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ABSTRACT: Silk fibroin nanoparticles are emerging as promising
nanomedicines, but their full therapeutic potential is yet to be realized.
These nanoparticles can be readily PEGylated to improve colloidal stability
and to tune degradation and drug release profiles; however, the relationship
between silk fibroin nanoparticle PEGylation and macrophage activation
still requires elucidation. Here, we used in vitro assays and nuclear
magnetic resonance based metabolomics to examine the inflammatory
phenotype and metabolic profiles of macrophages following their exposure
to unmodified or PEGylated silk fibroin nanoparticles. The macrophages
internalized both types of nanoparticles, but they showed different
phenotypic and metabolic responses to each nanoparticle type. Unmodified
silk fibroin nanoparticles induced the upregulation of several processes,
including production of proinflammatory mediators (e.g., cytokines),
release of nitric oxide, and promotion of antioxidant activity. These
responses were accompanied by changes in the macrophage metabolomic profiles that were consistent with a proinflammatory
state and that indicated an increase in glycolysis and reprogramming of the tricarboxylic acid cycle and the creatine kinase/
phosphocreatine pathway. By contrast, PEGylated silk fibroin nanoparticles induced milder changes to both inflammatory and
metabolic profiles, suggesting that immunomodulation of macrophages with silk fibroin nanoparticles is PEGylation-dependent.
Overall, PEGylation of silk fibroin nanoparticles reduced the inflammatory and metabolic responses initiated by macrophages,
and this observation could be used to guide the therapeutic applications of these nanoparticles.
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■ INTRODUCTION

The clinical approval of Abraxane in 2005 for the treatment of
solid breast tumors was followed by a surge in the use of novel
materials in the design of intravenous anticancer nanoparticles
that target tumors. Drug-loaded nanoparticles can enter tumor
tissues either passively, using the enhanced permeability and
retention effect,1 or actively, using targeting moieties such as
peptides, monoclonal antibodies, or aptamers.2,3 The phys-
icochemical properties of nanoparticles therefore have a direct
impact on their biological performance at the systemic, tissue,
cellular, and subcellular levels.4,5 Factors such as the particle
size, shape, and chemical composition dictate the likelihood of
undesirable nanoparticle interactions with complement
proteins and immunoglobulins in the circulating blood and
with extracellular matrix proteins. These interactions then lead
to rapid (<1 min)6 protein corona formation, opsonization of
the particle, and clearance of the nanoparticles by professional
macrophages of the mononuclear phagocytic system or by
tumor-associated macrophages.7 This undesired clearance can
be circumvented by conjugation of “stealth” polymers, such as

poly(ethylene glycol) (PEG), to the nanoparticles. These types
of conjugation have become standard practice to allow drug-
loaded nanoparticles to evade macrophage detection, thereby
maximizing therapeutic payload delivery to the tumor site.8

Macrophages are versatile innate immune cells, and their
processing of foreign materials (including nanosized drug
carriers) plays an essential role in the initiation and
coordination of inflammatory or anti-inflammatory immune
responses.9 Until recently, the phagocytosis of nanomedicines
was viewed as an undesirable event due to the risks of inducing
drug hypersensitivity reactions.10 However, interest is now
growing in the immunomodulatory potential of novel nano-
materials as immunological adjuvants that can influence site-
specific inflammation, particularly with regard to the tumor
microenvironment.11 This has led to a revival in the demand
for rigorous in vitro techniques that can be used to predict the
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immunological outcome of novel materials being tested for
advanced drug delivery applications.11

We recently proposed the use of NMR-based metabolomics
to identify nanomedicine performance. NMR is a robust
analytical technique that can be used to identify and quantify
molecular structures such as cellular metabolites.12 Our
previous comparative metabolomic assessment, which eval-
uated silk as a novel nanomaterial, revealed that unmodified
silk fibroin nanoparticles performed in a similar manner to
other emerging and clinically established nanomaterials, such
as silica and poly(lactic-co-glycolic acid). Silk fibroin nano-
particles were able to drive metabolic reprogramming of RAW
264.7 macrophages toward induction of a proinflammatory
M1-like metabolic profile.12

The design of silk nanoparticles for anticancer drug delivery
has intensified over the past 5 years. For example, silk from the
Bombyx mori cocoon is reverse-engineered into an aqueous silk
fibroin solution using a process that removes sericin (i.e., a
gumming agent present in the cocoon).13,14 The resulting silk
fibroin solution is then desolvated to form spherical nano-
particles with an optimal (∼100 nm) size for intravenous
administration.15,16 Silk fibroin nanoparticles can be readily
decorated with PEG,17 and both physical and in vitro
biological studies have validated the performances of
unmodified and PEGylated silk fibroin nanoparticles for
anticancer drug delivery applications.18−20 PEGylation sig-
nificantly improves the colloidal stability while modulating the
degradation and drug release profiles of silk fibroin nano-
particles17,18 but has no negative impacts on the ability of the
nanoparticles to conduct lysosomotropic delivery of anticancer
payloads.19 However, the immune adjuvanticity between
unmodified and PEGylated silk fibroin nanoparticles has not
yet been compared. Here, we examine the impacts of
nanoparticle concentration and PEGylation on the phenotypic
and metabolic reprogramming of macrophages induced by silk
fibroin nanoparticles.

■ EXPERIMENTAL SECTION
Production and Characterization of Unmodified and

PEGylated Silk Fibroin Nanoparticles. Silk fibroin was extracted
as detailed previously.15 Briefly, Bombyx mori cocoons were cut into 5
× 5 mm pieces and degummed in Na2CO3 (0.02 M) for 60 min to
quantitatively remove sericin. Fibers were rinsed with ddH2O, air-
dried, and dissolved in LiBr solution (9.3 M) at 60 °C, yielding a 25
wt % solution. This solution was dialyzed (molecular weight cutoff
3500 g/mol) against ddH2O for 72 h to remove the LiBr salt. The
resulting aqueous silk fibroin solution was cleared by centrifugation
(9500 × g for 20 min at 5 °C and repeated once), diluted to 5% (w/
v), and added dropwise to acetone to produce spherical silk fibroin
nanoparticles. Silk fibroin nanoparticles were surface-decorated with
polyethylene glycol (PEG) using a method that has been reported
previously,17 and a visual format of silk fibroin nanoparticle
production is available.15 All samples were washed thoroughly and
stored at 4 °C for up to 4 weeks.

