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Thermoviscoelasticity in Kelvin–Voigt rheology at large strains
In memory of Erwin Stein,

who advocated the importance of finite-strain elasticity in engineering practice

Alexander Mielke, Tomáš Roubíček

Abstract

The frame-indifferent thermodynamically-consistent model of thermoviscoelasticity at large
strain is formulated in the reference configuration with using the concept of the second-grade
nonsimple materials. We focus on physically correct viscous stresses that are frame indifferent
under time-dependent rotations. Also elastic stresses are frame indifferent under rotations and
respect positivity of the determinant of the deformation gradient. The heat transfer is governed by
the Fourier law in the actual deformed configuration, which leads to a nontrivial description when
pulled back into the reference configuration. Existence of weak solutions in the quasistatic setting,
i.e. inertial forces are ignored, is shown by time discretization.

1 Introduction

For a long time, thermoviscoelasticity was considered as a quite difficult problem even at small strains,
mainly because of the nonlinear coupling with the heat-transfer equation which has no obvious vari-
ational structure; hence special techniques had to be developed. It took about two decades after the
pioneering work by C.M. Dafermos [Daf82] in one space dimension that first three-dimensional studies
occurred (cf. e.g. [BlG00,BoB03,Rou09]). The basic new ingredient was the L1-theory for the nonlin-
ear heat equation developed in [BD∗97, BoG89]. At large strains, in simple materials, the problem is
still recognized to be very difficult even for the case of mere viscoelasticity without coupling with tem-
perature, and only few results are available if the physically relevant frame-indifference is respected, as
articulated by J.M. Ball [Bal77], see also [Bal02, Bal10]. In particular, local-in-time existence [LeM13]
or existence of measure-valued solutions [Dem00, DST01] are known for simple materials. Further
examples in this direction are [Tve08] for a general three-dimensional theory, but not respecting frame
indifference and the determinant constraints, or [MOS13] for a one-dimensional theory using the varia-
tion structure. While the static theory for large-strain elasticity developed rapidly after [Bal77], there are
still only few result for time-dependent processes respecting frame indifference as well as the determi-
nant constraint. The first cases were restricted to rate-independent processes, such as elastoplasticity
(cf. [MaM09, MiR16]) or crack growth (cf. [DaL10], see [MiR15, Sec. 4.2] for a survey. Recently the
case of viscoplasticity was treated in [MRS18].

The main features of the model discussed in this work can be summarized in brief as follows: the
thermo-visco-elastic continuum is formulated at large strains in a reference configuration, i.e. the La-
grangian approach. The concepts of 2nd-grade nonsimple material is used, which gives higher regu-
larity of the deformation. The heat transfer is modeled by the Fourier law in the actual deformed con-
figuration, but transformed (pulled back) into the reference configuration for the analysis. Our model
respects both static frame-indifference of the free energy and dynamic frame indifference for the dis-
sipation potential. Moreover, the local non-selfpenetration is realized by imposing a blowup of the free
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A. Mielke, T. Roubíček 2

energy if the determinant of the deformation gradient approaches 0 from above, however we do not
enforce global non-selfpenetration. Also, we neglect inertial effect; cf. Remark 6.6 for more detailed
discussion.

Let us highlight the important aspects of the presented model and their consequences:

(α) The temperature-dependence of the free energy creates adiabatic effects involving the rate of
the deformation gradient. To handle this, the Kelvin-Voigt-type viscosity is used to control the rate
of the deformation gradient. In addition, we separate the purely mechanical part, cf. (2.15) below,
which allows us to decouple the singularities of large-strain elasticity from the heat equation.

(β) The heat transfer itself (and also the viscosity from (α)) is clearly rate dependent and the tech-
nique of rate-independent processes supported by variationally efficient energetic-solution con-
cept cannot be used (which also prevents us from excluding possible global selfpenetration).

(γ) The equations for the solid continuum need to be formulated and analyzed in the fixed reference
configuration but transport processes (here only the heat transfer) happen rather in the actual
configuration and the pull-back procedure needs the determinant of the deformation gradient to
be well away from 0. To achieve this, we exploit the concept of 2nd-grade nonsimple materials
together with the results of T.J. Healey and S. Krömer [HeK09], which allow us to show that the
determinant for the deformation gradient is bounded away from 0, see Section 3.1.

(δ) The transport coefficients depend on the deformation gradient because of the reasons in point
(γ). For this, measurability in time is needed and thus the concept of global quasistatic mini-
mization of deformation (as in rate-independent systems [MiR15] or in viscoplasticity in [MRS18])
would not be satisfactory; therefore we rather control the time derivative of the deformation, which
can be done either by inertia (which is neglected in our work) or by the Kelvin-Voigt-type viscosity
from (α).

(ε) The viscosity from (α) must satisfy time-dependent frame indifference as explained in [Ant98],
thus it is dependent on the rate of the right Cauchy-Green tensor rather than on the rate of
the deformation gradient itself. However, the adiabatic heat sources/sinks involve terms where
the rate of the deformation gradient occurs directly. To control the latter by the former, we exploit
results of P. Neff [Nef02] in the extension by W. Pompe [Pom03] for generalized Korn’s inequalities,
see Section 3.2. Here, again the mentioned concept of 2nd-grade nonsimple materials is used to
control determinant of the deformation gradient, see (γ).

As mentioned above, our model heavily relies on the strain-gradient theories to describe materials,
referred as nonsimple, or also multipolar or complex. This concept has been introduced long time
ago, cf. [Tou62] or also e.g. [FrG06, MiE68, Pod02, Šil85, TrA86, BaC11] and in the thermodynamical
concept also [Bat76]. In the simplest scenario, which is also used here, the stored-energy density
depends only on the strain F = ∇y and on the first gradient ∇F of the strain. This case is called
2nd-grade nonsimple material. Possible generalization using only certain parts of the 2nd in the spirit
of [KPS19] still need to be explored.

The structure of the paper is as follows. In Section 2 we present the model in physical and mathe-
matical terms. After the precise definition of our notion of solution, Theorem 2.2 presents the main
existence result for global-in-time solutions for the large-strain thermoviscoelastic system, while Corol-
lary 2.3 gives the corresponding existence result for viscoelasticity at large-strain and at constant
temperature, which, to the knowledge of the authors, is also new. A related result for isothermal large-
strain viscoelasticity is derived in [FrK18], but there the limit of small strains is treated.

In Section 4 we start the proof of the main result by introducing certain regularizations as well as a
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Thermoviscoelasticity in Kelvin–Voigt rheology at large strains 3

time-incremental approach that is particularly constructed in such a split (sometimes called staggered)
way that the deformation is first updated at fixed temperature and then the temperature is updated,
where in some terms the old and in others the new deformation is used. Another important step in
the analysis is the usage of an energy-like variable w = w(∇y, θ) instead of temperature θ, which
enables us to exploit the balance-law structure of the heat equation; cf. [Mie13,MiM18] for arguments
for the preference of energy in favor of temperature. As an intermediate result Proposition 5.1 provides
the existence of solutions (yε, θε) of the regularized problem.

In Section 6 we finally show that the limit εk → 0 for (yεk , θεk) → (y, θ) can be controlled in such
a way that (y, θ) are the desired solutions. We conclude with a few remarks concerning potential
generalizations and further applications of the methods.

2 Modeling of thermoviscoelastic materials in the reference con-
figuration

We will use the Lagrangian approach and formulate the model in the reference (fixed) domainΩ ⊂ Rd

being bounded with smooth boundary Γ . We assume d ≥ 2 although, of course, the rather trivial case
d = 1 works too if p ≥ 2 is assumed additionally to p > d in (2.30) below. We will consider a fixed
time horizon T > 0 and use the notation I := [0, T ], Q := I × Ω, and Σ := I × Γ . For readers’
convenience, Table 1 summarizes the main nomenclature used throughout the paper.

y deformation, y(t, x) ∈ Rd,
θ absolute temperature,
(·). time derivative,
ψ = φ+ ϕ free energy,
σel = ∂Fψ elastic stress,
σvi = ∂ .

F
ζ viscous stress,

F = ∇y deformation gradient,
G = ∇F = ∇2y valued in Rd×d×d,
w heat part of internal energy,
hel elastic hyperstress,
cv = cv(F, θ) heat capacity,
~q heat flux,
M = Φel +H main mechanical energy,
H hyperstress energy,
Φcpl coupling energy,
Ψ =M+ Φcpl free energy,
W thermal energy,
E =M+W total energy,

ζ potential of dissipative forces,
ξ rate of dissipation (=heat production),
K = K(θ) material heat conductivity,
K = K(F, θ) pulled-back heat conductivity,
C = F>F right Cauchy-Green tensor,
κ heat-transfer coefficient on Γ ,
g : I×Ω → Rd a time-dependent dead force,
f : I×ΓN → Rd a boundary traction,
` an external mechanical loading,
Ω the reference domain,
Γ the boundary of Ω, Γ = ΓD ∩ ΓN,
I := [0, T ] the fixed time interval,
Q := I ×Ω,
Σ := I × Γ ,
H = H (∇F ) the potential of hel,
Y0,Yid sets of admissimble deformations,
GL+(d) := {A ∈ Rd×d; detA > 0},
SO(d) := {A ∈ GL+(d); A>A = I = AA>}.

Table 1. Summary of the basic notation used throughout the paper.

To introduce our model in a broader context, we may define the total free energy and the total dissipa-
tion potential

Ψ(y, θ) =

∫
Ω

(
ψ(∇y, θ) + H (∇2y)

)
dx and R(y,

.
y, θ) =

∫
Ω

ζ(∇y,∇.
y, θ) dx, (2.1)
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respectively. The mechanical evolution part can then be viewed as an abstract gradient flow

D .
yR(y,

.
y, θ) + DyΨ(y, θ) = `(t) with 〈`(t), y〉 =

∫
Ω

g(x, t)·y(x) dx+

∫
ΓN

f(x, t)·y(x) dS,

(2.2)

cf. also [Tve08,MOS13] for the isothermal case and [Mie11] for the general case. The sum of the con-
servative and the dissipative parts corresponds to the Kelvin-Voigt rheological model in the quasistatic
variant (neglecting inertia). The notation “ ∂ ” is used for partial derivatives (here functional or later in
Euclidean spaces), while (·)′ will occasionally be used for functions of only one variable.

Writing (2.2) locally in the classical formulation, one arrives at the nonlinear parabolic 4th-order partial
differential equation expressing quasistatic momentum equilibrium

div σ + g = 0 with σ = σvi + σel − div hel, (2.3)

where the viscous stress is σvi = σvi(F,
.
F , θ) and the elastic stress is σel = σel(F, θ), while hel is

a so-called hyperstress arising from the 2nd-grade nonsimple material concept, cf. e.g. [Pod02,Šil85,
Tou62]. In view of the local potentials used in (2.2), we have

σvi(F,
.
F , θ) = ∂ .

F
ζ(F,

.
F , θ), σel(F, θ) = ∂Fψ(F, θ), and hel(G) = H ′(G), (2.4)

where G ∈ Rd×d×d is a placeholder for∇F .

An important physical requirement is static and dynamic frame indifference. For the elastic stresses,
static frame indifference means that

σel(RF, θ) = Rσel(F, θ) and hel(RG) = Rhel(G) (2.5a)

for all R ∈ SO(d), F and G. For the viscous stresses, dynamic frame indifference means that

σvi(RF,
.
RF+R

.
F , θ) = Rσvi(F,

.
F , θ) (2.5b)

for all smoothly time-varying R : t 7→ R(t) ∈ SO(d), cf. [Ant98]. Note that R may depend on t but
not on x ∈ Ω, since frame-indifference relates to superimposing time-dependent rigid-body motions.

In terms of the thermodynamic potentials ζ , ψ, and H , these frame indifferences read as

ψ(RF, θ) = ψ(F, θ), H (R∇F ) = H (∇F ), and (2.6a)

ζ(RF, θ; (RF )
.
) = ζ(RF, θ;

.
RF+R

.
F ) = ζ(F, θ;

.
F ) (2.6b)

for R, F and ∇F as above. These frame indifferences imply the existence of reduced potentials ψ̂,
ζ̂ , and Ĥ such that

ζ(F,
.
F , θ) = ζ̂(C,

.
C, θ), ψ(F, θ) = ψ̂(C, θ), and H (G) = Ĥ (B) (2.7)

where B = G> · G ∈ R(d×d)×(d×d), and C ∈ Rd×d
sym is the right Cauchy-Green tensor C = F>F

with time derivative
.
C =

.
F>F + F>

.
F . More specifically, denoting G = [Gαij] the placeholder for

∂
∂xj
Fαi with Fαi the placeholder for ∂

∂xi
yα, the exact meaning is [G> · G]ijkl :=

∑d
α=1 GαijGαkl and

[F>F ]ij :=
∑d

α=1 FαiFαj . The ansatz (2.7) also means that

σel(F, θ) := ∂Fψ(F ; θ) = 2F∂Cψ̂(F>F, θ) = 2F∂Cψ̂(C, θ), (2.8a)

hel(G) := ∂GH (G) = 2G∂BĤ (G>· G) = 2G∂BĤ (B), (2.8b)

σvi(F,
.
F , θ) := ∂ .

F
ζ(F,

.
F , θ) = 2F∂ .

C
ζ̂(F>F,

.
F>F+F>

.
F , θ) = 2F∂ .

C
ζ̂(C,

.
C, θ). (2.8c)
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Thermoviscoelasticity in Kelvin–Voigt rheology at large strains 5

The simplest choice, which is adopted in this paper for avoiding unnecessary technicalities, is that the

viscosity σvi is linear in
.
C . This is the relevant modeling choice for non-activated dissipative processes

with rather moderate rates (in contrast to activated processes like plasticity having nonsmooth poten-
tials that are homogeneous of degree 1 in a small-rate approximation). This linear viscosity leads to a

potential which is quadratic in
.
C , viz.

ζ̂(C,
.
C, θ) :=

1

2

.
C : D(C, θ)

.
C . (2.9)

Although for this choice the material viscosity is linear, the geometrical nonlinearity arising from large
strains is still a vital part of the problem due to the requirement of frame indifference. Note that

σvi(F,
.
F , θ) necessarily depends on F if we express

.
C in terms of the velocity gradients

.
F , even

if D is constant: σvi(F,
.
F , θ) = 2FD(C, θ)(

.
F>F+F>

.
F ). While we will be able to handle general

dependence on F , it will be a crucial restriction that
.
F 7→ σvi(F,

.
F , θ) is linear.

Furthermore, the specific dissipation rate can be simply identified in terms of ζ̂ as

ξ(F,
.
F , θ) = σvi(F,

.
F , θ):

.
F = 2F∂ .

C
ζ̂(F>F,

.
F>F+F>

.
F , θ):

.
F

= ∂ .
C
ζ̂(F>F,

.
F>F+F>

.
F , θ):(

.
F>F+F>

.
F ) = ∂ .

C
ζ̂(C,

.
C, θ):

.
C. (2.10)

For our choice (2.9), we simply have ξ(F,
.
F , θ) = D(C, θ)

.
C:

.
C = 2ζ̂(C,

.
C, θ) = 2ζ(F,

.
F , θ).

In brief, the standard thermodynamical arguments start from the free energy density ψ and the defini-
tion of entropy via s = −∂θψ (here H does play no role as it is chosen to be independent of θ) and
the entropy equation

θ
.
s = ξ − div ~q (2.11)

with the dissipation rate ξ from (2.10) and the heat flux ~q. We further use the formula
.
s = −∂2

θθψ
.
θ−

∂2
Fθψ:

.
F and the Fourier law formulated in the reference configuration

~q = −K(F, θ)∇θ, (2.12)

which will be specified later in (2.24). Altogether, we arrive at the coupled system

div
(
σvi(∇y,∇

.
y, θ) + σel(∇y, θ)− div hel(∇2y)

)
+ g

with σvi(F,
.
F , θ) = ∂ .

