order. In other words, as one walks
along the polygonal boundary in this order, the interior lies to the left (see
Figure 4(a)). We also consider limiting cases such as the one-vertex polygon
{p1}, which has no boundary edges, and the segment-polygon {p1, p2}, whose
boundary consists of two parallel edges, with opposite orientations −−→p1p2 and
−−→p2p1.

11We abbreviate counter-clockwise as ccw
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Convex stars. The star associated to a convex polygon has an additional
property (illustrated in Figure 4(b)): in the star rotation, the indices of the
edge vectors appear in the natural order {1, 2, · · · , n} induced by the polygon
labeling. In general, we say that a star is convex if the ccw ordering of its vector
labels is the natural order.

Positively weighted units. Similarly, the balanced set

W = {(α1, w1), · · · , (αn, wn)}

of weighted points on the circle associated to a convex star is arranged in in-
creasing order of the defining angles α1 < α2 < · · · < αn (Figure 4(c)). In short,
we refer to this representation of a convex polygon as a set of balanced, natu-
rally ordered, positively weighted points on the unit circle as positively weighted
units.

(a) (b) (c)

Figure 4: (a) A ccw-oriented convex polygon, (b) its associated, naturally
ordered balanced star and (c) its positively weighted circular pointset.

Using the star representation of a convex polygon, the Minkowski sum is com-
puted by the following simple, linear time algorithm (illustrated in Figure 5):

Algorithm: computing the Minkowski sum of two convex polygons.

1. Polygon-to-star: Convert the two convex polygons into their convex
stars.

2. Geometric merge: Merge the two stars (arranged in their natural order)
and then add the vectors with the same defining angle.

3. Star-to-polygon: Reconstruct a new convex polygon from the resulting
star by joining the edge vectors in sequential order.

We remark that, in the second step of the algorithm, the addition of vectors
with the same direction and orientation (which differ by a positive scalar) is
necessary to ensure that the result is still a convex polygon represented by
its extreme points (vertices). This operation is naturally performed using the
weighted units representation of the stars. The last step is possible since the
sum of the merged set of vectors is still zero.

With these concepts in place, we are now ready to introduce virtual polygons.

12



(a) (b)

Figure 5: (a) The Minkowski sum of two convex polygons, and (b) the operation
of merging the corresponding convex stars.

3.3 The group of virtual polygons: geometric representa-
tions

In this section we present a few concrete, geometric representations of virtual
polygons, for which the operation of Minkowski difference will have a naturally
defined meaning: colored balanced stars, encoded as balanced weighted units, and
colored polygons.

Weighted units. A weighted unit is a point on the unit circle, together with a
weight, which can be either positive or negative but not zero. This information
is encoded in a pair (α,w), with α ∈ [−π, π) and w ∈ R \ {0}. An ordered
balanced set of weighted units {(α1, w1), · · · , (αn, wn)} (Figure 6(c)) is defined
by the properties:

1. The defining angles are distinct and ccw ordered: α1 < · · · < αn.

2. For the vector vi ∈ R2 \{0} with polar coordinates (αi, |wi|), i = 1, · · · , n,
we have

n∑
i=1

sign(wi)vi = 0.

As already observed in the previous section, the convex polygons and the convex
stars appear as balanced sets of positively weighted units. The empty star cor-
responds to n = 0. We introduce next a convenient visualization of non-empty
virtual balanced stars, which uses colors and oriented arrows to capture both
the cyclic ordering of the weighted units and the orientation that balances the
vectors (Figure 6(c)).

Colored star. A weighted unit (α,w) induces an oriented and colored line
segment joining the origin with the point on the unit circle corresponding to
the defining angle α, defined as follows. If the weight w is positive, the segment
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is colored red and oriented away from the origin. If the weight w is negative,
the color is blue and the orientation is towards the origin. For a balanced set of
units, the oriented segments induce a set of balanced vectors. The collection of
colored and oriented segments is called a balanced colored star, shortly colored
star. An example is shown in Figure 6(b).

(a) (b) (c)

Figure 6: A virtual polygon represented as (a) a colored polygon, (b) a balanced
colored star, and (c) a balanced set of weighted units.

We emphasize once again that for a colored star, the numbering of the vectors
goes ccw.

A colored star V = ({v1, · · · , vn}, {c1, · · · , cn}) converts to a colored polygon
P = ({p1, · · · , pn}, {c1, · · · , cn}) via the following rule:

1. Coordinates: Using the Star-to-polygon procedure from Section 3.1,
we compute the positions {p1, · · · , pn} of the polygon vertices from the
oriented star vectors {v1, · · · , vn}

2. Edge colors: An edge pipi+1 retains the color ci of the star vector vi.

Since the star is balanced, the algorithm produces a closed polygon.

Definition 3. A virtual polygon is a polygon P = {p1, · · · , pn} whose edges are
partitioned into two color classes, Red and Blue and which is obtained from a
balanced colored star via the above conversion.

A one-point polygon arises from the empty star. Since only edges are colored,
there are no colors involved in the one-point polygon.

We now have three sets (weighted units, colored stars, and virtual polygons) to-
gether with the conversion rules. Our next step is to introduce group operations
such that the conversion rules become group isomorphisms.

Minkowski sum of weighted units. Given two balanced weighted unit vec-
tor sets W ′ = {(α′1, w′1), · · · , (α′n, w′n′)} and W ′′ = {(α′′1 , w′′1 ), · · · , (α′′n, w′′n′′)},
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Figure 7: Minkowski sum of two virtual polygons, in the weighted units repre-
sentation.

their Minkowski sum W ′+W ′′ = {(α1, w1), · · · , (αn, wn)}, with n ≤ n′+ n′′ is
defined by the following procedure (illustrated in Figure 7):

1. Merge the angle sets {α′1, α′2, · · · , α′n′} and {α′′1 , α′′2 , · · · , α′′n′′} to obtain a
sorted list of angles, possibly with repetitions.

2. If there are repetitions, i.e. pairs of coinciding angles α′i = α′′j , then add
their corresponding weights w′i +w′′j . Otherwise, for position k with angle
αk, retain the weight of the input point it corresponds to.

3. If a sum w′i +w′′j equals zero, eliminate the corresponding angle from the
list.

Figure 8: Minkowski sum of two virtual polygons, in the colored star represen-
tation.

Minkowski sum of colored stars. Given two balanced colored stars, their
Minkowski sum (illustrated in Figure 8) is a balanced colored star computed as
follows:

1. Merge the stars according to their defining angles.

2. If there are pairs of vectors with the same defining angle, add them up
according to the one-dimensional rules. We treat a red vector as a positive
(convex) segment and a blue vector as a negative segment. Consequently,
the sum is a vector in the same defining angle as the summands, and has
a color induced by the magnitudes of the summands.

3. If a sum equals zero, eliminate the corresponding angle from the list.
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Minkowski sum of virtual polygons. Given two virtual polygons, their
sum (Figure 9) is defined via the following algorithm: (a) Take the weighted
units of the summands. (b) Add the weighted units. (c) Retrieve a colored
polygon from the sum.

Figure 9: Minkowski sum of two virtual polygons, in the colored polygon
representation.

Minkowski inverses. The above operations turn the three sets of objects
into groups, since all the elements are invertible (Figure 10).

1. In the star representation, the inverse is obtained by reversing the color
and orientation of all star segments.

2. In the balanced weighted unit vector representation, each weight wi is
replaced by its negation −wi.

3. The inverse of a virtual polygon is a rotation by π of the original polygon
with inverted colors.

(a) (b) (c)

Figure 10: The Minkowski inverse of the virtual polygon from Figure 6, in
each of the three representations: (a) colored poygon, (b) colored star and (c)
weighted units.

We summarize the previously described constructions as:

Theorem 3. The groups of colored polygons, colored stars and weighted units
are pairwise isomorphic, and the isomorphisms arise from the direct conversions
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described above. All three groups are canonically isomorphic with the group of
2D virtual polytopes.

Proof. The semigroup of 2D convex polytopes embeds in all the three groups
via the red star representation of convex polygons. Each group is generated by
the image of this inclusion, since each colored star is a difference of two red
stars.

Faces of a 2D virtual polytope represented by a colored polygon. A
2D virtual polytope K represented by a colored polygonal chain (p1, ..., pk) has
three types of faces, ranked by dimension. The 0-faces are the points {p1, ..., pk}
and the (unique) 2-face is the polytopeK itself. The 1-faces are colored segments
of two types, red and blue, as discussed in this section. Red edges represent 1-
dimensional (convex) segments, whereas blue ones represent inverses to convex
segments, as was discussed in Section 2.

3.4 Examples of virtual polygons

To help develop intuitions about distinguishing properties of virtual polygons,
we present now a collection of illustrative examples.

Example 1. (Minkowski inverse of a convex polygon) Since the inverse
of a star reorients the edge vectors, the inverse of a convex polygon is a rotation
by π of the original polygon with all edges colored blue.

1 2

3

1

2

3 1

2

3 1 2

3

Figure 11: All the 8 possible colorings of a triangle are virtual polygons (only 4
are shown). This example illustrates how colors differentiate convex and virtual
polygons. The edge orientations are induced by the corresponding colored stars.

Example 2. (Colorings of convex polygons) All of the 8 colorings of a tri-
angles (of which, 4 representatives are shown in Figure 11) are virtual polygons.
Only 4 of the colorings of a quadrilateral (Figure 12) are virtual polygons.

Example 3. (Six-gon and Double covered triangle) The double-covered
triangle from Figure 13 (right) arises by applying the star-to-polygon procedure
to the shown colored star. This illustrates the fact that virtual polygons, as
opposed to convex polygons, may not be simple. They may also have pairs of
edges with parallel directions, but, in the star, these have to go in opposite
directions.
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Figure 12: The 4 colorings of a quadrilateral which yield virtual polygons.
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Figure 13: Left, a virtual 6-gon with parallel pairs of edges and its star. Right,
an extreme situation, where the 6-gon becomes a double-covered triangle and
the star has pairs of equal but complementary colored vectors.

Example 4. (Aligned edges) The examples in Figure 14 further illustrate
that virtual polygon edges may have the same slope, even with overlap. In Figure
14(left), the aligned edges have the same color, and they overlap in the polygon.
In Figure 14(right), they have different colors, and are aligned but do not overlap
in the polygon.
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Figure 14: Left, alignment of two oppositely oriented edges with the same color
(shown slightly apart for clarity). Right, alignment of two similarly oriented
edges with opposite colors.

Example 5. (Multiple self-intersections) Virtual polygons can have multi-
ple self-intersections, as illustrated in Figure 15.

3.5 Uncolored virtual polygons

We have so far described representations of 2D virtual polytopes as colored
polygons with certain specific properties. It is natural to ask whether being
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Figure 15: Minkowski difference of two regular hexagons.

“virtual” may be just a property of the polygon (and not of the polygon with
the extra colors on edges). If that would be the case, then we could forget the
colors in the representation, and reconstruct them when needed. However, we
show in this section that the color forgetting mapping from virtual polygons to
polygons is neither surjective nor injective.

Definition 4. A polygon with the property that it admits a coloring as a virtual
polygon is called a v-polygon.

Example 6. (Not all polygons are v-polygons) The two examples in Figure
16 are not v-polygons. In the first example, the existence of groups of more than
two parallel edges is an immediate indicator that this is not a virtual polygon,
since no matter how we will orient them, there will always be more than one
edge vector with the same defining angle. For the second example, we try to find
a good coloring, but we will fail because the edge vectors will jump all over the
place instead of allowing a consecutive, naturally ordered placement.

This example suggests the question to recognize which polygons admit virtual
polygon colorings. An inefficient solution is to list one by one all the 2n possible
colorings on the edges and to keep only those that yield properly ordered colored
stars. However, we can show that there exists a simple, linear time algorithmic
solution to this problem.

The examples in this subsection clarify the role of colors. We have already seen
in the examples from Figure 11 and Figure 12 that some polygons may have
no good coloring that would make them virtual polygons, while others may
have several. The second question addressed here is that of deciding if a given
polygon has or does not have a virtual 2D polytope coloring.

Definition 5. (Ambiguous v-polygon) A v-polygon that admits multiple
virtual polygon colorings will be called ambiguous.
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Figure 16: Two polygons which do not admit colorings as virtual polygons.
(Left) This polygon has more than two parallel edges. (Middle) A polygon on
which any attempt at producing a coloring would fail. (Right) A partial coloring
of the first 8 edges cannot be extended to a complete virtual polygon coloring.

Example 7. (There exist ambiguous v-polygons) The triangle from Figure
11 and the rectangle from Figure 12 have several, distinct colorings. Thus these
polygons do not allow for unique reconstruction of the colors of a virtual polygon.

Remark. The colorings of a v-polygon always come in pairs: whenever we have
a coloring yielding a virtual polytope K, the inverse coloring yields the virtual
polytope which is Minkowski inverse to the symmetric image of K.

