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This supplementary material provides details of data preparation and data analysis 

but also includes additional results referred to in the main text. It provides future loss 

projections for all SSP-scenarios and details about the underlying contribution from 

each GCM, each damage function and each loss data set.  

 
Preparation of hurricane tracks 
 

Historic hurricane wind-field extensions are reconstructed based on NOAA’s 

HURDAT2 best track archive1 (extended version) using 6h track coordinates, 

maximum wind-speed (Vmax), and wind-speed radii for the wind-speed thresholds 

64knts and Vmax. The track coordinates are linearly interpolated to hourly data. For 

each coordinate the local wind-field extension of 64knts and Vmax is based on the 

mean radii information reported in the HURDAT2 archive and transferred to a grid 

with spatial resolution of 0.1° x 0.1° (approx. 10 km x 10 km). Where wind-speed radii 

are unavailable (prior to 1988 and missing data), the wind-field is a best estimate 

based on the full record from 1988-2012. Table S1 shows wind-field radii depending 

on Vmax used for reconstruction. The temporally-aggregated wind-field for each 
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hurricane is obtained by taking the maximum of all wind-field values for each track 

coordinate.  Figure S1 illustrates the wind-field for hurricane Katrina (2005) and 

hurricane Betsy (1965). Whereas Katrina’s wind-field is reconstructed from empiric 

data, Betsy’s wind-field is estimated according to Table S1. We additionally verified 

that using wind-field estimates based on a parametric wind-field model2 yields similar 

fit parameters as reported in our analysis. Simulated hurricane tracks for the historic 

(1950-2005) and future climate under RCP8.5 (2006-2100) are obtained from Kerry 

Emanuel3, see the original publication for details. Simulated tracks are equivalently 

interpolated to hourly data, each storm’s wind-field is estimated using the 1988-2012 

wind radii record, and projected to a grid with 0.1° resolution. For all tracks (empiric 

and simulated) the range of 64 knts winds is used to define the affected capital stock 

assuming that 1-min sustained winds below 64 knts create negligible damage. We 

thereby introduce a physical measure for affected capital stock per grid cell rather 

than relying on more coarse and possibly subjective estimates of affected (coastal) 

counties or larger administrative regions. (Nonetheless, we obtain very similar fit 

results when repeating our analysis for affected coastal counties only, c.f. Table S6 

and Table S7.) In order to ensure consistency between empiric and simulated tracks, 

the wind-speed at landfall is obtained from our own wind-field estimates as the 

maximum Vmax value recorded over land. We only detect minor differences with 

respect to the HURDAT2-reported wind-speed at landfall (the wind-speed at landfall 

is not provided for all hurricanes of interest). This assumption led to the inclusion of 

Superstorm Sandy (2012) as a hurricane into our analysis as our wind-field estimates 

indicate sustained winds above 64 knts on land. 

Hurricane loss data 
 

Hurricane losses are often difficult to value and are based on reported (insured) 

losses by various agencies, additional estimates, as well as guess-work, c.f. Ref. 4. 

In order to verify the robustness of our results, two different loss data sets are 

included in our analysis. The ICAT loss data base (www.icatdamageestimator.com) 

recollects the losses reported by the National Hurricane Center. The available time-

series extends back to 1900 (we analyze 1963-2012) but loss estimates are reported 

as is without further re-analysis. On the contrary, the proprietary NATCAT data base 

by MunichRE’s NATCATSERVICE5 is maintained and constantly updated, with the 

drawback that the record extends only back to 1980. For reasons of model-



comparability, we use full (i.e. insured + uninsured) historic losses. In both data sets 

losses are reported in values corresponding to the year of landfall, which we 

subsequently inflation-adjust to 2005$ based U.S. consumer price time series 

(www.bea.gov).  

It is well known that loss data reporting and accuracy has significantly improved over 

time. We find signatures of changing data quality also in our analysis. The explained 

variances for damage models based on ICAT and NATCAT data is very similar when 

analyzed for identical time periods (see Table S10 and Table S11) but diverges when 

ICAT is analyzed from 1963-2012 instead of 1980-2012 (see Table S4 and Table 

S5). Because of statistical (more hurricane counts) and robustness (different time 

periods) reasons the results presented in the main text rely on ICAT data for the 

period 1963-2012.  

