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Stripe rust (Pst) is a major disease of wheat crops leading untreated to severe yield
losses. The use of fungicides is often essential to control Pst when sudden outbreaks
are imminent. Sensors capable of detecting Pst in wheat crops could optimize the use of
fungicides and improve disease monitoring in high-throughput field phenotyping. Now,
deep learning provides new tools for image recognition and may pave the way for new
camera based sensors that can identify symptoms in early stages of a disease outbreak
within the field. The aim of this study was to teach an image classifier to detect Pst
symptoms in winter wheat canopies based on a deep residual neural network (ResNet).
For this purpose, a large annotation database was created from images taken by a
standard RGB camera that was mounted on a platform at a height of 2 m. Images
were acquired while the platform was moved over a randomized field experiment with
Pst-inoculated and Pst-free plots of winter wheat. The image classifier was trained with
224 × 224 px patches tiled from the original, unprocessed camera images. The image
classifier was tested on different stages of the disease outbreak. At patch level the image
classifier reached a total accuracy of 90%. To test the image classifier on image level,
the image classifier was evaluated with a sliding window using a large striding length of
224 px allowing for fast test performance. At image level, the image classifier reached
a total accuracy of 77%. Even in a stage with very low disease spreading (0.5%) at the
very beginning of the Pst outbreak, a detection accuracy of 57% was obtained. Still in
the initial phase of the Pst outbreak with 2 to 4% of Pst disease spreading, detection
accuracy with 76% could be attained. With further optimizations, the image classifier
could be implemented in embedded systems and deployed on drones, vehicles or
scanning systems for fast mapping of Pst outbreaks.

Keywords: yellow rust, monitoring, deep learning, wheat crops, image recognition, camera sensor, ResNet, smart
farming

INTRODUCTION

Stripe rust caused by the fungus Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst) is one of the
major diseases that lead to severe yield losses in wheat crops. Pst possesses a high genetic variability
for developing new and often aggressive strains, which led to major epidemic outbreaks in North
America and Europe in history (Chen et al., 2014). Under the effect of global warming, this trend

Frontiers in Plant Science | www.frontiersin.org 1 March 2021 | Volume 12 | Article 469689

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.469689
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.469689
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.469689&domain=pdf&date_stamp=2021-03-30
https://www.frontiersin.org/articles/10.3389/fpls.2021.469689/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-469689 March 29, 2021 Time: 14:3 # 2

Schirrmann et al. Deep Learning Stripe Rust Detection

is currently worsening because Pst has adapted to warmer
conditions promoting its wider global propagation with
devastating effects in major wheat-producing areas in China,
Northern Africa, the Middle East, and India (Milus et al., 2009;
Hovmøller et al., 2010). Today, almost 88% of the global wheat
production is susceptible to Pst (Beddow et al., 2015). The use
of disease-resisting cultivars is an effective and ecologically
feasible way to control Pst (Chen et al., 2014; Park, 2016).
However, the farmer may prefer to choose a wheat variety with
a less good rating of rust resistance in favor of specific market
requirements. In addition, new Pst races are known to appear
rapidly that overcome major resistance genes in wheat varieties
(Hubbard et al., 2015). Often only the application of fungicides
remains the optimal choice for the farmer to control Pst when
sudden outbreaks loom immanent. If sensors were available that
were able to detect Pst outbreaks reliably in the fields in early
development phases, it would help to control and reduce the use
of fungicides more efficiently (Tackenberg et al., 2018).

The disease develops in the leaf tissue, but also affects
spikes and stems in later stages. Initially, patches of unspecific
bleaching become visible on the leaves. Then, long and narrow
stripes appear between the leaf veins with a yellow to orange
coloration (Chen et al., 2014). They are provoked by densely
clinging uredospore pustules. Despite its obvious appearance,
early detection is still challenging as only a few leaves will carry
these symptoms at the beginning. Yet, each pustule is highly
infectious and can produce thousands of spores that may initiate
subsequent spreading of the disease over the entire field. Thus,
field inspections should be done periodically throughout the
season to identify outbreaks in a timely manner. Nevertheless,
field inspections are time-consuming and laborious, which
limits them to be conducted only punctual in the field and
during the season.

A number of research studies investigated the use of
hyperspectral sensors to detect patches of the Pst infection on
plants. Bravo et al. (2003) and Moshou et al. (2004) showed
that hyperspectral measurements in the spectral range between
460 and 900 nm are able to differentiate Pst from healthy
wheat plants. Huang et al. (2007) found that the photochemical
reflectance index (PRI) has high potential for the identification
of Pst from airborne hyperspectral images. A limited upscaling
to satellite remote sensing was presented by Yuan et al. (2013).
Yet, hyperspectral imaging is costly in terms of investment and
data handling. Moreover, discolorations in the plant canopy can
be the result of nutrients deficiency, herbicide toxicity, or water
deficiency (Singh et al., 2018) and may falsely be identified as Pst
when only the reflectance on pixel level but not the form of the
disease symptoms is included in the image analysis.

