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The metal-insulator transition in disordered solids:
How theoretical prejudices influence its characterization
A critical review of analyses of experimental data

Arnulf M€obius

Institute for Theoretical Solid State Physics, IFW Dresden, Dresden, Germany

ABSTRACT
In a recent experimental study, Siegrist et al. [Nature Materials 10, 202–208 (2011)] investigated the
metal-insulator transition (MIT) induced by annealing in GeSb2Te4. The authors concluded that this
phase-change material exhibits a discontinuous MIT with finite minimum metallic conductivity. The
striking contrast between their work and reports on many other disordered substances from the last
decades motivates the present in-depth study of the influence of the MIT criterion used on the
character of the MIT derived.

First, we discuss in detail the inherent biases of various approaches to locating the MIT. Second,
reanalyzing GeSb2Te4 data, we show that this material resembles other disordered solids to a
large extent: according to a widely-used approach, its temperature dependences of the
conductivity, s(T ), may likewise be interpreted in terms of a continuous MIT. Third, examining
previous experimental studies of crystalline Si:As, Si:P, Si:B, Ge:Ga, CdSe:In, n-Cd0:95Mn0:05Se,
Cd0:95Mn0:05Te0:97Se0:03:In, disordered Gd, and nanogranular Pt-C, we detect substantial problems in
the interpretations of s(T ) in numerous studies which claim the MIT to be continuous: Evaluating
the logarithmic derivative d ln s/d ln T highlights serious inconsistencies. In part, they are common
to all such studies and seem to be generic, in part, they vary from experiment to experiment.
Fourth, for four qualitatively different phenomenological models of the temperature and control
parameter dependence of the conductivity, we present the respective flow diagrams of d ln s/d ln T.
In consequence, the likely generic inconsistencies seem to originate from the MIT being
discontinuous, in contradiction to most of the original interpretations.

Because of the large number and diversity of the experiments considered, these inconsistencies
provide overwhelming evidence against the common, localization theory motivated interpretations.
The primary challenges now lie in improving measurement precision and accuracy, rather than in
extending the temperature range, and in developing a microscopic theory which explains the
seemingly generic features of d ln s/d ln T.
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1. Introduction

For more than 50 years, localization in disordered sys-
tems, in particular the corresponding metal-insulator
transition (MIT), has attracted a lot of interest from
both theoreticians and experimentalists.1–11 Milestones
on this way have been Anderson noting the absence of
diffusion in certain lattices with disorder,12 Mott’s
concept of the minimum metallic conductivity,13 the
scaling theory of localization,14 and the renormaliza-
tion group approach incorporating electron-electron
interaction into localization theory.15 Experimentally,
localization in three-dimensional systems has been
studied in a large number of disordered solids, such as
heavily doped crystalline semiconductors (in which
the disorder arises from the randomly positioned
impurities), amorphous transition-metal semiconduc-
tor alloys, granular metals, and nanocrystalline sub-
stances.7–10 Many of these solids are or may become
application relevant; therefore they are often consid-
ered to be among the materials.3 In various experi-
ments, the MIT has been triggered by diverse control
parameters: composition / doping, stress, magnetic
field, light, as well as structure;16–33 in part, these pub-
lications substantially contradict each other.

The MIT in disordered solids is primarily a zero-
temperature phenomenon. —We do not consider here

the case of an MIT which is interrelated with a struc-
tural or magnetic phase transition. Such transitions usu-
ally occur at some finite (i.e., nonzero) temperature, for
example in VO2 and V2O3.

34 By means of doping or
applying pressure, the critical temperature may be
reduced to zero.35 —Therefore, in the field of localiza-
tion, a sample is said to be metallic if its dc conductiv-
ity, s, is expected to tend to some finite value as the
temperature, T, goes to zero, and it is called insulating
if s is expected to tend to zero as T ! 0. Of course, for
the insulating samples, s is finite at any finite T due to
thermally activated non-metallic transport, in particular
variable-range hopping.a