A Zetasizer Nano-ZS (Malvern Panalytical, Worcestershire, U.K.)
was used to characterize the respective particle size distributions, ζ
potentials, and polydispersity indices (PDI) of unmodified and
PEGylated silk fibroin nanoparticles using dynamic light scattering
(DLS) in ddH2O. A refractive index of 1.33 was used for ddH2O. For
phenotypic and metabolic analyses, silk fibroin nanoparticles were
either left in their unmodified form or surface-decorated with
unlabeled PEG at a 1:1 w/v ratio (as detailed above). For
fluorescence analyses, unmodified silk fibroin nanoparticles were
either labeled directly with Alexa Fluor 488 or PEGylated with a 1:4
ratio of FITC-PEG and unlabeled PEG, as described below. A
schematic of each formulation is shown in Figure 1A.

Fluorescence Labeling of Unmodified and PEGylated Silk
Fibroin Nanoparticles. Unmodified silk fibroin nanoparticles (1
mL, 10 mg/mL) were resuspended in NaHCO3 (1 mL, 0.2 M, pH
8.6), and Alexa Fluor 488 succinimidyl ester (100 μL, 1 mg/mL)
(Thermo Fisher Scientific, Waltham, MA, USA) was added as detailed
previously.17 Fluorescent PEGylated silk fibroin nanoparticles were
produced by resuspending unmodified silk fibroin nanoparticles (1
mL, 10 mg/mL) in NaHCO3 (1 mL, 0.2 M, pH 8.6) and adding
fluorescein PEG succinimidyl ester (250 μL, 30 mg/mL in DMSO)
(FITC-PEG-NHS, MW 5000 g/mol, Nanocs, Boston, MA, USA).
The sample was incubated for 4 h at room temperature in the dark
with stirring, and then TST-activated mPEG (750 μL, 30 mg/mL)

Figure 1. Characteristics of unmodified and PEGylated silk fibroin nanoparticles. (A) Schematic depicting unmodified (SNP), Alexa Fluor 488-
labeled (AF488-SNP), PEGylated (PEG-SNP), and FITC-PEGylated (FITC-PEG-SNP) silk fibroin nanoparticles used during the study. (B)
Particle size distributions, ζ potentials, and polydispersity indices for unmodified, PEGylated, and FITC-PEGylated silk fibroin nanoparticles
measured with DLS (*, P < 0.05, one-way ANOVA) (n = 3). (C) FTIR absorbance spectra of unmodified and PEGylated SNPs presented
alongside 70% ethanol treated or air-dried silk fibroin films (SF) as reference samples. The dotted lines at 1621 cm−1 indicate the β sheet (n = 3).
(D) Representative scanning electron images of unmodified and PEGylated silk fibroin nanoparticles (scale bars: left = 500 nm; right = 250 nm).
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(5000 g/mol, Sigma-Aldrich, St. Louis, MO, USA) in NaHCO3 (0.2
M, pH 8.6) was added and reacted overnight at 4 °C with stirring.
The fluorescently labeled unmodified and PEGylated silk fibroin
nanoparticles were then centrifuged (10000 × g for 45 min), and the
free (unconjugated) dye was removed by washing the pellet in
acidified water (pH 4.6). This was repeated once more with acidified
water and then three more times with ultrapure water. All fluorescent
nanoparticles were refrigerated (4 °C) and protected from light until
use.
Cell Culture. RAW 264.7 cells are a mouse macrophage cell line

originally extracted from ascites of an Abelson murine leukemia virus-
induced tumor and thought to be derived from peritoneal
monocytes.21 The culture of RAW 264.7 cells in complete medium
has been described previously.12 Subconfluent flasks were passaged by
scraping cells, centrifuging at 380 × g for 4 min, and replating them at
ratios of 1:5−1:10 onto plasma-treated tissue culture polystyrene. The
cell passage number was controlled during the study, and all
experiments were conducted using cells under passage 20. Seeding
for polarization experiments was conducted at a density of 1.5 × 104

cells/cm2, and cells were allowed to recover for 24 h prior to
conducting the in vitro experiments.
Scanning Electron Microscopy (SEM). Unmodified or

PEGylated silk fibroin nanoparticles (1 mg/mL) in distilled water
were lyophilized and sputter-coated with gold prior to imaging with
40000-fold magnification at 5 kV on a Hitachi SU6600 SEM, as
detailed previously.17

RAW 264.7 cells were seeded as detailed above onto glass
coverslips recovered for 24 h. They were then dosed for 24 h with
unmodified or PEGylated silk fibroin nanoparticles (detailed below).
Next cells were fixed (2% v/v glutaraldehyde in phosphate-buffered
saline (PBS)), washed with ultrapure water, dehydrated, and dried at
the critical point (EM CPD300, Leica Microsystems, Wetzlar,
Germany). Samples were sputter-coated with gold and imaged by
SEM with 2000-fold magnification at 5 kV.
Fourier Transform Infrared Spectroscopy (FTIR). The

secondary silk structures were determined for air-dried silk films,
70% ethanol treated silk films, and lyophilized unmodified and
PEGylated silk nanoparticles using Fourier transform infrared (FTIR)
spectroscopy (TENSOR II FTIR spectrometer, Bruker Optik GmbH,
Ettlingen, Germany), as detailed elsewhere.17 Briefly, the samples
were subjected to 128 scans at a 4 cm−1 resolution over the
wavenumber range of 400 to 4000 cm−1. The amide I region was
identified: 1605−1615 cm−1 as side chain/aggregated strands, 1616−
1637 and 1697−1703 cm−1 as a β-sheet structure, 1638−1655 cm−1

as a random coil structure, 1656−1662 cm−1 as α-helical bands, and
1663−1696 cm−1 as turns.22