The disease symptoms are readily visible by the human
eye and Pst develops a characteristic pattern on the leaf ’s
surface. Instead of focusing on the spectral domain, the
analysis of the spatial association of pixels as shown by
color images taken from infected leaf spots may also be
promising. This would enable the use of simpler camera
systems for Pst detection as intelligent sensors. In this regard,
attention for image-based plant classification has been given
for using segmentation-based (Nilsback and Zisserman, 2008;

Khatra, 2013), morphological-based (Munisami et al., 2015),
and texture-based (Wang et al., 2012) as well as the use
of local image descriptors (Nilsback and Zisserman, 2010).
Based on color image segmentation, Khatra (2013) was able
to extract yellow rust from wheat plant images using k-means
clustering. Wang et al. (2012) could successfully classify yellow
rust by training a one-hidden-layer backpropagating neural
network with 50 global features from segmented yellow rust
images. Local image descriptors are often used within a
multi-stage process, where, first, local features are described
on a low level and summarized within a visual vocabulary,
then feature vectors are related to the visual vocabulary and
these relations are finally used for an image classifier based
for example on a support vector machine. Bag of visual
words is the best known approach among them (Csurka
et al., 2004) and, specifically, for plant and weed detection
good results have been obtained (Kazmi and Andersen, 2015;
Pflanz et al., 2018).

Recently, object-based image classification has been shifted
mainly toward the use of convolutional neural networks (CNN),
as originally introduced by LeCun and Bengio (1998). CNNs
are able to perform feature extraction and classification in
one step, i.e., the filters that extract the features for the
classification are directly learned within the network and, thus,
avoid the dependence on user-defined implementation of feature
extraction. It is hoped, that with the use of CNNs, the image
classifier can cope much better with the complexity of cluttered
field scenes in order to detect the relevant information. CNNs
are inspired by the receptive field as found in the human
visual cortex (Kim et al., 2016). They include convolutional and
subsampling layers (strided convolution layers), which perform
the feature learning, feature extraction and dimension reduction.
The feature learning part of the network is then followed by
dense layers, which will decide the final class label (Rawat and
Wang, 2017). CNNs have recently gained respectable image
classification results due to the use in large deep learning
architectures (DCNN) such as AlexNET (Krizhevsky et al.,
2012) or ResNet (He et al., 2016). Within these DCNNs several
convolution and pooling layers are stacked block by block, often
integrating additional architectural features serving as dropout
layers (Srivastava et al., 2014) or shortcut connections (He et al.,
2016). Due to the high performance in image classification and
recognition, DCNNs are currently becoming a hot topic for plant
phenotyping research as reviewed in Singh et al. (2018). Pawara
et al. (2017) compared DCNNs using AlexNET and GoogleNET
with classical local image descriptors using a bag of visual words
framework for plant classification. They could show that DCNNs
clearly outperform bag of visual words on three different plant
image datasets. Based on DCNN, Mohanty et al. (2016) developed
a plant disease detection model using a large image data set of
plant leaves with 38 class labels. The architecture of the models
used AlexNET and GoogleNET and reached very high accuracy
on the dataset itself, yet medium accuracy with random plant
images taken from the web. A smartphone app was subsequently
developed. It is based on machine learning algorithms and
updated with crowdsourcing data, i.e., users can evaluate plant
images by sending them in via their smartphones. It is said to
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recognize up to 400 plant diseases (Rupavatharam et al., 2018).
More specifically focused on wheat diseases, Lu et al. (2017)
developed an in-field automatic wheat disease diagnosis system
based on modified fully connected network architecture also
using smartphone images (Long et al., 2015). They built up an
image data set called Wheat Disease Database 2017 (Lu et al.,
2017) depicting different wheat diseases including stripe rust with
no background covering and used it for training the DCNN. The
prediction model was later packed into a real-time mobile app
to provide support for agricultural disease diagnosis in the field
(Lu et al., 2017).

However, images from smartphones differ because they are
already focused on the object of interest. In case of smartphone
detection, the user has first to act as a sensor in order to determine
that there is a specific symptom on the leaves present (Siricharoen
et al., 2016). Our aim is, however, to detect Pst from unobserved
imagery that can be collected from camera sensors deployed on
drones, vehicles or high-throughput scanning systems. In this
manner, a large annotation image data base was collected for
Pst with the support from a randomized field trial and trained
a ResNet convolutional neural network for classifying images as
Pst. The image classifier was constructed under the constraints to
be integrated in an online sensor system in the future. This study

shows the classification performance in relation with different Pst
development stages.