4 Virtual polytopes in arbitrary dimension

We turn now to four representations for virtual polytopes which are possible in
all dimensions. For each one we describe a group of geometric objects which
is shown to be canonically isomorphic to the group of virtual polytopes. Each
section follows this pattern: (a) we first describe a set of geometrical objects
together with a group operation; (b) we then show that the semigroup of con-
vex polytopes embeds in this group, and finally (c) we show that the group is
generated by the convex polytopes. Direct isomorphisms between some of these
pairs of representations are also illustrated in some cases.

4.1 The algebra of polytopal functions

Virtual polytopes appear in the algebra of polytopal functions defined by A. Kho-
vanskii and A. Pukhlikov [19], with motivations coming from the algebraic ge-
ometry of toric varieties. This last aspect will be discussed in Section 6.5. To
gain intuitions, we compare virtual polytopes in 2D represented by colored poly-
gons with the polytopal functions introduced in this section. We also note that
this representation has a natural isomorphism from the combinatorial Picard
group representation described later in Section 4.4.
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Characteristic functions of convex polytopes. We build the algebra start-
ing from characteristic functions of convex polytopes:

IK : Rn → R

defined by

IK(x) =

{
1, if x ∈ K
0, otherwise.

Polytopal functions. A polytopal function is a function f : Rn → R which is
representable as a finite linear combination f =

∑
αiIKi of characteristic func-

tions of convex polytopes Ki. The coefficients αi (called weights) are arbitrary
integer numbers, possibly negative. The summands IKi may come from convex
“pieces” of different dimensions, including points.

We emphasize that in the construction of the algebra of polytopal functions
translations are not factored out, that is, two polytopes that differ on a trans-
lation are considered to be different.

Such a representation of a polytopal function is never unique, as illustrated in
Figure 17. Here, the (characteristic function of) the rectangle is expressed as
“rectangle plus rectangle minus segment”, or as “triangle plus triangle minus
diagonal segment”.

             =               +             -     =           +                  -

Figure 17: A polytopal function always has infinitely many decompositions.

Ring structure. The set of polytopal functions has a ring structure, induced
by the operations of addition, defined pointwise, and of multiplication, which
extends the Minkowski addition ⊗ as follows.

Multiplication of polytopal functions. The product f ⊗ g of two polytopal
functions f =

∑
i αiIKi and g =

∑
j βjILj , is defined as:

f ⊗ g = (
∑
i

αiIKi)⊗ (
∑
j

βjILj ) :=
∑
i,j

αiβjIKi⊗Lj (1)
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A proof is needed to guarantee that multiplication is defined correctly, that is,
that the above definition does not depend on any particular representations of
the summands. The proof of correctness [19] is based on an equivalent definition
of the product of two polytopal functions f, g as the convolution with respect
to the Euler characteristic χ:

(f ⊗ g)(x) =

∫
Rn
f(x− y)g(y)dχ(y)

Integration and convolution against Euler characteristic is an elegant technique,
first defined by O.Viro. The idea of this notion is that the Euler characteristic
χ, being an additive function, in some sense resembles a measure. Therefore,
in some particular cases one can integrate piecewise constant functions against
χ. Since this technique will not be referred to again in this paper, we do not go
into further details, which can be found in [47].

The two operations of addition and multiplication turn the set of polytopal
functions into a commutative ring, with the identically-zero function as its zero
element, and IE as the unit element, where E = {0} is the one-point polytope
containing the origin. We focus in this paper on the ring structure, although
polytopal functions constitute an algebra over rational numbers.

Convex polytopes are invertible. A remarkable property of the convex
polytopes is that their characteristic functions are invertible in this ring.

We start with an auxiliary construction. Let K be a convex polytope. The
interior of K taken in its affine hull is called its relative interior and is denoted
by Rint(K). The central symmetry with respect to the origin O is denoted by
Symm.

It is not hard to show that the characteristic function of the relative interior of
a convex polytope K:

IRint(K)(x) =

{
1, if x ∈ Rint(K);
0, otherwise.

is a polytopal function.

Theorem 4. [19] For any convex polytope K, the function IK is invertible in
the ring of polytopal functions. The inverse is expressed as:

(IK)⊗−1(x) = (−1)dimKIRint(Symm K) =

{
(−1)dimK , if x ∈ Rint(Symm K);
0, otherwise.

Corollary 5. [19] The algebra of polytopal functions contains a multiplicative
subgroup which, after factorization by translations, is isomorphic to the group
of virtual polytopes. The isomorphism maps each convex polytope K to its char-
acteristic function IK . The mapping extends to the entire group, that is, the
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Minkowski inverse K⊗−1 is mapped to the polytopal function described above in
Theorem 4.

Now it makes sense to speak of virtual polytopes represented by polytopal func-
tions. In the paper of A. Khovanskii and A. Pukhlikov [19] it is shown that
virtual polytopes almost exhaust all invertible polytopal functions:

Theorem 6. [19] Every invertible element of the ring of polytopal functions
is, up to a sign, a virtual polytope. More precisely, for any invertible polytopal
function f , either f or −f is a virtual polytope.

An invertible polytopal function f =
∑
i αiIKi represents a virtual polytope iff∑

i αi = 1.

A necessary and sufficient condition for a polytopal function to be invertible
appeared in the same paper [19].

1     1         1                               0     1       0

1           1           1                                    0

0 1                                0             0            0

Figure 18: (Left) Polytopal function representing a convex triangle and (Right)
its inverse.

Examples. To build the intuition, we illustrate with virtual polytopes rep-
resented by polytopal functions in dimension two. Since such functions are
piecewise constant, the figures mark the domains by the values of the function.
Figure 18 (b) depicts a function which is identically 1 strictly inside the triangle
and identically zero outside the triangle and on its boundary. Figure 19 depicts
a function which equals −2 inside the triangle, −1 on the boundary, and is zero
outside.

Figure 20 illustrates the multiplication of polytopal functions according to the
definition. The goal is to compute the Minkowski sum of the convex triangle
and the negatively weighted open segment.

First we express the negatively weighted open segment as “endpoint plus end-
point minus the (closed convex) segment”. Next, we open the brackets and
perform classical Minkowski addition. This gives us two triangles and one nega-
tively weighted trapezoid. We depict them separately, but actually they overlap.
Finally, one has to sum up the weights. This gives us the last figure. As we see
soon, the negatively weighted open segment represents the Minkowski inverse
of the convex segment. So the result of this computation is a virtual polytope,
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Figure 19: The double covered virtual triangle from Figure 13 represented as
a polytopal function.

namely, the Minkowski difference of the triangle and the (convex) segment rep-
resented by a polytopal function.

For a comparison of the two representations for virtual polygons (as colored
polygons and as polytopal functions) we point to the three examples in Figures
18, 19 and 21. Figure 18 shows a convex triangle and its inverse, which in the
colored polygon representation would have the opposite color. Figure 19 repre-
sents the double covered virtual triangle from Figure 13. Figure 21 represents
the virtual polygon from Figure 6 by a polygonal function.

Historical Note. The polytopal algebra has been defined by A. Khovanskii
and A. Pukhlikov in [19], although many ideas can be traced back to Grömer
[14]. However, they used a different terminology (convex chain), which we have
not adopted here because of the potential of confusion with other terminology
used in this survey. The alternative name of polytopal functions was used in
Panina [32, 33]. We restricted our presentation to the ring structure of this
algebra, since the structure of the Q-algebra (whose details appear in [19])
although important, is irrelevant for the purposes of this survey.

4.2 McMullen’s polytope algebra

We turn now to a second representation for virtual polytopes, Peter McMullen’s
polytope algebra Π [26]. It is closely related, yet not identical to the Khovanskii
and Pukhlikov algebra of polytopal functions defined in the previous section.
A crucial difference is that now the translations are factored out, and this has
important algebraic consequences. In particular, it implies the existence of a
lot of nilpotent elements, which in turn lead to a lot of invertible elements. By
contrast, there are no nilpotent elements in the algebra of polytopal functions.

The group of virtual polytopes P∗ appears here in a completely different way,
and it is not isomorphic to the (multiplicative) group of invertible elements. As
shown below, P∗ is isomorphic to an additive group of the polytope algebra Π
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Figure 20: An example illustrating multiplication in the algebra of polytopal
functions.

called the first weight space.

Definition 6. (McMullen’s Polytope Algebra [26])

The polytope algebra (Π,+,⊗) is defined over the set of symbols [K], where
K ranges over the set of all convex polytopes in Rd. Additive expressions are
subject to the equivalence relations:

[K] + [L] = [K ∩ L] + [K ∪ L] when K,L and K ∪ L are convex (2)

[K] = [K + t] when K convex, and t a translation vector (3)

Multiplication is first defined for convex polytopes K,L via Minkowski addition
[K]⊗ [L] := [K ⊗ L], and then extended by linearity to all elements of Π.

Multiplication by rational numbers in the polytope algebra does not always exist.
But in the case when it exists, it can be defined in a unique way. Indeed,
multiplication by an integer number reduces to taking a finite sum, which is
already defined. Division by an integer requires more care.

Proposition 7. [26] For any element of the polytope algebra
∑
αi[Ki] and

any non-zero integer a such that
∑
αi is dividable by a, there exists a unique
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Figure 21: Virtual polygon from Fig. 4 represented as a polytopal function.

=                                                +

[K]   +   [L]                            =                       [K]                    +               [L]

Figure 22: In McMullen’s algebra, the convex polytopes are taken up to trans-
lation. These two objects are identified.

element of the polytope algebra f such that af =
∑
αi[Ki]. This enables us to

write f = 1
a

∑
αi[Ki]. If

∑
αi is not divisible by a, then such an f does not

exist.

Thus, the elements of the algebra are linear combinations with integer coeffi-
cients of the form

∑
αi[Ki], subject to the equivalence relations (2) and (3). Fig.

22 and 23 provide illustrations. The unit element E is the one-point polytope,
which is very similar to the algebra of polytopal functions.

This construction automatically comes with a canonical surjective homeomor-
phism from the algebra of polytopal functions to McMullen’s polytope algebra
Π.

Although McMullen’s polytope algebra Π looks very similar to the algebra of
polytopal functions, its group of units (invertible elements under multiplication)
is much bigger than the group of virtual polytopes. The reason for this is that
if Σai = 0, then f = Σai[Ki] is a nilpotent element, and therefore, 1 − f is
invertible. The inverse (1 − f)−1 = 1 + f + f2 + · · · is well defined since the
sum is finite in this case. This fact implies almost immediately that an element
Σai[Ki] in McMullen’s polytope algebra is invertible iff Σai = ±1.

26



Figure 23: This illustrates the generating relations in McMullen’s algebra.

Weight spaces. McMullen’s algebra Π has the structure of an (almost) graded
algebra, i.e. it is decomposable into a direct sum of graded components, called
weight spaces. This decomposition has a deep interpretation in terms of the
Chow rings associated to toric varieties, and will be briefly discussed in Sec-
tion 6.5. The other details, although very interesting, are not relevant for our
discussion, and can be found in [26].

The decomposition of Π into the sum of graded components is very similar to
the graded decomposition of the algebra of polynomials. With this analogy
in mind, the k-th graded component consists of homogeneous polynomials of
degree k. The latter can be recognized using dilation, since they are exactly
those polynomials that satisfy p(λx) ≡ λkp(x) for every real λ. Analogously,
an element f in the polytope algebra is degree one homogeneous if, for every
positive integer λ, the dilation by λ (which we denote by (λ)f) coincides with
the sum of λ copies of f :

(λ)f = f + ...+ f︸ ︷︷ ︸
λ

.

It is worth mentioning that a convex polytope is not homogeneous in this re-
spect.

Definition 7. The first weight space of Π is defined as the set of homogeneous
elements of degree one.

The first weight space is clearly an additive group.

Example: homogeneous element in dimension one. If K is a segment
and P is a point, then [K] − [P ] is homogeneous of degree one, and therefore
belongs to the first weight space.

Theorem 8. ([28], Lemma 2.2) The group of virtual polytopes is isomorphic
to the first weight space of McMullen’s polytope algebra.

The isomorphism sends a convex polytope K to

log(K) =

∞∑
i=0

(−1)i+1 ([K]− E)i

i
,
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where E is the one-point polytope, i.e. the unit element in Π.

Since [K]− E is a nilpotent element, the above sum is finite.

It will be seen in Section 6.5 that this theorem relates the Picard group of a
toric variety to the group of virtual polytopes.

Historical Note. The definition of the polytope algebra was motivated by
the scissors congruence problem, which in turn originated from Hilbert’s Third
Problem. The group of all (isometrical) motions of the space used in the classical
setting is replaced here by translations. This allows to introduce multiplication,
which would otherwise be impossible. The algebra can be viewed as the universal
group for translation-invariant finitely additive measures on polytopes, called
translation-invariant valuations, and therefore fits into the theory of valuations.
The polytope algebra has several remarkable isomorphic interpretations. One
is the direct limit of Chow rings of toric varieties [13], the other is via piecewise
polynomial functions with respect to some fan [6].