Endocytosis of Unmodified and PEGylated Silk Fibroin
Nanoparticles. RAW 264.7 cells were seeded and cultured as
described above but in a complete DMEM medium without phenol
red. Fluorescently labeled silk nanoparticles were used in this study,
and cells were either left untreated or dosed with unmodified or
PEGylated silk fibroin nanoparticles at either 0.1 or 0.5 mg/mL. Cells
were incubated for 24 h in total with LysoTracker Red (50 nM in
complete growth medium) (Thermo Scientific, Waltham, MA, USA)
added in the final 2 h of the experiment. Cells were then placed on
ice, washed three times with ice cold PBS, stained with Hoechst
33342 (1 μg/mL in serum free medium) and live-imaged immediately
using a Leica TCS-SP5 confocal microscope as detailed previously.19

Calculation of Colocalization Coefficients. Colocalization
between nanoparticles and lysosomes was determined on representa-
tive confocal images using the JACoP ImageJ plug-in to calculate
Mander’s overlap coefficients for green (nanoparticle) and magenta
(lysosome) channels. Mander’s coefficient ranges from 0 to 1 and
indicates the degree of colocalization between two channels.23,24 The
default JACoP algorithm was used on threshold adjusted images to
calculate Mander’s coefficients for each treatment group.
MTT Assay. The cytotoxicity of unmodified and PEGylated silk

fibroin nanoparticles was verified using 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assays.25 After seeding and
recovery (detailed above), cells were either left untreated or dosed for

24 h in complete DMEM supplemented with (i) 1% v/v Triton X-
100, (ii) 0−1 mg/mL unmodified silk fibroin nanoparticles, (iii) 0−1
mg/mL PEGylated silk fibroin nanoparticles, or (iv) PEG (5000 g/
mol; Iris Biotech GmbH, Marktredwitz, Germany). MTT (5 mg/mL
in PBS) was then added at 10% of the volume of cell culture media,
and cells were cultured again at 37 °C for 5 h. The medium was then
aspirated, the formazan product was solubilized with DMSO (100
μL), and the absorbance was measured at 570 nm. All data sets were
normalized to the Triton X-100 positive control (Figure S1) to
determine the percentage of cell viability following each treatment.

Phenotypic Response to Unmodified and PEGylated Silk
Fibroin Nanoparticles. RAW 264.7 cells were seeded and allowed
to recover for 24 h as detailed above. Next, cells were dosed for 24 h
in complete medium supplemented with a low (0.1 mg/mL) or high
(0.5 mg/mL) concentration of either unmodified or PEGylated silk
fibroin nanoparticles (note that macrophages were exposed to silk
fibroin nanoparticles without prior priming). A 1% v/v Triton X-100
positive control sample was included to assess plasma membrane
integrity. However, for tumor necrosis factor alpha (TNF-α), nitric
oxide (NO2

−) production, antioxidant capacity, and reactive oxygen
species, a positive control using lipopolysaccharide (1.5 ng/mL) was
included instead to provide baseline phenotypic information on RAW
264.7 cells in an activated state. Following the 24 h incubation period,
the growth medium was collected, clarified by centrifugation (380 × g
for 10 min), transferred to 2 mL low-protein-binding Eppendorf
tubes, and stored at −80 °C. The conditioned growth medium
samples were assayed to quantitatively monitor plasma membrane
integrity (lactate dehydrogenase assay), TNF-α (TNF-α ELISA), and
nitric oxide levels (Griess assay). Cell lysates were generated as
detailed below to measure antioxidant capacity and reactive oxygen
species.

The lactate dehydrogenase assay was performed with a Pierce LDH
Cytotoxicity Assay Kit (Thermo Fisher Scientific, Waltham, MA,
USA) following the manufacturer’s instructions to assess membrane
integrity in positive and negative controls, nanoparticle, and LPS
treated cells.

A mouse TNF-α DuoSet ELISA kit (R&D Systems, Minneapolis,
MN, USA) was used to quantify TNF-α levels in a conditioned
culture medium. Nitric oxide was measured with the Griess assay as
detailed elsewhere.26,27

Antioxidant Assay. Cells were treated as detailed above. Next,
cells were washed three times with 1× Hank’s balanced salt solution
(HBSS), scraped and collected into falcon tubes, and centrifuged at
2000 × g for 10 min at 4 °C. The supernatant was decanted, and the
pellet was resuspended in 1 mL HBSS and sonicated on ice. Lysates
were then centrifuged at 10000 × g for 15 min at 4 °C, and the
supernatant was collected and stored at −80 °C. Total antioxidant
capacity was quantified by analyzing supernatant samples with an
antioxidant assay kit (Cayman Chemical, MI, USA).

Reactive Oxygen Species Assay. Cells were treated as detailed
above. Next, cells were washed three times with 1× HBSS, stained for
1 h with CellROX Deep Red Reagent (Thermo Fisher Scientific,
Waltham, MA, USA), scraped into 3 mL falcon tubes, and stained
with SYTOX Green (ThermoFisherScientific, Waltham, MA, U.S.A.)
as an exclusion dye. Cells were analyzed immediately on a BD
FACSCanto, with 20000 live events being recorded per sample. Flow
cytometry data was subsequently analyzed with FlowJo (FlowJo, LLC,
Ashland, OR, USA).

Cytokine Profile. A mouse cytokine proteome profiler (Panel A,
R&D Systems, Minneapolis, MN, USA) was used, according to the
manufacturer’s instructions. Blots from the arrays were exposed to
UltraCruz autoradiography film (Santa Cruz Biotech Inc., Dallas, TX,
USA), digitized (18 MP Canon EOS100D, Canon Inc., Tokyo,
Japan), threshold adjusted, and analyzed using ImageJ v1.51k 1
(National Institutes of Health, Bethesda, MD, USA).

