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Abstract

A new type of magnonic crystals, curvature induced ones, is realized in ferromagnetic
nanowires with periodically deformed shape. A magnon band structure of such crystal
is fully determined by its curvature: the developed theory is well confirmed by simu-
lations. An application to nanoscale spintronic devises with the geometrically tunable
parameters is proposed, namely, to filter elements.
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1 Introduction

Recent advance in fabrication of sub-micrometer sized magnetic nanowires of controlled shape
[1–3] makes them promising construct elements for variety of spintronic devices. Curvilin-
ear geometry opens new possibilities for the device miniaturization [4] and such curvilinear
elements were suggested for using in computer memory and logic [5, 6], in magnon waveg-
uides [7]. That is why a clear understanding of physical picture of influence of the wire cur-
vature on the magnetization dynamics is an actual problem of the modern micromagnetism.

Probably the most prominent manifestation of the curvature in magnetic systems is a mag-
netochiral effect [8]. In thin curved wires, the chiral symmetry breaking results in emergent
geometry-induced Dzyaloshinskii–Moriya interaction (DMI), for a review see [1]. A number
of the magnetochiral effects in dynamics of the nanowire magnetization were recently pre-
dicted. Spin waves can be bound by a local bending of the wire [9]. A wire twisting results in
non-reciprocal spin-wave propagation [10]. Numerous curvature effects in the domain wall
dynamics were found, namely the localized curvature defect (e.g. a bend of the wire) creates
a pinning potential for the domain wall [11]; the curvature gradient acts as a driving force for
the domain wall resulting in a fast translational motion free of the Walker limit [12]; torsion
of the helix shaped wire can result in a negative mobility of the spin-torque driven domain
wall [13], etc. These and others curvature induced phenomena may be explained within a
general framework [14], which introduces a number of emergent geometry-induced interac-
tions. The latter are effectively generated by the common energy terms comprising spatial
derivatives, e.g. in presence of the curvature the exchange interaction generates the effective
DMI and anisotropy [14,15], the intrinsic DMI generates effective anisotropy [16,17].

Here we consider the magnon spectrum of a wire with periodically deformed shape. We
demonstrate that such geometry gives rise to the periodical potentials in equations for the
magnon propagation, as a consequence, the band structure appears. The analysis is based on
the previously developed approach [14] for curvilinear ferromagnetic wires. The full scale nu-
merical analysis of the band structure is supplemented by the analytically obtained formulae
valid for the limit cases of small and large curvatures. Additionally, we use the direct simu-
lations of the Landau–Lifshitz equation in order (i) to verify the obtained results and (ii) to
demonstrate that the periodically deformed wire can be utilized as a magnon filter. The latter
is an important issue for the spintronic devices relied on the magnon crystals [7,18–24].

A large area of modern spintronics deals with the data transfer and processing based on the
magnon waves propagation [7]. In this case, magnonic crystals [18] are the key elements of the
magnonic spintronic devices including resonators, generators, filters, wave-guides, see reviews
Ref. [7, 18, 25] for more information. Magnonic crystal is a magnetic system with artificially
introduced periodicity. The latter can be created by means of periodical arrangement of several
different magnetic materials [18,23,26] or by using one material with periodically modulated
geometrical parameters [18,24,27] including arrays of interacting magnetic strips [18,28,29]
or dots [18, 25]. The periodically arranged magnetization patterns can be also considered as
a magnon crystal, e.g. the DMI induced helical structure [30,31] or skyrmion lattice [30,32].

Magnonic crystal, which we propose here, can be thought as a combination of the last two
methods. On the one hand, we consider a curvilinear nanowire made of a single material.
On the other hand, the periodically modulated curvature induces the periodical magnetiza-
tion pattern, see Figs. 1, 2, resulting in periodical potentials. The magnon scattering on the
periodical potentials induces the band structure. This process is completely analogous to for-
mation of the energy zones in solid state crystals [33], but instead of the common Schrödinger
equation we have its generalized form see Sec. 3 for details.

All analytical predictions are in good agreement with the spin lattice simulations, see
App. C. In order to demonstrate that the meander-like periodical structure, see Fig. 1(a), can
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be used as a magnon crystal we consider a 14-periods part of such structure as a magnon
filter. Using the spin-lattice simulations based on the Landau–Lifshitz equation we obtain the
amplitude-frequency characteristic. The input signal was formed by a homogeneous rotation
of the first spin with the input frequency. The output signal demonstrates the presence of the
gaps in the system. Therefore the corresponding frequencies are effectively filtered. Position
and width of the band gaps are determined by the curvature of the wire, see App. C.2, Fig. 1(d)
and Supplemental movie 1 for details.

2 Model and the equilibrium magnetization pattern

A thin wire can be defined as a space domain r (s,ξ1,ξ2) = γ(s) + ξ1eN(s) + ξ2eB(s). Here
γ(s) is the central line of the wire parametrized by its arc length s, coordinates ξ1 and ξ2
parametrize the perpendicular cross-section of the wire, vectors eN and eB are the normal and
binormal Frenet—Serret orts [34] of the line γ, respectively, see Fig. 1(a′). The term ‘thin wire’
means the simultaneous fulfilment of two conditions: geometrical one and magnetic one. The
geometrical condition reads |∂ 2

s γ| � 1/hmax, where hmax is the maximal lateral size of the per-
pendicular wire cross-section. The magnetic condition will be discussed latter. Together with
the tangential unit vector eT = ∂sγ the normal and binormal vectors compose the TNB basis
{eT, eN, eB}. For the particular case of a planar wire lying within the x y-plane the TNB basis vec-
tors can be presented in the form eT(s) = x̂ cosα(s)+ ŷ sinα(s), eN(s) = −x̂ sinα(s)+ ŷ cosα(s),
and eB = ẑ with alternating-sign curvature κ= ∂sα.