The most remarkable about McMullen’s algebra is its relationship to the g-
theorem that characterizes the face-vectors of simple polytopes. The necessary
and sufficient conditions were conjectured in 1970 by P. McMullen. The first
proof of the necessity part by R. Stanley used an approach from algebraic geom-
etry, and holds only for rational polytopes, since only those yield algebraic toric
varieties. Later on, P. McMullen [27] proved the necessity part for all simple
polytopes, using the weight space decomposition in the polytope algebra.

Convex polytopes yield another interesting algebraic structure, the ring of sim-
ple polytopes, see [8], [9]. However, that does not contain the group of virtual
polytopes.

4.3 Support functions

Support functions of smooth convex polytopes represent a well-established con-
cept in convex geometry. Since they behave additively with respect to Minkowski
summation, the subtraction of support functions is expected to correspond to
Minkowski difference. Just like convex polytopes, the virtual polytopes have
piecewise linear support functions and outer normal fans. The convexity prop-
erty of the support function and of the fan is however relaxed, but all the other
properties are maintained.

Cones, fans and spherical fans. The definition of support functions implies
cones and fans, so we first introduce these concepts. A cone σ ⊂ Rn is a closed
set of points such that for any x ∈ σ and any non-negative λ, the point λx lies
in σ. Most of the books on convex polytopes, e.g. [12] assume that a cone is
convex, since this is the case in the context of convex polytope theory. For our
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purposes, we will have to relax this assumptions, hence our cones may not be
convex.

We work with polyhedral cones, i.e. those having a piecewise linear boundary.
The entire space Rn and the set containing just the origin {O} are special cases
of cones. A fan Σ is a finite collection of polyhedral cones in Rn such that: (a)
any face of a cone σ ∈ Σ belongs to Σ, (b) for any two cones σ1, σ2 ∈ Σ, the
intersection σ1 ∩ σ2 is a face of both σ1 and σ2, and (c) the union of all the
cones equals Rn. A convex fan consists only of convex cones.

For a more intuitive visualization, we also introduce the spherical fan, which is
the intersection of the (standard unit) sphere with the fan. This yields a tiling of
the sphere into spherical polytopes (which may be non-convex). Each spherical
fan extends to a fan, so we have an easy direct correspondence between these
concepts.

Figure 24: Two convex polytopes together with their fans, illustrated in 2D.
On the left, the marked cone in the top figure corresponds to the marked vertex
below. The second fan is a refinement of the first one.

A fan Σ is said to be coarser than a fan Σ′, or equivalently, Σ′ is called a
refinement of Σ, if σ ∈ Σ′ implies that there exists a cone τ ∈ Σ such that
σ ⊆ τ . An example is given in Figure 24.

The support function of a convex polytope K is the function

hK : Rn → R

defined by
hK(x) = maxy∈K〈x, y〉

where 〈x, y〉 is the standard scalar product.

For a generic x, the maximum of the scalar product 〈x, ·〉 is always achieved at
one of the vertices of the polytope. For the example in Figure 24, if x lies in
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the shadowed cone, the maximum is attained at vertex p. Consequently, on the
shadowed cone the support function coincides with the support function of the
point p, which is the linear function 〈p, x〉. Fig. 25 gives an example.

A few well-known properties of the support functions of convex polytopes are
summarized in the following lemma.

Lemma 9. Let K, L be convex polytopes. Let K + t be the translation of K by
a vector t. Then:

• hK is a convex continuous piecewise linear function.

• The support functions hK and hK+t differ on a (globally) linear summand.

• hK is positively homogeneous: hK(λx) = λhK(x), for λ ≥ 0. In particu-
lar, this implies that hK equals zero at the origin O.

• The support function of Minkowski sum equals the sum of support func-
tions:

hK⊗L = hK + hL.

Outer normal fan of a convex polytope. There are two equivalent ways
to define the fan of a convex polytopes.

• Given a convex polytope K, the linearity domains of its support function
hK yield a fan ΣK , called the outer normal fan of the polytope K, or the
fan of the polytope K for short.

• Alternatively, the fan of a convex polytope can be defined as follows. For
each face F of K, define a cone

σF := {v ∈ Rn : Kv = F}

consisting of those vectors v that the face Kv equals F . The closures of
all these cones when F ranges over all proper faces of K is the fan of the
polytope K.

An example is illustrated in Fig. 24. We use the second version for defining
below the fan of a virtual polytope. The definition implies immediately the
following duality property:

Lemma 10. The faces of a convex polytope K are in a bijection with the cones
of a fan ΣK such that:

• A k-dimensional face of K corresponds to a (n − k)-dimensional cone of
ΣK .

• The affine hulls of a face and the corresponding cone are orthogonal.
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• This correspondence reverses inclusion.

Example. Figure 25 depicts a planar convex pentagon, its fan, and the (graph
of) the support function.

Remark. In 2D, the spherical fan is obtained from the weighted units repre-
sentation by a cw rotation by π/2 followed by forgetting the weights.

Figure 25: A convex pentagon, its outer normal fan, its spherical fan, and the
graph of its support function.

The group of support functions. We consider now the set of all convex
continuous homogeneous piecewise linear functions defined on Rn. Each of
them is the support function of some uniquely defined convex polytope. With
pointwise addition, this set forms a semigroup. We denote by S this semigroup
factored by globally linear functions. The mapping that maps each polytope K
to its support function hK establishes an isomorphism between the semigroup
of polytopes modulo translations P and the semigroup S.

We extend the semi-group S to the group of support functions, that is the
Grothendieck group associated to it. It consists of all continuous homogeneous
piecewise linear functions h defined on Rn, modulo globally linear functions.
Passing to the Grothendieck group means that we allow subtractions of piecewise
linear functions. Consequently, we loose convexity, but all the other properties
from Lemma 9 are preserved.

The following definition describes the canonical isomorphism between the group
of virtual polytopes and the group of support functions:

Definition 11. Let K = L ⊕M⊗−1 be a virtual polytope. Let hL and hM be
the support functions of L and M respectively. The support function of K is
defined as hK =: hL − hM .
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Since the group of support functions is generated by convex functions, we have:

Theorem 12. The group of virtual polytopes and the group of support functions
are canonically isomorphic. The isomorphism sends a virtual polytope to its
support function.

Definition 8. Given a virtual polytope K, each face F of K yields a cone

σF := {v ∈ Rn : Kv = F}

consisting of those vectors v that the face Kv equals F . The closures of all these
cones when F ranges over all proper faces of K is the fan of the polytope K.

In contrast to the convex case, the cones of the fan may not necessarily be
convex. Examples appear in Figures 26 and 27.

Figure 26: (Left) A virtual polytope represented by a colored chain (middle),
its fan (right), and the graph of its support function. In this particular case,
the fan is convex, but the support function is not convex.

Figure 27: A virtual polytope represented by a colored chain (left), its fan
(middle), the graph of its support function (right). In this particular case, the
fan is not convex.

Given a virtual polytope K, the cones of maximal dimension of the fan corre-
spond to vertices of K. This yields a simple, yet important fact:

Lemma 13. A virtual polytope K is uniquely determined by its fan, vertex set,
and the (duality) mapping between vertices of K and the cones of ΣK of maximal
dimension.
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Proof. Indeed, we retrieve the support function hK(x) as the piecewise linear
function whose restriction on each of the cones σi equals the scalar product
(pi, x). Here pi is the vertex that corresponds to the cone σi.

Example 8. In 2D, the spherical fan is obtained from the weighted units rep-
resentation by a cw rotation by π/2 and forgetting the weights.

More generally, the fan of the support function for a virtual polytope in 2D is
retrieved from the colored chain representation by the following algorithm.

Algorithm: (Fan of a 2D virtual polytope)

1. Represent the virtual polygon P by a colored star.

2. Rotate it clockwise by π/2.

3. Each (colored) segment gives a ray. The collection of all these rays yield a
conical tiling of the plane which is the fan of the virtual polytope P . Take
the union of 2-dimensional cones that correspond to one and the same
vertex.

We conclude with the list of virtual triangles, shown in Figure 28 simultaneously
as polytopal functions and as colored chains, together with their fans.

1             1             1        0            0             0      0           -1             0     0             0           0

1        1       1                 -1      -1       -1               0       -1      0               0       1       0

1                                     0                                   1                                 0

O

O

O

O

Figure 28: Virtual triangles (represented as polytopal functions and as colored
chains), together with their fans.

Historical notes. The idea to pointwise-subtract support functions of convex
bodies can be traced back to several sources in the mathematical literature,
hence this representation of virtual polytopes may not be a new concept. We

33



mention in particular an early paper from 1939 of A.D. Alexandrov [1], who
considered pointwise differences of support functions when proving a theorem
giving a characterization of the sphere. This theorem is the starting point
for A.D. Alexandrov’s problem discussed in Section 6.1. However, this very
terminology and the relevant properties have appeared only recently: the first
systematic and explicit study of virtual polytopes defined via their support
functions was done in [19], see also [30]. Fans of virtual polytopes appeared
(only for 3D) in Rodriguez and Rosenberg [41] and V. Alexandrov [2], but these
authors considered only a restricted class of virtual polytopes, called polyhedral
hedgehogs, which are virtual polytopes with convex fans. These do not cover
the entire group of virtual polytopes. Support functions and fans of virtual
polytopes were also used by Panina in [34, 33, 35, 37].

4.4 The combinatorial Picard group: systems of trans-
lated cones

In this section we introduce the last geometric representation for general virtual
polytopes in an arbitrary dimension. It is due to G. Ewald [12]. He explic-
itly uses the terminology of virtual polytope for what we call in this section a
system of translated cones. There exists a direct correspondence between this
representation and the polytopal functions defined previously in Section 4.1.

Dual cone. In this section, all the cones are convex. This is necessary for the
definition of the dual cone. Given a convex cone σ, its dual cone σ̌ is defined
by:

σ̌ = {x ∈ Rn : for any y ∈ σ, 〈x, y〉 ≤ 0}.

Figure 29: (Left) A cone σ of the fan corresponding to the vertex pσ of the
polygon K. (Right) The translated cone pσ ⊗ σ̌.

Translated cones for a convex polytope. Let K be a convex polytope and
Σ be its fan. Let a cone σ ∈ Σ correspond by duality to a vertex pσ of K. Then
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the cone spanned by K at the vertex pσ is a translate by pσ of the dual cone σ̌.
In other words, it equals the Minkowki sum pσ ⊗ σ̌ .

Analogously, if a cone σ ∈ Σ corresponds by duality to a face F of K, then the
cone spanned by K at the face F is a translate of the cone σ̌ by some pσ, where
pσ can be choosen to be any point from the affine hull of the face F .

A convex polytope thus naturally yields a system of translated cones. This is
illustrated in Figure 29 and Figure 31.

A classical result, known as the Brianchon-Gram decomposition [5] (or Gram-
Sommerville formula, or Gram’s equation), states that the alternating sum of
these cones equals the original polytope:

Theorem 14. [5] Given a convex polytope as a system of cones

K = {pσ ⊗ σ̌}σ∈Σ,

its characteristic function decomposes in the alternating sum of the character-
istic functions of the cones:

IK =
∑
σ∈Σ

(−1)codim(σ)Ipσ⊗σ̌.

Figure 30: Brianchon-Gram decomposition of a convex triangle.

The following orthogonality property follows directly from Lemma 10.

Lemma 15. For every cone σ ∈ Σ, for every one of its faces τ , the vector
pσ − pτ is orthogonal to the affine span aff(τ) of the face τ .
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Systems of translated cones. The previous discussion suggests the follow-
ing definition:

Definition 9. Let Σ be a convex fan in Rn and {pσ ∈ Rn|σ ∈ Σ} be a collection
of translation vectors associated to its cones. The collection of translated dual
cones

{pσ ⊗ σ̌}σ∈Σ

is called a system of translated cones with respect to the fan Σ if the following
(consistency) condition holds: for every cone σ ∈ Σ and for every one of its
faces τ , the vector pσ − pτ is orthogonal to the affine span aff(τ) of the face τ .

Remark. This definition differs from the notion of the combinatorial Picard
group as it was introduced in [12], in that we do not assume that the fan
involved is rational, and we do not require that the polytopes involved are
lattice polytopes. These conditions appear later, as we pass to toric varieties.
But we stress that it is necessary for the fan to be convex, as otherwise duality
is not well defined.

Figure 31: (a) A triangle, (b) its fan, (c) cones dual to the cones of the fan,
(d) translated dual cones.

Group structure on translated cones. Assuming that a convex fan Σ is
fixed, we now endow the system of translated cones with a group structure. The
group operation is defined by:

{pσ ⊗ σ̌}σ∈Σ + {p′σ ⊗ σ̌}σ∈Σ = {(pσ + p′σ)⊗ σ̌}σ∈Σ.