Metabolomic Sample Preparation. RAW 264.7 cells were
dosed for 24 h with unmodified or PEGylated silk fibroin
nanoparticles at either 0.1 or 0.5 mg/mL. Next, the culture medium
was collected, clarified by centrifugation (380 × g for 10 min),
lyophilized, and stored at −80 °C until analysis. The protocol for
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metabolomic sample preparation of cell extracts is outlined in detail in
our previous report.12

NMR Spectroscopy. At the time of NMR analysis, dried samples
of cell culture media and aqueous cell extracts were reconstituted in
deuterated phosphate buffer (600 μL, 100 mM, pH 7.4) containing 3-
(trimethylsilyl)-1-propanesulfonic acid-d6 sodium salt (TSP) (0.1
mM), whereas lipophilic cell extracts were reconstituted in deuterated
chloroform containing 0.03% tetramethylsilane (TMS). For NMR
analysis, 550 μL of each sample was transferred into 5 mm NMR
tubes. NMR spectra were acquired on a Bruker Avance DRX-500
spectrometer operating at 500.13 MHz for 1H observation, at 298 K,
using a 5 mm probe. Standard 1D 1H spectra (pulse programs
“noesypr1d”, with water suppression, for medium samples/aqueous
extracts, and “zg” for lipophilic extracts) were recorded with a 7002.8
Hz spectral width, 32 k data points, a 2 s relaxation delay, and 512
scans. Spectral processing comprised exponential multiplication with
0.3 Hz line broadening, zero filling to 64 k data points, manual
phasing, baseline correction, and chemical shift calibration to the TSP
or TMS signal at 0 ppm. Metabolites were identified based on 2D
spectra and consultation of spectral reference databases, as detailed
previously.12

Integration of NMR Spectra and Multivariate Quantifica-
tion. NMR spectra were normalized by total spectral area (excluding
the region comprising the suppressed water signal) to eliminate
potential difference due to cell number variations. Principal
component analysis and partial least squares discriminant analysis
were then applied using SIMCA-P 11.5 software (Umetrics, Umeå,
Sweden), with a default 7-fold internal cross validation, from which
Q2 and R2 values, reflecting predictive capability and explained
variance, respectively, were extracted.
Metabolite variations were quantified by normalizing selected

signals in the 1D spectra to total spectral area. For each metabolite,
the percentage variation in nanoparticle-exposed samples was
calculated relative to controls, together with the effect size adjusted
for small sample numbers and the respective standard errors.28 The
metabolite variations of large magnitude (i.e., with an absolute effect
size ≥0.8)28 were plotted as a heat map.
Data and Statistical Analyses. Data was analyzed (Figures 1−4)

using GraphPad Prism 7.0a (GraphPad Software, La Jolla, CA).
Student’s t tests were used to analyze sample pairs. One-way analysis
of variance (ANOVA) between basal and nanoparticle treated groups
was conducted followed by Bonferroni’s multiple comparison post
hoc test for multiple samples. Statistical significance is indicated by
asterisks in each figure legend. All data are plotted as mean ± standard
deviation and, unless otherwise stated, refer to a minimum of three

independent biological repeats. Statistical analysis of NMR data has
been described above.

■ RESULTS
Characterization of Unmodified and PEGylated Silk

Fibroin Nanoparticles. DLS was used to quantitatively verify
unmodified and PEGylated silk fibroin nanoparticle sizes, ζ
potentials, and polydispersity indices of each preparation using
different batches (Figure 1). An increase in particle size was
noted between the unmodified silk fibroin nanoparticles (96.0
nm) and the PEGylated and FITC-PEGylated silk fibroin
nanoparticles (105.3 and 106.4 nm, respectively). The ζ

Figure 2. Macrophage response toward unmodified and PEGylated silk fibroin nanoparticles. (A) In vitro cytotoxicity of unmodified (SNP) and
PEGylated (PEG-SNP) silk fibroin nanoparticles following a 24 h incubation in complete media supplemented with 0−1000 μg/mL nanoparticles
(*, P < 0.05; **, P < 0.01; ***, P < 0.001, one-way ANOVA between control and nanoparticle treated groups; n = 3). (B) Membrane integrity of
RAW 264.7 cells following a 24 h incubation in complete media supplemented with 0.1 or 0.5 mg/mL unmodified (SNP) or PEGylated (PEG-
SNP) silk fibroin nanoparticles (*, P < 0.05; **, P < 0.01; ***, P < 0.001, one-way ANOVA untreated and nanoparticle treated groups; n = 3). (C)
Scanning electron microscope images of RAW 264.7 cells following a 24 h dose with 0.1 mg/mL unmodified (SNP) or PEGylated (PEG-SNP) silk
fibroin nanoparticles. Scale bar = 100 μm.

Figure 3. Cellular uptake of unmodified and PEGylated silk fibroin
nanoparticles. Live RAW 264.7 macrophages following a 24 h dose of
(A) unmodified or (B) PEGylated silk fibroin nanoparticles at
concentrations of 0.1 or 0.5 mg/mL. (Scale bars: left = 40 μm; right
(zoomed) = 20 μm). Data acquisition using confocal microscopy.
Numbers on merged images show Mander’s coefficients calculated for
each treatment group. Arrowheads identify colocalization between the
nanoparticle-associated and lysosomal signals.
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potential was also significantly influenced by the PEGylation
process. In their unmodified state, the silk fibroin nanoparticles
had a ζ potential of −47.9 mV. However, this increased to
−43.4 and −44.0 mV for PEGylated and FITC-PEGylated silk
fibroin nanoparticles, respectively. All three silk fibroin
nanoparticle types showed a narrow polydispersity (Figure
1B). The FTIR absorbance analyses at 1621 cm−1 confirmed a
high abundance of β sheets within the structures of all three
nanoparticle formulations when compared to ethanol-treated
silk film controls (Figure 1C). Quantitative measurements
were supported by SEM images that confirmed the spherical
shape of the unmodified and PEGylated silk fibroin nano-
particles (Figure 1D).
Interactions of Unmodified and PEGylated Silk