Dynamics of the wire magnetization is governed by Landau–Lifshitz equation

∂t m =
γ0

Ms
m ×

δE
δm

, (1a)

where m = M/Ms is the unit magnetization vector normalized by the saturation magneti-
zation, γ0 > 0 is the gyromagnetic ratio, E is a total magnetic energy, and the damping is
neglected. We model the magnetization subsystem by the Hamiltonian

E = S

∫

�

−Am ·∇2m − K(m · eT)
2
�

ds, (1b)

which takes into account only two magnetic interactions, namely: the isotropic exchange with
the stiffness A (the first integrand) and the easy-tangential anisotropy with the coefficient
K > 0 (the second integrand). Here S denotes the cross-section area, which is assumed con-
stant along the wire. For the wires with the circular or square cross-sections the anisotropy
constant reads K = πM2

s + Ka, where the first term comes from the magnetostatic contribu-
tion [35] and the second one represents the magnetocrystalline anisotropy. For the magneti-
cally soft wires one has Ka = 0. The model (1) determines the system and time- and length-
scales presented by the frequency of the uniform ferromagnetic resonance for a straight wire
ω0 = 2Kγ0/Ms, and magnetic length ` =

p

A/K , respectively. The latter determines typi-
cal size of the magnetization nonuniformities, e.g. width of a domain wall. The model (1b)
presumes that the magnetization is uniform within the wire cross-section: m = m(s, t). This
assumption is valid for the case hmax ¯ `. The latter is the magnetic condition for the ‘thin wire’
approximation. In the following we use the dimensionless time τ = tω0 and length ξ = s/`.
This makes an analysis independent on the material parameters. We utilize the constraint
|m|= 1 by means of the angular parametrization m = sinθ (cosφeT + sinφeN)+cosθeB. For a

1Supplemental movie of spin-lattice simulations of Landau-Lifshitz equation is available at https://youtu.be/
iPYX5vVnyNA
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Figure 1: Meander-like shape nanowire: Wire in form of periodically repeated
semicircles (a),(a′) has the square-wave curvature c(ξ) (b) with dimensionless am-
plitude c0 = `/R and period 2ξ0 = 2π/c0. We demonstrate that the considered
meander-like shape structure can be used as a magnon filter element using spin-
lattice simulation based on Landau–Lifshitz equation with damping, for details see
Appendix C.2. Colour scheme shows the binormal magnetization distribution in the
wire (a) with curvature c0 = 1.2 and input signal of dimensionless frequency Ω= 1.
Amplitude-frequency characteristics of input (c) and output (d) signals of a magnon
filter element is composed of 14 periods of the meander shaped structure. The fre-
quency ranges, where the magnons propagation is strongly depressed are shown by
the grey shading. The band gaps position and width can be controlled by the pa-
rameter c0. Decreasing the output amplitude with frequency takes place due to the
natural damping (α= 0.01) included into the simulations. The terminator is placed
after a magnon filter element to prevent signal reflection from the free boundary of
the system. The terminator is composed of 5 periods of the meander shaped struc-
ture and has a spatially increasing damping coefficient, see Appendix C.2 for details.
The magnetization dynamics is illustrated at the Supplemental movie 1.
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Figure 2: Equilibrium state of magnetization: (a) Spatial distribution of magneti-
zation (red arrows) along the wire; the inclination angle Φ is shown in the inset. The
analytical solution (3b) (line) is compared to the result of numerical minimization
of energy (1b) (dots) for the cases c0 = 0.1 (c) and c0 = 0.6 (d). The maximal am-
plitude Φ0 of the magnetization deviation from the tangential direction is plotted as
a function of c0 in the inset (b): the dashed lines correspond to asymptotes Φ0 ≈ c0

and Φ0 ≈
π
2

�

1− 1
4c2

0

�

valid for the cases c0� 1 and c0� 1, respectively.

planar wire the minimization of energy (1b) leads to the static equilibrium state θ = Θ = π/2
and φ = Φ(ξ), where the inclination angle Φ is determined by the driven pendulum equa-
tion [11,14]

Φ′′ − sinΦ cosΦ= −c′. (2)

Here and below prime denotes the derivative with respect to ξ, and c= κ` is the dimensionless
curvature. The emergent geometry-induced DMI breaks the spatial symmetry of the solution:
its contribution is determined by the gradient of the curvature in Eq. (2), the only geometrical
parameter which influence the magnetization texture of any planar wire.