F
ζ(F,

.
F , θ) and σel(F, θ) = ∂Fψ(F, θ) , (2.13a)

cv(∇y, θ)
.
θ = div

(
K(∇y, θ)∇θ

)
+ ξ(∇y,∇.

y, θ) + θ∂2
Fθψ(∇y, θ):∇.

y

with cv(F, θ) = −θ∂2
θθψ(F, θ) and ξ from (2.10) (2.13b)

on Q. We complete (2.13) by some boundary conditions. For simplicity, we only consider a mechani-
cally fixed part ΓD time independent undeformed (i.e. identity) while the whole boundary is thermally
exposed with a phenomenological heat-transfer coefficient κ ≥ 0:(

σvi(∇y,∇
.
y, θ) + σel(∇y, θ)

)
~n− divS

(
hel(∇2y)~n

)
= f on ΓN, (2.14a)

y(x) = x (identity) on ΓD, (2.14b)

hel(∇2y):(~n⊗ ~n) = 0 on Γ, (2.14c)

K(∇y, θ)∇θ · ~n+ κθ = κθ[ on Γ, (2.14d)
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A. Mielke, T. Roubíček 6

where ~n is the outward pointing normal vector, and θ[ is a given external temperature. Moreover,
following [Bet86] the surface divergence “divS” in (2.14a) is defined as divS(·) = tr

(
∇S(·)

)
, where

tr(·) denotes the trace and ∇S denotes the surface gradient given by ∇Sv = (I − ~n⊗~n)∇v =
∇v − ∂v

∂~n
~n. See (2.29) for a short mathematical derivation of the boundary conditions (2.14a) and

(2.14c), and [Ste15, pp. 358-359] for the mechanical interpretation in second-order materials.

In order to facilitate the subsequent mathematical analysis, we assume a rather weak thermal coupling
through the free energy (together with the coupling through the temperature-dependent viscous dis-
sipation). To distinguish the particular coupling thermo-mechanical term from the purely mechanical
one, we consider the explicit ansatz

ψ(F, θ) = ϕ(F ) + φ(F, θ) with φ(F, 0) = 0. (2.15)

In applications, the internal energy e given by Gibbs’ relation

e = e(F, θ) = ψ(F, θ) + θs = ψ(F, θ)− θ∂θψ(F, θ) = ψ(F, θ)− θ∂θφ(F, θ).

is often balanced. Here, we rather use the thermal part of the internal energy w := e−ϕ(F ). In view
of the ansatz (2.15), we have

w = w(F, θ) = ψ(F, θ)− θ∂θφ(F, θ)− ψ(F, 0) = φ(F, θ)− θ∂θφ(F, θ). (2.16)

Note that w(F, ·) is the primitive function of the specific heat cv(F, ·) calibrated as w(F, 0) = 0, so
that also e = ψ(F, 0) + w. The heat-transfer equation (2.13b) simplifies as

.
w − div

(
K(∇y, θ)∇θ

)
= ξ(∇y,∇.

y, θ) + ∂Fφ(∇y, θ):∇.
y with w = w(F, θ) . (2.17)

In particular, the purely mechanical stored energy ϕ does not occur in (2.16) and does not influence
the heat production and transfer (2.17).

The energetics of the system (2.13)–(2.14) can be best described by introducing additional energy
functionals as follows:

H(y) :=

∫
Ω

H (∇2y) dx hyperstress energy, (2.18a)

M(y) := H(y)+Φel(y) with Φel(y) :=

∫
Ω

ϕ(∇y) dx main mech. energy, (2.18b)

Φcpl(y, θ) :=

∫
Ω

φ(∇y, θ) dx coupling energy, (2.18c)

Ψ(y, θ) :=M(y) + Φcpl(y, θ) free energy, (2.18d)

W(y, θ) :=

∫
Ω

w(∇y, θ) dx thermal energy, (2.18e)

E(y, θ) :=M(y) +W(y, θ) total energy. (2.18f)

An mechanical energy balance is revealed by testing (2.13a) by
.
y and (2.13b) by 1, and using the

boundary conditions after integration over Ω and using Green’s formula twice together with another
(d−1)-dimensional Green formula over Γ for (2.13a) and once again Green’s formula for (2.13b).
The last mentioned technique is related with the concept of nonsimple materials; for the details about
how the boundary conditions are handled see e.g. [Rou13, Sect. 2.4.4]. This test of (2.13a) gives the
mechanical energy balance:∫

Ω

ξ(∇y,∇.
y, θ)︸ ︷︷ ︸

dissipation
rate

+ σel:∇
.
y︸ ︷︷ ︸

mechanical
power

dx+
d

dt
H(y) =

∫
Ω

g · .y︸︷︷︸
power of the

bulk force

dx+

∫
ΓN

f · .y︸︷︷︸
power of

the traction

dS. (2.19)
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Thermoviscoelasticity in Kelvin–Voigt rheology at large strains 7

Using σel = ∂Fϕ+ ∂Fφ and integrating in time leads to the relation

M(y(T )) +

∫ t

0

∫
Ω

(∫
Ω

ξ(∇y,∇.
y, θ) + ∂Fφ(∇y, θ):∇.

y
)

dx dt =M(y(0)) +

∫ t

0

〈`, .y〉 dt.
(2.20)

that will be very useful for obtaining a priori estimates in the following sections.

Next, we test the heat equation in its simplified form (2.17) together with the boundary conditions
(2.14d) by the constant function 1 (i.e. we merely integrated over Ω) and add the result to (2.20). After
major cancellations we obtain the total energy balance:

d

dt
E(y, θ) =

∫
Ω

g · .y︸︷︷︸
power of mecha-
nical bulk load

dx+

∫
ΓN

f · .y︸︷︷︸
power of

the traction

dS −
∫
Γ

κ(θ−θ[)︸ ︷︷ ︸
power of the

external heating

dS. (2.21)

In particular, we see that the total energy is conserved up to the work induced by the external loadings
or the flux of heat through the boundary.

From the entropy equation (2.11), we can read the total entropy balance (the Clausius-Duhem inequal-
ity):

d

dt

∫
Ω

s(t, x) dx =

∫
Ω

ξ + div(K∇θ)
θ

dx =

∫
Ω

ξ

θ
−K∇θ·∇1

θ
dx+

∫
Γ

K∇θ
θ
·~n dS

=

∫
Ω

ξ

θ
+
K∇θ·∇θ

θ2︸ ︷︷ ︸
entropy-production

rate

dx +

∫
Γ

K∇θ
θ
·~n dS ≥

∫
Γ

−~q
θ
·~n︸ ︷︷ ︸

entropy flux
through boundary

dS. (2.22)

This articulates, in particular, the second law of thermodynamics that the total entropy in the isolated
systems (i.e. here ~q = 0 on Γ ) is nondecreasing with time provided K = K(∇y, θ) is positive
semidefinite and the dissipation rate is non-negative.

It is certainly a very natural modeling choice that Fourier’s law is formulated in the actual (also called
the deformed) configuration in a simple form, namely the actual heat flux is given by

~q = −K(θ)∇zθ, where z = y(x) and θ(z) = θ(y−1(z)) for z ∈ y(Ω) (2.23)

with the heat-conductivity tensor K = K(x, θ) considered as a material parameter possibly depen-
dent on x ∈ Ω. We transform (i.e. pulled-back) this Fourier law into the reference configuration via the
heat flux ~q(x) = K(x)∇θ = K(∇y(x))>∇zθ(y(x)) and ~q = (Cof F>)~q, because fluxes should
be considered as (d−1)-forms. With (2.23) the usual transformation rule for 2nd-order contra-variant
tensors yields the heat-conductivity tensor

K(x, F, θ) = (Cof F>)K(x, θ)F−> =
(Cof F>)K(x, θ) Cof F

detF
= (detF )F−1K(x, θ)F−>

(2.24)

if detF > 0, whereas the case detF ≤ 0 is considered nonphysical, soK is then not defined. Here
we used the standard shorthand notation F−> = [F−1]> = [F>]−1 and also the algebraic formula
F−1 = (Cof F>)/ detF . In what follows, we omit explicit x-dependence for notational simplicity.
Let us emphasize that in our formulations ∇θ is not treated as a vector, but a contravariant 1-form.
Starting from θ(x) = θ(y(x)) the chain-rule gives∇(x) = ∇y(x)>∇Y θ(y(x)). It should be noted
that (2.23) is rather formal argumentation, assuming injectivity of the deformation y and thus existence
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of y−1, which is however not guaranteed in our model; anyhow, handling only local non-selfpenetration
while ignoring possible global selfpenetration is our modeling approach often accepted in engineering,
too.

For the isotropic case K(θ) = κ(θ)I, relation (2.24) can also be written by using the right Cauchy-
Green tensor C = F>F as K = det(F )κ(θ)C−1, cf. e.g. [DSF10, Formula (67)] or [GoS93,
Formula (3.19)] for the mass instead of the heat transport. In principle, K in (2.23) itself may also
depend on C = F>F , which we omitted to emphasize that K in (2.24) will depend on F anyhow.

In what follows, we will use the (standard) notation for the Lebesgue Lp-spaces and W k,p for Sobolev
spaces whose k-th distributional derivatives are in Lp-spaces and the abbreviation Hk = W k,2. The
notationW 1,p

D will indicate the closed subspace ofW 1,p with zero traces on ΓD. Moreover, we will use
the standard notation p′ = p/(p−1). In the vectorial case, we will write Lp(Ω;Rn) ∼= Lp(Ω)n and
W 1,p(Ω;Rn) ∼= W 1,p(Ω)n. Thus, for example,

H1
D(Ω;Rd) :=

{
v ∈ L2(Ω;Rd); ∇v ∈ L2(Ω;Rd×d), v|ΓD

= 0
}
. (2.25)

For the fixed time interval I = [0, T ], we denote byLp(I;X) the standard Bochner space of Bochner-
measurable mappings I → X with X a Banach space. Also, W k,p(I;X) denotes the Banach
space of mappings from Lp(I;X) whose k-th distributional derivative in time is also in Lp(I;X).
The dual space to X will be denoted by X∗. Moreover, Cw(I;X) denotes the Banach space of
weakly continuous functions I → X . The scalar product between vectors, matrices, or 3rd-order

tensors will be denoted by “ · ”, “ : ”, or “
... ”, respectively. Finally, in what follows, K denotes a positive,

possibly large constant.

We consider an initial-value problem, imposing the initial conditions

y(0, ·) = y0 and θ(0, ·) = θ0 on Ω. (2.26)

Having in mind the form (2.17) of the heat equation, we can now state the following definition for a
weak solution:

Definition 2.1 (Weak solution). A couple (y, θ) : Q = [0, T ]×Ω → Rd × R is called a weak solu-
tion to the initial-boundary-value problem (2.13) & (2.14) & (2.26) if (y, θ) ∈ Cw(I;W 2,p(Ω;Rd)) ×
L1(I;W 1,1(Ω)) with ∇ .

y ∈ L2(Q;Rd×d), if minQ det∇y > 0 and y|ΣD = identity, and if it
satisfies the integral identity∫ T

0

(∫
Ω

((
σvi(∇y,∇

.
y, θ) + σel(∇y, θ)

)
:∇z + hel(∇2y)

...∇2z

)
dx dt

=

∫
Q

g·z dx dt+

∫
ΣN

f ·z dS dt (2.27a)

for all smooth z : Q→ Rd with z = 0 on ΣD together with y(0, ·) = y0, and if∫
Q

K(∇y, θ)∇θ·∇v −
(
ξ(∇y,∇.

y, θ)+∂Fφ(∇y, θ):∇.
y
)
v −w(∇y, θ).v dx dt

+

∫
Σ

κθv dS dt =

∫
Σ

κθ[v dS dt+

∫
Ω

w(∇y0, θ0)v(0) dx (2.27b)

for all smooth v : Q→ R with v(T ) = 0, where w is defined in (2.16).

At first sight, it seems that (2.27a) is not suited to apply the test function z =
.
y, which is the natural

and necessary choice for deriving energy bounds. Obviously, we will not be able to obtain enough
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control on ∇2 .
y. However, using the abstract chain rules provides in Section 3.3 this problem can be

handled by extendingH(y) =
∫
Ω

H (∇2y) dx to a lower semicontinuous and convex functional on
H1(Ω;Rd) by setting it∞ outsideW 2,p(Ω;Rd), see the rigorous proof of (5.9) in Step 3 of the proof
of Proposition 5.1.

It will be somewhat technical to see that the weak formulation (2.27a) is indeed selective enough, in
the sense that for sufficiently smooth solutions one can indeed obtain the classical formulation (2.13)
together with the boundary conditions (2.14), cf. also [Rou13, Sect. 2.4.4]. In particular, abbreviating
σ = σvi(∇y,∇

.
y, θ) + σel(∇y, θ), integrating by part once, and using the boundary conditions

(2.14a,c) yields∫
Q

((
σ− div hel(∇2y)

)
:∇z − g·z

)
dx dt =

∫
ΣN

f ·z dS dt−
∫
Σ

hel(∇2y)
...(∇z⊗~n) dS dt.

(2.28)

We now want to show how the strong form (2.13a) and the associated boundary conditions (2.14a,c)
follow from (2.28). For this goal, we apply Green’s formula in the opposite direction to remove∇ in front
of the test function z. Using also the orthogonal decomposition of∇z = ∇Sz+ ∂

∂~n
z⊗~n involving the

surface gradient∇Sz and writing shortly h for hel(∇2y) ∈ Rd×d×d, relation (2.28) leads to the identity∫
Q

(
− div σ + div2 h− g

)
·z dx dt

=

∫
Σ

((
σ− div h

)
: (z⊗~n)− h

...(∇z⊗~n)
)

dx dt+

∫
ΣN

f ·z dS dt

=

∫
Σ

(
(σ− div h)~n·z +

(
h : (~n⊗~n)

)
· ∂z
∂~n

+ h~n : ∇Sz)
)

dS dt−
∫
ΣN

f ·z dS dt

Using the surface divergence divS and the projection PS : A 7→ A − A~n ⊗ ~n to the tangential part,
we obtain the integration by parts formula (cf. [Bet86] or [Ste15, pp. 358-359])∫

∂Ω

A : ∇Sz dS =

∫
∂Ω

(PSA) : ∇Sz dS = −
∫
∂Ω

divS(PSA) · z dS,

where the surface Γ is now assumed to be sufficiently smooth. Using this withA = h~n for the previous
relation we find∫

Q

(
− div σ + div2 h− g

)
·z dx dt

=

∫
ΣN

(
(σ− div h)~n− divS

(
PS(h~n)

)
− f

)
·z dS dt+

∫
Σ

(
h:(~n⊗~n)

)
· ∂z
∂~n

dS dt, (2.29)

where we have used z = 0 onΣD = Σ \ΣN. Now, taking z’s with a compact support inQ, we obtain
the equilibrium (2.13a) in the bulk. Next taking taking z’s with zero traces on Σ but general ∂z

∂~n
, we

obtain (2.14c). Note that the latter condition implies PS(h~n) = h~n−
(
h : (~n⊗~n)

)
⊗ ~n = h~n. Hence,

taking finally general z’s, we obtain (2.14a), as PS can be dropped because of (2.14c).

Moreover, also note that, from the integral identity (2.27b), one can readw(∇y(0), θ(0)) = w(∇y0, θ0)
from which θ(0) = θ0 follows when taken the invertibility of w(F, ·) and y(0) = y0 into account.