Fibroin Nanoparticles with Macrophages. RAW 264.7
cells were selected as a model mouse macrophage cell line to
allow for continuity with our initial study.12 A combination of
biochemical in vitro assays and NMR metabolomics was used
to elucidate silk-nanoparticle-induced shifts in phenotypic and
metabolic profiles. First, the cytotoxicity of silk fibroin
nanoparticles was assessed. Exposure to unmodified silk fibroin
nanoparticles caused a significant reduction in cell viability
when compared to untreated controls. However, statistical
analysis between cells exposed to unmodified or PEGylated silk
fibroin nanoparticles at equivalent concentrations revealed no
significant differences in cell viability. The unmodified and
PEGylated silk fibroin nanoparticles showed cytotoxicities of
less than 15% at exposure levels of up to 100 μg/mL (Figure
2A). At higher concentrations, both particle types reduced cell
viability. At the maximum tested concentration, the cell
viability was reduced more substantially for the PEGylated silk
fibroin nanoparticles than for the unmodified ones; however,
the IC50 value remained >1000 μg/mL (Figure 2A). Parallel
experiments that tested the cytotoxicity of water-soluble PEG
revealed no significant changes in cell viability over the tested
concentration range (Figure S2). The macrophage plasma
membrane integrity was monitored by lactate dehydrogenase
leakage into the culture medium. Exposure of the macrophages
to unmodified or PEGylated silk fibroin nanoparticles at either
low (0.1 mg/mL) or high (0.5 mg/mL) nanoparticle
concentrations caused no leakage of lactate dehydrogenase,

indicating no plasma membrane damage (Figure 2B).
Qualitative assessment by SEM showed no gross morpho-
logical changes of the macrophages following exposure to the
nanoparticles. SEM images of RAW 264.7 macrophages treated
at the low nanoparticle concentration showed that the
unmodified nanoparticles formed aggregates at the cell surface,
whereas the PEGylated silk fibroin nanoparticles did not
(Figure 2C).
We also verified whether endocytic uptake might be

involved in the observed effects by studying the intracellular
fate of the unmodified and PEGylated silk nanoparticles by
live-cell confocal microscopy. We used LysoTracker Red to
label the RAW 264.7 cells, and we observed nanoparticle
accumulation within lysosomes at 24 h, as evidenced by the
substantial colocalization of the silk fibroin nanoparticles with
the lysosomal signals. This colocalization occurred regardless
of particle PEGylation or concentration, as evidenced by
similar Mander’s coefficients (numbers on the merged images
in Figure 3). However, the unmodified silk nanoparticles
showed some evidence of aggregation at the cell membrane.
This aggregation was reduced, and the lysosomes were smaller
in the macrophages dosed with PEGylated silk fibroin
nanoparticles.

Inflammatory Response to Unmodified and
PEGylated Silk Nanoparticles. Next, the inflammatory
phenotype of RAW 264.7 macrophages in response to low
and high nanoparticle concentrations was determined. Cell
exposure to unmodified silk fibroin nanoparticles induced
significant TNF-α release at both nanoparticle concentrations
(2.20 and 1.70 ng/mL, respectively) when compared to basal
levels (0.14 ng/mL) (Figure 4A). A milder TNF-α response
was observed when macrophages were treated with PEGylated
silk fibroin nanoparticles, with only the high concentration
causing a significant increase in TNF-α release (1.14 ng/mL).
When assessing nitric oxide levels and reactive oxygen species,
neither factor was influenced by a low concentration of either
unmodified or PEGylated silk fibroin nanoparticles (Figure
4B,D). However, at the high nanoparticle concentration,
unmodified silk fibroin nanoparticles significantly increased
nitric oxide levels (111%) yet decreased reactive oxygen
species levels by 64%. A similar trend was observed with the

Figure 4. Phenotypic changes induced in macrophages exposed to unmodified (SNP) and PEGylated (PEG-SNP) silk fibroin nanoparticles. (A)
TNF-α release, (B) nitric oxide (NO2

−) levels, (C) total antioxidant capacity, and (D) reactive oxygen species (ROS) from RAW 264.7
macrophages following a 24 h incubation in complete media supplemented with either unmodified or PEGylated silk fibroin nanoparticles; 1.5 ng/
mL lipopolysaccharide (LPS) served as a positive control (*, P < 0.05; **, P < 0.01; ***, P < 0.001, A, B, and C: n = 3, D: n = 4). (E) Cytokine
profile of RAW 264.7 cells treated with 0.5 mg/mL nanoparticles; untreated cells served as the control.
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high PEGylated silk fibroin nanoparticle concentration (55%
increase of nitric oxide levels and 44% drop in reactive oxygen
species). Total antioxidant capacity in RAW 264.7 increased
substantially compared to basal levels following treatment with
low and high concentrations of unmodified silk fibroin
nanoparticles. However, only minimal changes were observed
following treatment with PEGylated silk fibroin nanoparticles
(Figure 4C).
The cell culture medium was also assayed to further evaluate

the cytokine response of RAW 264.7 cells following nano-
particle exposure (Figure 4E). In addition to promoting a
marked increase in the expression of TNF-α, the unmodified
silk fibroin nanoparticles upregulated the expression of several
colony stimulating factors (M-CSF, G-CSF, and GM-CSF),
chemokines (CCL1, CXCL 9, CXCL 13), and other essential
proinflammatory cytokines (IFN-γ, IL-1α, IL-23, and IL-27).
By contrast, PEGylated silk fibroin nanoparticle treatment
caused a milder (or negligible) response in proinflammatory
cytokine expression when compared to unmodified silk fibroin
nanoparticles. The anti-inflammatory cytokine IL-10 remained
unchanged regardless of the type of silk fibroin nanoparticle
used, whereas IL-1ra expression increased in response to
unmodified silk fibroin nanoparticles yet decreased following a
dose with PEGylated silk fibroin nanoparticles.
Metabolomic Response to Unmodified and