In the following we consider a meander shaped wire in form of the periodically repeated
semicircles of radii R, see Fig. 1. The spatial distribution of the curvature of such a wire is the
square-wave function with period 2πR/` as shown in Figs. 1(c)-(d), see details in Appendix
A.1. In this case the driving in Eq. (2) is determined by

c′ = −2c0

∞
∑

n=−∞
[δ (ξ− 2nξ0)−δ (ξ− (2n+ 1)ξ0)], (3a)

where c0 = `/R is the curvature amplitude, ξ0 = πR/` is half period of the curvature and δ(•)
is the Dirac delta [36]. The corresponding solution of Eq. (2) reads

Φ(ξ) = (−1)λam
�

ξ− ξ0(λ+ 1/2)
k

, ik
�

, λ=
�

ξ

ξ0

�

, k =
1

q

c2
0 − sin2Φ0

, (3b)

where am(•,•) is Jacobi amplitude and b•c defines the integer part of • [36]. Constant
Φ0 = |Φ(nξ0)| is maximal value of the function Φ(ξ), it is determined by the equation
2kF(Φ0, ik) = ξ0, where F(•,•) is elliptic integral of the first kind and the modulus k = k(Φ0)
is defined in (3b). Note that the curvature amplitude c0 is the only parameter which controls
the system.
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The equilibrium solution (3b) is illustrated in Fig. 2. Magnetization of the equilibrium state
always lies within the plane of the wire, but it is not tangential to it. The maximal deviation
Φ0 from the tangential direction takes place in points of junction of two semicircles, this is
because of the curvature jump. In the limit case of small curvature c0� 1 one has R� ` and
due to the easy-tangential anisotropy the wire is magnetized practically tangentially except
the junction points, where the magnetization demonstrates the small deviations of amplitude
Φ0 ≈ c0, see Fig. 2(b, c). In the intermediate case c0 ≈ 1 the curvature radius is close to the
magnetic length (R≈ `). This means the equilibrium state is determined by strong competition
between the anisotropy and exchange interactions, see Fig. 2(d). The opposite limit case
c0 � 1 corresponds to the regime R� `, when the dominating exchange interaction results
in practically uniform magnetization aligned with x-axis. This corresponds to the maximal
deviation amplitude Φ0 ¯ π/2, see Fig. 2(b).

3 Band structure

Figure 3: Band structure. (a) Dispersion relation of Eq. (4) for c0 = 0.6 is ob-
tained both by the numerical solution of the EVP (B.8) (solid lines) and by means
of spin-lattice simulations based on the Landau–Lifshitz equation (C.1) (markers).
The dashed line shows the dispersion relation of a straight wire (c0 = 0). The wave-
vector is normalized by q1 = c0 corresponding to the edge of the first Brillouin zone.
(b) The band structure as function of c0. The first four bands of the magnon con-
ductance are shown by different colours and gaps are shown by grey shading. Solid
and dashed thick lines correspond to the exact numerical solution explained in Ap-
pendix B.1 and to the approximations (8)-(9), respectively. The thin dashed lines
correspond to the analytical asymptotes listed in Table 1. The inset (c) shows details
of the band structure for small curvatures, the notations are the same as in (b).
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Here we consider linear dynamics of magnons excited over the equilibrium state described
in the previous section. The technique which we use here was previously applied for a number
of one-dimensional curvilinear magnetic problems: finding the magnon spectrum for the ring-
[14] and helix-shaped [10] wires, localization and scattering of magnon waves on a localized
curvilinear defect [9].

It is convenient to describe the linear magnetization dynamics by means of the complex
valued functionψ= ϑ+iϕ constructed from deviations from the equilibrium state: θ = Θ+ϑ
and φ = Φ + ϕ/ sinΘ. In this case, Landau–Lifshitz equation linearised in vicinity of the
equilibrium state (Θ,Φ) has the form of generalized Schrödinger equation [9,37]

−iψ̇= Hψ+Wψ∗, H= −∂ξξ + 1+ V, (4)

for details see Appendix A. Here and below the overdot denotes the derivative with respect to
the dimensionless time τ. In general case of an arbitrary planar wire the potentials V and W
have the form [9]

V = −
1
2

�

3 sin2Φ+ (Φ′ +c)2
�

, W =
1
2

�

sin2Φ− (Φ′ +c)2
�

, (5)

where Φ is determined by Eq. (2). Application of Bogoliubov transformation
ψ= u(ξ)eiΩτ+ v∗(ξ)e−iΩτ to Eq. (4) enables us to formulate an eigenvalue problem (EVP) for
a Hamiltonian of Bogoliubov–de Gennes type

H|Ψ〉= Ω|Ψ〉, H=








H W
−W −H









, |Ψ〉=








u
v









. (6)

Equation (6) is the general formulation of the spectral problem for a planar curvilinear wire
described by the model (1). Generally, it can be solved numerically if the potentials V (ξ) and
W (ξ) are known functions. Here we study a specific case, when the potentials (5) are periodic:
V (ξ) = V (ξ+ ξ0) and W (ξ) = W (ξ+ ξ0), see Fig. 5. The periodic potential in a quantum-
mechanical Schrödinger equation always produces the band structure. The band structure of
the 1D system can be expressed quite simply in terms of the properties of scattering in the
presence of a single-barrier potential [38]. Similar arguments can be used for the EVP (6),

which results in the band structure with allowed frequency Ω(q) =
Ç

�

K(q)2 + v
�2 −w2−1

and the quasi-wave vector q related by

cos (Kξ0 +δ)
T

= cos qξ0, (7)

where v = max V (ξ) and w = min W (ξ). Using such an approach the band structure is
determined by the scattering data for a single potential: the transmission coefficient T (K)
and the scattering phase shift δ(K), see Appendix B for details. However even the scattering
problem can be solved exactly only for few model potentials. Therefore below we also use
another method.