Hence, in studying the MIT, each evaluation of exper-
imental data includes some T ! 0 extrapolation: Early
work on two- and three-dimensional systems judged the
s(T ) curves from a rather global perspective. Only sam-
ples for which s drops exponentially with decreasing T
were classified as insulating, while all other samples were
regarded as metallic.36,37 Later, for three-dimensional
systems, when more dense sets of control parameter

aClassifying solids, which can be investigated only at finite temperatures,
according to a zero-temperature property may sound strange. At the cur-
rent stage, however, it is the only possibility of an unambiguous and physi-
cally meaningful discrimination between metallic and non-metallic
behavior; see Subsection 2.1.
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values were considered, the focus concentrated on
s(T ! 0) extrapolations of low-temperature data from
the control parameter region thought of as metallic.5

These analyses are based on microscopic theories yield-
ing augmented power laws, s D a C b Tp, as derived in
Altshuler and Aronov38 and Newson and Pepper.39 In
this approach, samples with positive extrapolated
s(T D 0) value are regarded as metallic, while all other
samples are classified as insulating.

Simultaneously with this change in the data analysis
approach, the majority opinion on the character of the
MIT in three-dimensional samples turned: it shifted
from initially supporting Mott’s idea of a discontinuous
transition with a finite minimum metallic conductivity
toward favoring a continuous transition in accord with
the scaling theory of localization.5 Nowadays, most
of the experts in this field seem to be certain about the
continuity of the MIT, see, for example, L€ohneysen.40

Nevertheless, two repeatedly observed phenomena are in
conflict with the continuity hypothesis: the scaling of the
T dependences of s in the hopping region41,42 and the
existence of specific low-temperature minima in the
T dependences of the logarithmic T derivative of s,
d ln s/d lnT.10,21 (Because of the focus on properties of
individual samples, we here mostly use total derivative
symbols although s depends not only on T but also on a
control parameter.)

The concurrence of the changes in the data analysis
approach and in the majority opinion on the character
of the MIT provokes a naive question:May it be that this
opinion change was caused merely by the difference
between the biases inherent to the analysis approaches
rather than by improvements in the experiments?

To support our question, we recall the following: In
the literature, two different MIT criteria have been used
in confirming the scaling theory of localization for the
three-dimensional case and in disproving it for the two-
dimensional case, respectively. In the former situation,
the augmented power law extrapolation criterion has
been applied to determine the critical value of the control
parameter.5,40 In contrast, in the latter case, the sign
change of the derivative, ds/dT, at the lowest measuring
temperature has been considered as indicator of the
change in the nature of conduction.43,44 One exception
within the studies of two-dimensional systems acts as
additional motivation for our question: Feng et al.45 used
the T ! 0 extrapolation ansatz s D a C b T 2 and
obtained an empirical model of a continuous MIT.

At this point, the reader is invited to scroll down for a
moment to take a brief look at Figures 3, 4, 8, 9, 10, 16,
17, and 19, which regard various disordered solids: All
these diagrams contrast T dependences of d ln s/d lnT

obtained by direct numerical differentiation of experi-
mental data with dashed-dotted curves derived from
augmented power laws, s D a C b Tp. The slopes of the
former and of the latter relations differ qualitatively from
each other, again and again! This observation, together
with the historical remarks above, will surely awaken or
strengthen the reader’s interest in a detailed analysis of
the T ! 0 extrapolation problem, which is central to
this review.

Further motivation for our above question about the
role of the interpretation bias comes from a recent
investigation of the MIT in specific three-dimensional
disordered systems. The report by Siegrist et al. on
GeSb2Te4 and similar phase-change materials31 claims
to obtain surprising results: Annealing amorphous
films of such substances induces a crystallization
process with increasing temperature whereby a nano-
crystalline structure is formed.31 During this transfor-
mation, s increases by orders of magnitude while s(T )
changes qualitatively, which indicates an MIT.31 Classi-
fying the samples according to the sign of dr/dT at the
measuring temperature, Siegrist et al. conclude that the
studied phase-change materials exhibit a finite mini-
mum metallic conductivity, in contrast to various other
disordered substances. Moreover, the authors state that
the phase-change materials violate the Mott criterion
for the critical charge carrier concentration. They inter-
pret these features as originating from an “unparalleled
quantum state of matter” resulting from “pronounced
disorder but weak electron correlation”,31 see also
Schreiber.46

Remarkably, the work by Siegrist et al.31 differs from
previous publications which claim continuity of the MIT
not only concerning the substance investigated but also
with respect to the data evaluation approach used. This
again raises the question about the influence of the choice
of the data analysis method on the character of the MIT
obtained.