PEGylated Silk Nanoparticles. Next, the metabolic profiles
of RAW 264.7 macrophages were analyzed to further
characterize the effects of silk fibroin nanoparticle PEGylation
and concentration on inflammatory modulation. A score
scatter plot (Figure 5A) produced by applying principal
component analysis to the 1H NMR spectra of aqueous cell
extracts showed a separation between control and nanoparticle
treated samples. Samples clustered differently depending on

nanoparticle treatment, and in particular the high concen-
tration of unmodified silk nanoparticles separated clearly from
the remaining samples along principal component 1 (PC1,
explaining 19.5% of total variance). These results were
complemented by principal component analysis of lipophilic
cell extracts (Figure 5B), which showed some overlap between
sample groups, especially in the case of PEGylated particles as
they barely separated from controls. By contrast, different
clusters were observed for lipophilic samples obtained from
cells treated with unmodified silk fibroin nanoparticles, with
the 0.5 mg/mL cluster grouping separately from control
clusters.
The principal component analysis score map (Figure 6A)

obtained for samples from macrophages treated with

unmodified silk fibroin nanoparticles confirmed the separation
between control, low dose, and high dose samples. Partial least
squares discriminant analysis (Figure 6B) further revealed
robust discrimination between control and nanoparticle-
treated cells (Q2 0.79) due to differences in the levels of
metabolites highlighted in the corresponding loading plots

Figure 5. Score scatter plots obtained by principal component
analysis of 1H NMR spectra from (A) aqueous extracts and (B)
lipophilic extracts of RAW 264.7 macrophages treated for 24 h with
unmodified or PEGylated silk fibroin nanoparticles (SNPs) at
concentrations of either 0.1 or 0.5 mg/mL.

Figure 6. Multivariate analysis of 1H NMR spectra from aqueous
extracts of control macrophages and macrophages exposed for 24 h to
(A−C) unmodified (SNP) and (D−F) PEGylated (PEG-SNP) silk
fibroin nanoparticles: (A,D) principal component analysis score
scatter plots; (B,E) partial least squares discriminant analysis score
scatter plots generated by pairwise comparisons (control and (PEG)-
SNP, 0.1 and 0.5 mg/mL as one class); (C,F) loadings w of latent
variable 1 (LV1), colored as a function of variable importance to the
projection (VIP).
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(Figure 6C). In particular, silk fibroin nanoparticle treated cells
(negative scores in first latent variable, LV1) were charac-
terized mainly by higher intracellular levels of lactate, creatine,
phosphocreatine, and glycine (signals with negative LV1
loadings), together with lower levels of a few amino acids,
choline compounds, betaine, and myo-inositol (positive
loadings). In samples from macrophages treated with
PEGylated silk fibroin nanoparticles (Figure 6D), the low
and high dose samples largely overlapped in the principal
component analysis score scatter plot, suggesting little
dependence on nanoparticle concentration. When considering
the two exposure concentrations within a single class,
nanoparticle treated samples strongly differed from the
controls by partial least squares discriminant analysis (Figure
6E). The corresponding loading profiles (Figure 6F) suggested
decreased levels of branched chain amino acids and glucose,
along with increased levels of glutamate, glutathione, and
phosphocholine, in treated cells compared with controls.
Spectral integration was then employed to confirm and

extend the analysis of quantitative variations in individual
metabolites (summarized in Figure 7). Overall, silk fibroin
nanoparticles caused changes in 28 intracellular polar
metabolites associated with different metabolic pathways.
When measuring glycolytic metabolites and metabolites of
the tricarboxylic acid cycle (Figure 7A), cells exposed to
unmodified silk fibroin nanoparticles displayed a pronounced
decrease in pyruvate levels, while lactate, itaconate, and
succinate increased significantly. By contrast, succinate and
intracellular glucose levels decreased in cells treated with
PEGylated silk fibroin nanoparticles. When comparing nano-
particle-induced changes to amino acid metabolism (Figure
7A), unmodified silk nanoparticles decreased in the intra-
cellular levels of aspartate, glutamine, glutamate, and alanine,
whereas levels of glycine, lysine, branched chain, and aromatic
amino acids increased when compared to untreated controls.
Interestingly, PEGylated silk fibroin nanoparticles either
produced no change in some of these amino acids or caused
variations in the opposite direction to that observed for
unmodified particles. Energy-related metabolites were also
affected by silk fibroin nanoparticle treatment (Figure 7A).
When treated with unmodified particles, significant increases
to creatine and phosphocreatine levels were observed at both
concentrations, while only the high concentration impacted
ATP levels (significant decrease). Again, milder effects were
observed for macrophages treated with PEGylated silk fibroin
nanoparticles. Marked changes were observed in metabolites
that can act as antioxidants and/or osmoregulators or that
relate to cell membrane composition (Figure 7A). In general,
these metabolites showed dose-dependent decreases in cells
treated with unmodified silk fibroin nanoparticles, whereas
they showed increased levels in cells treated with PEGylated
silk fibroin nanoparticles. Metabolites associated with lipid
metabolism (Figure 7A) were also differentially affected by the
two nanoparticle types, with increases in 3-hydroxybutyrate,
acetate, and formate being seen only in cells treated with
unmodified silk fibroin nanoparticles.
Changes in metabolic pathways were also apparent through

analysis of the exometabolome (Figure 7B), with cells exposed
to PEGylated silk fibroin nanoparticles consuming more
glucose and excreting more lactate and itaconate when
compared to untreated cells. These effects were more
pronounced in cells treated with unmodified silk fibroin
nanoparticles, and these cells also excreted more alanine and

less citrate when compared to untreated controls. Finally,
unmodified silk fibroin nanoparticles caused increases in
(total/esterified) cholesterol and phosphatidylcholine, together
with decreases in unsaturated fatty acids (Figure 7C). By
contrast, the effects of PEGylated silk fibroin nanoparticles
were restricted to mild increases in total cholesterol and
phosphatidylcholine.