Since the zero element and the inverse are clearly given by {O ⊗ σ̌}σ∈Σ and
{(−pσ)⊗ σ̌}σ∈Σ, we get a commutative group.
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Figure 32: System of translated cones for a triangle and its inverse.

To factor out (global) translations, we factorize in the above group by the ele-
ments {p⊗ σ̌}σ∈Σ. That is, we factor out systems of translated cones with one
and the same p for all the cones. After factorization, we get a group CPΣ which
is called (in G.Ewald’s book [12]) the combinatorial Picard group related to the
fan Σ.

The group of virtual polytopes related to a fan. We are now ready to
relate systems of translated cones to virtual polytopes. The group P∗Σ of virtual
polytopes related to a fan Σ is the subgroup of P∗ consisting of those elements
P∗ whose support function is linear on each of the cones Σ. Equivalently, a
virtual polytope K is related to the fan Σ, if its fan ΣK is coarser or equal than
the fan Σ.

The following theorem establishes the canonical isomorphism between the com-
binatorial Picard group CPΣ and the above defined subgroup of virtual poly-
topes.

Theorem 16. The combinatorial Picard group CPΣ is isomorphic to the sub-
group P∗Σ of virtual polytopes related to the fan Σ. The isomorphism sends a
convex polytope to the associated system of translated cones. Once defined for
convex polytopes, it extends to all virtual polytopes.

Examples. Figure 32 illustrates two systems of translated cones for a convex
triangle and its inverse. The fan of a convex triangle contains 7 cones: three
2-dimensional cones, three one-dimensional cones (rays), and the one-point cone
{O}. Consequently, the dual cones are three pointed cones, three half-planes,
and the entire plane (which is dual to {O}). Figure 31 shows all of them,
whereas Figure 32 shows only the pointed dual cones.

From subgroups of virtual polytopes related to a particular fan, we extend now
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the definition to the entire group of virtual polytopes. Given a fan Σ and its
refinement Σ′, we have a natural inclusion P∗Σ → P∗Σ′ . This enables us to speak
of inductive limits of the groups P∗Σ. This means that we take the union of all
the groups and identify the elements using the inclusions defined above.

Theorem 17. The group of virtual polytopes P∗ is isomorphic to the inductive
limit of the groups CPΣ.

For a virtual polytope, there exists an elegant direct translation from translated
cones representation to the representation by a polytopal function. It is a direct
generalization of the aforementioned Brianchon-Gram decomposition for convex
polytopes:

Theorem 18. [19] Given a virtual polytope as a system of translated cones

K = {pσ ⊗ σ̌}σ∈Σ,

its canonical image in the algebra of polytopal functions is the function∑
σ∈Σ

(−1)codim σIpσ⊗σ̌

As an example, this formula can be checked for a triangle using Figure 31.

To summarize, we have presented another equivalent representation of virtual
polytopes. This turns out to be the most suitable representation for toric va-
rieties (section 6.5), where a system of translated cones yields immediately an
invertible sheaf on a toric variety.

Remark. Analogous constructions are valid if we restrict ourselves to lattice
polytopes, that is, polytopes whose vertices lie on the standard lattice Zn ⊂ Rn.
In this case we obtain the group of lattice virtual polytopes P∗Z, the group of lattice
virtual polytope related to a fan P∗Z,Σ, and the combinatorial lattice Picard groups

CPZ
Σ and CPZ

Σ. In this framework it makes sense to consider only rational fans.

Historical Note. The name “Picard group” distinctly indicates the original
motivation of A. Pukhlikov and A. Khovanskii in connection with the Picard
group of toric varieties. This will be briefly sketched in Section 6.5. Ewald in [12]
explains in detail the construction of the groups and the relating isomorphisms.
It is worth mentioning that the Picard group of a projective toric variety has
several equivalent representations: as the group of invertible sheaves, as the
group of divisors, and as the group of linear bundles. The translated cones give
yet one another representation originating in convex geometry.
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5 Virtual 3D polytopes

In the section we give two representations of virtual polytopes which are specific
to dimension 3. The goal is to generalize the 2D case, where virtual polytopes
appeared as colored polygons. In 3D, one would expect some kind of polyhedral
surface. The first approach represents virtual polytopes as stressed non-crossing
graphs on the sphere. Simple rules turn the set of spherical stressed graphs into
a group, which is shown to be isomorphic to the group of virtual polytopes. The
second representation is as a subfamily of Maxwell polytopes, called so because
these types of polyhedral surfaces appear for the first time in the work of James
C. Maxwell. Both geometrizations of 3D virtual polytopes introduced in this
section are inspired by, and intimately related to, the theory of planar stressed
non-crossing graphs and polyhedral liftings due to Maxwell [24].

Diverse concepts of 3D polytopes appear in the literature: some are non-convex,
some have non-convex faces, some are self-intersecting surfaces, some may have
non-spherical topology, etc. But the 3D polytopes that we introduce here di-
verge even further from these familiar examples, in that they may have faces
that are not even simple polygons. In our setting, Maxwell polytopes still have
vertices, edges and faces. The faces are flat polygons, but they need not be
simple, i.e. they may self-intersect. The connection to spherical stressed graphs
concludes the section.

5.1 Virtual polytopes as stressed spherical graphs

In this section we introduce a distinct representation for 3D virtual polytopes
as stressed non-crossing spherical graphs.

Non-crossing spherical graphs. A graph is a pair G = (V,E), with a finite
set V = {1, 2, ..., n} of vertices and a finite set E of edges. We allow loops and
parallel edges. We also include the single loop graph, which is one closed edge
with no vertices on it. A graph may contain the single loop graph as a connected
component. For technical reasons that will become clear later, we also assume
that there are no isolated vertices and no vertices of degree 2.

A spherical realization (or placement) of the graph is an injective mapping

p : V → S2

of its vertices to the unit sphere S2, together with a function that maps edges
to geodesic segments (great-circle arcs) on the sphere. An edge with endpoints
i and j is mapped to a geodesic segment with endpoints at pi and pj . The
placement is said to be non-crossing or an embedding if the edge segments do
not cross and do not overlap. The edges are not necessarily mapped to the
shortest geodesic, so if the vertices of an edge are fixed, there are (at least) two
possibilities to place the connecting edge. More precisely, if the edge endpoints
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are not mapped to a pair of antipodal points, then there are exactly two possible
geodesic arcs that can represent the edge. If the endpoints are antipodal, there is
a continuum of possibilities. We also assume that the single loop graph embeds
as a great circle (with no vertices).

Such a spherical realization induces a facial structure on the graph. Faces are
the connected regions (tiles) of the sphere that arise by removing the points and
arcs corresponding to the embedding. By construction, the faces are bounded
by spherical polygons, but they may not necessarily be topological disks (may
have holes). For example, a disconnected graph has at least one non-disk face.

Figure 33: Vectors ui,e used in defining spherical stress.

Stress. Let N(i) denotes the set of edges incident to a vertex i ∈ V . Let
ui,e be the unit vector tangent to the geodesic arc corresponding to the edge
e ∈ E at the point pi, oriented towards the edge, as illustrated in Figure 33. An
equilibrium stress on a spherical embedded graph is a mapping from the edges
to the reals:

s : E → R

which satisfies the equilibrium condition at every vertex i ∈ V :∑
e∈N(i)

seui,e = 0 (4)

By definition, we also assign a stress, which can be any number, on the edge of
the single-loop graph.

A stress is non-trivial if it is not identically zero. A stress is non-zero if it is
non-zero on every edge.

Note. This definition is a slight modification of the similar concept used by
Maxwell [24] for planar graphs and adjusted here for the sphere. The intuition
behind it comes from imagining the edges as springs lying on the sphere. De-
pending on whether they are stretched or compressed compared to their natural
state, the system of springs associated to a graph is in equilibrium exactly when
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condition (4) holds. The vector seui,e equals the force applied on the point pi
by the spring along edge e.

Figure 34: A convex polytope yields a positively stressed graph.

In drawing such graphs, we color in red the positively stressed edges, that is
those with s(e) > 0. Negatively stressed edges are colored in blue. The following
proposition gives the important correspondence between convex polytopes and
stressed spherical graphs.

Figure 35: The sum of two positively stressed graphs.

Proposition 19. Let K ⊂ R3 be a convex polytope. Its spherical fan yields a
spherically embedded graph GK , whose edges correspond (by duality) to edges
of the polytope K. Let the function sK send each edge of GK to the length of
the corresponding edge of K. Then sK is a positive equilibrium stress of GK .
Conversely, each positively stressed spherical graph uniquely defines a convex
polytope K ⊂ R3.

As a consequence, we can view spherical positively stressed graphs as represen-
tations of convex 3D polytopes. We include the single-vertex polytope (repre-
sented by the empty graph), the two-vertex polytope (the line segment), repre-
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sented by a single-loop graph, and all “flat” polytopes (that is, convex polygons),
represented by graphs with two antipodal vertices and at least three edges.

Now we turn the set of non-zero stressed graphs into a group.

Figure 36: The sum of two stressed graphs: one is positively stressed, the other
one is negatively stressed.

Sum of stressed graphs. The sum of two spherical stressed graphs

(G, s) = (G1, s1) + (G2, s2)

is defined via the following algorithm:

Algorithm: (Sum of two stressed spherical graphs)

1. Each of the graphs yields a tiling of the sphere S2. We take the tiling
arising from their common refinement: it may have new vertices, and some
of the original edges get split. The 1-skeleton of the common refinement
is a spherically embedded graph G.

2. G has a natural stress defined as the sum of s1 and s2, as follows. Let
e ∈ E be an edge of G. If it lies on some edge of G1 and on no edge of G2,
then we assign to e the stress inherited from s1. If it lies on an edge of G1

and on an edge of G2, we take the sum of inherited stresses. The stress
obtained is not necessarily non-zero, so we need some further reductions.

3. Remove all zero stressed edges of G. Remove isolated vertices.
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4. If vertices of degree two (with two adjacent edges) exist, they must form
an angle of π and be equally stressed. In this case, we remove the vertex
and collapse its two incident edges into one.

Properties of stressed graphs. The following properties are immediate con-
sequences of the above algorithm: (a) The zero element with respect to addition
is the empty graph. (b) The summation of positively stressed graphs corre-
sponds to Minkowski addition of the associated convex polytopes. (c) Each
stressed graph has an inverse, obtained by simultaneously negating the signs
of all its edges. (c) The group of non-zero stressed graphs is generated by the
positively stressed graphs.

From this, we obtain immediately:

Theorem 20. [37] The group of non-zero stressed graphs is canonically iso-
morphic to the group of virtual polytopes. The canonical isomorphism sends a
formal difference of convex polytopes K1 ⊗K⊗−1

2 to the difference of associated
(positively) stressed graphs

(G1, s1)− (G2, s2)

This allows us to speak of virtual polytopes represented by stressed graphs.

Historical notes. The material in this section comes from Panina [37]. The
advantage of the representation is that it helps to construct virtual polytopes
in 3D by just drawing pictures on the sphere. We discuss this in more detail in
Section 6.1.

5.2 Virtual polytopes represented by Maxwell polytopes

In this section we turn to a new representation of 3D virtual polytopes as colored
Maxwell polytopes. They are the closest in spirit to the theory of polytopes, and
have not been described as such before. This approach builds upon the intuition
developed in dimension two in what concerns non-convexity, self-intersections
and the role of the colors.

We define Maxwell polytopes starting from face graphs. This purely combina-
torial data enables us to speak of combinatorial duality without any reference
to geometry. We then show how a virtual polytope can be represented as a
colored Maxwell polytope together with an associated fan. We discuss the rel-
evant properties that emerge from this representation and address the problem
of detecting which Maxwell polytopes represent virtual polytopes and which do
not, as we did in Section 3.5 for colored polygons.
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Face graphs and their duals. Recall that a graph G = (V,E) is a finite
set of vertices V = {v1, · · · , vn} and a finite collection of edges E. We allow
loops, multiple edges, as well as the single-loop graph, which is one edge with no
vertices. In other words, our edges have zero, one or two incident vertices, and
the collection of edges is not a set, as it may contain repetitions. To indicate
the endpoints of an edge, we write e = {vi, vj}.

A cycle (v1, e1, v2, e2, · · · , en, vn+1) of length n ≥ 2 in such a graph is a circular
sequence12 of vertices and edges, with v1 = vn+1 and ei = {vi−1vi}. Loops
with zero or one endpoint are also cycles or length zero, resp. one. A cycle is
simple if there are no repetitions of vertices, and edge simple if there are no edge
repetitions.

A face is a non-empty set of cycles in the graph G. An edge appearing in the
union of all the cycles of the face is said to be incident to the face. We impose
the additional constraint that no edge appears more than once in the cycles of
a face. In particular, this implies that all cycles of a face are edge-simple.

Definition 10. A face graph is a graph G together with a (finite) collection
of faces C1, ..., Cm, satisfying the additional property that an edge is incident to
at most two faces.