 
Socio-economic predictors 
 
All socio-economic variables are prepared on a grid with 0.1° resolution, in 

accordance with the track data. We require socio-economic variables that best reflect 

the local distribution of assets and for which future projections are readily available. 

Therefore, per capita GDP and population is chosen instead of capital stock data. 

When analyzed over time, we observe a good proportionality between national GDP 

and the ‘fixed assets and durable goods’ time series (provided by www.bea.gov) 

making GDP a valid proxy for capital stock, c.f. also Refs. 6,7. We assume that the 

underlying grid resolution of 0.1° is small enough to detect local differences in 

population and income but also large enough not to violate the validity of GDP as a 

proxy. Differences in GDP across U.S. States are preserved by using U.S. States 

GDP time series (inflation-adjusted to $2005) that are available from www.bea.gov 

back to 1963. Based on State population data (from www.census.gov) per capita 

GDP is determined and distributed according to a high-resolution gridded population 

density time series using 2000 high-resolution (0.0083°) Gridded Population of the 

World (GWPv3) data8 normalized according to US county population and county 

population changes9.  Projected future population density according to five different 

SSP scenarios10 is downscaled from its original 0.125° resolution to match our grid 

resolution.  

Future GDP estimates are based on national per capita GDP evolution according to 



different SSPs (https://tntcat.iiasa.ac.at/SspDb) and gridded future population time 

series. In order to conserve local inhomogeneities in per capita GDP distribution, 

national per capita GDP is rescaled according to the historic mean (2008-2012) of 

US States GDP per capita. 

 
 
Damage model derivation based on empiric data 
 
The damage models that use GDP as a single predictor for socio-economic 

development (basic model type 1) are summarized in Table S2. We obtain eight loss 

estimates by combining the input of the two different loss data sets and four distinct 

functional forms: 
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Damage functions (1) – (4) are called sub-type 1 – 4 (sub-type 5 – 8) in Table S2 if 

derived using ICAT (NATCAT) loss data base. 

The damage functions in Table S3 separate the socio-economic predictors 

population and per capita GDP (basic model type 2): 
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Damage functions (5) – (8) are called sub-type 1 – 4 (sub-type 5 – 8) in Table S3 if 

derived using ICAT (NATCAT) loss data base. 

A (non-linear) least-square Levenberg-Marquardt algorithm is used to determine the 

fit parameters (                  ,  ), their corresponding standard errors, and the 

adjusted R2-values for all damage functions of sub-type 1 – 8 for both basic model 



versions, see Table S4 and Table S5. We verified that the residuals    of Eqs. (1) – 

(8) are normally distributed such that the standard errors provide good measures of 

uncertainty. The R2-values provided for models of sub-type 3, sub-type 4, sub-type 7, 

and sub-type 8 result from non-linear regression for which a properly defined R2-

value (that is bounded between [0,1]) does not necessarily exist. However, the 

correctness of the given R2-values is verified by the fact that the square of the 

Pearson correlation in Table S2 and Table S3 corresponds to the R2-values reported 

in Table S4 and Table S5, both, for linear (function type: global) and non-linear 

(function type: local) regression results. 

 

The number of hurricanes in our regression analysis is limited due to data-availability 

and data-quality: the loss data set by Munich Re was only initiated in 1980 while U.S. 

States GDP data was collected only from 1963 onwards. Nonetheless do we find 

highly significant regression results for most of our loss estimates, c.f. Table S4 and 

Table S5. Using total GDP as a predictor of socio-economic development (Table S4), 

we find a significant sub-linear scaling of losses with affected GDP across all models. 

The model prefactor   is, however, non-significant for three of the models that 

explore an exponential relationship between wind-speed and losses. We nonetheless 

use the predictions by all models in our analysis as our focus lies on average losses 

only and the variability of projected losses caused by different functional 

representations of the physical hazard is minor to the loss variability obtained by the 

separation of the socio-economic predictors, see Figure S9.  