■ DISCUSSION
The biopolymer silk has a long clinical track record in
humans,13 and silk nanoparticles have recently emerged as an
interesting platform for drug delivery, including anticancer
drugs.16 However, the interactions of silk nanoparticles with
macrophages have yet to be fully characterized, and this lack of
knowledge limits our current understanding of what effects
these nanoparticles will have on off-target tumor-associated
macrophages. Tumor-associated macrophages show a tumori-
genic profile,29 and a high distribution of these macrophages
within a tumor is associated with poor patient prognosis.30−32

However, these macrophages can undergo reprogramming to

Figure 7. Heat map of the main metabolite variations in (A) aqueous
extracts, (B) culture media, and (C) lipophilic extracts from
macrophages exposed for 24 h to unmodified (SNP) or PEGylated
(PEG-SNP) silk fibroin nanoparticles at concentrations of either 0.1
or 0.5 mg/mL, colored according to % variation in relation to
controls. * p-value < 0.05. GPC: glycerophosphocholine, PTC:
phosphatidylcholine, (P)UFA: (poly)unsaturated fatty acids.
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assume a proinflammatory state that confers tumoricidal
properties.33 Therefore, since anticancer nanoparticles encoun-
ter macrophages upon accessing a tumor site, they provide a
unique opportunity to modulate the inflammatory profiles of
tumor-associated macrophages and thereby maximize the
intratumoral performance.34−36 The aim of the present study
was to examine the baseline performances of both unmodified
and PEGylated silk fibroin nanoparticles by monitoring the
effects of particle PEGylation and concentration on the
inflammatory phenotype and metabolic profiles of macro-
phages. We have opted to study the response of silk fibroin
nanoparticles without an anticancer drug payload to simplify
data interpretation and to eliminate drug-mediated co-
founding effects (e.g., drug-induced cytotoxicity).
Similar to our previous reports17 we found that PEGylation

of silk fibroin nanoparticles increased the hydrodynamic radius
and moderated the surface charge when compared to
unmodified nanoparticles (Figure 1B); an observation that
aligns well with the literature (reviewed by Rabanel et al.).37

We now provide additional evidence that the interaction of
either unmodified or PEGylated silk fibroin nanoparticles with
the macrophage plasma membrane caused no damage to the
cell membrane (Figure 2B). As we have observed pre-
viously,17,38 the unmodified silk nanoparticles had a higher
propensity to aggregate in physiological media when compared
to the PEGylated silk fibroin nanoparticles (Figure 2C).
However, this aggregation did not affect the macrophages’
ability to phagocytose and traffic unmodified silk fibroin
particles into lysosomes (Figure 3A,B). The somewhat larger
appearance of the lysosomes containing unmodified silk fibroin
nanoparticles, when compared with those containing
PEGylated silk fibroin nanoparticles, might be a consequence
of the larger size of the internalized nanoparticle aggregates.
Both silk fibroin nanoparticle formulations were internalized

and trafficked into lysosomes, but the downstream effects on
the inflammatory profile of the macrophages were dependent
on the surface modification and particle concentration. A high
concentration of unmodified silk fibroin nanoparticles primed
the RAW 264.7 macrophages toward a proinflammatory
phenotype, as evidenced by significant increases in levels of
classical proinflammatory mediators (e.g., TNF-α, nitric oxide,
Figure 3A,B),39−41 enhanced total antioxidant activity, and
reduction in levels of reactive oxygen species (Figure 3C,D).
Reactive oxygen species levels are implicated in the differ-
entiation of macrophages into wound-healing and tumor-
associated phenotypes.42 However, even at the low nano-
particle concentration, unmodified silk fibroin nanoparticles
were able to induce a proinflammatory shift in the macrophage
phenotype, although to a lesser extent than the shift observed
at high concentrations (i.e., less production of nitric oxide and
reactive oxygen species, but similar promotion of TNF-α and
antioxidant levels when compared to the high nanoparticle
dose).
The biological significance of macrophage priming at the

high silk fibroin nanoparticle dose was also evident by the
observed upregulation of the macrophage cytokine profile (e.g.,
colony stimulating factors, chemokines, and other essential
proinflammatory substances) (Figure 3C). However, PEGyla-
tion apparently modulated the immunomodulatory effects of
silk fibroin nanoparticles. At the high nanoparticle concen-
tration, PEGylation moderated the production of proinflam-
matory mediators, including TNF-α, nitric oxide, total
antioxidant activity, and reactive oxygen species when

compared to the response to unmodified silk fibroin nano-
particles (Figure 4). At the high concentration, the PEGylated
silk fibroin nanoparticles only evoked subtle differences in
cytokine production between the treated and control cells
(Figure 4D). Overall, these observations are important because
they suggest the possibility of differential priming of macro-
phages, even at high nanoparticle concentrations.
While nanoparticles for drug delivery are typically designed

to evade the immune system, a proimmunogenic phenotype
could be exploited to maximize intratumoral performance.34,35

We and others have shown a link between metabolic
reprogramming and cell behavior, such as macrophage
activation status.43 We therefore examined the baseline
performances of both unmodified and PEGylated silk nano-
particles by monitoring nanoparticle-induced metabolic
changes. Exposure to silk fibroin nanoparticles affected
macrophage metabolism in a nanoparticle-type- and concen-
tration-dependent fashion (Figure 6). In agreement with our
previous study12 and similar to the metabolic phenotype
described for lipopolysaccharide-activated proinflammatory
macrophages,44,45 cells treated with unmodified silk nano-
particles increased cellular glycolytic activity, as indicated by
significantly increased glucose consumption, upregulated
pyruvate to lactate conversion, and increased lactate and
alanine excretion. Increased glycolysis was also apparent in
cells treated with PEGylated nanoparticles, although the lactate
levels in this case were only elevated in the medium
supernatants, not intracellularly.
Cells treated with unmodified silk fibroin nanoparticles