Intuitively, a face graph captures the combinatorics of a surface. We associate
to it a topological space by patching 2D disks (associated to each cycle) along
common edges. To a face with k ≥ 2 cycles we associate a topological sphere
with k holes, where each cycle is bounding a disk-like hole on the surface of
the sphere. Thus we can associate a topology to each face and, by the glueing
rules, to the entire face graph. A (topological) spherical face graph is one which
topologically is a sphere.

Definition 21. The dual G∗ = (V ∗, E∗, F ∗) of a non-crossing (topological)
spherical face graph G = (V,E, F ) has V ∗ = F , F ∗ = V and E∗ = E. Two
dual vertices (corresponding to two primal faces) are connected by a dual edge
whenever the primal faces share an edge.

The dual of a topological spherical face graph is not necessarily spherical, but
it is not hard to describe either: it is a cactus of spheres, defined next.

Cactus of spheres. This topological surface is defined inductively. The base
case is a topological sphere. At each inductive step, we attach a new sphere at
an existing vertex. Underlying the cactus is a tree-like structure, as illustrated
in Figure 37. The tree has a node for each sphere and an tree edge between
two nodes whose corresponding spheres share a point. The example in Figure
39(left) is obtained by glueing two spheres at a vertex, and is an example of a
cactus of two spheres.

12A circular sequence is an ordered list of elements, considered up to circular rotations.
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Figure 37: A cactus graph and its underlying tree.

We look now at face graphs arising from stressed graphs on the S2 sphere.

Embedded spherical graphs. If G is a graph embedded on the sphere, we
can define faces as being the connected regions of the complement, relative to
the sphere’s surface, of the union of edge arcs and vertices. The boundary of a
face is a collection of cycles in the graph G. If G is a connected graph, then all
the faces are disks. Otherwise we obtain faces that are topologically spheres with
k holes. The cycles bounding the faces can be consistently oriented, inheriting
from a fixed orientation of the sphere. More precisely, we orient them so that
a disk-like face lies “on the lefthandside” of its oriented boundary cycle. If the
spherical graph is stressed, then its face cycles have no repetitions of edges.

The faces of stressed graphs are related to the spherical fan (see Definition 8)
of the corresponding virtual polytope. This motivates us to define the reduced
fan:

Definition 11. Reduced fan. Given a 3D virtual polytope K represented by
the stressed spherical graph (G, s), its reduced spherical fan is the face graph
induced by the embedding of G on the sphere.

This definition leads to a trivial yet important observation: the faces of the
embedded graph are connected components of linearity domains of the support
function. With this insight, we discuss now the facial structure of a stressed
graph.

A face of a spherical graph G is not necessarily a disk, since the graph may be
disconnected, as in Figure 38. Each face of the graph is bounded by a finite
collection of disjoint spherical polygons. Therefore, each face is homeomorphic
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Figure 38: (a) Faces of the fan are not necessarily disks. (b) A self-touching
face.

to an (open) sphere with holes. A bounding polygon doesn’t have crossing or
overlapping edges, but it can touch itself vertex-to vertex.

Dual of a spherical face graph. The following properties result from the
direct application of the above definitions to the kind of spherical graphs that
support a non-zero stress.

1. All the faces of the dual face graph are single cycle sets, and therefore,
topological disks.

2. If the graph is connected, its dual is a topological sphere.

3. If the graph has k connected components, then the dual graph has the
topology of a cactus of spheres.

Maxwell polytopes. With these concepts in place, we turn to one of the main
definitions of this section:

Definition 22. A Maxwell polytope is a face graph together with a (not-necessarily
injective) mapping of the vertices to R3, such that:

(1) Non-degeneracy of edges: The endpoints of each edge are mapped to
distinct points.

(2) Face planarity condition: The vertices of each face are mapped to copla-
nar points. Thus, each face is mapped to a planar (possibly self-intersecting)
polygon.

(3) Non-degeneracy of faces: The vertices of each face are not mapped to
collinear points. In other words, the image of a face defines a unique plane.

The images of the vertices, edges and faces of the face graph are called the
vertices, edges and faces of the Maxwell polytope. By the combinatorics of a
Maxwell polytope we mean the underlying face graph.
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Virtual polytopes as Maxwell polytopes. Let us consider a virtual poly-
tope K which is neither a segment nor a point. We have seen in Section 2.3 that
a virtual polytope has faces which are themselves virtual polytopes of a lower
dimension. Thus a 3D virtual polytope K has vertices, edges, and 2D facets.

We make use of the representation of K as the support function h, which comes
together with the reduced spherical fan Σ. We also refer to the representation
of K as a spherical stressed graph (G, s).

Definition 23. The Maxwell polytope M associated to the virtual polytope K
is defined by an underlying face graph and a placement of vertices.

(1) The underlying face graph is dual to the reduced spherical fan Σ, or, equiv-
alently, dual to the face graph induced by the stressed graph G.

(2) The placement of vertices first maps each vertex of the dual face graph Σ∗

to the corresponding face of Σ, and next, to the corresponding vertex of K.

We now analyze in detail the vertices, edges, and faces of the Maxwell polytope
associated with a virtual polytope.

Vertices of the Maxwell polytope induced by a virtual polytope. By
duality, a vertex a corresponds to a face of the reduced spherical fan, and there-
fore, to a domain of linearity of h, which is a cone σ. The restriction of h(x)
to the cone σ equals the scalar product 〈a, x〉. Thus the support function of a
virtual polytope can be retrieved from the spherically embedded graph and the
vertices of corresponding Maxwell polytope.

Edges of the Maxwell polytope induced by a virtual polytope. By
Theorem 1, a vertex of an edge of K is a vertex of K. Therefore, edges of K
connect the vertices. Since they are one-dimensional polytopes, that is, virtual
segments, we represent them by blue and red segments, as discussed in Section
2. Up to translation, an edge of K corresponding to an edge e of the graph G
can be retrieved as follows: if the stress se on the edge e is positive, then the
edge of K is a convex segment of length se which is orthogonal to the affine
hull of e. According to our convention, we color it red. If the stress is negative
se < 0, then the corresponding edge of K is the Minkowski inverse to the convex
segment of length se which is orthogonal to the affine hull of e. This yields a
red-blue coloring on the edges.

Remark. A virtual polytopes K and the symmetric image of its inverse
Symm(K⊗−1) yield one and the same Maxwell polytope, but with reversed
colorings.

Facets of the Maxwell polytope induced by a virtual polytope. Some
of the edges form closed planar colored polygons that represent the facets of K.
To retrieve the facets and thus the entire Maxwell polytope from the stressed
graph representation, we discuss first the case when the graph is connected. In
this case, the resulting Maxwell polytope is a topological sphere.

47



Algorithm 24. Stressed graph to Maxwell polytope (for connected
graphs) Let K be virtual polytope represented by a stressed connected graph
(G, s). The associated Maxwell polytope is retrieved as follows:

1. Let pi be a vertex of the graph G, viewed as a unit vector emanating from
the center of the sphere. We take the plane π which is orthogonal to pi.
Since it is oriented by the direction pi, we can to speak of cw and ccw
rotations within the plane.

2. The star of the vertex pi induces a colored star in the plane π. Namely,
the vectors of the star are the force vectors seui,e. The color is assigned in
terms of the sign of the stress (red for positive, blue for negative). Since
the forces are in equilibrium, the star is balanced.

3. The star defines a virtual polygon P represented as a colored polygon (as
in Section 3.3) in the plane π.

4. After a clockwise rotation of the virtual polygon P by an angle of π/2, we
obtain the face Kpi represented by a colored polygon.

5. The above steps retrieve all the faces up to a translation. The combina-
torics indicates which should share an edge. We shift the faces by parallel
translations as follows: start with one vertex of the graph G and fix a
position of the associated face. Take a neighboring vertex in G and its
corresponding face. By duality, these two faces share an edge, therefore
once the position of the first face is fixed, the position of the second one
is determined uniquely. Proceed in this manner taking faces one by one.
Since the graph G is connected, we get the positions of all the facets.

Before considering arbitrary stressed graphs, containing several connected com-
ponents, we look at one particular example.

Example 9. A stressed graph with two connected components and its corre-
sponding Maxwell polytope are illustrated in Figure 39. The Maxwell polytope is
represented as glueing vertex-to-vertex the two Maxwell polytopes corresponding
to the two connected components.

A disconnected stressed graph (G, s) splits into a disjoint union of its connected
components Gi. Each component can be treated as a separate virtual polytope
represented by a stressed graph, and therefore gives a Maxwell polytope Mi

which is a topological sphere. These polytopes are then glued together vertex-
to vertex to form a cactus of spherical Maxwell polyhedra.

These considerations lead to the following algorithm:
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(a)

Figure 39: The Maxwell polytope on the left is associated to the non-connected
stressed graph on the right.

Algorithm 25. Stressed graph to Maxwell polytope (for disconnected
graphs) Let K be virtual polytope represented by a stressed graph (G, s).

1. Decompose G into the union of its connected components Gi. Each con-
nected component comes together with a spherical embedding inherited
from G and with the stress inherited from s. For each of the connected
components, apply the above algorithm and construct the corresponding
Maxwell polytope Mi.

2. Each of Mi is recovered up to a translation. Whenever Gi and Gj have
edges incident to the same face F of the face graph induced by the embed-
ding of G, the corresponding Maxwell polytopes Mi and Mj should share
the vertex that corresponds by duality to F . The Maxwell polytope M is
obtained by shifting the Mi’s by translations, one by one, in order to be
glued in a cactus structure.

5.3 Detecting virtual polytopes

In this section we consider the problem of detecting which spherical graphs
correspond to virtual polytopes. We restrict the discussion to connected face
graphs, whose duals are topological spheres. The general case of disconnected
follows immediately. We start by analyzing the more structured case of trivalent
graphs.

Simplicial virtual polytopes in 3D. Let us consider a 3D virtual polytope
K represented by a stressed connected trivalent graph (G, s): each vertex of
G is incident to exactly three edges. Then each face of the associated Maxwell
polytope is a virtual triangle, that is, a triangle with some coloring on the edges.
Triangles are patched together edge to edge whenever the corresponding vertices
of the graph are connected by an edge. In other words, the Maxwell polytope
M that represents K is a simplicial surface in R3. For this reason, we refer
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to this kind of virtual polytope K as a simplicial virtual polytope. A number
of simplicial virtual polytopes with particular geometrical and combinatorial
properties are illustrated in Example 13, Figure 41 and Figure 48.

Detecting simplicial virtual polytopes in 3D. Let us consider an arbi-
trary sphere-homeomorphic closed simplicial surface M , given as a collection
of (uncolored) triangles patched edge-to-edge in such a way that each edge is
shared by exactly two triangles. We do not require M to be embedded or even
immersed, thus the surface may have both global and local self-intersections,
but we ask that no two adjacent triangles have the same affine hull (that is,
they do not lie in the same plane).

As a 3D counterpart of Definition 4 we have:

Definition 26. A Maxwell polytope is a v-polytope if it is associated to a virtual
polytope given by a stressed spherical graph.

Most of the simplicial surfaces are not v-polytopes. The answer to the natural
question: given a simplicial surface M , is it a v-polytope? is given algorithmi-
cally.

Algorithm 27. [34] Is a simplicial surface a v-polytope?

Let M be a simplicial surface.

1. Choose a normal vector to each of the (triangular) facets. This can be
done independently, that is, we do not require that the collection of all
normal vectors yields a global orientation of M . The normal vectors for
different facets should be different. If this is not possible, then there is no
virtual polytope associated to the surface.

2. Mark on the unit sphere S2 the endpoints of all the normal vectors.

3. Whenever two marked points correspond to two adjacent facets of M , con-
nect them by a geodesic arc (an edge). For non-antipodal points, we may
choose either the short or the long arc. The result should be an embedded
graph, i.e., these edges must not have intersections. If we succeed, we have
obtained a spherical fan Σ.

4. If no such assignment of normal vectors or no embedded graph can be
found, then we conclude that there is no virtual polytope associated with
the surface.

5. Otherwise, each such fan Σ together with the surface M give a virtual
polytope K represented by the pair (M,Σ).

The surface M was presented with uncolored edges but if an associated virtual
polytope exists and is found, then a set of compatible colors will be retrieved
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from any stress associated to the fan. Since the stress may not be unique, neither
would be the coloring.

Remarks about the algorithm. We emphasize that different fans on the
same surface induce different virtual polytopes. The spherical fan Σ is the
reduced spherical fan of the virtual polytope K found to be compatible with
the given surface M . For a vertex p of the surface M and a face A of the reduced
fan Σ which is related to p by duality, the restriction of the support function
hK to the cone A equals the (globally) linear function represented by the scalar
product 〈p, x〉.