Using the periodical properties of potentials, it is convenient to consider the EVP (6) in
wave-vector space. For this case one can obtain the numerical solution for the band struc-
ture, see Appendix B.1, as well as analytical asymptotes for the limit cases of small and large
curvatures, see Appendix B.2. The numerical solutions are shown in Fig. 3 by solid lines. In
contrast to the straight wire, the dispersion relation for a given curvature c0 > 0 demon-
strates the frequency reduction and appearance of the band structure, see Fig. 3(a). This is in
a good agreement with the direct numerical simulation of the Landau–Lifshitz equation (1a).
Evolution of the band structure with c0 is demonstrated in Figs. 3(b),(c). Generalizing the
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Figure 4: Widths of the band gaps: (a) Exact values of the first three band gaps
(solid lines) are compared to the analytical asymptotes listed in Table 1 (dashed line).
The inset (a′) shows vicinity of the origin. (b) Ratio of widths of two neighbouring
band gaps for opposite limit cases of the vanishing and infinite curvatures.

two-component approximation [33] for the case of the generalized Schrödinger equation (4),
we approximate the band gap edges as

Ω±ν ≈
r

�

q2
ν + 1+ V0 ∓ Vν

�2 − (W0 ∓Wν)
2, ν ∈ N. (8)

Here Ω+ν and Ω−ν correspond to the top and bottom edges of the ν-th gap, respectively. Wave-
vector qν = νc0 corresponds to the edge of the ν-th Brillouin zone. Coefficients Vn, Wn with
n ∈ Z+ denote Fourier components (B.6b) of the potentials. The approximation (8) is shown
in Fig. 3(b) by thick dashed lines. The maximal relative deviation from the exact solution
(solid lines) is 0.89%. Substituting the asymptotic approximations (B.14) and (B.17) for the
Fourier coefficients into (8) we obtain the asymptotic behaviour of the gap edges for the limit
cases of small and large curvatures, see Table 1. For the case c0 � 1 one has ∆ΩG

ν ∝ c
5
0,

where ∆ΩG
ν = Ω

+
ν − Ω

−
ν is the width of the ν-th gap. In the opposite case all the gaps are

closed by the law ∆ΩG
ν≥2 ∝ c

−2
0 , except the first one, whose width goes to the constant

value ∆ΩG
1 ≈ 3/4. Numerically found values of the first three band gaps are compared to the

analytical asymptotes listed in Table 1 in Fig. 4(a). Interestingly that lim
ν→∞

∆Ων+1/∆Ων = 1

for both cases of the vanishing and infinite curvatures, see Fig. 4(b).
The size of the main gap Ω0 can be approximated by means of the one-component approx-

imation
Ω0 ≈

q

(1+ V0)2 −W 2
0 . (9)

The simple formula (9) demonstrates a good agreement with the numerical solution, see
Fig. 3(b), therefore it is useful for practical estimations for the main gap width. However,
it results in the wrong asymptotic for the limit case c0 � 1. Applying more exact three-
component approximation (B.11) we obtain Ω0 ≈ 1− c2

0/2 for c0 � 1 and Ω0 ≈ 1/(2
p

2c0)
for c0� 1. The asymptotic closing of the main gap for the large curvatures has the following
physical sense. For large curvatures the curvature radius is much smaller than the magnetic
length. In this case the wire magnetization is almost uniform and oriented along x-axis, see
Fig. 2(c). On the other hand, the anisotropy axis frequently changes its direction within the
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x y-plane when moving along x-axis. Thus, in the long-wave approximation, such a wire is
physically equivalent to the uniformly magnetized wire with easy-plane anisotropy, which is
gapless [39].

Let us consider the width of the ν-th conductance band ∆ΩB
ν = Ω

−
ν − Ω

+
ν−1.2 Using the

obtained asymptotic behaviour one can show that ∆ΩB
ν ≈ (2ν − 1)c2

0 for both limit cases
c0� 1 and c0� 1.

4 Conclusion

We demonstrate that the periodical deformation of an uniaxial ferromagnetic wire results in
appearance of the band structure in the magnon spectrum. As a case study we consider a
meander-shaped planar wire composed of the semicircles of radius R. The normalized curva-
ture c0 = `/R is the only parameter which controls properties of the magnon spectrum. For
small curvature c0 � 1 widths of all band gaps are ∆ΩG

ν∝ c
5
0 where ν ∈ N. In the opposite

case c0 � 1 all the gaps close by the law ∆ΩG
ν≥2 ∝ c

−2
0 , except the first one, whose width

goes to the constant value ∆ΩG
1 ≈ 3/4 (in units of the frequency of the uniform ferromagnetic

resonance for a straight wire). The main gap shrinks as Ω0 ≈ 1−c2
0/2 for small curvatures and

it asymptotically closes Ω0 ≈ 1/(2
p

2c0) for large curvatures. In the latter case the curvilinear
wire effectively behaves as an easy-plane magnet.