If the socio-economic predictors population and income are separated (Table S5), 

losses scale super-linearly with affected income and sub-linearly with population 

across all models. The statistical-significant non-linear scaling of hurricane losses 

with different socio-economic predictors is displayed in Figure 3 in the main text (for 

the damage function of sub-type 1) and in Figure S4 (sub-type 2), Figure S5 (sub-

type 5), and Figure S6 (sub-type 6).  The non-linear scaling for damage functions 

using local wind-speed estimates (sub-types 3,4,7, and 8) cannot be represented 

visually using the same methodology and we refer to the fit results in Table S4 and 

Table S5 instead.  For two of those models (sub-type 3 and sub-type 4 in Table S5) 

the parameter       , albeit being larger than 1, does not differ significantly from 

unity, i.e. we cannot reject the possibility that in this particular case losses scale 

linearly with income. Table S5 also illustrates the different outcome for the two loss 



data sets (ICAT: sub-type 1-4; NATCAT: sub-type 5-8): The effect of super-linear 

scaling of losses with income is somewhat smaller for ICAT than for NATCAT 

possibly illustrating a more recent increase in vulnerability (since 1980). This finding 

is supported by Table S11 where we find a very similar super-linear scaling for ICAT 

data analyzed for the same period as NATCAT data.  

The super-linear scaling of losses with per capita GDP is contrasted by a sub-linear 

scaling with population. This opposing effect of both socio-economic drivers leads to 

a highly-nonlinear scaling and non-significant fit results for      for sub-type 7 and 

sub-type 8 in Table S5. While the cause of this highly non-linear behavior is so far 

elusive (ICAT-related fit parameters are somewhat comparably low for sub-type 3 

and sub-type 4 in Table S5 and Table S11), we verified that omission of model sub-

types 7 and 8 does not alter the main findings of this paper. 

Table S4 and Table S5 also give an overview over the different power-law 

exponents, c.f. sub- type 1, sub-type 3, sub-type 5, and sub-type 7. Depending on 

the specific damage function, we find that the exponent of the non-linear damage 

wind-speed relationship can take values as low as 4 (close to the cubed relationship 

favored by ref. 11) and larger than 7 (close to the cases of 8 and 9 observed by ref. 

12). Their specific choice is strongly model- as well as loss data-dependent and the 

search for a specific standard value may be misleading and of low relevance as the 

representations of the physical hazard as captured by the individual sub-models 

contributes less to the variability of projected future losses than the separation of the 

socio-economic predictors (see Figure S9).   

As mentioned in the main text, Figure 2 compares the predictive quality of all eight 

damage estimates used in our study, analyzed for both basic model versions that 

either use total GDP (Figure 2a) or separate total GDP into per capita GDP and 

population (Figure 2b). The explained variances are high across all damage 

functions. The differences in explained variances for damage models based on ICAT 

and NATCAT data (see Table S4 and Table S5) vanishes if both loss data sets are 

analyzed for identical time periods (see Table S10 and Table S11). 

Damage functions of different basic model type but identical sub-type reproduce 

historic losses almost equally well, see the Pearson correlation in Table S2 and 

Table S3. All damage function sub-types with separated socio-economic predictors, 

however, slightly outperform the corresponding sub-type based on total GDP. This 

increase in predictive quality is not due to the inclusion of an additional parameter as 



confirmed by the Akaike Information Criterion (AICc) (with correction for small sample 

size)13. The AICc must be compared for identical damage function sub-types 

between Table S2 and Table S3 only; absolute AICc values across different damage 

function sub-types are incomparable due to different underlying data sets and 

functional forms.  

As a robustness check, all fit parameters are again determined using affected coastal 

counties instead of the affected area as prescribed by the extension of hurricane-

power winds, see Table S6 and Table S7. The very similar parameter dependence 

across all damage models underlines the independence of our finding from a change 

in affected population and average affected income and supports the significance of 

a super-linear scaling between income and losses. 

 

 
Future loss projections  
 

In addition to the results presented in the main text, we here quantify future loss 

projections for all five different socio-economic development scenarios and different 

percentiles of the loss distribution. Additionally, the impact of different GCMs, 

different loss data sets, and different functional representations of the physical 

hazard on future loss variability is analyzed. 

As mentioned in the main text, the losses obtained for simulated hurricane events are 

normalized in order to achieve consistent projections across different GCMs and for 

comparability reasons with respect to historical observations. Depending on the 

GCM, the number of simulated tracks exceeds observations by a factor of eight. This 

large number of available tracks effectively samples many centuries worth of 

hurricane impacts along the full coastline. Hurricane losses for each GCM are 

normalized such that the median of empiric and simulated losses for the period 1983-

2012 is equal. This intensity normalization ensures that simulated losses per event 

are on average identical to observed losses and that absolute loss values can be 

reported. Intensity normalization is conducted routinely for all simulated data. See 

Figure S2 for an overview of the normalization factors used to calibrate intensities. 