MATERIALS AND METHODS

Field Experiment
For the experiments, 6 Pst infested plots (+1) and 6 control
plots (+2) of a randomized field trial at the research site
Marquardt (ATB), Potsdam, Germany (52◦ 28′ 00′′ N, 12◦ 57′
30′′ E) were used in the year 2018. The additional plots were
originally installed for planning security, but were later used in
the experiment. In all plots, winter wheat was sown as the variety
Matrix B with a Pst resistance rating of 8 (highly susceptible). The
seed row distance was 0.12 m and the seed rate was 350 grains per
m2. The plots were arranged as shown in Figure 1. Each plot had
the dimension of 9× 9 m and was separated from each other with
a distance of 3 m to avoid confusion of management from one
plot to the other. Each Pst plot was inoculated starting with April
11, 2018 during cold and calm weather. For inoculation, a spore
solution with 2.5 g Pst spores and mixed with 500 ml purified
mineral oil was prepared. The spore solution was evenly spread
with an Ulva+ hand-held spinning disc sprayer (Micron Group,

FIGURE 1 | An ortho image generated from a drone in 10 m altitude showing the field experiment at the research station Marquardt (ATB), Potsdam, Germany (52◦

28′ 00′′ N, 12◦ 57′ 30′′ E). Images were recorded in 2 m altitude along the superimposed lines using a moving equipment carrier.
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Bromyard, United Kingdom) over the whole plot. Control plots
were treated with the fungicide Osiris R© (BASF, Germany) on May
3, 2018 to guarantee that they were free of disease.

Beginning with 20 days after Pst inoculation (dai) on May
3, 2018, the experimental plots were weekly assessed for Pst
symptoms occurring on the plants. The Pst assessment scored
the percentage of infestation symptoms for the first three top
leaf layers of the plants. Pst assessment was conducted at six
locations within each plot near the locations where the images
were acquired. At each location, 10 wheat plants were selected
randomly for the assessment.

Image Acquisition and Annotation
Database
All images were acquired with the DSLM camera ILCE-6000
(Sony, Japan) with an APS-C type sensor chip (23.5 × 15.6 mm)
and a 50 mm lens attached (SEL50F18, Sony, Japan). The camera
was installed on a boom, which was mounted on an equipment
carrier in nadir position. The distance between camera lens and
ground was fixed to 2 m. The projected area on the ground was
0.63× 0.97 m. The equipment carrier was slowly driven through
the field experiment while the boom was always holding the
camera with 2.25 m distance off the plot boundary in order to
prevent edge effects. While moving, the camera was automatically
triggered via USB using a wheel sensor installed on the equipment
carrier approximately every 1 m. Images were acquired from both
sides of each plot (Figure 1). Camera parameters were adjusted to
a f-number of 8 or 7.1 and to an exposure time of 1/1000 or 1/800
depending on the ambient conditions. Images were recorded on
dai 34, 42, 47, and 56.

After excluding the images that were not recorded within the
plots, a total number of 2772 images was recorded along the green
line (Figure 1), which were taken to train the image classifier and
2690 images recorded along the yellow line, from which 1800
images were randomly selected both plot and dai specific for
testing the image classifier. Thus, a ratio between training and
test data of 60 % to 40 % was obtained. All images from the
training set and 1/3 of the images of the test set were further
split into image patches of the dimension 224×224 px along
a regular, non-overlapping grid. These patches were annotated
on screen by experts. For this purpose, a stand-alone tool was
written in MatLab 2018b (The MathWorks, Inc., United States)
to allow a fast and multi-user annotation. The tool presented a
patch image on a monitor screen and the expert had to choose
whether the plant material shown within the patch was affected
by Pst (category Pst) or not (category Pst-free). Each patch was
selected randomly from all patches belonging to a randomly
selected camera image from a specific dai and plot. The patch
annotation was repeated until a maximum of 200 patches for
each category, plot, and dai were found from the training set
and a maximum of 50 patches for each category, plot, and dai
for the test set. In case of less annotations for a specific group,
plot, and dai, the procedure was stopped until all images had
been examined. In this way, an annotation image database was
built for four dates containing in total 17245 annotated patches
for training and 3621 for testing. From the training set, 8000

patches were randomly chosen for validation and optimization
during the training of the ResNet-18. This set is completely
independent from the test set. In the annotation database, for
each patch, their appropriate camera images, plots and dais was
documented. Next, 20 images per plot and dai were annotated
from the remaining 2/3 of the test set (1200 images) for testing
the image classifier on the full resolution camera images. The
annotation was applied to the entire image and upon recognition
of one Pst symptom, the image was labeled as Pst otherwise as
Pst-free. The number of all images and patches that were used
for training and testing the image classifier were summarized in
Table 1. Due to technical reasons such as not continuous speed of
the equipment carrier when trespassing the experiment as well
as time-specific differences due to unequal distribution of Pst
symptoms, an exact balances between the eight combinations of
dai, training and test set could not be reached.

Finally, drone imagery was collected from the disease
outbreak. For this, aerial images were taken from 10 m altitude
for all experimental plots on dai 36, 42, 46, and 58 with the same
camera sensor as the images on ground were sampled but with
a 16 mm lens attached. Ground resolution was 3.84 mm/px. We
used a Quadrocopter (HP-X4-E1200, Hexapilots, Germany) and
a flight planning that yielded an image overlap of 80%.