The curvature induced band structure is a direct physical evidence of the curvature ef-
fect on magnetic subsystem. Besides the fundamental meaning of this result the considered
periodical system can be used in as a filter element in magnon spintronics applications.
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A Equilibrium state and linearised equations of motion

A.1 General results

The model (1b) substituted into the angular representation of Landau–Lifshitz equations
sinθ∂tφ =

γ0
Ms

δE
δθ , sinθ∂tθ = −

γ0
Ms

δE
δφ results in

sinθφ̇ = −θ ′′ + sinθ cosθ
�

(φ′ +c)2 − cos2φ
�

, (A.1a)

sinθθ̇ =
�

sin2 θ (φ′ +c)
�′ − sin2 θ cosφ sinφ. (A.1b)

One can see that the equation (A.1a) has static solution θ = Θ, where Θ = 0 or Θ = π/2
corresponding to maximum or minimum of the energy (1b), respectively. In the following we
focus on the static ground state solution Θ = π/2. For this case the static form of Eq. (A.1b)
is transformed into (2) which determines the ground state φ = Φ(ξ).

Here we consider a meander shaped wire with the periodically repeated semicircles of radii
R, see Fig. 1. The curvature of this wire is the square-wave function with period 2ξ0:

c(ξ) = c0 (−1)bξ/ξ0c+1. (A.2)

For the considered geometry Eq. (2) is equivalent to the corresponding homogeneous equa-
tion supplemented by the derivative jumps in the junction points ξ= nξ0:

Φ′′ − sinΦ cosΦ= 0, [Φ′]2nξ0
= 2c0, [Φ′](2n+1)ξ0

= −2c0, (A.3)

where [Φ′]ξ = Φ′(ξ+ 0)−Φ′(ξ− 0) and n ∈ Z. The opposite signs of the derivative jumps in
the neighbouring junction points enable us to assume that the solution is a periodical function
Φ(ξ) = Φ(ξ+2ξ0) reaching its minimum and maximum values in the junction points, namely
Φ(2nξ0) = −Φ0 and Φ((2n+ 1)ξ0) = Φ0. Equation (A.3) has the first integral

Φ′ = ±
1
k

p

1+ k2 sin2Φ, k =
1

q

c2
0 − sin2Φ0

, (A.4)

where the integration constant k is determined from the derivative jumps in (A.3). Note that
Φ′ > 0 and Φ′ < 0 for the ranges where c = −c0 and c = c0 respectively. Thus, for all ξ one
has

(Φ′ +c)2 =
�

1
k

p

1+ k2 sin2Φ−c0

�2

. (A.5)

Integration of Eq. (A.4) on the interval ξ ∈ [0,ξ0] results in the solution

Φ(ξ) = am
�

ξ− ξ0/2
k(Φ0)

, ik(Φ0)
�

. (A.6)

The unknown constant Φ0 can be found from the condition Φ(0) = −Φ0 and Φ(ξ0) = Φ0 which
is equivalent to the equation k(Φ0)F(Φ0, ik(Φ0)) = ξ0/2. Generalization of the half-period
solution (A.6) for the all domain ξ ∈ R is presented by (3b). Asymptotic approximations for
Φ0 and Φ(ξ) for the cases of small and large curvatures are listed in Table. 1.

Now we introduce the small deviations from the ground state as described in Sec. 3. The
corresponding linearised Landau–Lifshitz equations have form

ϕ̇ = −ϑ′′ − ϑ
�

(Φ′ +c)2 − cos2Φ
�

,

ϑ̇ = ϕ′′ −ϕ cos2Φ.
(A.7)
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Figure 5: Magnon potentials (A.8) are shown by solid lines for different c0. Dashed
lines correspond to asymptotes (B.13) and (B.16) for c0 = 0.1 and c0 = 3, respec-
tively.

Introducing the complex valued function ψ = ϑ + iϕ we obtain the generalized Schrödinger
equation (4) with potentials (5). Using (A.5) one presents the potentials in form

V =W − 2sin2Φ, W =
c0

k

p

1+ k2 sin2Φ−
1
2

�

1
k2
+c2

0

�

, (A.8)

where Φ is determined in (3b). Potentials (A.8) for different c0 are shown in Fig. 5. Note
that V (ξ) = V (ξ+ ξ0) and W (ξ) =W (ξ+ ξ0) have twice as small period as Φ(ξ) has, this is
because the dependence on ξ is reduced to the dependence on sin2Φ(ξ) in (A.8).

Looking for solution of (4) in form ψ = u(ξ)eiΩτ + v∗(ξ)e−iΩτ one obtains the following
set of homogeneous equations for functions u and v [9]

−u′′ + (1+ V )u+W v = Ωu, (A.9a)

v′′ − (1+ V )v −Wu= Ωv, (A.9b)

which can be reformulated as EVP (6).