Frequency normalization is only conducted for data used in Figure 6 and Figure 7 (in 

the main text) and Figure S12, where loss counts above threshold and annual losses 

are reported, respectively. Simulated hurricane frequency is normalized such that the 

mean number (1993-2012) of land-falling hurricanes is equal in both, observations 



and simulations. See Figure S3 for an overview of the normalization factors used to 

calibrate landfall frequencies. We verified that the choice of a different time interval of 

30 years (1983-2012) does not change our findings as the mean frequency is very 

similar. Longer intervals, however, seem not adequate as they cover potentially 

existing trends in hurricane frequency, whereas shorter intervals are subject to 

fluctuations caused by natural variability.  

Figure S7 and Figure S8 respectively present median and 95% percentile losses for 

all SSPs (SSP1-SSP5) in addition to Figure 6 presented in the main text. The SSP-

specific growth trajectories for population and income in combination with the non-

linear scaling of socio-economic predictors leads to diverging loss trajectories across 

different SSPs, even though losses are normalized relative to their scenario-specific 

GDP. Scenarios that assume a rapid income rise (SSP4, SSP5) see median (95% 

percentile) losses per storm rise by more than 300% (500%) by the end of this 

century with single 95% percentile events destroying regularly more than 1% of the 

nation’s GDP. The overall tendency, however, is similar across all SSPs: Increasing 

income is projected to drive hurricane losses and particularly high-percentile losses 

will increase over-proportionally. Due to the non-linear socio-economic enhancement 

a few major storms (especially towards the end of this century) project higher losses 

than the value of actually affected GDP. The maximum loss per storm is therefore 

limited to the value of the affected capital stock (defined as three-times the affected 

GDP). Being aware that the SSP2 scenario (and all other SSPs except SSP5) might 

not be compatible with global warming trends under RCP8.5, we nonetheless display 

all scenarios in order to illustrate that the most important contribution to projected 

future losses is socio-economically-driven and occurs across all SSPs. A more 

realistic treatment would require a different hurricane climatology for each RCP, that, 

however, would not fundamentally change the present finding as the contribution of 

climate change on future losses is not the dominant driver and the inter-GCM 

variability is large, c.f. Figure 5 in the main text and Figure S11.  

As referred to in the main text, the spread in projected losses caused by the 

separation of socio-economic predictors contributes more than the variability caused 

by the different functional representations of the physical hazard as captured by the 

individual sub-models (see Figure S9) and more than the variability caused by 

different loss data sets if both loss data sets are analyzed for identical time periods 



(see Figure S10). The spread in projected losses as caused by the individual sub-

models is largely caused by their different integration of wind-field data. Damage 

functions that rely on maximum wind-speed at landfall only (sub-types 1, 2, 5, and 6 

in Table S4 and Table S5 and dashed lines in Figure S9) project higher losses than 

damage functions that respect the local distribution of maximum winds (sub-types 3, 

4, 7, and 8 in Table S4 and Table S5 and dotted lines in Figure S9). Similarly, losses 

projected based on NATCAT data are always larger than losses predicted based on 

ICAT data (see Figure S10). The difference is especially large when population and 

per capita GDP are treated as separated predictors (blue shaded plus hatched region 

in Figure S10) but to which, however, the different analyzed time periods for each 

loss data set contribute mostly. When analyzed for identical periods (red-shaded 

area in Figure S10), the reduction in variability simultaneously results in an additional 

increase of average projected future losses (red solid line) due to a stronger super-

linear scaling of losses with per capita income that is consistently found for both loss 

models for the period since 1980, see Table S5 and Table S11. 

The findings up to Figure S10 are projections based on the median over all 6 GCMs. 

In Figure S11 each GCM is analyzed separately for the development scenario SSP2. 