Deep Residual Network Architecture
Image classification was based on a residual neural network
(ResNet), a state-of-the-art deep convolutional neural network
architecture for computer vision. The key feature of ResNets is
the use of so-called residual blocks in the network architecture
(He et al., 2016). A residual block consists of a shortcut
connection, which implements the identity function x, and in
parallel a stack of convolution layers whose output F(x) is added
to the identity mapping to form the output F(x)+x of the residual
block. Therefore, the stack of convolution layers only has to learn
a residual term that refines the input of the residual block toward
the desired output. It has been shown that ResNets are easier
to train compared to plain convolutional neural networks that
simply stack convolution layers, especially for deep architectures
(He et al., 2016). Specifically, the identity mappings enable the
direct propagation of information and gradients across multiple
layers of the network, leading to better gradient flow and
convergence properties (He et al., 2016). The ability to train

TABLE 1 | Number of images and patches used for training and testing the image
classifier displayed according to the acquisition of the imagery in terms of days
after inoculation (dai).

Acquisition
date

dai Training
images

(6000×4000
px)

Training
patches

(224×224
px)

Test
patches

(224×224
px)

Test images
(6000×4000

px)

15.5.2018 34 647 3273 743 300

23.5.2018 42 816 5058 794 300

28.5.2018 47 717 5012 805 300

6.6.2018 56 592 3902 784 300

All 34–56 2772 17245 3126 1200
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deeper networks with residual blocks has led to a breakthrough
in accuracy for major image recognition benchmarks such as
ImageNet (Russakovsky et al., 2015).

The general ResNet architecture used in this study is depicted
in Figure 2. It incorporates two different types of residual blocks
(Type A and Type B). The residual mapping F(x) is identical
for the two types of blocks and consists of two convolution
layers with intermittent batch normalization and ReLU activation
functions. Type B follows the original design proposed by He
et al. (2016) with an identity mapping for the non-residual branch
in the block, while Type A implements a modified version where a
single convolution layer is added to the non-residual branch (He
et al., 2016II). Type A can be seen as a middle ground between
a fully residual and a standard, stacked convolutional block.
Specifically, the ResNet-18 architecture was used here, which
stacks several residual blocks on top of each other, alternating
between Type A and Type B. Directly after the input layer, an
initial convolution layer with 64 filters and stride two is followed
by a max pooling layer with kernel size two and stride two to
reduce the spatial dimension of the input. The main part of

the network is comprised of eight residual blocks; alternating
between Type A and Type B. The number of filters in the
convolution layers of the eight residual blocks is 64 for the first
two blocks, 128 for the next two blocks, 256 for the next two
blocks, and 512 for the final two blocks. The final convolution
layer of every second block reduces the spatial dimension by
employing a stride of two, while all other convolution layers in
the residual blocks employ stride one. All convolution layers in
the network have a kernel size of 3 × 3. The residual blocks
are followed by a global average pooling layer and, in the end,
one dense layer with softmax activation for binary classification
was used. The model is implemented using the Keras library1

with Tensorflow backend (Abadi et al., 2015). The full model
architecture is shown in Supplementary Figure S1.

Training the ResNet Model
The ResNet-18 model was trained using the 224× 224 px training
patches from the annotation database along with their associated

1https://keras.io

FIGURE 2 | Workflow of the image classification for training and predicting Pst in the full resolution images using the architecture of the ResNet-18 convolutional
neural network.
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labels. To increase the number of image patches available for
training, the training set was augmented by adding for each
original training patch, copies that were rotated (by 90◦, 180◦,
and 270◦) and additionally for each rotation angle a copy that was
mirrored left-to-right. This procedure yielded eight augmented
images patches for each original patch, yielding a total of 137960
image patches fed to the network. The model was trained using
the Adam optimizer (Kingma and Ba, 2014) with an initial
learning rate of 0.001 and a batch size of 128 for 100 epochs.
Training was conducted on a GTX 1080 Ti GPU with 11GB of
memory on a server with two Intel Xeon E5-2640 CPUs and
512 GB of main memory running Debian Linux 8.11. After
training, the predictive class probabilities returned by the softmax
activation in the final layer of the neural network are often
not well scaled; specifically, they are often too close to zero
or one. Therefore, class probabilities were scaled according to
the temperature scaling method described by Guo et al. (2017).
While temperature scaling is a monotonic transformation and
does not change the classification result, having well-calibrated
class probabilities makes it easier to interpret the output of the
network (for example, a probability of 0.99 for the Pst class after
calibration would indicate high confidence in the prediction).
Temperature scaling was performed on the validation patches.

Applying the ResNet Model
The trained image classifier as described in 2.3 returns a
probability for class affiliation of the Pst class, which represents
whether the image patch shows signs of Pst infection or not. In the
following this probability is referred as the Pst-score of the patch.
The goal of this study is to detect stripe rust in the full resolution
camera images (6000 × 4000 px). To obtain a prediction for a
full image, each image was cut into small patches (224 × 224 px)
without overlap across the full image. For each patch, the ResNet-
18 model was evaluated and returns a Pst-score. This procedure
resulted in 442 image patches for each 6000× 4000 px full image,
and therefore 442 score values for each image.