B Band structure for the Bogoliubov–de Gennes
EVP in 1D

The general analysis of the band structure for the Bogoliubov–de Gennes EVP (6) can be per-
formed, using an approach developed in Ref. [38] for the usual Scrödinger equation. We
consider the periodic potentials V (ξ) and W (ξ) as a superposition of single-barrier potentials
V and Wof width ξ0:

V (ξ) =
∞
∑

n=−∞
V(ξ− nξ0) , W (ξ) =

∞
∑

n=−∞
W(ξ− nξ0) . (B.1)

Let us start with the scattering problem for single-barrier potentials V(ξ) and W(ξ), which
coincide with V (ξ) and W (ξ) within the interval ξ ∈ [−ξ0,ξ0], respectively. Outside the
interval we suppose, following [38], that potentials takes their limit values v=max V(ξ) and
w = min W(ξ) when ξ /∈ [−ξ0,ξ0]. Then, general solution of eigenfunctions of the EVP (6)
for single potentials in the range |ξ|> ξ0/2 has the following form, cf. [38]

u(ξ) =

¨

C1

�

eiKξ +Re−iKξ
�

+ C2Te−iKξ + C3ekξ, when ξ < −ξ0
2 ,

C1Te−iKξ + C2

�

e−iKξ +ReiKξ
�

+ C4e−kξ, when ξ > ξ0
2 ,

v(ξ) =











C1p
�

eiKξ +Re−iKξ
�

+ C2pTe−iKξ −
C3

p
ekξ, when ξ < −ξ0

2 ,

C1pTe−iKξ + C2p
�

e−iKξ +ReiKξ
�

−
C4

p
e−kξ, when ξ > ξ0

2 .

(B.2)
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Here we use the following notations:

K=
p
ε − v, k=

p
ε + v, p=

1+Ω− ε
w

, ε =
Æ

(1+Ω)2 +w2, (B.3)

with transmission and reflection complex-valued coefficients being T= Teiδ and R = Reiδr ,
respectively, C j , j = 1,4 being constants.

Now using the Floquet theory, we conclude that u and v have to satisfy the following
conditions:

u(ξ+ ξ0) = eiqξ0u(ξ), v(ξ+ ξ0) = eiqξ0 v(ξ), (B.4)

which are analogues of the Bloch’s theorem for the EVP (6). By imposing conditions (B.4) and
similar conditions for u′ and v′ at ξ= −ξ0/2 to (B.2), we find the band structure of EVP (6):

cos (Kξ0 +δ (K))
T (K)

= cos qξ0. (7′)

The band edges are determined by condition

cos (Kξ0 +δ (K)) = ±T (K) . (B.5)

B.1 Numerical band structure calculation in the wave-vector space

In the following it is convenient to utilize the periodicity of the potentials V and W and present
them in form of the Fourier series

V (ξ) =
∑

n∈Z
Vneing0ξ, W (ξ) =

∑

n∈Z
Wneing0ξ, (B.6a)

Vn =
1
ξ0

ξ0/2
∫

−ξ0/2

V (ξ)e−ing0ξdξ, Wn =
1
ξ0

ξ0/2
∫

−ξ0/2

W (ξ)e−ing0ξdξ, (B.6b)

where g0 = 2π/ξ0 = 2c0 is vector of the reciprocal lattice. Note that the potentials are even
functions V (ξ) = V (−ξ), W (ξ) = W (−ξ). This has two consequences, namely Vn = V−n,
Wn = W−n and Vn = V ∗n , Wn = W ∗

n for all n. Substituting (B.6a) together with the represen-
tation u(ξ) =

∫∞
−∞ û(q)eiqξdq, v(ξ) =

∫∞
−∞ v̂(q)eiqξdq into (A.9) and using the orthogonality

condition
∫∞
−∞ eiξ(q−q′)dξ= 2πδ(q− q′) we obtain the wave-vector representation of (A.9)

(q2 + 1)û(q) +
∑

n∈Z
[Vnû(q+ ng0) +Wn v̂(q+ ng0)] = Ωqû(q), (B.7a)

−(q2 + 1)v̂(q)−
∑

n∈Z
[Vn v̂(q+ ng0) +Wnû(q+ ng0)] = Ωq v̂(q). (B.7b)

For each q, equations (B.7) determine the tuple of numbers |Ψ̂q〉 =
| . . . , û(q + ng0), . . . , v̂(q + ng0), . . . 〉 which can be interpreted as eigenvector of the following
eigenvalue problem

Ĥq|Ψ̂q〉= Ωq|Ψ̂q〉, Ĥq =









Ĥq Ŵ
−Ŵ −Ĥq









. (B.8)

Here Ĥq is the block-matrix consisting of the blocks Ĥq and Ŵ with elements

Ĥnn′
q = δn,n′

�

(q+ ng0)
2 + 1

�

+ V|n−n′|, Ŵnn′ =W|n−n′|, (B.9)

where n, n′ ∈ Z. Having the analytical expression (A.8) for the potentials V and W one can
easily build matrix Ĥq using (B.6b) for numerical calculation of the Fourier coefficients V̂n and
Ŵn. The periodical band scheme for the first m zones is determined by m lowest eigenvalues
of the matrix Ĥq, see Fig. 6. In this case the size of the matrix Ĥq must be much larger than
m: −N0 ≤ n, n′ ≤ N0, where N0� m.
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Figure 6: Periodical band structure for the case c0 = 1. Three bands are repre-
sented by the lowest three eigenvalues of the matrix Ĥq defined in Eq. (B.8). The
calculation was made for N0 = 10.