Now we exploit the decomposition (2.15) of ψ into φ and ϕ, which allows us to impose coercivity
assumptions for the purely elastic part φ that are independent of those for ϕ, namely
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∃ p ∈ ]d,∞[ ∩ [2,∞[, s > 0, q ≥ pd/(p−d) ∃α,K, ε̂ > 0 :

ϕ : GL+(d)→ R+ twice continuously differentiable, ∀F ∈ GL+(d) :

ϕ(F ) ≥ ε̂|F |s + ε̂/(detF )q, (2.30a)

φ : GL+(d)×R+ → R+ twice continuously differentiable, ∀F, F̃ ∈ GL+(d), θ ≥ 0 :∣∣φ(F, θ)−φ(F̃ , θ)
∣∣ ≤ K

(
1+|F |s/2+|F̃ |s/2

)
|F−F̃ |, (2.30b)

∂2
FFφ(F, θ) ≤ K, |θ∂2

Fθφ(F, θ)| ≤ K, ε̂ ≤ −θ∂2
θθφ(F, θ) ≤ K, (2.30c)

H : Rd×d×d → R+ convex, continuously differentiable,∀G ∈ Rd×d×d :

ε̂|G|p ≤H (G) ≤ K(1+|G|p), (2.30d)

ζ̂ : Rd×d
sym×Rd×d

sym×R→ R+ is continuous and ∀ (C,
.
C, θ) ∈ Rd×d

sym×R×Rd×d
sym :

ζ̂(C, ·, θ) : Rd×d
sym → R+ quadratic (cf. (2.9)), α|

.
C|2 ≤ ζ̂(C,

.
C, θ) ≤ K|

.
C|2, (2.30e)

K : R→ Rd×d is continuous, uniformly positive definite, and bounded, (2.30f)

g ∈ L2(Q;Rd), f ∈ L2(ΣN;Rd), κ > 0, (2.30g)

y0 ∈ Yid := { y ∈ W 2,p(Ω;Rd) ; y|ΓD = identity }, det(∇y0) ≥ ε̂, (2.30h)

θ[ ∈ L1(Σ), θ[ ≥ 0, θ0 ∈ L1(Ω), θ0 ≥ 0, ψ(∇y0, θ0) ∈ L1(Ω), (2.30i)

where GL+(d) denotes the set of matrices in Rd×d with positive determinant. The last assumption
in (2.30c) means that cv together with c−1

v are bounded, which is a major restriction. However, it
allows for a rather simple estimation in Lemma 6.3; for alternative, more general situations dealing
with increasing cv(·) we refer to [KrR19, Sec. 8.3].

The function w = w(F, θ) defined in (2.16) satisfies w(F, 0) = 0 by (2.15). Moreover, we have
∂θw(F, θ) = −θ∂2

θφ(F, θ). Hence assumption (2.30c) implies, for all F ∈ GL+(Rd), the two-sided
estimates

ε̂θ ≤w(F, θ) ≤ Kθ for all θ ≥ 0.

ε̂|θ1−θ2| ≤ |w(F, θ1)−w(F, θ2)| ≤ K|θ1−θ2| for all θ1, θ2 ≥ 0.
(2.31)

The assumptions (2.30b,c) make the thermomechanical coupling through φ rather weak in order to
allow for a simple handling of the mechanical part independently of the temperature. These restrictive
assumptions are needed for our specific and simple way of approximation method rather than with the
problem itself. E.g. the assumption in (2.30b) is used to facilitate the estimate (4.12), which allows us to
control the difference between

∫
Ω

(∇yk, θ) dx and
∫
Ω

(∇yk−1, θ) dx in terms ofM(yk),M(yk−1),
and ‖∇yk−∇yk−1‖2

L2 . Moreover, after having derived uniform bounds on |∇yk| it will be exploited
to show that the thermo-coupling stress ∂Fφ is bounded. Finally, (2.30d,h) makes the stored energy
finite at time t = 0.

It will be important that ∂Fφ(F, θ) vanishes for θ = 0 (which follows from (2.15)), so that temperature
stays non-negative if θ0 ≥ 0 and θ[ ≥ 0, as assumed.

We now state our main existence results, which will be proved in the following Sections 4 to 6. The
method will be constructive, avoiding non-constructive Schauder fixed-point arguments, however some
non-constructive attributes such as selections of converging subsequences will remain. More specif-
ically, the proof is obtained by first making the a priori estimate for time-discretized solutions in, see
Proposition 4.2, and then deriving an existence result for time-continuous solutions of an ε-regularized
problem, see Proposition 5.1. Finally, Proposition 6.4 provides convergence for ε→ 0.
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Theorem 2.2 (Existence of energy-conserving weak solutions). Assume that the conditions (2.30)
hold. The original initial-boundary-value problem (2.13)–(2.14)–(2.26) with K from (2.24) possesses
at least one weak solution (y, θ) in the sense of Definition 2.1. In addition, these solutions satisfy
∇θ ∈ Lr(Q;Rd) for all 1 ≤ r < (d+2)/(d+1), the mechanical energy balance (2.19), and the total
energy balance (2.21).

As mentioned in the introduction, a lot of publications are devoted to the simpler isothermal viscoelas-
ticity at largestrain, yet, in the multi-dimensional case, they do not satisfy all the necessary physical
requirements. It is therefore worthwhile to present a version of our existence result by restricting it to
this simpler case, for which a lot of assumptions are irrelevant or simplify. In particular, (2.15) simpli-
fies as ψ(F, θ) = ϕ(F ). Of course, our theory only works because we are using a non-degenerate
second-grade material, where H(y) :=

∫
Ω

H (∇2y) dx generates enough regularity to handle the
geometric and physical nonlinearities. To the best of the authors knowledge, even the following result
for isothermal viscoelasticity is new.

A similar regularization approach to isothermal large-strain viscoelasticity was considered in [FrK18],
where the H(y) is multiplied with a small parameter that vanishes slower than the loading. Hence,
the authors are able to show that their solutions are sufficiently close to the identity which allows them
to exploit a simpler Korn’s inequality obtained by a perturbation argument. Hence, to the best of the
author’s knowledge the following result is the first that allows for truly largestrains.

Corollary 2.3 (Viscoelasticity at constant temperature). Let ϕ satisfy (2.30a), and let (2.30d-e,g-h)
be satisfied with ζ̂ = ζ̂(C,

.
C) and with ψ = ϕ. Then, the initial-boundary-value problem (2.13a)–

(2.14a)–(2.26) (with θ ignored) possesses at least one weak solution y in the sense that the integral

identity (2.27a) holds. In addition, the mechanical energy balance (2.20) holds with ξ = ξ(F,
.
F ) and

without the last term involving ∂Fφ.

Before going into the proof of our main result, we show that our conditions are general enough for a
series of nontrivial applications:

Example 2.4 (Classical thermomechanical coupling). The classical example of a free energy in ther-
momechanical coupling is given in the form

ψ(F, θ) = ϕ(F )− a(θ)ϕ1(F ) + cθ(1− log θ), (2.32)

i.e. φ(F, θ) involves a term in the product form −a(θ)ϕ1(F ). For the purely mechanical part we may
take the polyconvex energy ϕ(F ) = c1|F |s + c2/(detF )q for detF > 0 and∞ otherwise. For the
thermomechanical coupling we obtain cv(F, θ) = −θ∂2

θθψ(F, θ) = c + a′′(θ)ϕ1(F ), thus to have
positivity of the heat capacity cv, we assume a′′(θ) ≥ 0 and ϕ1(F ) ≥ 0. Moreover, we have

w = w(F, θ) = c θ +
(
θa′(θ)−a(θ)

)
ϕ1(F ) and ∂Fφ(F, θ) = a(θ)ϕ′1(F )..

Thus, we see that all assumptions in (2.30) can easily be satisfied, e.g. by choosing a(θ) = (1+θ)−α

with α > 0, which is smooth bounded and convex, and taking any φ1 ∈ C2
c (Rd×d).

Example 2.5 (Phase transformation in shape-memory alloys). An interesting example of a free energy
ψ occurs in modeling of austenite-martensite transformation in so-called shape-memory alloys:

ψ(F, θ) = (1−a(θ))ϕ
A
(F ) + a(θ)ϕ

M
(F ) + ψ0(θ).

cf. e.g. [Rou04] and references therein. Here a denotes the volume fraction of the austenite versus
martensite which is supposed to depend only on temperature. Of course, this is only a rather simplified

DOI 10.20347/WIAS.PREPRINT.2584 Berlin 2019



A. Mielke, T. Roubíček 12

model. For, ψ0(θ) = cθ(1− log θ) it complies with the ansatz (2.32) with ϕ(F ) = ϕ
A
(F ) and

ϕ1(F ) = ϕ
M

(F )−ϕ
A
(F ). The heat capacity then reads as

cv(F, θ) = θa′′(θ)[ϕ
A
−ϕ

M
](F )− θψ′′0(θ).

To ensure its positivity, ψ0 is to be strictly concave in such a way that ψ′′0(θ) ≤ K/θ and then
inf(F,θ) θa

′′(θ)[ϕ
A
−ϕ

M
](F ) +K > 0 is to (and can) be ensured by suitable modeling assumptions.

Example 2.6 (Thermal expansion). Multiplicative decomposition F = FelFth with the “thermal strain”
Fth = I/µ(θ) and the elastic strain Fel which enters the elastic part of the stored energy ϕ. This
leads to

ψ(F, θ) = β(θ)ϕ(Fel) + φ(θ) = β(θ)ϕ
(
µ(θ)F

)
− φ(θ). (2.33)

Unfortunately, (2.33) is inconsistent with the ansatz (2.15) because the contribution ϕ which has been
important for our analysis due to uniform coercivity, cannot be identified in (2.33).

3 A few auxiliary results

In this subsection we provide a series of auxiliary results that are crucial to tackle the difficulties aris-
ing from large-strain theory. First we show how the theory developed by Healey and Krömer [HeK09]
which allows us to show that a bound for the elastic energyM(y, θ) provides lower bounds on the
det∇y. This can then be used to establish the validity of the Euler-Lagrange equations and use-
ful λ-convexity result, which is needed for obtaining optimal energy estimates. Second we provide
a version of Korn’s inequality from Pompe [Pom03] that allows us to obtain dissipation estimates
via D(y,

.
y, θ) ≥ c0‖

.
y‖2

H1(Ω). Finally, in Section 3.3 we provide abstract chain rules as derived
in [MRS13, Sec. 2.2] that allows us to derive energy balances like (2.20) from the corresponding weak
equations.

3.1 Local invertibility and Euler-Lagrange equations

A crucial point in large-strain theory is the blow-up of the energy density ψ(F, θ) for detF ↘ 0.
Thus, it is desirable to find a suitable positive lower bound for det∇y(t, x). The following theorem is
an adaptation of the result in [HeK09, Thm. 3.1].

Theorem 3.1 (Positivity of determinant). Assume that the functional M : W 2,p(Ω;Rd) → R∞
satisfies the assumption (2.30a) and (2.30d). Then, for each CM > 0 there exists a CHK > 0 such
that all y ∈ Yid withM(y) ≤ CM satisfy

‖y‖W 2,p ≤ CHK, ‖y‖C1,1−d/p ≤ CHK, det∇y(x) ≥ 1

CHK

, ‖(∇y)−1‖C1−d/p ≤ CHK. (3.1)

Proof. We give the full proof, since our mixed boundary conditions are not covered in [HeK09]. From
M(y) ≤ CM and the coercivities of ϕ and H we obtain det∇y ≥ 0 a.e. in Ω and the a priori
bounds

‖∇y‖Ls + ‖
(

det(∇y)
)−1‖Lq + ‖∇2y‖Lp ≤ C

(1)
M .

Together with the Dirichlet boundary conditions inYid we obtain an a priori bound for y inW 2,p(Ω;Rd)
and hence also in C1,λ(Ω;Rd), where λ = 1− d/p > 0. This proves the first two assertions.
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In particular, the function δ : x 7→ det(∇y(x)) is Hölder continuous as well with ‖δ‖Cα ≤ C
(2)
M .

Since Ω is a bounded Lipschitz domain, there exist a radius r∗ > 0 and a constant α∗ > 0 such that
for all x ∈ Ω the setsBr∗(x)∩Ω contains an interior coneCx =

{
x+z

∣∣0 < |z| < r∗,
1
|z|z ∈ A(x)

}
where the set A(x) ⊂ Sd−1 of cone directions has a surface measure

∫
A(x)

1 dS ≥ α∗. Thus, using
the Hölder continuity

δ(y) ≤ δ(x) + C
(2)
M |x−y|

λ for all x, y ∈ Ω,
we can estimate as follows:(

C
(1)
M

)q ≥ ∫
Ω

1

δ(y)q
dy ≥

∫
Ω∩Br∗ (x)

1(
δ(x) + C

(2)
M |x−y|α

)q dy

≥
∫
ω∈A(x)

∫ r∗

r=0

rd−1 dr(
δ(x) + C

(2)
M rα

)q dω ≥ α∗
2q

∫ r∗

r=0

rd−1 dr

max{δ(x)q, (C
(2)
M rα)q}

≥ c
(3)
M min{δ(x)−q, δ(x)−(q−d/λ)} =

c
(3)
M

max{δ(x)q, δ(x)q−d/λ}
,

where in the last estimate we crucially used the assumption q > pd/(p−d) which implies λq > d.
Since in the last expression both exponents of δ(x) are positive, we obtain the explicit lower bound

det∇y(x) = δ(x) ≥ min
{(
c

(3)
M

)1/q
/C

(1)
M ,
(
c

(3)
M /(C

(1)
M )q

)λ/(λq−d)
}
,

which gives the third assertion in (3.1).

The last assertion follows via the implicit function theorem.

The most important part of the above result is that the determinant of ∇y is bounded away from 0.
Hence, the function f 7→ ϕ(F ), which is blows up for detF ↘ 0, is evaluated only in a compact
subset of GL+(d) ⊂ Rd×d such that ∂Fφ and ∂2ϕ exist. Again following [HeK09, Cor. 3.3] we obtain
the Gâteaux differentiability ofM and as well as a useful Λ-semiconvexity result.

Proposition 3.2 (Gâteaux derivative and Λ-semiconvexity). Assume that M satisfies (2.30a) and
(2.30d). Then, in each point y ∈ Yid with M(y) < ∞ the Gâteaux derivative in all directions
h ∈ Y0 :=

{
v ∈ W 2,p(Ω) ; v|ΓD

}
exists and has the form

DM(y)[h] =

∫
Ω

(
DH (∇2y)

...∇2h+ ∂Fϕ(∇y) : ∇h
)

dx (3.2)

Moreover, for eachCM > 0 there exists Λ(CM) > 0 such that for all y(1), y(2) ∈ Yid withM(y(j)) ≤
CM and ‖∇y(1) −∇y(2)‖L∞ ≤ 1/CG we have CG convexity

M(y(2)) ≥M(y(1)) + DM(y(1))[y(2)−y(1)]− Λ(CM)‖∇y(2)−∇y(1)‖2
L2 . (3.3)

Proof. We decomposeM = H+ Φel, see (2.18b). The differentiability of the convex functional y 7→
H(y) on W 2,p(Ω;Rd) is standard and follows from (2.30d). For treating Φel we use the embedding
W 2,p(Ω) ⊂ C1,λ(Ω) and exploit the result det∇y(x) ≥ 1/CHK from Theorem 3.1. For all h ∈
W 2,p
ΓD

(Ω;Rd) we find a t∗ > 0 such that det
(
∇(y+th)(x)

)
> 1/(2CHK) for all t ∈ [−t∗, t∗] and

all x ∈ Ω. Hence,

DΦel(y)[h] = lim
t→0

1

t

(
Φel(y+th)− Φel(y)

)
= lim

t→0

∫
Ω

1

t

(
ϕ(∇y+t∇h)− ϕ(∇y)

)
dx,

and the limit passage is trivial as the convergence in the integrand is uniform.