To classify the full resolution image, a preferably high
precision with still acceptable recall is needed. A prediction error
of 1% seemed suitable to satisfy both criteria. Thus, the full
resolution images was classified as Pst, if only one patch of the
442 patches per image had a Pst-score greater than 0.99.

Performance Evaluation Metrics
We tested on patch level and image level given the independent
test patches and images as described in section “Image
Acquisition and Annotation Database.” The following
performance criteria were used for evaluation calculated
from the resulting true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN):

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1 = 2 x
precision x recall
precision+ recall

False Positive Rate =
FP

FP+ TN

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

On patch level, the standard model threshold of 0.5 was chosen to
describe the performance of the model. The relationship between
recall and false positive rate (FPR) informs about the power of a
binary classification model for a range of thresholds. This curve
is called ROC curve (receiver operating characteristic curve). As
a measure of the prediction accuracy the AUC (area under the
curve) was used to compare the classification models. The value
of one is a perfect model, zero means a random prediction.

Comparison With Drone Imagery
The drone images were photogrammetrically processed with
Metashape Professional (Agisoft LLC, Russia, 2019) to produce
ortho images of the field experiment. Based on the RGB values,
the triangular greenness index (TGI) was calculated, which has a
good correlation with photosynthetic activity of dense canopies
(Hunt et al., 2013):

TGI = Rgreen−0.39Rred−0.61Rblue

TGI maps were used as a qualitative assessment at which point
in time the disease outbreak influenced the reflectance signal in
such a manner that it was being recognized from typical remote
sensing imagery taken from drones.

RESULTS

The Course of the Disease Outbreak
First disease symptoms of Pst were determined from dai 28 by
field scoring in the lowest leaf layers (Figure 3). These first Pst
symptoms occurred very sporadically within the Pst inoculated
plots. In most cases, these characteristics were only discolorations
due to chlorosis because the growing fungus within the leaf
absorbed nutrients and lowered in turn photosynthetic activity.
The area of discoloration of the infected leaves was below
0.5%. On dai 42, the Pst infection had developed from the
lower leaf layers to the upper leaf layers and the whole canopy
sporadically showed Pst characteristics. According to the Pst
scoring, around 2% of the upper leaf layer area and around
4% of the lower leaf layer area was infected by Pst at this
date. On dai 47, Pst infection rapidly developed upward in
the canopy and infected the first leaf layers with an area
of around 8 to 10% whereas the development of Pst in the
lower leaf layers slowed down and was around 6%. On dai
56, the whole canopy was strongly infected. However, because
of the hot and dry spring, the general severity of the disease
was rather low.

Next to Pst characteristics, other weak damages of the
leaves occurred in the Pst infected plots. The appearances of
some of these symptoms were quite similar to Pst symptoms
especially in the earlier stages of disease development. This
included slug or snail damage, discolorations of chlorosis not
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FIGURE 3 | Pst infection development of the upper three leaves according to
field scoring values of the inoculated plots. Dai refers to the number of days
after inoculation.

originated by Pst fungi, and symptoms of other fungal diseases
such as septoria leaf blotch (Zymoseptoria tritici) and leaf
rust (Puccinia triticina). In addition to these similarities, the
imagery was cluttered with no background separation, leaves
could be partly hidden or shadowed, or heavily mixed by many
different features such as spikes, leaves, stems and soil. In
Figure 4 some of these challenges that the image classifier was
faced are summarized.

Classification Accuracy of Pst at Patch
Level
The training of the ResNet-18 model with the 224×224 px image
patches from the training set reached a fast convergence after
about 20 epochs with the training data and stabilizes after about
40 epochs with the validation data as can be seen from the
trend discovered by the accuracy and loss curves in Figure 5.
The model showed very good performance during validation
with an accuracy between 0.9 and 1.0. The loss in the validation
was slightly increased, which may indicate that probabilities
were not sufficiently calibrated. That is why a recalibration with
temperature scaling was performed on the class probabilities.

After training and scaling of the ResNet-18 model, a
prediction of the Pst occurrence was returned as a Pst-score for
each new image patch. In Figure 6A, boxplots of those Pst-score
values calculated on the basis of the test patches for dai 34, 42,
47, and 56 are shown for the test categories Pst and Pst-free. For
all dais, a clear division of the main bulk of score values (non-
overlapping boxes) was determined supporting the prospects of
a possible image classifier for Pst detection. The tallness of the
individual boxes, e.g., the variability of Pst-score values, increased
for the Pst-free group whereas decreased for the Pst group with
later stages. This might indicate some uncertainty to detect Pst
in the initial phase of the outbreak and to detect Pst-free when
the disease has fully evolved. Only in the case of dai 34, stronger
overlap of the Pst-free and Pst score values occurred in the low

Pst-score range as can be seen from the overlapping whiskers. The
whiskers signify the lowest or highest value, which are still within
the 1.5 times the interquartile range based on the lower or upper
quartile. This indicates that the ResNet-18 model over interprets
anomalies in the wheat canopy as Pst at the beginning of the
outbreak of visual Pst symptoms. However, according to the
Wilcoxon test (p< 0.001), the Pst-scores of Pst group and Pst-free
group were significant different at all dates including dai 34.