Ambiguous v-polytopes. A Maxwell polytope is said to be an ambiguous
v-polytope if it supports at least two non-complementary virtual polytope col-
orings. An example is provided by the surface of a tetrahedron, which is very
ambiguous: there exist 52 virtual polytopes associated to it, shown in Example
10.

The generic case: non-trivalent stressed graphs. We turn now to the
general case. If a virtual polytope P is represented by a non-trivalent stressed
graph, then its Maxwell polytope is not a simplicial surface. In fact, it may
be not a surface at all, as the polygons representing the faces may have self-
intersections. An extension of the previous algorithm can answer the question:
Is a Maxwell polytope a v-polytope? The algorithm is almost the same, except
for an additional case (inserted between steps 3 and 4 of Algorithm 27) needed
to treat antipodal points that should be connected by an edge.

Algorithm 28. Is a Maxwell polytope a v-polytope? Let M be an uncol-
ored Maxwell polytope.

1. Choose a normal vector to the plane of each of the facets of M . The normal
vectors for different facets should be different. If this is not possible, then
there is no virtual polytope associated to the surface.

2. Proceed as in Algorithm 27 A necessary addendum is the following:

Assume that two antipodal points correspond to two adjacent faces sharing
an edge e. These two points also should be connected by an edge, but
this time with an extra condition: the connecting arc on the sphere should
be orthogonal to the affine hull of e. Again, we can choose between two
options: we can take either one or the other semicircle.

3. If we end up with a fan Σ, then the fan Σ, and the surface M together
give a virtual polytope.

The orthogonality condition that appears here is necessary. It has been discussed
5.2.

Thus we can speak of virtual polytopes represented by a Maxwell polytope M ,
together with an associated reduced fan Σ.
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5.4 Examples of 3D Virtual Polytopes

We present now a collection of virtual polytopes in 3D. They are obtained by
presenting a Maxwell polytope which turns out to be a v-polytope, according to
Algorithms 27 and 28. The examples present a virtual polytope as a Maxwell
polytope and also show its associated fan.

Figure 40: (a) Convex tetrahedron, (b) hyperbolic tetrahedron, (c) yet another
virtual tetrahedron associated with the surface of a convex tetrahedron.

Example 10. The tetrahedron is v-ambiguous. There exist 52 different
virtual polytopes associated with the surface of a convex tetrahedron. We depict
three of them separately in Figure 40, and give the complete list in Figure 41.
The second tetrahedron in Figure 40 represents the family of hyperbolic virtual
polytopes, to be defined and discussed in Section 6.1.

Example 11. A v-polytope with self-intersecting faces. Figure 42 shows
a virtual polytope with self-intersecting faces.

The vertex-edge graph of a virtual 3D polytope is always connected. A graph
is k-connected if removal of any k − 1 vertices with adjacent edges leaves the
graph connected.

Example 12. A v-polytope with two-connected vertex-edge graph.
Balinski’s theorem states that the vertex-edge graph of a convex 3D polytope is
three-connected, see [48]. We have already seen in Figure 39 that the vertex-edge
graph of a virtual polytope can be not two-connected. Figure 43 presents a virtual
polytope, whose vertex-edge graph is two-connected, but not three-connected.

Example 13. A flexible v-polytope. Cauchy’s theorem states that 3D convex
polytopes are never flexible: convex polytopes with congruent corresponding faces
must be congruent to each other. Unlike convex polytopes, virtual polytopes may
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Figure 41: All 52 virtual tetrahedra. We depict here only their fans. (Picture
by Vlad Sherbina).
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Figure 42: Self-intersecting virtual polytope.

be flexible. Figure 44, left, shows a flexible virtual polytope obtained by using
Bricard’s flexible octahedron as the Maxwell polytope M , and apply Algorithm
27. The associated fan Σ is depicted in Fig. 44, right.

More sophisticated examples of virtual polytopes will be presented in Section
6.1.

5.5 Support functions and 3D liftings of stressed graphs

The support function representation of a 3D virtual polytope is very closely
related to the stressed graph representation and the two can be easily converted
into one another.
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Figure 43: Virtual polytope whose vertex-edge graph is not 3-connected.
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Figure 44: Bricard’s octahedron is a flexible virtual triangulated polytope.
Shown here is an octahedron together with the normal vectors of the faces (left)
and its fan (right).

We have already mentioned how support function representation relates to the
stressed graphs and Maxwell polytopes. For completeness, we give two algo-
rithms that directly relate the stressed graph representation and the support
function representation of a virtual polytope.

Algorithm 29. Support function to stressed graph. Given a virtual
polytope K represented by its support function h, the corresponding stressed
graph (G, s) is retrieved as follows:

1. The linearity domains of h compose the fan associated to K. Being inter-
sected with the unit sphere, the fan yields an embedded graph G. This is
the graph we are aiming at; it remains to recover the stress.

2. Take an edge e of the graph G. It is incident to two (spherical) polytopes
that correspond to two cones, say, σ1 and σ2. The two cones share a face
F = σ1 ∩ σ2. By construction, the function h is linear on each of the
cones. Let h = 〈p1, ·〉 on σ1 and h = 〈p2, ·〉 on σ2, where 〈·, ·〉 is the scalar
product.

3. Set the stress on the edge e equal the scalar product 〈p1 − p2, v〉, where v
is the unit outer normal vector to the face F of the cone σ1 (see Fig. 46).
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Figure 45: Patching.

Algorithm 30. Stressed graph to support function Conversely, given a
stressed graph (G, s), the corresponding support function is retrieved as follows.

1. The embedded graph G yields a reduced fan Σ. We shall construct a func-
tion h which is piecewise linear with respect to Σ.

2. Choose one of the 3-dimensional cones σ1 of the fan, and put h equal zero
on σ1.

3. Take a cone σ2 which shares a face F with σ1. The face corresponds to
an edge e of the graph G.

Define the restriction of h on the cone σ2 as

h |σ2= h |σ1 +s(e)〈v, ·〉.

Here again v is the unit outer normal vector to the face σ1∩σ2 of the cone
σ1 (see Fig. 46), s(e) is the value of the stress on the edge e.

4. Proceed taking adjacent cones one by one, in an arbitrary order.

The proof that the algorithms work correctly is based on two observations. First
we show that correctness for convex polytopes. Indeed, in this case, the adjacent
cones σ1 and σ2 defined above correspond to two vertices of the polytope. The
vertices equal the points p1 and p2 respectively. The length of the connecting
edge (which is the value of the stress) equals exactly |p1 − p2| = 〈p1 − p2, v〉,
since the vector v is the unit parallel to the edge. Moreover, because of the
choice of the direction of v, it is codirected with p1 − p2. It remains to extend
the statement by linearity to virtual polytopes.

Maxwell’s correspondence. We now relate the previous discussion on support
functions vs. stressed graphs to a classical result in rigidity theory concerning
3D lifting vs. stress introduced by J. C. Maxwell in [24].

Let G be a graph embedded in the plane R2 such that the edges are realized
as straight-line segments. The embedding induces a tiling of the plane into

55



Figure 46: The normal to the common face of two adjacent cones in a fan.

regions, all but one of which are bounded. A lifting of an embedded graph is
a continuous function h : R2 → R which is piecewise linear with respect of the
tiling. The graph (in other terminology, the terrain) of the function h is some
piecewise linear surface in 3D.

Each graph has a family of trivial liftings, which are the (globally) linear func-
tions. But not all have non-trivial liftings. It was James Clerk Maxwell who
observed in [24] that liftability is directly related to the existence of equilibrium
stress on the embedded graph. He presented a way of reconstructing a lifting
from a stress and vise versa, which is referred to as Maxwell’s correspondence.
More precisely, Maxwell established a homomorphism between the linear space
of liftings factorized by globally linear functions and the space of equilibrium
stresses. In the above algorithms we adopt the approach used by Maxwell in
proving the correspondence.

There exists yet another relationship between support functions and liftings of
planar graphs. Assume we have a virtual polytope, which, as we know, comes
with its support function h, also is expressed by a spherical stressed graph
(G, s). We remind that the support function is linear with respect to the fan Σ
associated to the polytope.

Take a plane e ⊂ R3 and intersect it with the fan. The intersection G equals the
central projection of a hemispherical part of G onto the plane e. It resembles an
embedded graph with the exception that (possibly) some edges go to infinity.
We can extend Maxwell’s lifting to this kind of objects by literally repeating
the definition. Then the restriction of the support function hK on the plane e
is a lifting of G.
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6 Applications

In this section we demonstrate the usefulness of the theory of virtual polytope
with a selection of problems and applications originating in various areas of
mathematics.

6.1 A.D. Alexandrov’s problem and hyperbolic
virtual polytopes

We return to 3D to introduce hyperbolic virtual polytopes or, shortly, hyperbolic
polytopes. This special class of virtual polytopes emerged from a number of
geometry problems in the style of A. D. Alexandrov, where it has been used to
provide new insights into one of his theorems concerning 3D convex polytopes,
and to solve one of Alexandrov’s long-standing conjectures.

The underlying idea for the results presented in this section is that hyperbolic
polytopes, while retaining many of the properties of convex ones, lie almost at
the opposite pole in terms of convexity properties. A generic virtual polytope is
somewhere convex, somewhere concave, and somewhere saddle: the hyperbolic
ones are totally saddle.

To make this precise, we rely on the following definition (illustrated in Fig. 47),
valid in both the smooth and the piecewise linear case, for saddle surfaces.

Figure 47: Saddle points on surfaces.

Definition 31. Let F be a surface in R3. A point x ∈ F is called saddle if no
plane passing through x intersects F locally at just one point. The surface is
saddle if all its points are saddle.

To define hyperbolic virtual polytopes, we need the following preliminary con-
struction. Let K be a virtual polytope in R3, and let h be its support function.
For a vector v ∈ S2, the equation

〈x, v〉 = 1
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defines a plane e(v). We consider the restriction of h to the plane e(v) and denote
by Fv the graph (in the sense of the “graph of a function”) of this restriction.
The surface Fv is piecewise linear. Its vertices and edges correspond to those of
the fan ΣK intersected with the open hemisphere with the pole at v.

Since convex polytopes are those virtual polytopes that have convex support
function, we conclude that a virtual polytope is convex (i.e., K ∈ P) if and only
if the surface Fv is a convex surface for any v. In analogy to this property, we
define:

Definition 32. A virtual polytope K is called hyperbolic if Fv is a saddle surface
for any v ∈ S2.

The theory of hyperbolic polytopes emerged originally as a tool for construct-
ing counterexamples to the following uniqueness conjecture, proven by A.D.
Alexandrov[1] in the case of analytic surfaces:

A. D. Alexandrov’s conjecture: Uniqueness of smooth convex sur-
faces. Let K ⊂ R3 be a smooth closed convex body, and let R1(x) and R2(x) be
the principal curvature radii of its boundary ∂K at the point x. If for a constant
C, at every point of ∂K, we have R1(x) ≤ C ≤ R2(x), then K is a ball.

For general smooth surfaces, the conjecture remained open for a long time, until
Y. Martinez-Maure first gave a C2 counterexample in 2001 [22]. Subsequently,
G. Panina presented a series of C∞ counterexamples and developed a systematic
theory, based on hyperbolic virtual polytopes, for constructing an infinite class
of such counterexamples to A. D. Alexandrov’s conjecture. Details can be found
in [34, 20] and further illustrations and 3D electronic models in [21].

Figure 48: Two hyperbolic virtual polytopes represented by Maxwell polytopes:
(left) with six horns, (right) with eight horns.

Panina’s construction. To produce counter-examples to A. D. Alexandrov’s
conjecture, we need a simplicial hyperbolic virtual polytope with the additional
property: the edges of its spherical fan are all shorter than π. Since hyperbolic
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polytopes are rare phenomena among virtual polytopes, the construction of
such an objects presnets the most challenging step. It can then be shown that
the support function h of the constructed hyperbolic virtual polytope can be
smoothened. More precisely, there exists a C∞ smooth saddle function h′ which
approximates h. The smoothening technique works only for virtual polytopes
with the above additional property.

We finally add to h′ the support function of a large ball. Namely, let hR be the
support function of the ball of radius R. If the sum h′+hR is a convex function
(for this purpose R should be sufficiently large), then h′ + hR is the support
function of some smooth convex body K ′, thus providing a counterexample to
Alexandrov’s conjecture.

Constructing hyperbolic polytopes. Towards this goal, we first describe a
criterion for hyperbolicity of virtual polytopes.

Definition 33. A vertex p of a spherical fan Σ is pointed, if there exists an
angle larger than π incident to p. A fan is pointed, if all of its vertices are
pointed.

A simple sufficiency condition for a virtual polytope to be hyperbolic can now
be given:

Lemma 34. If K is a virtual polytope with a pointed spherical fan ΣK , then it
is hyperbolic.

Example. The hyperbolic tetrahedron in Figure 40(b) is a hyperbolic virtual
polytope. However, it cannot serve as a base for constructing counterexamples,
since its fan has edges that are longer than π.