DOI 10.20347/WIAS.PREPRINT.2584 Berlin 2019



A. Mielke, T. Roubíček 14

To derive (3.3) that the convexity of H implies

H(y(2)) ≥ H(y(1)) +

∫
Ω

DH (∇2y(1))
...
(
∇2y(2) −∇2y(1)

)
dx.

To treat the functional Φel we apply Theorem 3.1 to y(1) and y(2), which implies the pointwise bounds

|∇y(j)(x)| ≤ CHK and det∇y(j)(x) ≥ 1/CHK.

Clearly there is a δ > 0 such that all

∀F1, F2 ∈Rd×d ∀ s ∈ [0, 1] :

|F1|, |F2| ≤ CHK,
detF1, detF2 ≥ 1/CHK

}
=⇒ det

(
(1−s)F1 + sF2

)
≥ 1/(2CHK).

This we denote by −Λ∗ the minimum of smallest eigenvalue of of the matrices ∂2
Fϕ(F ) where F ∈

Rd×d runs through the compact set given by |F | ≤ CHK and detF ≥ 1/(2CHK). Hence, assuming
‖∇y(2)−∇y(2)‖L∞ ≤ δ we find

Φel(y
(2))− Φel(y

(1))−DΦel(y
(1))[y(2)−y(1)]

=

∫
Ω

(
ϕ(∇y(2))− ϕ(∇y(1))− ∂ϕ(y(1)) : (∇y(2)−∇y(1))

)
dx

=

∫
Ω

1

2

∫ 1

s=0

∂2
Fϕ
(
(1−s)∇y(1)+s∇y(2)

)[
∇y(2)−∇y(1),∇y(2)−∇y(1)

]
ds dx

≥ −Λ∗
2

∫
Ω

|∇y(2)−∇y(1)|2 dx.

This establishes the result with Λ(CM) := max{CCK, 1/δ,Λ∗/2}.

3.2 A generalized Korn’s inequality

The following result will be crucial to show that the nonlinear viscosity depending on F = ∇y really
controls the H1 norm of of the rate

.
y. It relies on Neff’s generalization [Nef02] of the Korn inequality,

in the essential improvement obtained by Pompe [Pom03].

Theorem 3.3 (Generalized Korn’s inequality). For a fixed λ ∈ ]0, 1[ and positive constants K > 1
define the set

FK :=
{
F ∈ Cλ(Ω;Rd×d) ; ‖F‖Cλ ≤ K, min

x∈Ω
detF (x) ≥ 1/K

}
.

Then, for all K > 1 there exists a constant cK > 0 such that for all F ∈ FK we have

∀ v ∈ H1(Ω;Rd) with v|ΓD = 0 :

∫
Ω

∣∣F>∇v+(∇v)>F
∣∣2 dx ≥ cK‖v‖2

H1 . (3.4)

Proof. In [Pom03, Thm. 2.3] it is shown that (3.4) holds for any given F ∈ FK . Let us denote by
c(F ) > 0 the supremum of all possible such constants for the givenF . By a perturbation argument it is
easy to see that the mapping F 7→ c(F ) is continuous with respect to the L∞ norm in C0(Ω;Rd×d).
Since FK is a compact subset of C0(Ω;Rd×d) the infimum of c on FK is attained at some F∗ ∈ FK
by Weierstraß’ extremum principle. Because of c(F ) ≥ c(F∗), we conclude that (3.4) holds with
cK = c(F∗).
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We emphasize that estimate (3.4) is not valid if F is not continuous, see [Pom03, Thm. 4.2]. This
shows that without the in W 2,p is crucial to control the rate of the strain ∇ .

y, which is necessary to
handle the thermomechanical coupling. The following corollary combines Theorems 3.1 and 3.3, by
using the compact embedding W 2,p(Ω;Rd) ⊂ C1,λ(Ω;Rd).

Corollary 3.4 (Uniform generalized Korn’s inequality on sublevels). Given any CM > 0 there exists a
cK > 0 such that for all y ∈ Yid withM(y) ≤ CM we have the generalized Korn inequality

∀ v ∈ H1(Ω;Rd) with v|ΓD = 0 :

∫
Ω

∣∣(∇y)>∇v+(∇v)>∇y
∣∣2 dx ≥ cK‖v‖2

H1 . (3.5)

3.3 Chain rules for energy functionals

Abstract chain rules for energy functionals J : X → R∞ := R∪{∞} on a Banach space con-
cern the question under what conditions for an absolutely continuous curve z : [0, T ] → X the
composition t 7→ J (z(t)) is absolutely continuous and satisfies d

dt
J (z(t)) = 〈Ξ(t),

.
z(t)〉 for

Ξ ∈ ∂J (z(t)), where ∂ denotes a suitable subdifferential. In particular, this implies

J (z(t1)) = J (z(t0)) +

∫ t1

t0

〈Ξ(t),
.
z(t)〉 dt for 0 ≤ t0 < t1 ≤ T.

The case that X is a Hilbert space and J is convex and lower semicontinuous goes back to [Bré73,
Lem. 3.3], see also [Bar10, Lemma 4.4]:

Proposition 3.5 (Chain rule for convex functionals in a Hilbert space). Let X be a Hilbert space
and J : X → R∞ := R∪{∞} a lower semicontinuous and convex functionals. If the functions
z : [0, T ]→ X and Ξ : [0, T ]→ X∗ satisfy

z ∈ H1([0, T ];X), Ξ ∈ L2([0, T ];X∗), and Ξ(t) ∈ ∂J (z(t)) a.e. in [0, T ],

where ∂J denotes the convex subdifferential, then

t 7→ J (z(t)) lies in W 1,1(0, T ) and
d

dt
J (z(t)) = 〈Ξ(t),

.
z(t)〉 a.e. in [0, T ].

A first generalization to Banach spaces X with separable dual X∗ is given in [Vis96, Prop.XI.4.11].
We provide a slight generalization of the results in [MRS13, Sec. 2.2] that work for arbitrary reflexive
Banach spaces and include also certain nonconvex functionals. The functional J is called locally
semiconvex, if for all z with J (z) < ∞ there exists a Λ = Λ̂(z) ≥ 0 and a balls Br(z) = { ẑ ∈
X ; ‖ẑ−z‖X ≤ r } with r = r̂(z) the restriction J |Br(z) is Λ-semiconvex, viz.

∀ z0, z1∈Br(z) ∀ s∈ [0, 1] : J
(
(1−s)z0+sz1

)
≤ (1−s)J (z0)+sJ (z1)+

Λ

2
(s−s2)‖z1−z0‖2

X .

By ∂J we denote the Fréchet subdifferential which is defined by

∂J (z) =
{
Ξ ∈ X∗ ; J (ẑ) ≥ J (z) + 〈Ξ, ẑ−z〉 − 2Λ̂(z)‖ẑ−z‖2

X for ẑ ∈ Br̂(z)(z)
}
.

The next results follows by a simple adaptation of the proof of [MRS13, Prop. 2,4].
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Proposition 3.6 (Chain rule for locally semiconvex functionals). Consider a separable reflexive Ba-
nach space, a q ∈ ]1,∞[ with q′ = q/(q−1), and J : X → R∞ a lower semicontinuous and locally
semiconvex functional. If the functions z ∈ W 1,q([0, T ];X) and Ξ ∈ Lq′([0, T ];X∗) satisfy

sup
{
J (z(t)) ; t ∈ [0, T ]

}
<∞ and Ξ(t) ∈ ∂J (z(t)) a.e. in [0, T ],

then

t 7→ J (z(t)) lies in W 1,1(0, T ) and
d

dt
J (z(t)) = 〈Ξ(t),

.
z(t)〉 a.e. in [0, T ].

Proof. The result follows by the fact that the image of z lies in domJ = { z ∈ X ; J (z) <∞} and
is compact in Z . Hence there is one Λ∗ < ∞ and one r∗ > 0 such that provides Λ∗ semiconvexity
on Br∗(z(t)) for all t ∈ [0, T ]. Hence, the results in the proof of [MRS13, Prop. 2,4] can be applied
when choosing ωR(ẑ, z) = Λ∗‖ẑ−z‖X and using that fact that all needed arguments are local and
use only information of J in a neighborhood of the image of z.

4 Time discretization of a regularized problem

Before we construct solution by a suitable time-discretization, we introduce regularizations in two
points. Firstly, we add a linear viscous damping which allows us to obtain simple a priori bounds
for the strain rate ∇ .

y, because in the first steps of the construction we are not yet in the position to
exploiting the generalized Korn inequality of Theorem 3.3. Secondly, we modify the creation of heat
through the viscous damping, which in the physically correct form leads to an L1 source term which
can only be handled in the first steps of the construction either.

Hence, introducing the regularization parameter ε > 0 we consider the coupled system

div
(
σvi(∇y,∇

.
y, θ) + ε∇.

y + σel(∇y, θ)− div hel(∇2y)
)

+ g = 0, (4.1a)

.
w − div(K(∇y, θ)∇θ) = ξreg

ε (∇y,∇.
y, θ) + ∂Fφ(∇y, θ):∇.

y (4.1b)

w = w(∇y, θ), (4.1c)

with ξreg
ε (F,

.
F , θ) :=

ξ(F,
.
F , θ)

1+ε ξ(F,
.
F , θ)

,

where w is from (2.16) and K from (2.24). This system is defined on Q and is complemented with
regularized boundary and initial conditions(

σvi(∇y,∇
.
y, θ)+ε∇.

y+σel(∇y, θ)
)
~n− divS

(
hel(∇2y)~n

)
= f on ΣN (4.2a)

y = identity on ΣD, hel(∇2y) : (~n⊗~n) = 0 on Σ, (4.2b)

K(∇y, θ)∇θ · ~n+ κθ = κθ[,ε with θ[,ε :=
θ[

1+εθ[
, on Σ, (4.2c)

y(0, ·) = y0 and θ(0, ·) = θ0,ε :=
θ0

1+εθ0

on Ω. (4.2d)

This system is solved by time discretization. For this we consider a constant time step τ > 0 such that
T/τ is an integer, leading to an equidistant partition of the considered time interval [0, T ]. (Let us em-
phasize, however, that a varying time-step and non-equidistant partitions can be easily implemented
because we will always consider only first-order time differences and one-step formulas.)
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For time discretization of the regularized system (4.1)–(4.2) we use the difference notation

δτf
k =

1

τ

(
fk − fk−1

)
and define a staggered scheme, where first yk−1

ετ is updated to ykετ while keeping θk−1
ετ fixed, and then

θ is updated implicitly by updating wk−1
ετ to wkετ = w(∇ykετ , θkετ ). More precisely, in the domainΩ we

ask for

− div

(
σvi

(
∇yk−1

ετ , δτ∇ykετ , θk−1
ετ

)
+ εδτ∇yk

+ σel(∇ykετ , θk−1
ετ )− div hel(∇2ykετ )

)
= gkτ :=

1

τ

∫ kτ

(k−1)τ

g(t) dt, (4.3a)

δτw
k
ετ − div(K(∇yk−1

ετ , θk−1
ετ )∇θkετ ) = ξreg

ε (∇yk−1
ετ ,∇δτykετ , θk−1

ετ )

+ ∂Fφ(∇ykετ , θkετ ):δτ∇ykετ (4.3b)

together with the discrete variant of the boundary conditions (4.2) as(
σvi

(
∇yk−1

ετ , δτ∇ykετ , θk−1
ετ

)
+ εδτ∇ykετ + σel(∇ykετ , θk−1

ετ )
)
~n

− divS

(
hel(∇2ykετ )~n

)
= fkτ :=

1

τ

∫ kτ

(k−1)τ

f(t) dt on ΓN, (4.4a)

ykετ = identity on ΓD, hel(∇2ykετ ) : (~n⊗~n) = 0 on Γ, (4.4b)

K(∇yk−1
ετ , θk−1

ετ )∇θkετ · ~n+ κθkετ = κθk[,ε,τ :=
κ

τ

∫ kτ

(k−1)τ

θ[,ε(t) dt on Γ. (4.4c)

The main advantage is that the boundary-value problem (4.3a), (4.4a), and (4.4b) for ykετ are the Euler-
Lagrange equation of a functional, so that solutions can be obtained by solving the global minimization
problem

ykετ ∈ ArgMin
{ 1

τ
R(yk−1

ετ , y−yk−1
ετ , θk−1

ετ ) +
ε

2τ
‖∇y−∇yk−1

ετ ‖2
L2

+ Ψ(y, θk−1
ετ )− 〈`kτ , y〉

∣∣∣ y ∈ Yid

}
, (4.5)

where 〈`kτ , y〉 =
∫
Ω
gkτ ·y dx +

∫
ΓN
fkτ ·y dS. Clearly, the Euler-Lagrange equation may have more

solutions, however for deriving suitable a priori bounds, we will exploit the minimizing properties.

Similarly, the boundary value problem (4.3b) and (4.4c) for θkετ , where yk−1
ετ and ykετ are given, has

a variational structure. For this we define the functions φC(F, θ) :=
∫ θ

0
φ(F, θ̂) dθ̂ and W (F, θ) =

2φC(F, θ)− θφ(F, θ) to obtain the relation

∂θW (F, θ) = w(F, θ) = φ(F, θ)− θ∂θφ(F, θ) and ∂θ∂FφC(F, θ) = ∂Fφ(F, θ). (4.6)

With ∂2
θW (F, θ) = ∂θw(F, θ) = −θ∂2

θφ(F, θ) ≥ ε̂ we see that W (F, ·) is uniformly convex
by assumption (2.30c). Thus, we can obtain solutions θkετ of (4.3b) and (4.4c) via the minimization
problem

θkετ ∈ ArgMin
{∫

Ω

(1

τ

(
W (∇ykετ , θ)− wk−1

ετ θ
)

+
1

2
∇θ·K(∇yk−1

ετ , θk−1
ετ )∇θ

)
dx

+

∫
Ω

(
−ξreg

ε (∇yk−1
ετ , δτy

k
ε , θ

k−1
ετ )θ − ∂FφC(∇ykετ , θ) : δτ∇ykετ

)
dx

+

∫
Γ

κ

2

(
θ−θk[,ε,τ

)2
dS
∣∣∣ θ ∈ H1(Ω), θ ≥ 0

}
. (4.7)
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We emphasize that this staggered scheme is constructed in a very specific way by taking θ = θk−1
ετ

from the previous time step in the mechanics problem for ykετ , see (4.5). For the construction of θ = θkετ
from the heat equation we have to use sometimes the explicit (backward) approximations θk−1

ετ and
sometimes the implicit (forward) approximation θkετ . Clearly, the former is simpler and it is used in
the heat conduction tensor K(∇yk−1

ετ , θk−1
ετ ) and in the heat production ξreg

ε . It is tempting to use the
explicit choice θk−1

ετ also in the thermo-mechanical coupling term ∂Fφ(∇ykετ , θ):∇δτykε (last term
in (4.3b)) as it would simplify the energy balance, see Remark 6.1. However, as this term does not
have a sign, we would not be able to guarantee positivity of θkετ . Thus we are forced to use the
more involved implicit term θ 7→ ∂FφC(∇ykε , θ):∇δτykε in (4.7) instead of the simpler, linear choice
θ 7→ θ∂Fφ(∇ykετ , θk−1

ετ ):∇δτykε . This choice may introduce a nonconvexity, so that θkετ may not be
unique.