Additionally, ROC curves were calculated from evaluating the
test patches. All ROCs exhibited a strong convex curve with their
inflection points orientated toward the left-hand upper corner.
The AUC values varied between 0.92 and 0.98 showing a good
to very good performance for creating a binary classifier for
Pst (Figure 6B). The confusion matrices (Figure 7) based on
the standard threshold 0.5 and the corresponding performance
criteria are given in Table 2 for the individual dais and for all dais
pooled. The confusion matrices are depicted for each observed
dai, which show directly the number of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN). The
number of TP increased with increasing dai. On dai 34, only
141 from 224 patches (63%) were truly predicted as Pst, on dai
42, it increased to 86% (236 from 274 patches) and on dai 47
it rise above 93% (269 from 289 patches). The characteristics
of the TN differs from this. The TN were constant with a very
high number for dai 34 to 47 ranging between 93% and 94%,
while for dai 56 there was a small decrease to 86%. So, at the
beginning of the Pst outbreak on dai 34, the model was more
inclined to predict patches as Pst-free, although symptoms of the
disease were present. This differs in the latest stage of the disease
outbreak (dai 56) when Pst was nearly omnipresent on the leaves.
Here, model prediction was slightly reversed. The image classifier
had now a higher tendency of predicting patches as Pst although
no Pst was present. In general terms, a classification accuracy
of greater than 90% was reached with good precision and recall
performance, which shows the F1 score of 0.85. For the models
of the individual dais, accuracies ranged between 86 and 93%.
The best accuracy was reported for the model of dai 47, whereas
the weakest model was reported for dai 34. Although the total
model performance for precision and recall was balanced, slight
variations of the F1 score were observed between the dais.

Classification Accuracy of Pst at Camera
Image Level
The trained model needed 2.7 s for the full evaluation of one
camera image given the designated hardware. In Figure 8, the
areas of those patches exceeding the Pst-score of 0.95 were
highlighted in a magnified camera image for illustration. It shows
that clear Pst characteristics on leaves were easily identified and
were associated with a very high Pst-score (> 0.99). In cases
where the Pst symptoms were very small, partly covered by
objects or unsharpened due to deeper leaf layer position, the
Pst-score decreased.

The classification was tested on 1200 annotated images and
performance results were summarized in Table 3. In total,
classification accuracy reached 77% with an F1 score of 0.84 and
precision and recall values mostly greater than 0.7. However,
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FIGURE 4 | Examples of 224 × 224 px patches showing wheat without (A) and with (B) Pst symptoms.

FIGURE 5 | Accuracy and loss trend curves for training (left) and validation (right) of the ResNet-18 model.

there were differences in classification accuracy among the
observed dais. The weakest classification accuracy was obtained
on dai 34 shortly after the outbreak of the disease. The image
classifier reached here an accuracy of 57% with an F1 score of
0.53. Compared to the results at patch level, the F1 score was
lower based on a lower precision. According to the confusion

matrices shown in Figure 9, the highest FP (27%) occurred
for this dai. Because an image contains 442 patches, it seems
likely that some false-positive classifications of patches may have
occurred mainly in the early stage of disease. One reason could be
that the Pst symptoms at this time are in deeper leaf layer position
because of early disease stage. On dai 42, classification accuracy
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FIGURE 6 | (A) Box plots of the Pst-scores evaluated by the Softmax layer of the ResNet-18 model for the group Pst and the group without Pst symptoms
calculated from 3126 test patches. (B) ROC curves showing the recall and FPR of the ResNet-18 model for classifying 3126 test patches.

FIGURE 7 | Confusion matrices of classification of the image patches into Pst and non-Pst based on an independent test set (n = 3126) for different days after
inoculation (dai).

rose above 76% with high and well-balanced precision and recall.
The confusion matrix for this dai showed a decreased FP (9%)
compared to dai 34. This was still in the initial phase of the Pst
outbreak, where only 2 to 4% of the leaf area was infected. On
the other site, the confusion matrices also reveal some limitations
of the full image classifier, since FN was quite high specifically
in the later stages of the disease at dai 47 and 56, which means
that the classifier detects many images as Pst whereas no Pst is
actually present.

Another interesting point is at which dai, symptoms of Pst
can be assumed from typical drone imagery as a remote sensing
approach as an alternative method for assessing Pst in the field.