B.2 Analytical approximation

In vicinity of the ν-th Brillouin zone (ν ∈ N) the EVP (B.8) can be significantly simplified
by applying the two-component approximation [33]. The solution is approximated by the
standing wave with q = qν, where the wave vector qν = νg0/2= νc0 corresponds to the edge
of the ν-th Brillouin zone. This means that in the general set (B.7) one saves only terms û(qν),
û(−qν), v̂(qν), and v̂(−qν). For this case, the block matrices Ĥq and Ŵ in (B.8) have simple
form

Ĥqν =









q2
ν + 1+ V0 Vν

Vν q2
ν + 1+ V0









, Ŵ =









W0 Wν

Wν W0









. (B.10)

Using the fact that matrices Ĥqν and Ŵ commute, one obtains from (B.8) the following eigen-
values Ωqν = Ω

±
ν . Here Ω+ν and Ω−ν correspond to the upper and bottom edges of the ν-th gap,

respectively, they are determined by Eq. (8). The value of the main gap Ω0, which corresponds
to the case ν = 0 and q0 = 0, can be roughly approximated by the one component approxi-
mation (8). Although, the latter works well in a wide range of c0, it does not give the correct
asymptotic for c0� 1. For this case one should apply the three-component approximation:

Ĥq0
=













g2
0 + 1+ V0 V1 0

V1 1+ V0 V1
0 V1 g2

0 + 1+ V0













, Ŵ =













W0 W1 0
W1 W0 W1
0 W1 W0













. (B.11)

The straightforward calculation of eigenvalues of the matrix Ĥq0
and the subsequent substitu-

tion of the asymptotic approximations for the Fourier coefficients V0,1 and W0,1 listed in (B.14)
and (B.17), enable us to estimate Ω0 ≈ 1−c2

0/2 for c0� 1 and Ω0 ≈ 1/(2
p

2c0) for c0� 1.

B.2.1 Asymptotic behaviour of the ground state and the magnon potentials

I. Small curvature c0� 1.
The ground state (3b) within the interval ξ ∈ [0,ξ0]:

Φ(ξ)≈ c0

sinh
�

ξ− ξ0
2

�

cosh ξ0
2

, Φ0 ≈ c0 tanh
ξ0

2
. (B.12)
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Table 1: Asymptotic behaviour of the band boundaries: Only the leading terms in
c0 are presented. Here Ω0 is width of the main gap, Ω−ν and Ω+ν denote the bottom
and the top edges of the ν-th gap with ν ∈ N. The notations ∆ΩG

ν = Ω
+
ν − Ω

−
ν and

∆ΩB
ν = Ω

−
ν −Ω

+
ν−1 are introduced for the widths of the ν-th gap and the conductance

band, respectively (we define Ω+0 = Ω
−
0 = Ω0).

Quantity c0� 1 c0� 1 Quantity c0� 1 c0� 1

Ω0 1−c2
0/2 1/(2

p
2c0)

Ω−1 1+
c2

0
2 c2

0 −
1
8 Ω+1 1+

c2
0

2 c2
0 +

5
8

∆ΩG
1

10
π c

5
0

3
4 −

3
32c2

0
∆ΩB

1 c2
0 c2

0

Ω−2 1+
7c2

0
2 4c2

0 +
1
4 Ω+2 1+

7c2
0

2 4c2
0 +

1
4

∆ΩG
2

46
π c

5
0

15
64c2

0
∆ΩB

2 3c2
0 3c2

0

Ω−3 1+
17c2

0
2 9c2

0 +
1
4 Ω+3 1+

17c2
0

2 9c2
0 +

1
4

∆ΩG
3

106
π c

5
0

3
64c2

0
∆ΩB

3 5c2
0 5c2

0

Magnon potentials (A.8) within the interval ξ ∈ [0,ξ0]:

V (ξ)≈ c2
0





cosh
�

ξ− ξ0
2

�

cosh ξ0
2

− 2
sinh2

�

ξ− ξ0
2

�

cosh2 ξ0
2

−
1

2cosh2 ξ0
2

−
1
2



 , (B.13a)

W (ξ)≈ c2
0





cosh
�

ξ− ξ0
2

�

cosh ξ0
2

−
1

2cosh2 ξ0
2

−
1
2



 , (B.13b)

V (0)≈ −
3
2
c2

0, W (0)≈
1
2
c2

0, V (ξ0/2) =W (ξ0/2)≈ −
1
2
c2

0. (B.13c)

Fourier coefficients (B.6b)

V0 ≈ −
c2

0

2
tanh2 ξ0

2
, V1 ≈ −

6π2c2
0ξ0 tanh ξ0

2

(2π2 + ξ2
0)2 +π2ξ2

0

, V2 ≈ −
24π2c2

0ξ0 tanh ξ0
2

(8π2 + ξ2
0)2 + 4π2ξ2

0

(B.14a)

W0 ≈ c2
0

�

2
ξ0

tanh
ξ0

2
−

1
2

�

1+
1

cosh2 ξ0
2

��

, W1 ≈
2c2

0ξ0 tanh ξ0
2

4π2 + ξ2
0

, W2 ≈
2c2

0ξ0 tanh ξ0
2

16π2 + ξ2
0

.