The following result states that we can obtain solutions (ykετ , θ
k
ετ ) of (4.3) and (4.4) by solving the

minimization problems (4.5) and (4.7), alternatingly. For notational simplicity we have written the min-
imization problem (4.7) for θ with the constraint θ ≥ 0, however, for establishing the Euler-Lagrange
(4.3b) and (4.4c) we need to show that non-negativity of θ comes even without imposing the con-
straint. This will be achieved by minimization over θ ∈ H1(Ω) after extending all functionals suitably
for θ < 0.

Proposition 4.1 (Time-discretized solutions via minimization). Let our assumptions (2.30) be satisfied.
For N ∈ N set τ = T/N and (y0

ετ , θ
0
ετ ) = (y0, θ0,ε) as in (4.2d). Then, for k = 1, . . . , N we can

iteratively find (ykετ , θ
k
ετ ) ∈ Yid×H1

+(Ω) by solving first the incremental global minimization problem
(4.5) and then (4.7). The global minimizers satisfy the time-discretized problem (4.3).

Proof. Mechanical step: We first show that the minimization problem in (4.5) has a solution for any
θk−1
ετ ∈ H1(Ω) with θk−1

ετ ≥ 0. By assumption we have φ(F, θ) ≥ 0 which implies Ψ(y, θ) ≥
M(y). Thus, the functional in the minimization problem is coercive on Yid ⊂ W 2,p(Ω;Rd). By
lower semicontinuity in W 2,p(Ω;Rd) we obtain the desired minimizer ykετ ∈ Yid withM(ykετ ) <∞.
Hence, Theorem 3.1 shows that the minimizer satisfies det∇y(x) ≥ δ > 0. As in Proposition 3.2
we conclude that ykετ satisfies the Euler-Lagrange equation∫

Ω

(
∂ .
F
ζ(∇yk−1

ετ ,∇δτykε , θk−1
ετ ) : ∇z + ε∇δτykε : ∇z + ∂Fψ(∇ykε , θk−1

ετ ) : ∇z
)

dx

+ DH(ykε )[z]− 〈`kτ , z〉 for all z ∈ Y0.

But this gives exactly (4.3a), (4.4a), and (4.4b).

Energy step: We now assume that θk−1
ετ ∈ H1(Ω) and yk−1

ετ , ykετ ∈ Yid are given with θk−1
ετ ≥ 0 and

M(yk−1
ετ ),M(ykετ ) < ∞. With this, we show that a variant of the minimization problem (4.7) has a

minimizer θkετ . For this we extend the function φ, which satisfies φ(F, 0) = 0 by assumption (2.15),
continuously by φ(F, θ) = 0 whenever θ < 0. As the functions w, φC, and W are defined through
φ they all extend continuously differentiable for θ < 0 to the constant value 0. Thus, the integrands
in (4.7) are defined for all θ ∈ R and we can minimize over θ ∈ H1(Ω), i.e. without the constraint
θ ≥ 0.

Clearly, the extended functional is lower weakly semicontinuous on H1(Ω) because of K ≥ 0. To
show coercivity of the functional, we use thatM(yk−1

ετ ) <∞ implies∇yk−1
ετ ∈ L∞ and det∇yk−1

ετ (x) ≥
δ > 0. Hence, K given in (2.24) satisfies ∇θ · K(∇yk−1

ετ , θk−1
ετ )∇θ ≥ α∗|∇θ|2 for some α∗ > 0.

Together with the boundary integral, where κ > 0 due to (2.30g), we have two terms that generate a
lower bound c0‖θ‖2

H1(Ω) − C .
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For the remaining term we observe W (F, θ) ≥ 0 by construction, while 1
τ
wk−1
ετ and ξreg

ε are given
functions in L2(Ω). Finally, the last bulk term involving ∂FφC we use (2.30b) giving |∂Fφ(F, θ)| ≤
K(1 + |F |s/2) and hence, because of∇ykετ ∈ L∞(Ω;Rd×d), we have

∣∣∂FφC(∇ykετ , θ)
∣∣ =

∣∣∣ ∫ θ

0

∂Fφ(∇ykετ , θ̂) dθ̂
∣∣∣ ≤ C∗|θ|.

Together with δτ∇ykε ∈ L2(Ω;Rd×d) we have show that all remaining terms can be estimated from
below by −C‖θ‖L2(Ω).

In summary, we conclude that the extended functional in (4.7) is weakly lower semicontinuous and
and coercive. Hence, a global minimizers θ∗ exist and moreover these minimizers solve the associated
Euler-Lagrange equation as ∂θW (F, θ) = w(F, θ) and ∂θφC(F, θ) = φ(F, θ) depend continuously
on θ.

To show that all global minimizers are non-negative we test the Euler-Lagrange equation by the nega-
tive part θ−∗ := min{θ∗, 0} of θ∗, which is still an H1 function:

0 =

∫
Ω

(1

τ
w(∇ykετ , θ∗)θ−∗ −

1

τ
wk−1
ετ θ−∗ +∇θ∗·K(∇yk−1

ετ , θk−1
ετ )∇θ−∗

)
dx

+

∫
Ω

(
−ξreg

ε (∇yk−1
ετ , δτy

k
ε , θ

k−1
ετ )θ−∗ − θ−∗ ∂Fφ(∇ykετ , θ∗) : δτ∇ykετ

)
dx

+

∫
Γ

(
κθ∗θ

−
∗ − θk[,ε,τθ−∗

)
dS

≥
∫
Ω

(
0 + p2 + α∗|∇θ−∗ |2 + p4 + 0

)
dx+

∫
Γ

(
κ(θ−∗ )2 + p7

)
dS ≥ c0‖θ−∗ ‖2

H1(Ω).

In the first estimate we have used wk−1
ετ = w(∇yk−1

ετ , θk−1
ετ ) ≥ ε̂θk−1

ετ ≥ 0, ξreg
ε ≥ 0, and θk[,ε,τ ≥ 0

which gives the non-negativity of p2, p4, and p7, while the first and fifth term vanish identically since
for θ∗ > 0 we have θ−∗ = 0 while for θ∗ < 0 we have w(F, θ∗) = 0 and ∂Fφ(F, θ∗) = 0 (here we
crucially use the implicit structure). Thus, we conclude θ−∗ = 0 which is equivalent to θ∗ ≥ 0.

Thus, choosing θkετ = θ∗ for any global minimizer of the extended functional we see that it is also a
global minimizer of (4.7) and that the Euler-Lagrange equations hold.

Considering discrete approximations
(
ykετ
)
k=0,...,T/τ

, we introduce a notation for the piecewise-constant
and the piecewise affine interpolants defined respectively by

yετ (t) = ykετ , y
ετ

(t) = yk−1
ετ , and

yετ (t) =
t− (k−1)τ

τ
ykετ +

kτ − t
τ

yk−1
ετ

 for (k−1)τ < t < kτ,

y
ετ

(kτ) = yετ (kτ) = yετ (kτ) = ykετ for k = 0, 1, . . . , T/τ. (4.8)

The notations θετ , θετ , and θετ or wετ have analogous meanings. However, with gτ (t) we refer to
the locally averaged loadings gτ (t) = gkτ for t ∈ ]kτ−τ, kτ ] (cf. (4.3a)), and similarly for f τ , `τ and
θ[,ε,τ .

The following result provides the basic energy estimates where we will crucially use the carefully
chosen semi-implicit scheme defined through the staggered minimization problems (4.5) and (4.7).
Here also we will essentially rely regularizing viscous term ε∆

.
y, asR cannot be used because of the

missing a priori bound for ykετ in W 2,p(Ω;Rd). Moreover, we will exploit the fact that we have global
minimizers in (4.5) rather than arbitrary solutions of the Euler-Lagrange equations (4.3a). This latter
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argument works because we have neglected inertial terms in the momentum balance (2.27a) and
hence in (4.3a). We refer to [KrR19] to cases where inertial effects are treated but in the isothermal
case.

Proposition 4.2 (First a-priori estimates). Let (2.30) be satisfied, then for all ε > 0 there exists a
Kε > 0 such that the following holds. For τ < 1/Kε the interpolants constructed from the discrete
solutions (ykετ , θ

k
ετ ) ∈ W 2,p(Ω;Rd) × H1(Ω), k = 1, ..., T/τ , obtained in Proposition 4.1 satisfy

the following estimates:∥∥yετ∥∥L∞(I;W 2,p(Ω;Rd))∩H1(I;H1(Ω;Rd))
≤ Kε, (4.9a)

det
(
∇yετ (t, x)

)
≥ 1/Kε a.e. on Q, (4.9b)∥∥θετ∥∥L2(I;H1(Ω))∩L∞(I;L2(Ω))

≤ Kε, (4.9c)∥∥wετ∥∥L2(I;H1(Ω))∩L∞(I;L2(Ω)∗)
≤ Kε, (4.9d)∥∥wετ∥∥C(I;L2(Ω))∩L2([τ,T ],H1(Ω))∩H1(I;H1(Ω)∗)

≤ Kε, (4.9e)∥∥θετ∥∥C(I;L2(Ω))∩L2([τ,T ],H1(Ω))∩H1(I;H1(Ω)∗)
≤ Kε, (4.9f)

We emphasize that we did not make any smoothness assumptions for θ0, hence the regularized initial
values θ0

ετ := θ0,ε and w0
ετ := w(∇y0, θ0,ε) are not smooth. This explains, why we have to use the

left-continuous interpolants in (4.9c) and (4.9d) and why in (4.9e) we have to exclude the interval [0, τ ]
in L2([τ, T ];H1(Ω)).

Proof. As ykετ is a global minimizer, we can insert y = yk−1
ετ as testfunction in (4.5) to obtain the

estimate (recall δτykε = 1
τ
(ykετ−yk−1

ετ ))

Ψ(ykετ , θ
k−1
ετ )− Ψ(yk−1

ετ , θk−1
ετ ) + τR(yk−1

ετ , δτy
k
ε , θ

k−1
ετ ) +

ετ

2
‖δτykε‖2

L2 ≤ τ〈`kτ , δτykε 〉. (4.10)

The proof will be divided into three steps.

Step 1: Uniform energy bound. Using the decomposition Ψ(y, θ) =M(y) + Φcpl(y, θ), see (2.18b),
we can write equivalently

M(ykετ )−M(yk−1
ετ ) + τR(yk−1

ετ , δτy
k
ε , θ

k−1
ετ ) +

ετ

2
‖∇δτykε‖2

L2

≤ τ〈`kτ , δτykε 〉+

∫
Ω

(
φ(∇yk−1

ετ , θk−1
ετ )− φ(∇ykετ , θk−1

ετ )
)

dx. (4.11)

To estimate the last term use the assumption (2.30b) on |∂Fφ(F, θ)| as follows

φ(F1, θ)− φ(F2, θ) ≤ K(1+|F1|+ |F2|)s/2 |F1−F2|

≤ K2

2ρ
(1+|F1|+ |F2|)s +

ρ

2
|F1−F2|2, (4.12)

where ρ > 0 is arbitrary. Choosing ρ = ε/(4τ) and Fj = ∇yk+j−2
ετ we can insert this into the

estimate (4.11). Moreover we can use 〈`kτ , δτykε 〉 ≤ ‖`kτ‖H−1‖δτykε‖H1 ≤ ‖`kτ‖H−1cP‖∇δτykε‖L2

as δτykε ∈ Y0 andR ≥ 0. This leads to

M(ykετ )−M(yk−1
ετ ) +

ετ

2
‖∇δτykε‖2

L2

≤ 2τc2
P

ε
‖`kτ‖2

H−1 +
ετ

8
‖∇δτykε‖2

L2 +
2τK2

ε

∫
Ω

(
1+|∇ykετ |+|∇yk−1

ετ |)s dx+
ετ

8
‖∇δτykε‖2

L2 .
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Using the coercivity assumption (2.30b) for φ the second-last term can be estimated byM again and
setting mk :=M(ykετ ) we obtain the recursive estimate

mk −mk−1 +
ετ

4
‖∇δτykε‖2

L2 ≤ τcε‖`kτ‖2
H−1 + τCε(|Ω|+mk+mk−1) (4.13)

with Cε = 2·3sK2/ε and cε = 2c2
P/ε . In a first step we neglect the last term on the left-hand side

and obtain (
1−τCε

)
mk ≤

(
1+τCε

)
mk−1 + cετ‖`kτ‖2

H−1 + τCε|Ω|.

We now restrict τ > 0 via τ < 1/(2Cε) by choosing Kε ≥ 2Cε, so we can iterate the above
estimate. With (2.30h) we have m0 := Ψ(y0, θ0) < ∞ and a simple induction yields the discrete
Gronwall-type estimate (with Qε = (1+τCε)/(1−τCε))

mk ≤ Qk
εm0 +

τ

1−τCε

k∑
j=1

Qk−j(cε‖`jτ‖2
H−1+Cε|Ω|

)
≤ Qk

(
m0 + 2cε

( k∑
j=1

τ‖`jτ‖2
H−1

)
+ kτ 2Cε|Ω|

)
≤ 4e2CεT

(
Ψ(y0, θ0) + 2cε

∫ T

0

‖`(s)‖2
H−1 ds+ 2TCε|Ω|

)
:= K̃ε. (4.14)

Using Theorem 3.1 we obtain the desired uniform upper bound in (4.9a) for the interpolant yετ : I =
[0, T ]→ Yid in L∞

(
I;W 2,p(Ω;Rd)

)
as well as the lower bound (4.9b) for the determinant.

Step 2: Dissipation bound. We return to (4.13) and add all estimates from k = 1 to Nτ := T/τ ∈ N
to obtain

ε

4

∫
Q

|∇.
yετ |2 dx dt =

ετ

4

Nτ∑
k=1

‖∇δτykε‖2
L2

≤ m0 −mNτ + τ
Nτ∑
k=1

(
cε‖`kτ‖2

H−1 + Cε(|Ω|+mk−1+mk)
)

≤ Ψ(y0, θ0) + cε‖`‖2
L2(I;H−1) + CεT (|Ω|+2K̃ε) =: K̂ε.

This provides the uniform bound for yετ in H1(I;H1(Ω;Rd)), and (4.9a) is established.

Step 3: Temperature bounds. Testing the Euler-Lagrange equations (4.3b) and (4.4c) by wkετ yields
the identity∫

Ω

(wkετ−wk−1
ετ

τ
wkετ +∇wkετ ·K(∇yk−1

ετ , θk−1
ετ )∇θkετ

)
dx+

∫
Γ

κθkετw
k
ετ dS

=

∫
Ω

hkετw
k
ετ dx+

∫
Γ

κθk[,ε,τw
k
ετ dS (4.15)

with hkετ := ξreg
ε (∇yk−1

ετ ,∇δτykε , θk−1
ετ ) + ∂Fφ(∇ykετ , θkετ ):∇δτykε .

Recalling cv(F, θ) = ∂θw(F, θ) we obtain the chain rule

∇wkετ = ∇w(∇ykετ , θkετ ) = ∂Fw(∇ykετ , θkετ ):∇2ykετ + cv(∇ykετ , θkετ )∇θkετ . (4.16)
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Moreover, we have the elementary estimate 1
τ
(wkετ−wk−1

ετ )wkετ ≤ 1
2τ

(
(wkετ )

2−(wk−1
ετ )2

)
, and θw =

θw(F, θ) ≥ 0 by the definition of w. Using additionally cv(F, θ) = −θ∂2
θφ(F, θ) ≥ ε̂ (see (2.30c),

the above identity (4.15) leads to∫
Ω

( 1

2τ
(wkετ )

2 − 1

2τ
(wk−1

ετ )2 + ε̂∇θkετ · Kkετ∇θkετ
)

dx

≤
∫
Ω

hkετw
k
ετ −∇θkετ · Kkετbkετ dx+

∫
Γ

κθk[,ε,τw
k
ετ dS. (4.17)

where Kkετ = K(∇yk−1
ετ , θk−1

ετ ) and bkετ := ∂Fw(∇ykετ , θkετ ):∇2ykετ .