In Figure 10, the TGI maps calculated from the drone imagery
taken from 10 m altitude are shown for the plot with the strongest
disease occurrence over the course of the Pst outbreak. It turns
out that effects of the Pst outbreak can only be seen from dai
42 onward and even on dai 42 the Pst nests can only vaguely
be assumed because TGI distribution had no structure from
which Pst nests were readily recognizable. Without any further
information, it would be impossible to assume the Pst infection in
this phase. On dai 36, no changes at all were recognizable in the
drone imagery. On dai 46, the pattern points to the occurrence
of several Pst nests within the plot and on dai 58 the whole
plot was infected and TGI values had all changed to higher
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TABLE 2 | Classification of patches into Pst and not Pst based on an independent
test set (n = 3126) for different days after inoculation (dai) and all patches pooled
(Total).

dai TP TN FP FN ACC PREC REC F1

34 141 498 31 73 0.86 0.82 0.66 0.73

42 236 491 29 38 0.92 0.89 0.86 0.88

47 269 482 34 20 0.93 0.89 0.93 0.91

56 272 424 67 21 0.89 0.80 0.93 0.86

34–56 918 1895 161 152 0.90 0.85 0.86 0.85

Distribution of counts in true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) as well as the parameters accuracy (ACC), precision
(PREC), recall (REC), and F-measure (F1 score)

values. However, this study could show that a detection of Pst
with high resolution imagery is possible even under low disease
infestation (2 to 4%) with an acceptance rate of 76% by using
deep residual neural networks on dai 42. This is even before
discolorations in the drone imagery from 10 m altitude could be
identified as Pst disease.

DISCUSSION

The image classifier was trained and tested as if it should be
integrated in an online detection system for Pst in the field. Thus,

imagery was collected from an equipment carrier passing slowly
along the Pst experiment plots with a camera adjusted to nadir
position. In no case, we had any control to focus the camera on
certain Pst symptoms or to homogenize the background so that
an easy segmentation of individual wheat leaves would have been
possible. Thus, this study differs from the works of, for example,
Mohanty et al. (2016), who successfully classified 38 plant diseases
using AlexNet and GoogleNet. However, they used images taken
under controlled conditions and performed a segmentation
between background and plant leaves before training the image
classifier. Also, this study differs from studies that focus on smart
phone usage (Lu et al., 2017; Rupavatharam et al., 2018), because
in this case the user operates like a monitoring system when
directing the smartphone toward the plant anomaly of interest.
In our scenario, images were taken fully unobserved, without any
pre-selection and Pst infection needed to be identified from them
in a high throughput manner.

This posed a lot of challenges to the image classifier. It needed
to distinguish the disease symptoms from a highly heterogenic
mix of different positioned plant leaves, stalks, spikes and
background cluttering. Leaves and its symptoms can be partly
covered or shadowed. Image quality may vary due to external
dynamics such as wind, which may introduce blurriness in the
images. The image classifier was trained from images, which
closely adhered to those conditions because it is assumed that this
would make the final model more robust for an implementation

FIGURE 8 | A magnified part of a camera image in a Pst-inoculated plot. The violet rectangles show evaluated patches (224×224 px) given a high Pst-score value
( > 0.95) by the ResNet-18 model.
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TABLE 3 | Classification of full resolution camera images into Pst and not Pst
based on an independent test set (n = 1200) for different days after inoculation
(dai) and all images pooled (Total).

dai TP TN FP FN ACC PREC REC F1

34 73 98 102 27 0.57 0.42 0.73 0.53

42 145 82 59 14 0.76 0.71 0.91 0.80

47 227 17 30 26 0.81 0.88 0.90 0.89

56 281 5 12 2 0.95 0.96 0.99 0.98

34–56 726 202 203 69 0.77 0.78 0.91 0.84

Distribution of counts in true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) as well as the parameters accuracy (ACC), precision
(PREC), recall (REC), and F-measure (F1 score).

as an automatic sensor. Technically, the image classifier had
to evaluate a new image in a very short time to use it as a
sensor. Thus, it was choosen a rather large striding length in
the dimension of one patch, e.g., 224 px, which enabled faster
evaluation of the camera images. These constraints we put on
our image classifier might have reduced classification accuracy to
some extent. In contrary, DeChant et al. (2017) produced heat
maps of the full resolution images with shorter striding length
of 30 px and used an additional CNN that evaluated the heat
maps. This improved the classification accuracy for detecting
S. turcica in the maize canopy; however, they needed several
minutes to evaluate one image, which is too long for a future
implementation on an online mapping system. In contrary,
the patch-combined classification of the whole images seems
rather simple. However, most of the information is kept in
the patches anyway. One limitation might be that edges of the
patches discontinue stripe rust occurrences in the images. This
can slightly increase wrong annotation, erroneous learning of

the network and faulty evaluation, which leads to a classifier
that might be stronger susceptible to errors. On the plus side,
the evaluation of the images is fast enough to implement in an
online system and no sophisticated post processing of the images
is needed. Implementation on an embedded system can solely
concentrate on the deep learning network (ResNet-18) itself.