Advanced examples of hyperbolic virtual polytopes appeared in [34], and [20].
They are represented by explicitly described Maxwell polytopes with trivalent
spherical fans. We have seen in Section 5 that having a trivalent spherical fan
implies that the corresponding Maxwell polytope is a simplicial surface. The
construction here follows the same idea of retrieving a virtual polytope via a
simplicial surface: we first describe a simplicial surface (which happens to be
quite complicated, with multiple self-intersections), and then retrieve its fan.
Lemma 34 implies that the virtual polytope thus constructed is hyperbolic,
since its fan is pointed. Figures 48 and 49 illustrate the construction.

A.D. Alexandov’s uniqueness theorem for convex polytopes and its
refinements. Another application of hyperbolic virtual polytopes comes from
[34], and is related to the following theorem considered by A.D. Alexandrov as
a discrete counterpart of the aforementioned conjecture.

Theorem 35. Uniqueness theorem for convex polytopes [1]. Let K and
M be 3-dimensional convex polytopes. If for any pair of their parallel facets,
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Figure 49: Fan of the hyperbolic polytope with eight horns.

none of the facets can be placed strictly into another via a translation, then the
polytopes coincide up to a translation.

Since this theorem is related to A.D. Alexandrov’s conjecture, it is not surprizing
that it has a natural interpretation in terms of hyperbolic polytopes. Advanced
properties of hyperbolic polytopes lead to the following two refinements.

Theorem 36. [36]. There exist two different 3-dimensional convex polytopes
K and L such that for any pair of their parallel facets, there is at most one
translation which places one of them strictly into another.

The example is far from trivial. For its construction, we need a hyperbolic
polytope with an additional property: its fan admits a regular triangulation
without Steiner points (that is, without adding extra vertices).

Theorem 37. [36] Let K,M be 3-dimensional convex polytopes satisfying the
following properties, for each pair of parallel facets: (1) There exists at most
one translation t placing the facet of K into the facet of L, and (2) There exists
no translation t placing the facet of L into the facet of K. Then the polytopes
coincide up to a translation.

Another recent result in this direction comes from [38], and describes two convex
polytopes in R3 such that for each pair of parallel facets, the facets are different,
and there exists exactly one translation placing one of the facets into the other.

Hyperbolic virtual polytopes and pointed tilings. There is a relation-
ship between the theory of hyperbolic virtual polytopes and the theory of pointed
tilings [42], which highlights the above constructions. Planar pointed tilings
(defined below) are opposite to more traditional convex graph embeddings by
being as non-convex as possible. As an analogous phenomenon, hyperbolic vir-
tual polytopes also are as non-convex as possible. We sketch now the similarities
between the two theories; further details can be found in [37].
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A pseudotriangle is a simple polygon with exactly three angles smaller than
π. All other angles are reversed. Originally, a pseudotriangle is defined to be
a planar polygon, but the definition extends to spherical polygons as well. A
pseudotriangulation is a partition of a region of the plane (or of the sphere) into
pseudotriangles. A pointed tiling is a tiling such that each vertex has an adjacent
reverse angle. Alternatively, a pointed pseudotriangulation on the plane can be
defined as a finite non-crossing collection of line segments, such that at each
vertex there is an adjacent reverse angle, and such that no line segments can be
added between any two existing vertices while preserving this property.

Pointed pseudotriangulations on the plane were first considered by I. Streinu
[45], [46] as part of her solution to the Carpenter’s Ruler problem, a proof that
any simple polygonal path in the plane can be straightened out by a sequence
of continuous motions. A crucial property used by I. Streinu in the proof is that
a pointed tiling has only the trivial stress. The pointed pseudotriangulations
satisfy the conditions defining Laman graphs: they have exactly 2v − 3 edges,
and their k-vertex subgraphs have at most 2k−3 edges. This follows from simple
Euler counts. Laman graphs are graphs which generically have only the trivial
stress, but may support non-trivial stress in non-generic situations. However I.
Streinu showed that the pointed pseudotriangulations never support non-trivial
stress. On the other hand, simple dimension counts show that a generically
embedded graph with more than 2v − 3 edges always has a non-trivial stress.

One critical difference between spherically embedded pointed graphs and planar
pointed tilings is that on the sphere we may have pseudo-digons, which are
spherical polygons with exactly two convex angles. Thus a pointed tiling of
the sphere may contain such faces, not just pseudo-triangles. Thieir presence
changes the Euler counts. As a consequence, there exist pointed graphs on the
sphere which have non-zero stress. It can be shown that such a graph must
have at least four pseudo-digons. This allows to construct hyperbolic virtual
polytopes by just drawing on the sphere a pointed graph such that its faces
are either pseudo-digons or pseudo-triangles. If the number of pseudo-digons is
greater than four, the graph has a non-trivial stress, and hence (by Lemma 34)
gives a hyperbolic virtual polytope.

6.2 Valuations of virtual polytopes. Volume and integer
points count

In the section we discuss natural extensions of translation-invariant valuations
for virtual polytopes such as volume and lattice points count.

A valuation is a (real-valued) function ϕ : P → R defined on convex polytopes
which is additive: whenever K1, K2, and K1∪K2 are convex polytopes, we have
ϕ(K1 ∪K2) = ϕ(K1) +ϕ(K2)−ϕ(K1 ∩K2). A lattice valuation is defined only
for lattice polytopes, i.e., for polytopes whose vertices lie in the standard lattice
Zn ⊂ Rn. In the section we consider only translation invariant valuations, which
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coincide on the polytope and any of its translates.

A valuation ϕ can be uniquely extended by linearity to the elements of the
algebra of polytopal functions introduced in Section 4.1, as follows. Given a
polytopal function

f =
∑

αiIKi

we set the valuation as:
ϕ(f) =

∑
αiϕ(Ki)

Since a virtual polytope has a representation as a polytopal function, this defini-
tion allows us to consider the valuation ϕ of a virtual polytope. We first discuss
the volume, which is the most common example of a valuation.

Volume of virtual polytopes. Given a virtual polytope represented as a
polytopal function f , its volume is defined to be:∫

Rn
f(x)dx

where integration is taken with respect to the Lebesgue measure.

The volume of a virtual polytope may be negative, as illustrated in the example
from Figure 20. It also may be zero, even if the polytope is degenerated to lie
in an affine subspace.

Lattice points count for virtual polytopes. Starting with Pick’s classical
theorem [39] (see also modern presentations in [12], [15]) till the contemporary
application of calculating Kontsevich volume (see [29]), lattice points appear
systematically in many mathematical and computational frameworks. Lattice
points in convex polytopes provide another important example of translation
invariant valuations.

The valuation can be extended to the number of (weighted) lattice points in a
virtual polytope represented as a polytopal function f by counting the lattice
points with the given weights in the definition of f :

Q(f) =
∑
x∈Zn

f(x)

For a convex polytope K, the weights are 1 for all the points of K. For a virtual
polytope, the values of the weights are the values of the polytopal function f ,
as in the example from Figure 50.

Valuations: general case. Keeping in mind these two motivating examples,
we treat now the general case of an arbitrary valuation. Let (λ)K = {λx : x ∈
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Figure 50: Integer points in a convex and in a virtual polygon.

K} be the polytope K dilated by λ. P. McMullen observed in [25] that each
valuation behaves polynomially with respect to Minkowski addition:

Theorem 38. ([25]) Let K1, ...,Kn ⊂ Rn be convex polytopes and ϕ be a valu-
ation. For non-negative λ1, ..., λn, the function

Pϕ(λ1, ..., λn) = ϕ((λ1)K1 ⊗ ...⊗ (λn)Kn)

is a polynomial in variables λ1, ..., λn.

For lattice valuations, the statement is true for lattice polytopes.

If we apply it for the volume valuation V , we arrive at the classical notion of
mixed volume:

Definition 39. The coefficient of the polynomial Pϕ at the monomial λ1 · ... ·λn
in Theorem 38 applied to the volume valuation ϕ = V is called the mixed volume
of the polytopes K1, ...,Kn and is denoted by V (K1, ...,Kn).

We emphasize that Theorem 38 applies only to convex polytopes and positive di-
lations. It is therefore natural to ask: What is the meaning of Pϕ(λ1, ..., λn)
for arbitrary (not all positive) λ1, ..., λn? Virtual polytope theory provides
an elegant answer. The first observation in this direction is due to P. McMullen:

Theorem 40. [25] Let ϕ be a translation-invariant valuation, let K1 = K2 =
... = Kn = K be a convex polytope, and let Pϕ be the polynomial from Theorem
38. Then

Pϕ(−1) =
∑
F

(−1)dimFϕ(F ),

where the sum extends over all faces of K including the polytope K.

In terms of virtual polytopes, this theorem can be reformulated as:

Theorem 41. In the notation of Theorem 40, we have:

Pϕ(−1) = ϕ(K⊗−1)

where K⊗−1 is the Minkowski inverse to the polytope K.
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Taking for ϕ = Q, the weighted number of lattice points, this formula becomes:

PQ(−1) = (−1)dim K · (number of lattice points lying strictly inside K)

which is Ehrhart’s reciprocity law, see [11].

A. Pukhlikov and A. Khovanskii proved a more general fact which covers both
McMullen’s theorem and Ehrhart’s reciprocity law. Namely, they proved that
Theorem 38 is valid for arbitrary virtual polytopes and arbitrary real coefficients.
To formulate this theorem, we first define the Minkowski power of a virtual
polytope. Observe that for a virtual polytope K and a positive integer λ, the
Minkowski power

K⊗λ = K ⊗ · · · ⊗K︸ ︷︷ ︸
λ

equals the dilation by λ of the polytope K. This motivates the following defi-
nitions:

Definition 42. Minkowski power of a virtual polytope. For a positive
(not necessarily integer) λ and a virtual polytope K, we define the dilation of
K by λ to be:

K⊗λ = (λ)K

For a negative λ and for a virtual polytope K, we define

K⊗λ = (−λ)K⊗−1

With these concepts in place, we have:

Theorem 43. [19] Let K1, ...,Kn ⊂ Rn be virtual polytopes. For a valuation ϕ
and any real λ1, ..., λn, the function

Pϕ(λ1, ..., λn) = ϕ(K⊗λ1
1 ⊗ ...⊗K⊗λnn )

is a polynomial in variables λ1, ..., λn.

The same is true for a lattice valuation, for lattice virtual polytopes and integer
λ1, ..., λn.

This theorem allows us to define mixed volumes for virtual polytopes by literally
repeating Definition 39. In the notation of Theorem 43 applied for the volume
valuation V :

Definition 44. The coefficient of the polynomial PV at the monomial λ1 · ... ·λn
is called the mixed volume of the virtual polytopes K1, ...,Kn and is denoted by
V (K1, ...,Kn).

This construction emphasizes again the paradigm that virtual polytopes retain
most of the properties and structures of convex ones, except, of course, for
convexity.
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Historical remarks. The special case of Theorem 38 with the volume taken as
valuation was known long before P. McMullen: Minkowski used it when giving
the definition of mixed volumes as the coefficients of the polynomial PV . The
latter became the central part of Brunn-Minkowski theory. Details can be found
in many textbooks, such as [43]. Algorithmic aspects of efficient enumeration
of lattice points in polytopes are treated in [3]. This review also explains the
relationship between integer points count and Todd class of toric varieties, which
is not covered in the present survey. However, we mention very briefly that the
classical Euler-Maclaurin formula (which involves lattice points on a segment)
extends to lattice points and convex polytopes. This was developed in [18] and
further generalized in [7].

6.3 Mixed volumes of virtual polytopes

In the previous section we have seen that mixed volumes were originally defined
for convex polytopes. McMullen’s Theorem 43 enabled the extension of the
concept to virtual polytopes. In this section we pursue the generalization even
further, to the set of all polytopal functions (see [14, 31]).

Definition 45. Let f =
∑
αiIKi be a fixed polytopal function. The mixed

volume functional associated to f and defined for arbitrary polytopal functions
as parameters is defined by:

V (f, ∗, · · · , ∗) :=
∑

αiV (Ki, ∗, ∗, · · · , ∗)

The entries denoted by ∗ are arbitrary polytopal functions.

We say that two polytopal functions f and f ′ have the same behavior with
respect to mixed volume if for any polytopal functions g1, ..., gn−1, we have

V (f, g1, ..., gn−1) = V (f ′, g1, ..., gn−1).

It is known that a convex polytope can be uniquely reconstructed by its be-
havior with respect mixed volume calculation. The same holds true for virtual
polytopes:

Theorem 46. [33] Two virtual polytopes have the same behavior with respect
to mixed volume if and only if they coincide.

In both convex and virtual settings, the proof is based on the fact that mixed
volume calculation reduces to a formula for V (f, g1, ..., gn−1) involving support
function of the (virtual) polytope f . The latter is known to determine the
corresponding virtual polytope uniquely.