Using uniform bounds for ∇yετ and det∇yετ from Step 1, the assumption (2.30f) on K, as well as
formula (2.24) we find a κε such that

|Kkετ | ≤ κε and a · Kkετa ≥
1

κε
|a|2 for all a ∈ Rd. (4.18)

Moreover, using ∂Fw = ∂Fφ−θ∂2
Fθφ the assumptions (2.30b) and (2.30c) together with the uniform

L∞ bound for∇yετ we find ‖∂Fw(∇ykετ , θkετ )‖L∞ ≤ Cε. Realizing also that we have∇2ykετ already
estimated in Lp(Ω;Rd×d×d) with p ≥ 2 we obtain ‖bkετ‖L2 ≤ Cε. For the right-hand side hkετ of
(4.15) we have

‖hετ‖L2 ≤ ‖ξreg
ε ‖L2 + ‖∂Fφ(∇ykετ , θkετ )‖L∞‖∇δτykε‖L2 ≤ Cε

(
1 + ‖δτykε‖H1

)
,

where we again used the L∞ bounds for ∇ykετ . Finally, by definition we have θ[,ε ∈ [0, 1/ε], and
(2.31) allows us to estimate w by θ, which yields the boundary estimate∣∣∣ ∫

Γ

θk[,ε,τw
k
ετ dS

∣∣∣ ≤ 1

ε

∫
Γ

K|θkετ | dS ≤ Cε‖θkετ‖H1 ≤ Cε

(
‖wkετ‖L2 + ‖∇θkετ‖L2

)
.

Based on the above estimates and introducing the abbreviations

γk := ‖wkετ‖L2 , Θk := ‖∇θkετ‖L2 , and νk := ‖δτykε‖H1

we can estimate the right-hand side in (4.17) via

RHS ≤ Cε(1+νk)γk + CεΘk + Cε(γk+Θk) ≤ cε

( 1

α
+ ν2

k + γ2
k + αΘ2

)
,

where α > 0 is arbitrary. Estimating the last term on the left-hand side in (4.17) from below by ε̂
κΘ2

k

we may choose α = ε̂/(2κcε). After multiplying (4.17) by 2τ we obtain

γ2
k − γ2

k−1 +
ε̂

2κ
Θ2
k ≤ τ ĉε

(
1 + ν2

k + γ2
k

)
. (4.19)

Arguing as in Steps 1 and 2 for (4.13) and using γ2
0 =

∫
Ω
w0
ετ dx ≤ K2

∫
Ω
θ2

0,ε dx ≤ K2|Ω|/ε2 <

∞ (cf. (4.2d)) the left-continuous interpolants θετ and wετ satisfy the a priori estimates

ε̂‖θετ‖L∞(I;L2(Ω)) ≤ ‖wετ‖L∞(I;L2(Ω)) = sup
k=0,...,Nτ

γk ≤ Kε and ‖∇θετ‖2
L2(Q) = τ

Nτ∑
k=1

Θ2
k ≤ Kε.

With θ ≤ w(F, θ)/ε̂ we immediately find (4.9c) for θετ . The estimate (4.9d) follows by using (4.16)
once again.
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The uniform estimate the piecewise affine interpolantwετ in the spacesC(I;L2(Ω))∩L2([τ, T ], H1(Ω))
follows from the previous estimates for wετ . Finally, we note that the time derivative interpolant wετ is
equal to δτw

k
ε on the intervals ](k−1)τ, kτ [. We now use the Euler-Lagrange equations (4.3b) and

(4.4c), which provides for δτwkε = 1
τ
(wkε−wk−1

ε ) the estimate

‖δτwkε‖(H1)∗ ≤ CKε ‖∇θkετ‖L2 + Cξ
ε + C∂Fφ

ε ‖δτykε‖H1 + Cκ
ε

(
‖θkετ‖H1 + |Γ |/ε

)
.

Squaring and summation over k = 1, . . . , Nτ gives the remaining uniform bound in (4.9e) for ∂twετ
in L2

(
I;H1(Ω)∗

)
.

Using (2.31) once again, we bound the increments δτθkε via the pointwise estimate

ε̂|δτθkε | =
ε̂

τ
|θkετ−θk−1

ετ | ≤
1

τ
|w(∇yk−1

ετ , θkετ )−w(∇yk−1
ετ , θk−1

ετ )|

≤ 1

τ
|wkετ−wk−1

ετ |+
1

τ
|w(∇ykετ , θkετ )−w(∇yk−1

ετ , θkετ )| ≤ |δτwkε |+ Cε|∇δτykε |.

Taking the H1(Ω)∗ norm we obtain ‖δτθkε‖H1(Ω)∗ ≤ Kε

(
‖δτwkε‖H1(Ω)∗ + ‖δτykε‖H1(Ω)

)
, such that

(4.9f) follows from (4.9e), (4.9a), and (4.9c).

This finishes the proof of Proposition 4.2.

5 The limit τ → 0 in the regularized problem

Using the above a priori estimates for the interpolants we will be able to extract convergent sub-
sequences. First we will observe that the three different types of interpolants have to converge to
the same limit. Next we want to pass to the limit in the discretized weak forms of the momentum
balance and the heat equation. While most terms can be handled by compactness arguments or
weak-convergence methods, there is one term that needs special attention namely the heat-source
term ξreg

ε that is quadratic in ∇ .
yε. Thus, it will be a crucial step to show strong convergence of

.
yετ

in L2(I;H1(Ω)), which can be done by passing to the limit in a suitable discretized version of the
mechanical energy balance (2.20). In this argument we will use the Λ-convexity derived in Proposition
3.2 to relate the mechanical energiesM(yk−1

ετ ) andM(ykετ ).

With the definition (4.8) for the three types of interpolants, we see that the following discretized version
(5.1) of the momentum balance and heat equations (4.1) and (4.2) holds for the discrete solutions
constructed in Proposition 4.1:

− div
(
σvi(∇yετ ,∇

.
yετ , θετ ) + ε∇.

yετ + σel(∇yετ , θετ )

− div hel(∇2yετ )
)

= gτ , (5.1a)
.
wετ− div

(
K(∇y

ετ
, θετ )∇θετ

)
= ξreg

ε (∇y
ετ
,∇.
yετ , θετ )+∂Fφ(∇yετ , θετ ):∇

.
yετ , (5.1b)

wετ = w(∇yετ , θετ ), (5.1c)

to hold on Q = [0, T ]×Ω, while the regularized boundary conditions (4.4) read(
σvi

(
∇y

ετ
,∇.
yετ , θετ

)
+ ε∇.

yετ + σel(∇yετ , θετ )
)
~n

− divS

(
hel(∇2yετ )~n

)
= f τ on ΣN, (5.2a)

yετ = identity on ΣD, hel(∇2yετ ):(~n⊗ ~n) = 0 on Σ, (5.2b)

K(∇y
ετ
, θετ )∇θετ · ~n+ κθετ = κθ[,ε,τ on Σ. (5.2c)
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Here it is essential that we have to use all three types of interpolants, e.g. yετ , yετ , and yετ . In

particular, we emphasize that t 7→ wετ (t) is the piecewise affine interpolant of {wkετ}k=0,...,Nτ , which
does not coincide with t 7→w(∇yετ (t), θετ (t)) except at the nodal points t = kτ .

Proposition 5.1 (Convergence for τ → 0). Let (2.30) hold, and let ε > 0 be fixed. Then, considering
a sequence of time steps τ → 0, there is a subsequence (not relabeled) and limit functions (yε, θε)
such that

yετ → yε weakly* in L∞(I;W 2,p(Ω;Rd)) ∩ H1(I;H1(Ω;Rd)), (5.3a)

θετ → θε weakly in L2(I;H1(Ω)) ∩ H1(I;H1(Ω)∗). (5.3b)

Moreover, any couple (yε, θε) obtained by this way is a weak solution to the regularized initial-
boundary-value problem (4.1)–(4.2).

Proof. The proof consists of five steps.

Step 1: Extraction of convergent subsequences. As ε > 0 is still fixed, we can exploit the a priori
estimates obtained in Proposition 4.2, namely (4.9a) and (4.9f). By Banach’s selection principle, we
choose a subsequence and some (yε, θε) such that (5.3) holds. By the Aubin-Lions theorem combined
with an interpolation, as p > d, we have also

∇yετ → ∇yε uniformly in L∞(Q;Rd×d), (5.4a)

θετ → θε strongly in Ls(Q) for all s ∈ [1,min{4, 2 + 4/d}[. (5.4b)

Indeed, for the first result we use the continuous embeddingW 1,p(Ω) ⊂ Cα(Ω) with α = 1−d/p ∈
]0, 1[ and thus ‖∇yετ‖Cα ≤ K0. Moreover, (4.9a) yields the Hölder estimate∥∥∇yετ (t1)−∇yετ (t2)

∥∥
L2(Ω;Rd)

≤ K1|t1 − t2|1/2 for all t1, t2 ∈ I. (5.5)

While the first part of (4.9a) yields just ‖∇yετ (t1)−∇yετ (t2)‖W 1,p(Ω;Rd) ≤ K0. By interpolation, we

find β ∈ ]0, α[ and λ ∈ ]0, 1[ such that we have the interpolation ‖ · ‖Cβ ≤ C‖ · ‖1−λ
Cα ‖ · ‖λL2) and

conclude ∥∥∇yετ (t1)−∇yετ (t2)
∥∥
Cβ(Ω̄;Rd)

≤ CK1−λ
0 Kλ

1 |t1 − t2|λ/2. (5.6)

Thus, the sequence {∇yετ} is uniformly bounded in Cγ(Q) for γ = min{β, λ/2}, and uniform
convergence follows by the Arzelà-Ascoli theorem.

The convergence (5.4b) follows from (5.3b) by the Aubin-Lions theorem when interpolated with the
estimate in L∞(I;L2(Ω)) which is contained implicitly in (5.3b).

Moreover, both convergences in (5.4) hold also for the piecewise constant interpolants because of the
estimates ‖∇yετ − ∇yετ‖L∞(I;L2(Ω;Rd×d)) ≤ Kτ 1/2 (and the same also for ∇yετ ) and ‖∇θετ −
∇θετ‖L∞(I;H1(Ω;Rd)∗) ≤ Kτ 1/2.

Similarly, using the a priory estimates (4.9d) and (4.9e) for wετ and wετ yields

wετ ⇀ wε weakly in L2(I;H1(Ω)) ∩H1(I;H1(Ω)∗)

wετ , wετ → wε strongly in Ls(Q) for all s ∈ [1,min{4, 2 + 4/d}[. (5.7)

Step 2: Convergence in the mechanical equation. Now the convergence in the discretized momentum
balance (5.1a) can be done by the above weak convergences (5.3) because σvi is linear in terms of
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.
F and by Minty’s trick for the monotone operator induced by hel = H ′. For a reflexive Banach space
X and a hemi-continuous, monotone operator H : X → X∗ Minty’s trick means the implication

H(uτ ) = bτ , uτ ⇀ u in X,

bτ ⇀ b in X∗, 〈bτ , uτ 〉 → 〈b, u〉

}
=⇒ H(u) = b. (5.8)

We apply this for H defined by 〈H(y), z〉 =
∫
Q
hel(∇2y(t, x))

... ∇2z(t, x) dx dt, where X =

W 2,p(Q). Clearly, H is hemi-continuous and monotone. Choosing uτ = yετ the weak equations
(5.1a) and (5.2) are interpreted as H(yετ ) = bτ with bτ defined via

〈bτ , z〉 = −
∫
Ω

(
σvi(∇yετ ,∇

.
yετ , θετ )+ε∇

.
yετ+σel(∇yετ , θετ )

)
: ∇z dx dt+

∫ T

0

〈`τ , z〉 dt.

We obtain bτ ⇀ b with b defined by

〈b, z〉 = −
∫
Ω

(
σvi(∇yε,∇

.
yε, θε)+ε∇

.
yε+σel(∇yε, θε)

)
: ∇z dx dt+

∫ T

0

〈`, z〉 dt,

because we can pass to the limit τ in all four terms separately. For the first term we applying the
lower semicontinuity result [FoL07, Thm. 7.5] twice, namely for the integrands f±(x, (F, θ), G) =
±σvi(F,G, θ):∇z(x) which both are convex in G. The limit passage in the second term is simple
weak convergence, and the fourth term converges because of `τ → ` in L2

(
I;H1

D(Ω)∗
)
. In the third

term we exploit

∇yετ ∈ F(Kε) :=
{
F ∈ Rd×d ; |F | ≤ Kε, detF ≥ 1/Kε

}
(see (4.9a) and (4.9b) from Proposition 4.2), such that using (2.30a) and (2.30b) the map (F, θ) 7→
σel(F, θ) = ∂Fϕ(F ) + ∂Fφ(F, θ) is continuous and bounded on F(Kε) × R+. Hence, with (5.4)
and Lebesgue’s dominated convergence theorem we obtain the desired convergence.

To use Minty’s trick (5.8) we still need to check 〈bτ , yετ 〉 → 〈b, yε〉. However, as we have shown
above bτ is bounded (and hence weakly converging to b) in L2

(
I;H1

D(Ω)∗
)

and yετ → yε in
L2
(
I;H1

D(Ω)
)

strongly (by (5.4a), the result follows immediately. Hence, we conclude H(yε) = b,
which is nothing else than the regularized momentum balance (4.1a), (4.2a), and (4.2b).

Step 3: Balance of mechanical energy. For the limit passage in the heat equation we need strong L2-

convergence of∇ .
yετ due to the viscous dissipation ξreg

ε (F,
.
F , θ) that is nonlinear in

.
F . The strategy

is to use the balance of mechanical energy as follows. Rewriting the regularized momentum balance
(4.1a), (4.2a), and (4.2b) in the form

D .
yR(yε,

.
yε, θε) + ε∇.

yε + DM(yε) + DyΦcpl(yε, θε) = `(t)

with M and Φcpl defined in (2.18). We can now test with
.
yε ∈ L2(I;H1

D(Ω)) and use (after de-
composing M = H + Φel, see (2.18)) the chain rule in Proposition 3.6 to obtain the balance of
mechanical energy in the form

M(yε(T )) +

∫ T

0

(
2R(yε,

.
yε, θε)+ε‖∇

.
yε‖2

L2

)
dt

=M(y0) +

∫ T

0

〈`, .yε〉 dt−
∫
Q

∂Fφ(∇yε, θε):∇
.
yε dx dt. (5.9)
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Indeed, by Proposition 3.2 we know thatM satisfies the assumptions of Proposition 3.6 with space
X = H1

ΓD
(Ω;Rd). Clearly, yε ∈ H1(I;X) andM(yε(t)) ≤ K̃ε, see (4.14). Moreover, for

Ξ = `(t)−D .
yR(yε,

.
yε, θε)− ε∇

.
yε −DyΦcpl(yε, θε)

we haveΞ(t) = DM(y(t)) a.e. in [0, T ] and our a priori estimates provideΞ ∈ L2([0, T ];H1
ΓD

(Ω)∗).
Thus, (5.9) follows from Proposition 3.6.