Therefore, we here scrutinize the justification of the
conclusions of Siegrist et al.,31 reanalyzing data from this
work. Due to the interpretation uncertainties mentioned
above, we take a neutral, phenomenological perspective
and avoid, as far as possible, any bias caused by focusing
on a particular microscopic theory. Our present study
shows that the s(T ) for GeSb2Te4 resemble results from
previous studies on disordered solids to a large extent. A
part of the data can be well approximated by the ansatz
s D a C b T 1/2, so that, in the same way as in other
investigations, the MIT could be characterized as contin-
uous. However, when checking the justification of this
approach by studying the behavior of d ln s/d lnT, new
insight is gained: both the sample classifications
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according to the sign of dr/dT, on the one hand,
and according to the fit of the augmented power law
s D a C b T 1/2 to the measured data, on the other hand,
are called into question.

The situation gets even more complicated when
data from a subsequent GeSb2Te4 study, Volker
et al.,47 by three of the authors of Siegrist et al.31 are
additionally taken into account. Therein, the T range
was extended by one order of magnitude, and conti-
nuity of the MIT was concluded from augmented
power law approximations of the measured s(T ).
However, as will be shown in our analysis of the T
dependences of d ln s/d lnT, also these augmented
power law approximations substantially fail close to
the MIT.

The observations described in the previous two
paragraphs suggest to take a broader view. Thus, in
the following, we here examine various publications
on the MIT in other solids (Shafarman et al.,18

Thomas et al.,22 Waffenschmidt et al.,23 Wojtowicz
et al.,26 Dietl et al.,27 G»�od et al.,29 Misra et al.,32

Sarachik and Dai,42 Rosenbaum et al.,48,49 Stupp
et al.,50 Dai et al.,51 Watanabe et al.,52 and Sachser
et al.53) from the same perspective. In doing so, one is
confronted with similar problems as for GeSb2Te4: in
numerous cases, the behavior of d ln s/d lnT obtained
numerically from the measurements without making
any assumptions is not consistent with the common
interpretation in terms of a continuous MIT with, on
the metallic side, s(T ) following s D a C b Tp where
p D 1/2 or 1/3. More precisely, for many samples which
are classified as metallic in the publications cited above,
d ln s/d lnT in fact increases with decreasing T over a
wide T range, whereas a decrease is expected according
to the ansatz s(T ) D a C b Tp.

One result of this examination is particularly strik-
ing: for various solids, there are even allegedly metallic
samples for which the T dependence of d ln s/d lnT
has negative slope in spite of s(T ) decreasing so slowly
with T that d ln s/d ln T � 1/3. Remarkably, below
about 2 K, also one of the CdSe:In samples from
Zhang et al.,54 Aharony et al.,55 and Zhang and Sara-
chik56 shows exactly this correlation, although it is
claimed to exhibit hopping conduction in those
publications.

These findings provide valuable information about
the character of the MIT: First, the disproofs of the
finite minimum metallic conductivity hypothesis in the
analyzed publications, which are based on augmented
power law fits with p D 1/2 or 1/3, cannot be consid-
ered conclusive. Second, the here observed correlation
between value and sign of the slope of d ln s/d lnT(T)

indicates that, in the limit T ! 0, the control parameter
dependence of s is very likely discontinuous at the
MIT. We substantiate this implication by comparing
flow diagrams of d ln s/d lnT(T ) obtained from four
qualitatively different phenomenological models in a
separate section of this review.

In several cases, however, the T dependence of
d ln s/d lnT exhibits a maximum which is incompatible
with the seemingly generic behavior of this quantity, as it
has been described and interpreted in the previous three
paragraphs. Since these maxima are experiment-specific,
further, very careful investigations of the same T range
are needed. In this way, we identify key points for the
design of future related experiments.