Another source of uncertainty arises from the annotation
data base. Even the experts annotating the patches and images
on the monitor screen did occasionally run into problems
because characteristics of leaves depicted on screen were
barely recognizable as Pst or Pst-free. Specifically, lower leaves,
shadowed leaves or unsharpened image regions posed problems
to the manual annotation on screen. In this study, this error
was tried to reduce by using a relatively large annotation size of
17245 patches for training rather than removing the uncertain
image data. Obvious errors are only removed by checking of
the annotation database. Furthermore, we decided to split the
training and test data along the green and yellow line (Figure 1)
to maintain equal balance of variability in both data sets. The
problem was that in the experiment the Pst infestation severity
was different from plot to plot. If the data had been split
by plot number, a training and test set with too different Pst
occurrences could have been generated, leading to biased results.
Transferability to different fields and crops was not tested in
this study. Yet, the annotation data base can be extended with
more patch-based annotations so that the ResNet-18 model can
be retrained to fit other situations as well. Finally, an automatic
sensor system that should work unsupervised in the field will
always be restricted to a certain angular perspective and viewing
range. An expert in the field can hold the leaf in their hands turn it
around and look from several angles and distances to estimate the
occurrence and degree of Pst infestation. A sensor might easily

FIGURE 9 | Confusion matrices of classification of full resolution camera images into Pst and not Pst based on an independent test set (n = 1200) for different days
after inoculation (dai).
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FIGURE 10 | Triangular Greenness Index map (TGI, Hunt et al., 2013) calculated from UAV ortho images taken over the course of the Pst outbreak for a plot with
very high Pst occurrence after the outbreak. Dai refers to the number of days after inoculation.

miss Pst occurrences on the back of the leaves or in lower leaf
layers. Yet, an expert is not able to evaluate an entire field but is
restricted to only punctual investigations. Even in earlier stages of
the disease, single leaves in the higher leaf layers become infected.
These can be easily missed by an expert who is not in immediate
vicinity in the field but might be recording with an automatic
scanning system.

For our approach to work, images are required as input
from which the outlines of the symptoms of Pst on infected
wheat leaves can be resolved. Thus, near surface images are
needed taken only 1 to 3 m from above the wheat canopy.
Many phenotyping platforms, vehicle based carriers and low
flying drones may meet these requirements. For example, the
ETH Zurich has implemented a stationary installation for crop
phenotyping for a 1 ha field area with a cable system that
enables free movement of sensors over the field experiments
(Kirchgessner et al., 2017). This system operates 2 to 5 m above
the canopy acquiring high resolution images in an automatic
and high-throughput manner. However, this system is stationary
and quite expensive to implement. Vehicle-based systems such
as conventional tractors or phenomobiles could carry camera
based systems collecting high resolution imagery from above the
canopy (Schirrmann et al., 2016; Qiu et al., 2019). However,
they will be confined to specific tramlines or passing lines in
the field so that images will cover only a small section of
the field. Drones could collect high resolution imagery as well
with much more freedom of movement. However, multiple
drones would be needed for complete field coverage at low
altitudes and problems such as the downward wind (downwash)
of the copters influencing the canopy needed to be solved

(Kirchgessner et al., 2017). Higher altitudes of the drone would
provide better field coverage, yet, the lower spatial resolution
prevents the assessment of individual form characteristic of
the Pst disease in the imagery and only integrated reflectance
differences can be surmised. This might not be enough. The
study of Su et al. (2018) could not recognize Pst in the initial
phase of the disease from drone imagery using multispectral
camera and testing many different spectral indices. However,
they were favorable in discriminating the disease for a classifier
when the Pst disease was fully developed using RVI, NDVI
and OSAVI. This was corroborated by the TGI maps shown
in Figure 8. If the spatial resolution of future drone imagery
can be increased, for example, with low flying drone swarms,
drones could theoretically use our approach in embedded systems
enabling an early warning system for crop diseases.

CONCLUSION

Deep residual networks (ResNet-18) proved suitable to identify
symptoms of the Pst disease from high resolution imagery of
wheat canopies with an overall accuracy of 77% in this study.
Detection accuracy was dependent on the disease spreading in the
canopy. When the disease was fully developed, detection accuracy
was at 95% while during the disease outbreak, with 2 to 4%
infected leaf area, detection accuracy was lower at 76%. This was
even before the disease developed nests in the plots that could
have been recognized from the imagery taken by drones from
10 m altitude. In an even earlier stage of the disease outbreak,
with very low Pst spreading of about 0.5% infected leaf area, a
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detection accuracy of 57% was still obtained. This shows that the
stage of the Pst development needs to be taken into account when
training and testing suitable image recognition models based on
deep learning for disease detection. Furthermore, the model was
trained with a focus on an online detection system that can be
integrated on a mobile scanner or a drone platform in this study.
The only presumption was to use high resolution imagery from
above the wheat canopy within the visible spectral range (RGB).
Future work should take into account the optimization of the
model for integration into embedded systems by still retaining
all the properties of the ResNet model. With some adaptations,
the prospects are good that the model can be used for real-
time mapping of stripe rust allowing for optimizing precise crop
protection and field phenotyping.
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