(B.14b)

II. Large curvature c0� 1.
The ground state (3b) within the interval ξ ∈ [0,ξ0]:

Φ(ξ)≈
�

ξ−
ξ0

2

��

c0 −
1

4c0

�

+
sin
�

π
ξ
ξ0

�

cos
�

π
ξ
ξ0

�

4c2
0

, Φ0 ≈
π

2

�

1−
1

4c2
0

�

. (B.15)
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Magnon potentials (A.8) within the interval ξ ∈ [0,ξ0]:

V (ξ)≈ −
3
2

cos2
�

π
ξ

ξ0

�

−
3
�

ξ− ξ0
2

�

sin
�

2π ξ
ξ0

�

8c0
+

sin
�

π
ξ
ξ0

��

3sin
�

π
ξ
ξ0

�

+ 7sin
�

3π ξ
ξ0

��

32c2
0

,

(B.16a)

W (ξ)≈
1
2

cos2
�

π
ξ

ξ0

�

+

�

ξ− ξ0
2

�

sin
�

2π ξ
ξ0

�

8c0
−

sin
�

π
ξ
ξ0

��

5 sin
�

π
ξ
ξ0

�

+ sin
�

3π ξ
ξ0

��

32c2
0

,

(B.16b)

V (0)≈ −
3
2

, W (0)≈
1
2

, V (ξ0/2) =W (ξ0/2)≈ −
1

8c2
0

. (B.16c)

Fourier coefficients (B.6b)

V0 ≈ −
3
4

�

1−
5

16c2
0

�

, V1 ≈ −
3
8
+

5

64c2
0

, V2 ≈
−15

128c2
0

, (B.17a)

W0 ≈
1
4

�

1−
9

16c2
0

�

, W1 ≈
1
8
+

1

64c2
0

, W2 ≈
11

384c2
0

. (B.17b)

C Numerical simulations

C.1 Magnon dispersion

To verify our results, we numerically simulate the magnetization dynamics of the meander
shape chain, Fig. 1(a) of the discrete magnetic moments m i , with i = 1, N . The magnetization
dynamics is determined by the discrete Landau–Lifshitz equations with the relaxation term

2
ω0

dm i

d t
=m i ×

∂ E

∂m i
−αm i ×

�

m i ×
∂ E

∂m i

�

, (C.1)

with ω0 = 2Kγ0/Ms, α being the damping parameter and E being the dimensionless energy
normalized by K∆s3 with∆s being the lattice constant. The Hamiltonian of the magnetic wire
reads

E= −2
`2

∆s2

N−1
∑

i=1

m i ·m i+1 −
N
∑

i=1

�

�

m i · eTi

�2
+ bi ·m i

�

, (C.2)

with bi being a dimensionless external magnetic field, normalized by K/Ms. The magnetiza-
tion dynamics is described by a set of 3N ordinary differential equations (C.1) for unknown
magnetization components mx

i (t), my
i (t), mz

i (t), i = 1, N . The set of equation (C.1) was inte-
grated numerically.

We consider 20 periods of meander-like shape chain which corresponds to the length
L = 2000∆s and the magnetic length l = 9.6∆s. During the simulation the discretization
step is much smaller than the length of the single half-circle, ∆s� π/c0.

The magnon dispersion relation is carried out in three steps. In the first step, we numeri-
cally simulate the magnetization dynamics for the system with Hamiltonian (C.2) and bi = 0
in overdamping regime, α = 0.1. The tangential distribution is chosen as initial one. The ob-
tained magnetization distribution corresponds to the ground state. Then the external magnetic
field was applied along the shaped wire

bi = b0eBi
cos si

q
`

, i = 1, N , (C.3)
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where q is the dimensionless wave vector, si = (i − 1)∆s is the position of the magnetization
vector m i and the amplitude of the external magnetic field b0 = 0.005.

In the last step, the magnetic field is switched off and the magnetization dynamics is sim-
ulated with damping coefficient α = 0.01. After that the space-time Fourier transform is
performed for the binormal magnetization component. The frequency Ω corresponds to the
maximum of the Fourier amplitude and the wave vector q is marked by a dot in Fig. 3.

C.2 Amplitude-frequency characteristic of the filter

We demonstrate that the magnon filter is a possible application for the proposed curvature
induced magnonic crystal. We perform spin-lattice simulations of the magnetization dynam-
ics, determined by Landau–Lifshitz equation (C.1). The meander shape chain of the discrete
magnetic moments m i , with i = 1, N , lies in the plane x0y . The full energy of the magnetic
system corresponds to the Hamiltonian (C.2) with bi = 0.

To form the input signal the first magnetic moment of the system is rotated with the input
frequency Ω, m1 = x̂ cosΩτ sinβ + ŷ cosβ + ẑ sinΩτ sinβ . We consider the 14 periods of
the meander-like periodical structure with damping coefficient α = 0.01. To prevent signals
reflection from the free boundary of the system the terminator is placed after the considered
magnon crystal. The terminator is composed of 5 periods meander shape chain with Nnodes
and has the spatially inhomogeneous damping coefficient, α j = αexp

�

χs j

�

, j = N −N, N and
the coefficient χ determines the rate of increase of the damping parameter.

The output signal is measured for the last node of the magnonic crystal. Due to non-linear
processes, there is a transfer of energy density from the input frequency Ω to other spectral
frequencies. To analyse the amplitude of the output signal on the input frequency the time
Fourier transform is performed for one of the magnetization components.

Simulations are performed for curvature amplitudes c0 = 0.6 and c0 = 1.2, see Fig. 1(d).
In the first case, the length of the periodic structure which corresponds to the magnonic crystal
is 1400∆s and the first magnetic moment is rotating with β = π/2. The length of the termi-
nator is 500∆s and χ = 0.01. In the second case, the length of the magnonic crystal is 700∆s
and the first magnetic moment is rotating with β = π/12. The length of the terminator is
250∆s and χ = 0.025.
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