The loss trajectory for each GCM is more volatile as projections are based on fewer 

events and GCM-specific variations in time become visible. All GCMs project rising 

loss trends towards the end of this century but with varying magnitude. With respect 

to 2010 values, MPI-ESM-MR projects a doubling of losses while MIROC5 sees an 

increase by 600%. By taking the median over all GCMs for all loss projections 

extreme outliers are discarded.  

In contrast to per hurricane losses, annual losses are cumulated losses that can 

change due to changes in hurricane intensity and frequency. As illustrated in Ref. 3, 

intensity as well as frequency increases are expected for the North Atlantic. 

Consequently, both effects trigger annual loss rises, depicted as median loss 

changes for all SSPs in Figure S12. Under SSP2, annual losses are projected to rise 

by almost 750% towards the end of this century, while the fast-development 

scenarios (SSP4, SSP5) even estimate losses to rise by almost 1300%. We note that 

the scientific agreement on future hurricane intensity changes is higher than on future 

frequency changes3,14–18. Nonetheless, there exists supporting evidence that 



dynamical downscaling techniques are capable of reliably reproducing observed 

intensity and frequency distributions19,20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1: Local wind-field extension regressed from observed local maximum 

hurricane wind-speed. Values are obtained as a best-fit result based on all 

hurricanes for which wind-radii are available in the HURDAT-archive, see text for 

details. 

 64 knts ≤ Vmax < 83 knts Vmax ≥ 83 knts 

Radius of 64 knts winds 0.6° 0.8° 

Radius of Vmax 0.5° 0.4° 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S2: Detailed overview of damage function types with socio-economic 

scaling proportional to GDP (basic model type 1). The 8 damage functions differ 

with respect to their loss data and time period (ICAT/NATCAT), to their general form 

(global/local), and their functional wind-speed dependence (power-law/exponential). 

Pearson’s correlation between empiric and modeled losses is obtained according to 

Figure S5a. The AICc is the Akaike Information Criterion with correction for small 

sample size. 

 
damage 
func. 

socio-eco. 
scaling 

loss data # hurricanes func. 
type 

vmax-
scaling 

Pearson‘s r AICc 

type 1-1 GDP icat-1963 81 global power 0.78 160.6 

type 1-2 GDP icat-1963 81 global exp 0.78 162.6 

type 1-3 GDP icat-1963 81 local power 0.74 175.4 

type 1-4 GDP icat-1963 81 local exp 0.74 175.0 

type 1-5 GDP natcat-1980 53 global power 0.83 105.7 

type 1-6 GDP natcat-1980 53 global exp 0.82 106.3 

type 1-7 GDP natcat-1980 53 local power 0.81 108.8 

type 1-8 GDP natcat-1980 53 local exp 0.81 108.8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S3: Detailed overview of damage function types with socio-economic 

scaling proportional to population and per capita GDP (basic model type 2). 

Same as Table S2 except for the socio-economic scaling. Pearson’s correlation 

between empiric and modeled losses is obtained according to Figure S5b. 

 
damage 
func. 

socio-eco. 
scaling 

loss data # hurricanes func. 
type 

vmax-
scaling 

Pearson‘s r 
 

AICc 

type 2-1 Pop/GDPpc icat-1963 81 global power 0.80 157.1 

type 2-2 Pop/GDPpc icat-1963 81 global exp 0.79 159.0 

type 2-3 Pop/GDPpc icat-1963 81 local power 0.75 174.2 

type 2-4 Pop/GDPpc icat-1963 81 local exp 0.76 173.4 

type 2-5 Pop/GDPpc natcat-1980 53 global power 0.84 103.8 

type 2-6 Pop/GDPpc natcat-1980 53 global exp 0.84 104.0 

type 2-7 Pop/GDPpc natcat-1980 53 local power 0.83 106.3 

type 2-8 Pop/GDPpc natcat-1980 53 local exp 0.84 105.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S4: Fit parameters for all damage functions with socio-economic scaling 

proportional to GDP (basic model type 1). Fit parameters and standard errors 

based on (non-linear) least square fitting procedure. The damage function sub-types 

are summarized in Table S2, the goodness of fit is indicated by the corresponding 

  -value in the last column. Values marked with a * differ non-significantly from zero.  

 

damage 
func. 