However, the theorem holds true just for virtual polytopes, and not for arbitrary
polytopal functions. A natural question arises: To what extent is a poly-
topal function defined by its behavior with respect to mixed volume?
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To answer the question, we define a map Ξ from polytopal functions to virtual
polytopes by setting

Ξ(
∑

αiIKi) =
⊗

K⊗αii

Here K⊗αii is the Minkowski power from Definition 42. The righthand side does
not depend on a representation of f as a linear combination, hence the definition
of the mapping Ξ is correct. As a simple but important corollary, we obtain:

Proposition 47. Let K be a convex polytope and IK =
∑
i αiIKi be a decom-

position of its characteristic function, where Ki are convex polytopes. Then:

K =
⊗
i

K⊗αii

With these preliminaries, we can formulate:

Proposition 48. [33] A polytopal function f and the virtual polytope Ξ(f) have
the same behavior with respect to mixed volume.

Combined with Theorem 46, this immediately gives:

Theorem 49. [33] Two polytopal functions f and g have the same behavior
with respect to mixed volume if and only if the associated virtual polytopes Ξ(f)
and Ξ(g) coincide.

This completes the classification of how polytopal functions behave with respect
the mixed volume.

6.4 Minkowski decomposition of polytopes

We turn to an application motivated by the theory of zonotopes. A zonotope
is a convex polytope decomposable as the Minkowski sum of line segments [44].
Zonotopes appear in surprisingly diverse areas of mathematics ranging from
classical convexity to universality theorems [40], (oriented) matroids [4], and
many others. Zonotopes are fully characterized: a polytope is a zonotope iff all
its 2-dimensional faces are centrally symmetric. The summands of a zonotope
are also easily recovered: they are the edges of the zonotope. The faces of a
zonotope are themselves zonotopes in a lower dimension.

A natural question is to extend zonotopes to classes of polytopes having some
but not all of their properties. One interesting such class consists in d-dimensional
convex polyhedra which are Minkowski sums of their (d− 1) faces.

Characterize the d-dimensional convex polytope which can be repre-
sented as weighted Minkowski sums of their (d−1)-dimensional faces,
and find such a representation, when it exists.

Virtual polytopes play a special role in characterizing this class.
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Lemma 50. A d-dimensional convex polytope can be represented as the weighted
Minkowski sum of its (d−1)-dimensional faces if and only if it can be decomposed
as a Minkowski sum of virtual polytopes.

Let K be a convex polytope K in Rd represented by its characteristic function
IK . We set:

JK(x) = limε→0
1

Vε

∫
Bε(x)

IK(t)dt

where Bε(x) is the ball of radius ε centered at the point x, Vε is its volume, and
the integration is against Lebesgue measure.

The function JK(x) is a polytopal function. Indeed, it is constant on the relative
interiors of the faces of K, and therefore, decomposes as a weighted sum of the
characteristic functions of these faces:

JK(x) =
∑
F

wF IF (x)

The sum ranges over all faces, including K. It is easy to verify that wK = 1
and wF = −1/2 for a facet F . The other weights depend on the angle measures
of the polytope K. An example is provided in Figure 51.

a
b

g

K=T S                           S   a           S   b                           S   c

=1 =-½ =u u u u-½ =-1/2

T

S

1/2 1/2u a p       u b p     u g p                    u u= /2 = /2 = /2 = - =-

u=1/4

T T

Figure 51: A prism decomposes into the sum of its faces.

Recalling that we denote by E the one-point polytope (the unit element of the
group of virtual polytopes), we have:
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Theorem 51. [32] Let K be a convex d-polytope and let wF be the weights de-
fined as above. If the polytope K is representable as a sum of (d−1)-dimensional
virtual polytopes, then the equality⊗

F

F⊗wF = E

must hold, with the sum being taken over all faces, including K.

Conversely, if the above equality holds, then:

K =
⊗
F

F⊗−wF

Here the sum ranges over all proper faces of K (excluding K). Thus K is a
Minkowski sum of virtual polytopes.

Example. A convex tetrahedron in R3 is not representable as a sum of 2D
polytopes.

Example. We illustrate the theorem for a prism K = T ⊗ s, which is the
Minkowski sum of a triangle T and a segment s. Figure 51 lists all the faces of
the prism K together with the weights. After reduction, we have⊗

F

F⊗wF = K ⊗ s⊗−1 ⊗ T⊗−1 = E

which confirms that K = T ⊗ s.

By induction, Theorem 51 implies similar results for decomposing an d-polytope
as a Minkowski sum of virtual k-polytopes for all k < d. This provides a
complete answer to the question of Minkowski decomposability.

6.5 Projective Toric Varieties, Picard group and Riemann-
Roch Theorem

We conclude our survey with a brief description of how virtual polytopes appear
in the study of projective toric varieties. This was the starting point which
motivated A. Khovanski and A. Pukhlikov [19] to systematically define and
study them.

Projective toric varieties form an important family of algebraic varieties. The
name “toric” is due to the fact that such a variety contains an algebraic torus as
an open dense subset, in such a way that the action of the torus on itself extends
to the entire variety. A projective toric variety is determined by the underlying
fan, which is the normal fan of some lattice convex polytope. For example, the
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complex projective space CPn (which is a toric variety) is associated to the
n-dimensional simplex.

There exists a kind of a “dictionary” which translates many algebraic geome-
try notions and theorems into notions and theorems from geometry of convex
polytopes. These include, among others: singularities, morphisms, intersection
theory, Hodge inequality and the Riemann-Roch theorem. As a consequence,
general facts from algebraic geometry have implications in the theory of poly-
topes, and vice versa.

Virtual polytopes fit this framework nicely: the dictionary translates them as
elements of the Picard group, which are invertible sheaves, whereas convex poly-
topes are translated as very ample sheaves.

Projective toric varieties. We include only a very brief overview of this
topic. Detailed presentations can be found in [10], [12], and [30].

Let Σ be the outer normal fan of a convex rational polytope, i.e. a regular
rational fan in Rn. We denote its cones by σ ∈ Σ and note that each cone σ
induces a dual cone, denoted by σ̌.

A projective toric variety XΣ is associated to Σ by the following construction:

• Laurent polynomials. The algebra of Laurent polynomials over C in n
variables is:

C[z, z−1] = {
∑
a

λaza =
∑

(a1,...,an)

λ(a1,...,an)z
a1
1 za2

2 ...zann }

where a = (a1, ..., an) ∈ Zn, and the coefficients λa are complex numbers.

By definition, the support of a Laurent polynomial is:

supp(
∑

λaza) = {a : λa 6= o}

• Defining charts. To a cone σ ∈ Σ we associate the algebra Rσ̌ of Laurent
polynomials whose supports lie in the dual cone σ̌:

Rσ̌ := {f ∈ C[z, z−1] : supp(f) ⊂ σ̌}.

• Affine algebraic variety. We define the affine algebraic variety Xσ̌ as
the maximal spectrum of Rσ̌.

• Gluing charts together. The following observation allows to define
gluing maps (induced by the fan) between the varieties Xσ̌. Suppose τ is
a face of σ, where τ, σ ∈ Σ. Then we have τ̌ ⊃ σ̌ which implies a natural
inclusion map of the algebras Rσ̌ → Rτ̌ , and consequently, an inclusion
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map of affine algebraic varieties Xτ̌ → Xσ̌. In other words, we have an
identification of Xτ̌ as a subset of Xσ̌.

The collection of all Xσ̌, together with gluing mappings yields a smooth
projective algebraic variety XΣ. Because of some extra structure (it con-
tains a dense embedded torus which acts onXΣ), it is called a toric variety.

• Structure sheaf. The collection of algebras {Rσ̌} yields a sheaf of alge-
bras on XΣ called the structure sheaf OXΣ .

Picard group of XΣ and the lattice combinatorial Picard group. The
variety XΣ comes with its Picard group which is the set of isomorphic classes of
invertible sheaves of OXΣ

-modules. The group operation for invertible sheaves
is the tensor product ⊗, the unit element in the Picard group is OXΣ .

Let K be a lattice virtual polytope, i.e. a virtual polytope whose vertices lie on
the standard lattice Zn. We assume in addition that the fan ΣK is coarser than
Σ. We represent K as an element of combinatorial Picard group, that is, as a
system of translated cones pσ ⊗ σ̌, see 4.4. We define an invertible sheaf FK of
OXΣ

-modules on XΣ by setting

FK(Xσ̌) = zpσOXΣ(Xσ̌).

Theorem 52. [12] The map K → FK establishes an isomorphism between the
lattice combinatorial Picard group CPZ

Σ and the Picard group of the projective
toric variety XΣ.

Now we pass from of virtual polytopes related to one particular fan to the entire
group of lattice virtual polytopes.

We have already discussed in Section 4.4 that given a fan Σ and its refinement
Σ′, we have natural inclusions for the groups of virtual polytopes related to the
fans: P∗Σ ⊆ P∗Σ′ and P∗Z,Σ ⊆ P∗Z,Σ′ .

Furthermore, there is a natural toric epimorphism XΣ′ → XΣ which in turn
induces an inclusion of the Picard groups Pic(XΣ) ⊆ Pic(XΣ′).

This enables us to speak of inductive limits of the groups P∗Σ, P∗Z,Σ, and Pic(XΣ).
This means that for each of the categories we can take the union of all the groups
and identify the elements via the inclusions previously described. Thus, the in-
ductive limit in Theorem 52 yields:

Theorem 53. The group of lattice virtual polytopes P∗Z,Σ is isomorphic to the
inductive limit of the groups Pic(XΣ).
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Riemann-Roch theorem and integer points enumeration. Here is one
more nice observation from [17]: Theorem 38 for the valuation Q (which counts
integer points) follows from the Riemann-Roch theorem for toric varieties (see
[16]).

The argument proceeds by translating Theorem 38 into the language of toric
varieties: a polytope K is translated as an invertible bundle, and the number of
lattice points in a K is translated as the value of the Euler characteristic with
coefficients in the invertible bundle corresponding to K. It remains to apply
the Riemann-Roch theorem which says that the Euler characteristic behaves
polynomially with respect to the tensor product.

7 Concluding remarks

The theory of virtual polytopes presented in this survey started with the very
simple algebraic passage from the semigroup of convex polytopes with Minkowski
addition to its associated Grothendieck group. The core of this theory lies how-
ever in the many geometric representations of virtual polytopes, together with
canonical isomorphism between different representations, and in their applica-
tions.

Different problems make use of one or another of these representation, as appro-
priate for the particular problem. For example, the Minkowski decomposition
problem presented in Section 6.4 relied on the polytopal function representa-
tion from Section 4.1. For solving the A.D. Alexandrov’s problem discussed in
Section 6.1, techniques on spherical stressed graphs from Section 5.1, combined
with support function ideas from 5.5 were used.

An important conclusion to be extracted from this survey is that virtual poly-
topes posses all the properties and structures of convex polytopes except, of
course, convexity. But the facial poset, mixed volumes, lattice points enumera-
tion theory, etc. are retained by this extended class of polytopes.

Geometrically, the virtual polytopes may appear as counter-intuitive: we have
seen examples of hyperbolic polytopes with everywhere saddle support func-
tion in Section 6.1, examples of a 3D virtual polytope with a not-3-connected
vertex-edge graph in Example 12 and Figure 43, flexible virtual polytopes in
Example 13 and Figure 44, and others.

We hope that, at the end of this survey, the reader will find, just as we did,
that virtual polytopes are interesting objects to study in their own right. We
anticipate that further applications will emerge in the future, some of which
being of a computational nature.
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Geometrie, 34(1):15–30, 1993.

73

DOI: 10.2478/s11533-008-0020-1
http://www.eg-models.de/models/Surfaces/2010.02.002


[29] P. Norbury. Counting lattice points in the moduli space of curves.
arXiv:0801.4590, 2008. http://arxiv.org/abs/0801.4590.

[30] T. Oda. Convex bodies and algebraic geometry. An introduction to the
theory of toric varieties. Ergeb. der Mathematik. Springer Verlag, 1988.

[31] G. Panina. Mixed volumes for non-convex bodies. Journal of contemporary
Mathematical Analysis, 28(1):51–60, 1993.

[32] G. Panina. The structure of the virtual polytope group relative to cylinder
subgroups. St. Petersburg Journal of Mathematics, 13(3):471–484, 2002.
Translation, Algebra Anal. 13, No. 3, 179-197 (2002).

[33] G. Panina. Virtual polytopes and classical problems in geometry. St.
Petersburg Mathematical Journal, 14(5):823–834, 2003. translation from
Algebra Anal. 14, No. 5, 152-170,2002.

[34] G. Panina. New counter-examples to an old uniqueness hypothesis for
convex bodies. Advances in Geometry, 5(2):301–317, 2005.

[35] G. Panina. On hyperbolic virtual polytopes and hyperbolic fans. Central
European Journal of Mathematics, 4(2):270–293, 2006.

[36] G. Panina. A.d. alexandrov’s uniqueness theorem for convex polytopes and
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