The present review is organized as follows. Section 2
discusses various approaches to the precise determination
of the transition point between metallic and insulating
phases, the first and most important difficulty of experi-
ments on the MIT. (Readers in a hurry may focus on
Subsections 2.2, 2.3, 2.4, and, in particular, 2.6.) Section 3
is devoted to GeSb2Te4: In its first part, Subsection 3.1,
s(T) data from Siegrist et al.31 and Volker et al.47 are
reanalyzed by means of alternative approaches. In doing
so, we demonstrate inconsistencies in the data sets from
Siegrist et al.31 which render it impossible to reach defi-
nite conclusions about the nature of conduction for three
of the samples. Moreover, we explain why a part of the
sample classifications of Volker et al.47 seems to be incor-
rect, so that the characterization of the MIT therein is
called into question. In the second part of this section,
Subsection 3.2, several arguments against the hypothetical
violation of the Mott criterion by GeSb2Te4 are presented;
this deviation is found to be not real but to result from
an invalid assumption on the participating states.
(Subsection 3.2 may be skipped on first reading.) Section 4
compares our findings on GeSb2Te4 with results of a
multitude of studies on various other disordered solids.
Here we show that, in numerous publications favoring
continuity of the MIT, severe interpretation problems can
be uncovered by taking the behavior of d lns/d lnT into
consideration. Section 5, evaluating simple phenomeno-
logical hypotheses, studies how the character of the MIT
determines qualitative properties of sets of T dependences
of d lns/d lnT for various control parameter values. It
demonstrates that such flow diagrams obtained directly
from experimental data can be an informative fingerprint
of the character of the zero-temperature phenomenon
MIT. Finally, Section 6 summarizes our results and draws
conclusions for future studies.

In Appendix A, relations between the effective
mass, permittivity, critical charge carrier concentra-
tion of the MIT, charge carrier concentration at
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which ds/dT changes sign in the low-T limit, and
corresponding s value are deduced by means of
dimensional analyses. These results are robust with
respect to a broad class of theoretical approximations,
also regarding the incorporation of the electron-elec-
tron interaction. Appendix B is devoted to mathemat-
ical aspects in the interpretation of observations of
scaling of T dependences of s, in particular to the
hidden suppositions in this way of concluding the
existence of a finite minimum metallic conductivity.
Finally, to ensure that our data evaluations are easily
reproducible, Appendix C explains the sophisticated
numerical differentiation method for functions given
by noisy values at non-equidistant points which is the
basic tool for a large part of the reanalyses presented
here.

2. Criteria for detecting the MIT

Although, at first glance, the identification of metallic
and insulating phases of disordered solids seems to be a
simple task, it is far from trivial.21,57 Therefore, the gen-
eral aspects of various approaches, in particular their
implicit preconditions and consequences, are discussed
in detail in this section.

2.1. Sign change of dρ/dT at the measuring
temperature

Siegrist et al.31 describe the current state of the literature
on three-dimensional systems as follows: In experimen-
tal studies, the sign of the temperature derivative of the
resistivity, dr/dT, is taken as criterion, where positive
and negative dr/dT indicate metallic and insulating
behavior, respectively.31 Note that this classification
refers to the current measuring temperature. (Alterna-
tively, as done below, ds/dT can be considered which
always has the opposite sign.) Furthermore, Siegrist et al.
state that this approach by experimentalists contrasts
with theoretical investigations.31 Those studies consider
transport as metallic if, as T ! 0, the conductivity s

tends to a finite value, and as insulating if s vanishes.31

That summary of the literature is incomplete. As
already mentioned in Section 1 and discussed in more
detail in Subsection 2.3 as well as Sections 3 and 4, also
quite a number of experimental studies have focused on
s(T ! 0) extrapolations based on microscopic theories
for the metallic phase. They consider not only doped
crystalline semiconductors but also amorphous transi-
tion metal semiconductor alloys and granular systems;
see, for example, Thomas et al.,22 Sachser et al.,53 and
Dodson et al.58

More importantly, the above usage of notions by Sieg-
rist et al., which, by the way, seems to be rather popular
among nonspecialists in localization still nowadays, is
misleading: The transition from metallic to insulating
behavior at T D 0 and the sign change of dr/dT at finite
T are two different, only loosely related phenomena.
They should not be confused by using the same term
“metal-insulator transition” for both of them. This is
illustrated by qualitative considerations in the following
three paragraphs.