                        

type 1-1 5.55e-07 1.34e-07 0.64 0.08 4.36 0.78 0.61 

type 1-2 2.09* 5.53 0.65 0.09 0.044 0.008 0.60 

type 1-3 1.33e-07 4.47e-08 0.50 0.15 5.17 1.11 0.54 

type 1-4 9.18* 12.24 0.49 0.15 0.057 0.012 0.54 

type 1-5 5.02e-09 1.21e-09 0.65 0.10 5.39 1.12 0.68 

type 1-6 0.60* 2.59 0.67 0.10 0.057 0.012 0.68 

type 1-7 3.17e-08 1.08e-08 0.20 0.18 6.86 1.32 0.66 

type 1-8 719.77 357.84 0.21 0.18 0.075 0.015 0.66 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S5: Fit parameters for all damage functions with socio-economic scaling 

proportional to population and per capita GDP (basic model type 2). Fit 

parameters and standard errors based on (non-linear) least square fitting procedure. 

The damage function sub-types are summarized in Table S3, the goodness of fit is 

indicated by the corresponding   -value in the last column. Values marked with a * 

(+) differ non-significantly from zero (unity). 

 
damage 
func. 

                                       

type 2-1 1.17e-12 2.74e-13 0.56 0.09 1.77 0.48 4.91 0.79 0.64 

type 2-2 2.27e-05 1.08e-05 0.58 0.09 1.82 0.49 0.050 0.008 0.63 

type 2-3 8.32e-13 2.39e-13 0.37 0.17 1.48+ 0.55 5.84 1.09 0.56 

type 2-4 3.91e-04 2.85e-04 0.36 0.17 1.52+ 0.55 0.065 0.012 0.56 

type 2-5 8.93e-20 2.62e-20 0.57 0.11 3.00 1.15 5.71 1.10 0.71 

type 2-6 9.81e-12 4.57e-12 0.59 0.11 3.13 1.15 0.061 0.012 0.71 

type 2-7 8.44e-20 2.46e-20 0.13* 0.17 2.70 1.11 7.11 1.25 0.69 

type 2-8 5.69e-10 3.12e-10 0.12* 0.17 2.90 1.11 0.079 0.014 0.70 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S6: Fit parameters for all damage functions for basic model type 1 and 

restricted to coastal counties. Same as Table S4 but the affected GDP is limited to 

the coastal counties affected by hurricane-power winds. 

 
damage 
func. 

                        

type 1-1 1.49e-07 3.38e-08 0.62 0.08 4.81 0.77 0.60 

type 1-2 3.03* 5.42 0.63 0.09 0.048 0.008 0.59 

type 1-3 2.33e-08 6.25e-09 0.45 0.14 5.85 0.97 0.54 

type 1-4 16.37 15.46 0.45 0.14 0.063 0.011 0.53 

type 1-5 1.73e-09 4.14e-10 0.60 0.10 5.96 1.14 0.65 

type 1-6 1.68* 7.53 0.62 0.10 0.063 0.013 0.65 

type 1-7 3.92e-09 1.10e-09 0.15* 0.15 7.62 1.21 0.65 

type 1-8 1248.46 495.59 0.16* 0.16 0.083 0.014 0.64 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S7: Fit parameters for all damage functions for basic model type 2 and 

restricted to coastal counties. Same as Table S5 but the affected population and 

per capita GDP is limited to the coastal counties affected by hurricane-power winds. 

 
damage 
func. 

                                       

type 2-1 1.33e-13 2.87e-14 0.54 0.09 1.85 0.49 5.32 0.77 0.63 

type 2-2 1.19e-05 5.42e-06 0.55 0.09 1.89 0.50 0.054 0.008 0.62 

type 2-3 3.83e-14 9.19e-15 0.34 0.14 1.59 0.54 6.44 0.95 0.56 

type 2-4 1.49e-04 9.56e-05 0.34 0.14 1.63 0.54 0.07 0.01 0.56 

type 2-5 8.37e-21 2.39e-21 0.51 0.11 3.08 1.17 6.28 1.11 0.68 

type 2-6 5.70e-12 2.68e-12 0.52 0.11 3.23 1.19 0.067 0.012 0.68 

type 2-7 6.15e-21 1.66e-21 0.10* 0.14 2.74 1.10 7.71 1.15 0.69 

type 2-8 2.56e-10 1.36e-10 0.10* 0.15 2.97 1.11 0.085 0.013 0.68 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S8: Detailed overview of damage function types of basic model type 1 for 