further displayed enhanced production of succinate and
itaconate, which is consistent with the reprogramming of the
tricarboxylic acid cycle associated with a proinflammatory
state.46 Succinate is known to inhibit cytosolic prolyl
hydroxylases, thereby stabilizing HIF1α, whose target genes
include glycolytic enzymes and inflammatory factors.47 Addi-
tionally, succinate oxidation by succinate dehydrogenase drives
the production of reactive oxygen species.48 By contrast,
itaconate, which is produced from citrate via cis-aconitate,49

inhibits succinate dehydrogenase50 and acts as a counter-
balance to limit inflammation.51,52 This metabolite inhibits
succinate dehydrogenase and activates the anti-inflammatory
and antioxidant transcription factor Nrf2, thus restricting
downstream inflammatory gene expression and limiting the
production of proinflammatory mediators like IL-1β and IL-
6.52 Activation of the Nrf2/antioxidant response element
pathway could result in increased expression of antioxidant
enzymes (e.g., catalase, superoxide dismutase), as well as
increased glutathione synthesis.53 Therefore the observed
itaconate increase and enhanced antioxidant capacity could
ultimately equip cells better to neutralize reactive oxygen
species. This proposal is consistent with the observed decrease
in reactive oxygen species upon nanoparticle treatment.
Therefore, our results corroborate a close link between
rewiring of the tricarboxylic acid cycle, the cell redox status,
and the production of proinflammatory cytokines.53 Another
consequence of this type of metabolic reprogramming could be
the observed ATP depletion in cells exposed to a high
concentration of unmodified silk fibroin nanoparticles, which,
as noted in our previous study,12 could be due to both
inhibition of succinate dehydrogenase (and hence oxidative
phosphorylation)54 and downregulation of substrate-level
phosphorylation.55
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The marked decrease in intracellular levels of some amino
acids in cells treated with unmodified silk fibroin nanoparticles
further supports tricarboxylic acid cycle reprogramming. In
particular, glutamine/glutamate and aspartate could be used to
replenish α-ketoglutarate and oxaloacetate, respectively, and so
could be involved in the aspartate-arginosuccinate shunt, which
is important in lipopolysaccharide-induced macrophage
activation.45 By contrast, a different set of amino acids
(glycine, lysine, branched chain, and aromatic amino acids)
increased in cells treated with unmodified silk nanoparticles,
possibly reflecting protein catabolism.12 The PEGylated silk
fibroin nanoparticles did not have a similar effect on the
tricarboxylic acid cycle. No intracellular increases were noted
in succinate or itaconate upon nanoparticle treatment although
succinate levels were decreased at the higher nanoparticle dose.
Clear reduction in tricarboxylic acid cycle rewiring and
itaconate production coincided with a reduced inflammatory
phenotype in RAW 264.7 macrophages, and this supports
observations made with unmodified silk fibroin nanoparticles.
Another prominent effect of unmodified silk fibroin

nanoparticles was the significant intracellular upregulation of
creatine and phosphocreatine. Although the functional
relevance of these metabolites in macrophage responses to
nanoparticles remains to be determined, one possibility is that
the creatine kinase/phosphocreatine system plays an important
role, possibly in relation to energy buffering and phagocytic
function.56 Interestingly, PEGylated silk fibroin nanoparticles
produced a milder increase in phosphocreatine and no change
in creatine levels, suggesting a less extensive impact on the
creatine kinase system. One other explanation for the increased
lysosome size observed in response to unmodified silk fibroin
nanoparticles might be a differential demand on the creatine
kinase system of the phagocytosing macrophages (Figures 2
and 3). The lower aggregation of PEGylated silk fibroin
nanoparticles could possibly place less demand on the creatine
kinase system. This observation warrants further investigation.
The levels of several metabolites involved in osmoregulation,

antioxidant protection, and/or cell membrane composition
also showed distinct variation patterns in cells exposed to
unmodified or PEGylated silk fibroin nanoparticles. In
response to unmodified silk fibroin nanoparticles the levels
of antioxidant metabolites glutathione (albeit increased at the
lower dose treatment), taurine, and betaine decreased, which
may possibly reflect their use to counterbalance reactive
oxygen species generation by proinflammatory macro-
phages.57,58 The observed decrease in reactive oxygen species
levels in nanoparticle-treated cells is in line with these
observations. By contrast, the levels of glutathione and betaine,
to a lesser extent, increased in cells treated with PEGylated silk
nanoparticles. Opposite variations were also found for myo-
inositol, phosphocholine, and glycerophosphocholine, which
are metabolites with known involvement in membrane
remodeling and osmotic balance.
Last, unmodified silk fibroin nanoparticles, but not

PEGylated ones, caused increases in metabolites that could
arise from enhanced lipid metabolism: 3-hydroxybutyrate,
acetate, and formate. Changes in cellular lipid composition
were also apparent from the analysis of lipophilic extracts
(Figure 6C). Treatment with unmodified silk fibroin nano-
particles and, to a lesser extent, PEGylated particles caused
cells to increase their cholesterol and phospholipid content.
Additionally, the levels of unsaturated fatty acids decreased

upon exposure to unmodified nanoparticles, again possibly
reflecting remodeling of membrane composition and fluidity.

■ CONCLUSIONS
In summary, we have demonstrated that unmodifiedand, to
a lesser extent, PEGylatedsilk fibroin nanoparticles modu-
lated macrophage activation and metabolism in a concen-
tration-dependent and particle-type-dependent manner. Spe-
cifically, unmodified nanoparticles induced a proinflammatory
phenotype that was characterized by increased cytokine
release, enhanced nitric oxide production, and elevated
antioxidant levels, as well as decreased reactive oxygen species
levels. Extensive rewiring of the metabolic profiles, including
glycolysis, the tricarboxylic acid cycle, and amino acid and
antioxidant metabolite biosynthesis, as well as creatine kinase
system activity, was also observed. This ability to modulate the
macrophage phenotype could be especially useful in the
context of anticancer drug delivery, as silk fibroin nanoparticles
would act both as carriers for chemotherapeutics and as
synergistic attenuators of tumor-associated macrophages
toward a more tumoricidal phenotype.
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