Step 4: Strong convergence of strain rates. The next step is now to derive a similar mechanical energy
balance for the time-discretized solutions, which is better than the previously used estimate (4.11).
Passing to the limit τ → 0 from the latter estimate we would arrive at an estimate like (5.9), but with
2R and ε replaced byR and ε/2, respectively.

To improve the discrete bounds used in Proposition 4.2 we can exploit the a priori estimatesM(ykετ ) ≤
Kε, which allow us to use the geodesic Λ-convexity result in Proposition 3.2. Instead of using the min-
imization property of ykετ in (4.5) we test the Euler-Lagrange equation (4.3a) with boundary conditions
(4.4a) and (4.4b) by ykετ−yk−1

ετ to obtain

τ2R(yk−1
ετ , δτy

k
ε , θ

k−1
ετ ) + τε‖∇δτykε‖2

L2 + DyM(ykετ )[y
k
ετ−yk−1

ετ ]

= 〈`kτ , ykετ−yk−1
ετ 〉 −DyΦcpl(y

k
ετ , θ

k−1
ετ )[ykετ−yk−1

ετ ],

where we have the correct factors 2R and ε. To recover the energy valuesM(yjετ ) we now eliminate
the term involving DM using the Λ-convexity estimate (3.3) with y(1) = ykετ and y(2) = yk−1

ετ , which
yields

M(ykετ ) + τ2R(yk−1
ετ , δτy

k
ε , θ

k−1
ετ ) +

(
τε− τ 2Λ(Kε)

)
‖∇δτykε‖2

L2

≤M(yk−1
ετ ) + τ〈`kτ , δτykε 〉 −DyΦcpl(y

k
ετ , θ

k−1
ετ )[δτy

k
ε ].

We now sum this inequality over k = 1, , . . . , Nτ and using the interpolants we obtain the integral
estimate

M(yετ (T )) +

∫ T

0

2R(y
ετ
,
.
yετ , θετ ) dt+ (ε−τΛ(Kε))

∫
Q

|∇.
yετ |2 dx dt

≤M(y0) +

∫ T

0

(
〈`τ ,

.
yετ 〉 −

∫
Ω

∂Fφ(∇yετ , θετ ) dx

)
dt. (5.10)

Using the the convergences (5.3) and (5.4) it is immediate to see that the all the terms on the right-hand
side converge to the corresponding terms on the right-hand side in (5.9). Now denote the three terms
on the left-hand side by I(j)

ετ and set I(j)
ε = lim infτ→0+ I

(j)
ετ . Using lower semicontinuity arguments

(use [FoL07, Thm. 7.5] once again for I(2)
ετ ) we find

yετ (T ) ⇀ yε(T ) in W 2,p(Ω;Rd) =⇒ I(1)
ε ≥M(yε(T )),

∇.
yετ ⇀ ∇

.
yε in L2(Q;Rd×d) =⇒ I(2)

ε ≥
∫ T

0

2R(yε,
.
yε, θ) dt,

∇.
yετ ⇀ ∇

.
yε in L2(Q;Rd×d) =⇒ I(3)

ε ≥ ε‖∇.
yε‖2

L2(Q). (5.11)

Thus, passing to the liminf on the left-hand side and to the limit on the right-hand side in (5.10) and
comparing with (5.9) we obtain

I(1)
ε +I(2)

ε +I(3)
ε ≤ RHS =M(yε(T )) +

∫ T

0

(
2R(yε,

.
yε, θε)+ε‖∇

.
yε‖2

L2

)
dt.
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Together with (5.11) we conclude that we must have equality in all three cases after “=⇒”. However,
∇ .
yετ ⇀ ∇

.
yε in L2(Q;Rd×d) and

I(3)
ε = lim inf

τ→0
(ε−τΛ(Kε))‖∇

.
yετ‖2

L2(Q) = ε‖∇.
yε‖2

L2(Q)

imply the desired strong convergence∇ .
yετ → ∇

.
yε in L2(Q;Rd×d).

Step 5: Limit in the heat equation. We first pass to the limit τ → 0 in the constitutive relation (5.1b),
namely wετ = w(∇yετ , θετ ). The left-hand side converges to wε by (5.7), while the right-hand side
converges to w(∇yε, θε) by the continuity of w, the bound (2.31) and the convergences (5.4). Thus,
wε = w(∇yε, θε) is established, i.e. (4.1c) holds.

We write the heat equation (5.1b) with boundary conditions (5.2c) in the weak form∫
Q

( .
wετz +∇θετ · K(∇y

ετ
, θετ )∇z

)
dx dt+

∫
Σ

κ
(
θετ−θ[,ε,τ

)
z dS dt

=

∫
Q

(
ξreg
ε (∇y

ετ
,∇.
yετ , θετ )+∂Fφ(∇yετ , θετ ):∇

.
yετ
)
z dx dt (5.12)

for all z ∈ L∞(I;H1(Ω)). While we only have the weak convergences
.
wετ ⇀

.
wε inL2

(
I;H1(Ω)∗

)
(see (5.7)) and ∇θετ ⇀ ∇θε in L2(Q) (see (5.3b)), all other functions in (5.12) converge strongly.
In particular, using the strong convergences ∇ .

yετ → ∇
.
yε in L2(Q;Rd×d) and 0 ≤ ξreg

ε (∇y
ετ
,

∇ .
yετ , θετ ) ≤ Kε we obtain

ξreg
ε (∇y

ετ
,∇.
yετ , θετ )→ ξreg

ε (∇yε,∇
.
yε, θε) strongly in Lp(Q) for all p ∈ ]1,∞[. (5.13)

Thus, passing to the limit τ → 0 in (5.12) leads exactly to the weak form to the regularized heat
equation (4.1b) with boundary condition (4.2c).

This conclude the proof of Proposition 5.1.

6 Limit passage ε→ 0

In this final step of the proof of Theorem 2.2 we have to pass to the limit with the regularization
parameter ε → 0. As we are already in the time-continuous setting we are now able to make the
formally derived total energy balance (2.21) for E rigorous for all ε > 0. From this we will be able to
derive a priori bounds for (yε, θε) that are independent of ε.

Remark 6.1 (Missing discrete estimate for the total energy). The derivation of the total energy balance
is achieved by testing the momentum balance by

.
y and the heat equation by the constant function 1.

The corresponding step on the time-discrete level would be the test (4.3a) by δτy
k and (4.3b) by 1.

We would be able to use the desirable cancellation of the dissipation, namely ξreg
ε − ξ ≤ 0; however

for the coupling terms

∂Fφ(∇ykετ , θk−1
ετ ) : δτ∇ykε and ∂Fφ(∇ykετ , θkετ ) : δτ∇ykε ,

which arise from (4.3a) and (4.3b) respectively, we do not have any way to estimate the first against
the second. Recall that we were forced to use the explicit/forward value θkετ to maintain positivity of
the temperature.
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To exploit the balance of the total energy we have to strengthen the assumption on the leading `(t),
i.e. the functions g, and f , in (2.30g), namely

g ∈ W 1,1(I;L2(Ω;Rd)), f ∈ W 1,1(I;L2(ΓN;Rd)). (6.1)

This implies that t 7→ `(t) lies in W 1,1
(
I;H1

ΓD
(Ω;Rd)∗

)
, which is what we will only need.

The new ε-independent estimates on∇ .
yε in L2(Q) will be obtain by exploiting the Pompe’s general-

ized Korn’s inequality (cf. [Pom03]) as prepared in Theorem 3.3 above.

Lemma 6.2 (A-priori estimates for yε). Let the assumptions (2.30) and (6.1) hold. Then there exists
a constant K such that for all ε ∈ ]0, 1[ and all weak solutions (yε, θε) of the regularized problem
(4.1)-(4.2) obtained in Proposition 5.1 we have the a priori estimates

Then det(∇yε) > 0 on Q and the following estimates hold with K independent of ε > 0:∥∥yε∥∥L∞(I;W 2,p(Ω;Rd))
≤ K, (6.2a)

det
(
∇yε(t, x)

)
≥ 1/K for all (t, x) ∈ Q, (6.2b)∥∥θε∥∥L∞(I;L1(Ω))
≤ K, (6.2c)∥∥∇.

yε
∥∥
L2(Q;Rd×d)

≤ K, (6.2d)∫
Q

ξ(∇yε,∇
.
yε, θε) dx dt ≤ K, (6.2e)

with q from (2.30a), where again sym(·) denotes the symmetric part of a (d×d)-matrix.

Proof. We proceed in two steps that are close to estimates we have done in the time-discrete setting.

Step 1: Estimate for E(yε, θε). Using the derived regularity for the solution (yε, θε) we see that a
suitable variant of the total energy balance (2.21) holds. To be specific, we start from (5.9), which is
also valid for arbitrary t ∈ ]0, T ] in place of T , and add the time-integrated version of (4.1b) tested
with the constant function z ≡ 1. Using E =M+W withW(yε, θε) =

∫
Ω
wε dx we find

E(yε(t), θε(t)) +

∫ t

0

∫
Ω

(
ξ(∇yε,∇

.
yε, θε) + ε|∇.

yε|2 − ξreg
ε (∇yε,∇

.
yε, θε)

)
dx ds

= E(yε(0), θε(0)) +

∫ t

0

〈`(s), .yε(s)〉 ds+

∫ t

0

∫
Γ

κ(θε[−θε) dS ds.

The importance is the cancellation of the term ∂Fφ : ∇ .
yε and that the difference of the dissipation

integrals has a sign.

Defining the auxiliary variable Eε(t) := E(yε(t), θε(t)) − 〈`(t), yε(t)〉 and using 0 ≤ θε[ ≤ θ[ and
θε ≥ 0 gives

Eε(t) ≤ Eε(0) +

∫ t

0

(∫
Γ

κθ[ dS − 〈 ˙̀(s), yε(s)〉
)

ds,

where we have integrated by parts the power of the external loadings, which was possible by the
strengthened assumption (6.1).

With E ≥M ≥ H and the coercivity ofH we have ‖y‖H1 ≤ c1 + c2E(y, θ) and obtain

Eε(t) ≤ Eε(0) +

∫ t

0

(
a(s) + b(s)Eε(s)

)
ds with a, b ≥ 0
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and a, b ∈ L1(0, T ), which follows from (6.1) for ` and (2.30i) for θ[. With B(t) =
∫ t

0
b(s) ds and

A(t) =
∫ t

0
a(s) ds the Gronwall estimate yields the a priori estimate

Eε(t) ≤ eB(t)
(
Eε(0) + A(t)

)
≤ eB(T )

(
E0 + A(T )

)
:= M1,

where we used Eε(0) = E(yε(0), θε(0)) ≤ E(y0, θ0) − 〈`(0), y0〉 =: E0 < ∞ by (2.30h), (2.30i),
and (2.31). This immediately implies

M(yε(t)) + ε̂‖θε(t)‖L1(Ω) ≤ Eε(yε(t), θε(t)) ≤M2.

Hence, (6.2c) is established, whereas (6.2a) and (6.2b) follow by applying Theorem 3.1.

Step 2: Estimate for the strain rate∇ .
yε. We return to the mechanical energy balance (5.9) on the inter-

val I = [0, T ]. We recall that the dissipation function ξ(F,
.
F , θ) is assumed to control the symmetric

part of F>
.
F only, namely

ξ(F, Ḟ , θ) = 2ζ̂(F>F, F T
.
F+

.
F>F, θ) ≥ α|F T

.
F+

.
F>F |2.

Using our a priori bounds onM(yε(t)), we can apply the generalized Korn’s inequality a prepared in
Corollary 3.4 with y = yε(t, ·) and v =

.
yε(t) ∈ H1

ΓD
(Ω;Rd) to obtain

αcK

∫ T

0

‖yε(t)‖2
H1 dt ≤

∫
Q

α
∣∣∇y>ε ∇.

yε+∇
.
y>ε ∇yε

∣∣2 dx dt ≤
∫
Q

ξ(∇yε,∇
.
yε, θε) dx dt

≤M(y0)−M(yε(T )) +

∫ T

0

(
‖`(t)‖(H1)∗ + ‖∂Fφ(∇yε, θε)‖L∞(Q)

)
‖.yε(t)‖H1 dt,

where we used |∂Fφ(F, θ)|C(1+|F |)s and |∇yε(t, x)| ≤ K , which follows from (6.2a). From this,
(6.2d) and (6.2e) follow immediately.

For the deformation yε we have all the estimates we need for passing to the limit. But we still need
good a priori estimates for the temperature. Here the problem arises that the heating arising through
the viscous dissipation ξ(∇yε,∇

.
yε, θε) is only bounded in L1(Q). So, obtaining improved estimates

we have to invoke special test functions developed by Boccardo and Gallouët [BoG89] for parabolic
equations with measure-valued right-hand sides.

Proposition 6.3 (A priori estimates for θε and wε). Under the conditions of Lemma 6.2, also the
following estimates hold:

∀ p ∈
[
1, d+2

d

[
∃Cp > 0 ∀ ε ∈ ]0, 1] : ‖θε‖Lp(Q) + ‖wε‖Lp(Q) ≤ Cp, (6.3a)

∀ r ∈
[
1, d+2

d+1

[
∃Kr > 0 ∀ ε ∈ ]0, 1] : ‖∇θε‖Lp(Q) + ‖∇wε‖Lp(Q) ≤ Kr, (6.3b)

∃K > 0 ∀ ε ∈ ]0, 1[ :
∥∥ .
wε
∥∥
L1(I;H(d+3)/2(Ω)∗)

≤ K. (6.3c)

Proof. We follow the recipe in [BoG89] in the simplified variant of [FeM06], see also [MiN18]. For
η ∈ ]0, 1[ we define the function χη : R+ → R+ via

χη(0) = 0 and χ′η(w) := 1− 1

(1+w)η
∈ [0, 1].

Clearly, χη satisfies min{0, w/2−Cη} ≤ χη(w) ≤ w and χ′′η(w) =
η

(1+w)1+η
> 0.
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Now testing (4.1b) with the test function z = χ′η ◦wε amounts to applying the chain rule in Proposition
3.5 to the convex functional J (w) =

∫
Ω
χη(w(x)) dx on the space X = H1(Ω)∗. Indeed, from

(5.3) and wε = w(∇yε, θε) we have wε ∈ L2(I;H1(Ω)) ∩ H1(I;H1(Ω)∗)), and the chain rule
gives the first identity in the following calculation:

d

dt

∫
Ω

χη(wε) dx =

∫
Ω

χ′η(wε)
.
wε dx

= −
∫
Ω

χ′′η(wε)∇wε · K(∇yε, θε)∇θε dx+

∫
Γ

κ(θε[−θε) dS

+

∫
Ω

χ′η(wε)
(
ξreg
ε (∇yε,∇

.
yε, θε) + ∂Fφ(∇yε, θε):∇

.
yε

)
dx.

Integration over t ∈ I = [0, T ] and using χ′η(w) ∈ [0, 1] and ‖∇yε‖L∞(Q) ≤ K∞ yield∫
Q

χ′′η(wε)∇wε · K(∇yε, θε)∇θε dx dt

≤
∫
Ω

χη(w0) dx+

∫
Σ

κθ[ dS dt+

∫
Q

(
ξ(· · · ) + C(1+K∞)s|∇.

yε|
)

dx dt ≤ C, (6.4)

where we used (2.30h), (2.30i), (6.2d), and (6.2e).