ICAT only and time period 1980-2012. Same as Table S2 but for ICAT only using 

the same time interval as NATCAT. 

 
damage 
func. 

socio-eco. 
scaling 

loss data # hurricanes func. type vmax-
scaling 

Pearson‘s r AICc 

type 1-1 GDP icat-1980 52 global power 0.84 102.6 

type 1-2 GDP icat-1980 52 global exp 0.84 103.1 

type 1-3 GDP icat-1980 52 local power 0.81 109.8 

type 1-4 GDP icat-1980 52 local exp 0.81 109.9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S9: Detailed overview of damage function types of basic model type 2 for 

ICAT only and time period 1980-2012. Same as Table S3 but for ICAT only using 

the same time interval as NATCAT. 

 
damage 
func. 

socio-eco. 
scaling 

loss data # hurricanes func. 
type 

vmax-
scaling 

Pearson‘s r AICc 

type 2-1 Pop/GDPpc icat-1980 52 global power 0.85 102.4 

type 2-2 Pop/GDPpc icat-1980 52 global exp 0.85 102.6 

type 2-3 Pop/GDPpc icat-1980 52 local power 0.83 109.1 

type 2-4 Pop/GDPpc icat-1980 52 local exp 0.83 108.7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S10: Fit parameters for all damage functions of basic model type 1 for 

ICAT only and time period 1980-2012. Same as Table S4 but for ICAT only using 

the same time interval as NATCAT. Values marked with a * differ non-significantly 

from zero. 

 
damage 
func. 

                        

type 1-1 3.45e-09 7.88e-10 0.64 0.09 5.52 1.04 0.68 

type 1-2 0.74* 5.22 0.65 0.09 0.058 0.011 0.68 

type 1-3 6.13e-10 1.71e-10 0.47 0.20 6.53 1.39 0.67 

type 1-4 4.54* 10.81 0.48 0.20 0.070 0.015 0.67 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S11: Fit parameters for all damage functions of basic model type 2 for 

ICAT only and time period 1980-2012. Same as Table S5 but for ICAT only using 

the same time interval as NATCAT. 

 
damage 
func. 

                                       

type 2-1 1.97e-18 6.16e-19 0.57 0.10 2.64 1.14 5.80 1.03 0.70 

type 2-2 3.74e-10 2.03e-10 0.58 0.10 2.76 1.15 0.062 0.011 0.69 

type 2-3 6.23e-20 1.95e-20 0.38 0.20 2.57 1.18 6.98 1.36 0.68 

type 2-4 3.51e-10 2.00e-10 0.37 0.20 2.75 1.19 0.077 0.015 0.68 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S1: Wind-field for selected hurricanes. The wind-field for hurricane Betsy 

(a) is estimated using best-fit wind-radii based on the extended HURDAT2 track 

archive that contains wind-radii for all hurricanes since 1988 (c.f. Table S1). In 

contrast, the wind-field of hurricane Katrina (b) is reproduced using empiric wind-field 

data. The extension of 64 knts winds, that defines the affected region, and maximum 

winds, that determines the wind-speed at landfall, is clearly visible.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



Figure S2: Overview of intensity normalization factors. For each GCM and each 

damage function of basic model type 1 (a) and type 2 (b) the factor is displayed by 

which the simulated median loss per hurricane between 1983-2012 exceeds the 

observed median loss. Intensity normalization is routinely done for all damage 

functions. 

 

 

 

 

 



Figure S3: Overview of frequency normalization factors. For each GCM the 

factor is displayed by which the mean number of simulated hurricane landfalls 

(windspeed above 63knts) between 1993-2012 exceeds the mean number of 

observed landfalls. Frequency normalization is only required for annual loss 

projections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S4: Non-linear scaling of historic hurricane losses with socio-economic 

development. The scaling of hurricane losses with each socio-economic parameter 

differs from a linear relationship with statistical significance (c.f. one-sided p-values in 

each panel). Negative (positive) slopes indicate sub- (super-) linear scaling of 

hurricane losses with (a) GDP, (b) GDP/capita, and (c) population. Lines are the 

best-fit through the empirical data based on 81 reported hurricanes from the ICAT 

archive. The  -values are the empirically obtained power-law exponents of the 

damage models of type 1 and type 2, described in the Methods section. Y-

coordinates represent      *      (     (        ))+        (    ) in panel a; 

     *      (      
 

        (        ))+        (      ) in panel b; and 

     *      (         
          (        ))+        (    ) in panel c. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S5: Non-linear scaling of historic hurricane losses with socio-economic 

development. Same as Figure S4 but based on 53 reported hurricanes from the 

NATCAT archive and assuming a power-law relation between wind-speed and 

losses. Y-coordinates represent      *      (        

 )+        (    ) in panel a; 

     *      (      
 

           

 

)+        (      ) in panel b; and      *      

(         
             

 
)+        (    ) in panel c. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S6: Non-linear scaling of historic hurricane losses with socio-economic 

development. Same as Figure S4 but based on 53 reported hurricanes from the 

NATCAT archive and assuming an exponential relation between wind-speed and 

losses. Y-coordinates represent      *      (     (        ))+        (    ) in 

panel a;      *      (      
 

        (        ))+        (      ) in panel b; 

and      *      (         
          (        ))+        (    ) in panel c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Figure S7: Amplification of relative future hurricane losses by rising per capita 

income. Projected average hurricane losses for 5 different future socio-economic 

development pathways (a): SSP1, b): SSP2, c): SSP3, d): SSP4, e): SSP5) (blue 

line in each sub-figure) together with the separate contribution of GDP per capita and 

population change on projected losses. While population increase by itself (green 

line) leads to lower relative losses than projected with present-day socio-economic 

values (black line), growing GDP per capita (red line) results in substantially higher 

losses. Each data-point is the decade-median of all simulated hurricane losses based 

on 8 different damage projections and 6 GCMs. Loss/GDP (left axis) displays 

absolute losses according to the year’s GDP while loss changes (right axis) are 

relative to corresponding 2010 values. 

 



Figure S8: Amplification of relative future hurricane losses by rising per capita 

income. Same as Figure S7 but now each data-point is the 95% percentile of all 

simulated hurricane losses based on 8 different damage projections and the median 

of all 6 GCMs. 

 

 
 



Figure S9: Impact of socio-economic predictors on future hurricane losses. 

Loss projections differ significantly whether the socio-economic predictors GDP per 

capita and population are treated separately (blue solid line, identical to Figure S7) or 

combined as total GDP (orange solid line). This difference is larger than the inter-

model variability caused by the projections of individual damage models 

(dashed/dotted lines that span the shaded regions). Thick solid lines represent the 

decade-median over all GCMs and damage models. Dashed (dotted) lines are 

averages over both loss data sets only and correspond to damage models of global 

(local) functional form, see text and Table S2 and Table S3 for details.

 



Figure S10: Impact of socio-economic predictors on future hurricane losses. 

Same as Figure S9 but the loss variability due to the separation of socio-economic 

predictors is now compared to the variability caused by different loss data. The 

spread caused by different loss data is large for separated socio-economic predictors 

(blue shaded plus hatched region) with NATCAT-driven models (dotted lines) higher 

than ICAT-driven models (dashed lines). This spread can be mainly contributed to 

the different time periods for which each loss data set is analyzed (ICAT 1963-2012, 

NATCAT 1980-2012). When both are analyzed from 1980-2012 (red-shaded area in 

Figure S10), the reduction in variability simultaneously results in an additional 

increase of average projected future losses (red solid line) compared to the increase 

presented in the main text (blue solid line). 

 



Figure S11: GCM-specific amplification of relative future hurricane losses by 

rising per capita income. Same as Figure S7 but future trends of average hurricane 

losses are analyzed separately for each GCM (a, MIROC5, b, GFDL-CM3, c, 

CCSM4, d, MRI-CGSM3, e, MPI-ESM-MR, f, HADGEM2-ES) and for SSP2 only. 

Loss changes are based on losses measured relative to national GDP and relative to 

2010 values. 

 



Figure S12: Amplification projected annual future hurricane losses by rising 

per capita income. Same as Figure S7 but here for annual losses, that aggregate 

changes in hurricane intensity and frequency. Each data-point is the decade-median 

of all simulated annual hurricane losses based on 8 different damage projections and 

6 GCMs. Loss changes are based on losses measured relative to national GDP and 

relative to 2010 values. 
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