From this, we derive an a priori bound on ∇wε by setting K̃ε = K(∇yε, θε) and estimate it as in
(4.18) (see Step 3 of the proof of Proposition 4.2) by

|K̃ε(t, x)| ≤ κ and a · K̃ε(t, x)a ≥ 1

κ
|a|2,

where κ is now independent of ε because of the ε-independent bound in (6.2a) and (6.2b). Moreover,
∇wε and∇θε are related by

∇wε = ∂θw(∇yε, θε)∇θε + ∂Fw(∇yε, θε) : ∇2yε. (6.5)

With ∂θw(F, θ) = −θ∂2
θφ(F, θ) ≤ K we obtain

1

κ
|∇wε|2 ≤ ∇wε · K̃ε∇wε

= ∂θw(∇yε, θε)∇wε · K̃ε∇θε +∇wε · K̃ε∂Fw(∇yε, θε) : ∇2yε

≤ K∇wε · K̃ε∇θε + κ|∇wε|C(1+K∞)s|∇2yε|

≤ K∇wε · K̃ε∇θε +
1

2κ
|∇wε|2 + C∗|∇2yε|2.

Canceling 1
2κ |∇wε|

2, multiplying by χ′′(wε) ∈ [0, 1], and integrating over Q we employ (6.4) and
arrive at

1

κK

∫
Q

χ′′η(wε)|∇wε|2 dx dt ≤
∫
Q

χ′′(wε)
(
∇wε · K̃ε∇θε + C∗|∇2yε|2

)
dx dt ≤ C3,

where the last integrand is bounded by (6.2a) and p ≥ 2.

For r ∈ [1, 2[ we set p = 2/(2−r), p′ = 2/r, and q = (1+η)r/2 and employ Hölder’s estimate to
obtain

‖∇wε‖rLr(Q) =

∫
Q

(1+wε)
q |∇wε|r

(1+wε)q
dx dt ≤ ‖(1+wε)

q‖Lp(Q)

∥∥∥ |∇wε|r
(1+wε)q

∥∥∥
Lp′ (Q)

= ‖1+wε‖qLqp(Q)

(∫
Q

|∇wε|2

(1+wε)1+η
dx dt

)1/p′

≤ ‖1+wε‖qLqp(Q)

(
κKC3/η

)1/p′
, (6.6)
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where crucially relied on p′ = 2/r, χ′′(w) = η/(1+w)1+η, and the previous estimate. Using the a
priori estimate ‖1+wε‖L∞(I;L1(Ω)) ≤ T |Ω|+K =: K1 from (6.2c) we can now use the anisotropic
Gagliardo-Nirenberg interpolation (see e.g. [MiN18, Lem. 4.2]) giving

‖1+wε‖Lr/λ(Q) ≤ C‖1+wε‖1−λ
L∞(I;L1(Ω))

(
‖1+wε‖L∞(I;L1(Ω)) + ‖∇wε‖Lr(Q)

)λ
with λ =

d

d+1
.

For inserting this into (6.6) we need qp ≤ r/λ which gives the restriction r ≤ 2− (1+η)λ.

Thus, for all r ∈ [1, (d+2)/(d+1)[ we find an η = ηr ∈ ]0, 1[ such that the above estimates give

‖∇wε‖rLr(Q) ≤ Cr
(
1 + ‖∇wε‖qλLr(Q)

)
,

and qrλ < qr = (1+ηr)r/2 < r provide ‖∇wε‖Lr(Q) ≤ Kr. Using (6.5) and ∂θw ≥ ε̂ > 0 we
easily find ‖∇θε‖Lr(Q) ≤ Kr and (6.3b) is established.

Applying the Gagliardo-Nirenberg interpolation once again gives assertion (6.3a).

Eventually, the a priori estimate (6.3c) is obtained estimating all other terms in (4.1b), when realizing
that always H(d+3)/2(Ω) ⊂ W 1,∞(Ω).

We are now in the position to pass to the limit ε → 0 in the regularized system (4.1)-(4.2), and thus
provide the proof of our main existence result presented in Theorem 2.2. The approach is close to
the convergence result presented in Proposition 5.1: first we extract converging subsequences and
then pass to the limit in the mechanical momentum balance. This also provides the necessary strong
convergence of the the strain rates that is needed to eventually pass to the limit in the heat heat
equation.

Proposition 6.4 (Convergence for ε → 0). Let again (2.30) and (6.1) hold. Then, considering the
sequence of time steps ε → 0, there is a subsequence (yε, θε) of weak solutions to the regularized
system (4.1)-(4.2) obtained in Proposition 5.1 such that, for some (y, θ), it holds

yε → y weakly* in L∞(I;W 2,p(Ω;Rd)) ∩H1(I;L2(Ω;Rd)) and (6.7a)

θε → θ weakly in Lr(I;W 1,r(Ω)) for all 1 ≤ r < (d+2)/(d+1). (6.7b)

Moreover, every couple (y, θ) obtained in such a way is a weak solution, according Definition 2.1, of
the boundary-value problem (2.13)–(2.14) satisfying the initial values (2.26).

Proof. The proof follows the lines of the proof of Proposition 5.1, so we do not repeat all details of the
arguments.

Step 1: Extraction of converging subsequences. Using the a priori estimates (6.2) and (6.3), Banach’s
selection principle allows us to choose a subsequence and some (y, θ) such that (6.7) holds. By the
Aubin-Lions’ theorem interpolated with the estimates (4.9a) and (4.9c), we have also

∇yε → ∇y strongly in L∞(Q;Rd×d) and (6.8a)

wε → w strongly in Lp(Q) with any 1 ≤ p < 1 + 2/d, (6.8b)

θε → θ strongly in Lp(Q) with any 1 ≤ p < 1 + 2/d. (6.8c)

The proof of (6.8a) is similar to (5.4a). For (6.8b) we proceed as for (5.4b) by using the estimates on
wε given in (6.3). Using the relation wε = w(∇yε, θε) we also obtain the strong convergence (6.8c).
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Step 2: Convergence in the mechanical equation. The limit passage in the momentum balance (4.1a)-
(4.2) works as before, again using the Minty trick (5.8). Of course, the additional regularizing viscosity
term ε∇ .

yε vanishes because of our a priori bound (6.2d):∣∣∣∣ ∫
Q

ε∇.
yε:∇z dx dt

∣∣∣∣ ≤ ε
∥∥∇.

yε
∥∥
L2(Q;Rd×d)

∥∥∇z∥∥
L2(Q;Rd×d)

= Cε→ 0.

Step 3: Balance of mechanical energy. As in the proof of Proposition 5.1 we derive from the prop-
erty that the limit couple (y, θ) solves the mechanical equation that the following mechanical energy
relation holds:

M(y(T )) +

∫ T

0

2R(y,
.
y, θ) dt =M(y0) +

∫ T

0

〈`, .y〉 dt−
∫
Q

∂Fφ(∇y, θ):∇.
y dx dt. (6.9)

Step 4: Strong convergence of the symmetric strain rates. We can pass to the limit ε → 0 in the
mechanical energy relation (5.9). Comparing the result with (6.9) we obtain

lim
ε→0

∫
Q

ξ(∇yε,∇
.
yε, θε) dx dt =

∫
Q

ξ(∇y,∇.
y, θ) dx dt. (6.10)

To conclude strong convergence we use the special form (2.10), namely ξ(F,
.
F , θ)

= 2ζ̂(F>F, F>
.
F+

.
F>F, θ). From the pointwise convergence θε → θ, the uniform convergence

Fε := ∇yε → F = ∇y, and the weak convergence
.
F ε := ∇ .

yε ⇀
.
F in L2(Q) we obtain

Vε := F>ε
.
F ε+

.
F>ε Fε ⇀ F>

.
F+

.
F>F =: V in L2(Q).

With the coercive and quadratic structure of ζ̂ assumed in (2.30e) we proceed as follows:

2α‖Vε−V ‖2
L2(Q) ≤

∫
Q

2ζ̂(Cε, Vε−V, θε) dx dt

=

∫
Q

(
2ζ̂(Cε, Vε, θε)− 2Vε : D(Cε, θε)V + 2ζ̂(Cε, V, θε)

)
dx dt

=

∫
Q

(
ξ(Fε,

.
F ε, θε)− 2Vε : D(Cε, θε)V + ξ(F,

.
F , θ)

)
dx dt+ δ(ε),

with δ(ε) =

∫
Ω

2V :
(
D(Cε, θε)−D(C, θ)

)
V dx dt.

We see that the first term converges by (6.10), while the second term converges by the weak conver-
gence Vε ⇀ V and the strong convergence D(Cε, θε)V → D(C, θ)V (as D is bounded and the
arguments converge pointwise). Similarly, δ(ε)→ 0 by Lebesgue’s dominated convergence theorem,
and thus we conclude the strong convergence ‖Vε−V ‖L2(Q) → 0.

Step 5: Limit passage in the heat equation. Testing the regularized heat equation (4.1b) with boundary
conditions (4.2c) by smooth function v with V (T, ·) ≡ 0 we find∫

Q

(
∇θε · K(∇yε, θε)∇v −

(
ξreg
ε (∇yε,∇

.
yε, θε)+∂Fφ(∇yε, θε):∇

.
yε
)
v − wε

.
v
)

dx dt

+

∫
Σ

κθεv dS dt =

∫
Σ

κθ[,εv dS dt+

∫
Ω

w(∇y0, θ0,ε)v(0) dx. (6.11)
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Here the first term passes to the limit by∇θε ⇀ ∇θ andK(∇yε, θε)∇v → K(∇y, θ). In the second
term we use

ξreg
ε (∇yε,∇

.
yε, θε) =

ξ(∇yε,∇
.
yε, θε)

1+εξ(∇yε,∇
.
yε, θε)

=
2ζ̂(Cε, Vε, θε)

1 + 2εζ̂(Cε, Vε, θε)
≤ 2K|Vε|2 =: gε.

Because of Step 4, we know Vε → V strongly in L2(Q;Rd×d
sym). Hence, we have gε → g := K|V |2

in L1(Q) and may assume, after extracting another subsequence, Vε(t, x) → V (t, x) a.e. in Q. By
the uniform/pointwise convergence of Cε and θε for any v ∈ C0(Q) we obtain

gε‖v‖L∞(Q) ≥ ξreg
ε (∇yε,∇

.
yε, θε)v → ξ(∇y,∇.

y, θ)v a.e. in Q.

As the majorants gε‖v‖L∞(Q) converge to g‖v‖L∞(Q) in L1(Q) the generalized dominated conver-
gence theorem implies convergence of the second term in (6.11).

In the third term we have weak convergence of ∇ .
yε and strong convergence of v∂Fφ(∇yε, θε).

Similarly, the remaining four terms converge to the desired limits. Thus, we have shown that (y, θ)
satisfy (2.27b), which finishes the proof of Proposition 6.4.

Remark 6.5 (Strong convergence of yετ and yε). Strengthening monotonicity of hel, cf. (2.30d), for
the strict monotonicity

∀G1, G2 ∈ Rd×d×d : (hel(G1)−hel(G2))
...(G1−G2) ≥ c0|G1−G2|p,

we use the argumentation after (5.11) to show yετ (t) → yε(t) strongly in W 2,p(Ω;Rd) for all
t ∈ [0, T ]. Similarly, in Proposition 6.4 one can show yε(t) → y(t) strongly in W 2,p(Ω;Rd).
Together with the L∞-estimate (4.9a), we can also strengthen the weak* convergence (5.3a) in
L∞(I;W 2,p(Ω;Rd)) to a strong convergence in Lq(I;W 2,p(Ω;Rd)) for all q ∈ [1,∞[. The same
applies to (6.7a).

Remark 6.6 (Dynamical problems). Introducing the kinetic energy 1
2
%| .y|2 with a mass density % =

%(x) > 0 leads to an inertial force %
..
y in the momentum equation (2.13a), which would make the

nonlinear problem hyperbolic. It is generally recognized as analytically very troublesome. Here, it would
work for isothermal situation like in Corollary 2.3 if we would be able to work with weak convergence,
i.e. H needs to be quadratic (p = 2). Staying with H depending on the second gradient ∇2y we
would be forced to give up the determinant constraint det∇y > 0, which is indeed possible if heat
conduction is not considered. Alternatively, one may take H quadratic but coercive in Hilbert space
norms Hs(Ω) with s > 1 + d/2, such that Hs(Ω) still embeds into C1,α for some α > 0, cf. also
[KrR19, Ch. 9.3]. In the anisothermal situation, it seems difficult to ensure that the acceleration

..
y ∈

L2(I;H1+κ(Ω;Rd×d) stays in duality with the velocity
.
y. The regularity seems difficult and the higher-

order viscosity is inevitably very nonlinear to comply with frame-indifference while the corresponding
generalization of Korn’s inequality does not seem available.

Remark 6.7 (Other transport processes: flow in porous media). Beside heat transport, one can also
consider other transport processes in a similar way. The transport coefficients can be pulled back as in
(2.24). For example, considering mass transport for a concentration c one has to make the free energy
ψ also c-dependent and to augmenting it by a capillarity-like gradient term 1

2
κ|∇c|2. The dissipation

potential R will then be augmented by the nonlocal term 1
2
‖M(∇y, c)1/2∇∆−1

M(∇y,c)
.
c‖2
L2(Ω) with

∆−1
M : f 7→ µ denoting the linear operator H1(Ω)∗ → H1(Ω) defined by the weak solution µ to

the equation div(M∇µ) = f . Considering the mobility tensor M = M(x, c), we can define the
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pulled-back tensorM(x, F, c) := (Cof F>)M(x, c) Cof F/ detF and augment the system for the
diffusion equation of the Cahn-Hilliard type:

div
(
σvi(∇y,∇

.
y, θ) + ∂Fψ(F, c, θ)− div hel(∇2y)

)
+ g = 0 , (6.12a)

.
c − div

(
M(∇y, c)∇µ

)
= 0 with µ = ∂cψ(∇y, c, θ)− κ∆c, (6.12b)

cv(∇y, c, θ)
.
θ − div

(
K(∇y, θ)∇θ

)
= ξ(∇y,∇.

y, θ)

+ θ∂2
Fθψ(∇y, c, θ):∇.

y +∇µ · M(x,∇y, c)∇µ (6.12c)

with σvi as in (2.13a), cv(F, c, θ) = −θ∂2
θθψ(F, c, θ), and ξ from (2.10). In (6.12b), the variable µ is

called a chemical potential. One can also augment the model by some inelastic (plastic or creep-type)
strain like in [RoS18] where also the inertial forces have been involved and the viscosity ignored but
the concept of small elastic strains imposed as a modeling assumption.
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[Rou13] T. ROUBÍČEK. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel,
2nd edition, 2013.

[Šil85] M. ŠILHAVÝ. Phase transitions in non-simple bodies. Arch. Rat. Mech. Anal., 88, 135–161,
1985.

[Ste15] P. STEINMANN. Geometric Foundations of Continuum Mechanics. Springer, 2015. LAMM
Vol. 2.

[Tou62] R. TOUPIN. Elastic materials with couple stresses. Arch. Rat. Mech. Anal., 11, 385–414,
1962.

[TrA86] N. TRIANTAFYLLIDIS and E. AIFANTIS. A gradient approach to localization of deformation. I.
Hyperelastic materials. J. Elast., 16, 225–237, 1986.

[Tve08] B. TVEDT. Quasilinear equations of viscoelasticity of strain-rate type. Arch. Rational Mech.
Anal., 189, 237–281, 2008.

[Vis96] A. VISINTIN. Models of Phase Transitions. Birkhäuser, Boston, 1996.

DOI 10.20347/WIAS.PREPRINT.2584 Berlin 2019


	Introduction
	Modeling of thermoviscoelastic materials in the reference configuration
	A few auxiliary results
	Local invertibility and Euler-Lagrange equations
	A generalized Korn's inequality
	Chain rules for energy functionals

	Time discretization of a regularized problem
	The limit 0 in the regularized problem
	Limit passage 0