Consider s as function of T and some control param-
eter x. In the limit T ! 0, the conductivity is identical to
zero in the insulating region. —From the empirical per-
spective, the existence of such a region is a hypothesis,
although a very plausible one. Consider, for example,
Figure 2 of Thomas et al.: 22 The convergence of the finite
T curves to a sharp transition is not proven. In principle,
limT!0 s(T, x) might also continuously vanish in some
very rapid manner. —The onset of metallic conduction
happens at the x value where limT!0 s(T, x) suddenly
starts to deviate from zero. There, this function of x is
not smooth but has some peculiarity. That means it is
either discontinuous or at least not infinitely often differ-
entiable. This non-analytic behavior of limT!0 s(T, x)
indicates a phase transition, more precisely, a quantum
phase transition.

On the contrary, the room-temperature resistivity,
r(T D 293K, x), seems to be a smooth function of x in
the region of the sign change of dr/dT(T D 293K, x). To
the best of our knowledge, no indication for any pecu-
liarity (non-analyticity) of r(T D 293K, x) correlated
with the sign change of dr/dT (T D 293K, x) has been
reported so far. Thus, very likely, the sign change of
dr/dT(T D 293K, x) does not arise from a phase
transition.

Moreover, if there are two interfering mechanisms
yielding additive T-dependent resistivity contributions,
ri(T, x), with different signs of dri/dT (as in the case of
the Kondo effect), r(T, x D const.) may exhibit a maxi-
mum or minimum, as two curves in the shaded transi-
tion region in Figure 2 of Siegrist et al.31 do. Although
dr/dT D 0 at such an extremum, this feature cannot be
interpreted as transition between qualitatively different
phases since r(T, x D const.) does not exhibit any non-
analyticity there.

Nevertheless, one might expect the finite-T criterion
dr/dT D 0 to yield approximate results for the critical
value of the control parameter x and possibly for the
hypothetical minimum metallic conductivity and the
hypothetical maximum metallic resistivity. To which
extent does such an estimate depend on the measuring
temperature? To answer this question, we now compare
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room-temperature data with measurements at tempera-
tures of the order of 1 K for four groups of materials.
Thereby, as working definition, we use the terms room-
temperature minimum metallic conductivity, srtmm, and
low-temperature minimum metallic conductivity, sltmm,
to denote the s values which are related to dr/dT D 0 in
the respective temperature regions.

First, for GeSb2Te4, Siegrist et al.
31 obtain a maximum

metallic resistivity of 2 to 3mVcm considering
the temperature range from 5 to 290K. Compared to
the logarithmic scale in Figure 3 of Siegrist et al.,31

the uncertainty factor of 1.5 is rather small. The only
sample with r falling in this interval was prepared by
annealing at 275 �C. Its r(T ) is almost constant over the
whole temperature range considered; it varies far less
than the respective r(T) of the “neighboring” samples,
which were annealed at 250 and 300 �C. Thus, the
values of the critical annealing temperature and of
the minimum metallic conductivity depend only
slightly on the measuring temperature, so that in this
case srtmm � sltmm.

Second, the Mooij rule,59 an empirical relation
between the room-temperature values of dr/dT and r,
states: For a large number of disordered alloys, the sign
of dr/dT changes from plus to minus with increasing r

at about 150 § 50mVcm. Disordered solids with
r(300K)9 1000mVcm, however, do usually not exhibit
any increase in r(T) by several orders of magnitude with
decreasing T, provided they do not undergo some phase
transition at finite T. Accordingly, srtmm > 5 sltmm.

Third, consider the amorphous Si1¡xCrx films from
M€obius et al.,20,60 prepared by electron-beam evapora-
tion. Their Cr contents cover the range from x D 0.09 to
0.26. At low T, ds/dT changes sign when x � 0.15 and
s � 270 V¡1cm¡1, see Figures 3 and 5 of M€obius et al.20

and Figure 7 of M€obius et al.60 At room temperature,
however, up to x D 0.26, where s D 1360 V¡1cm¡1, all
samples exhibit positive ds/dT, see Figures 1 and 7 of
M€obius et al.60 Thus, at room temperature, they all are to
be regarded as insulating according to the dr/dT < 0 cri-
terion. Therefore, when using only room-temperature
data, one would overestimate the critical Cr content at
least by a factor of 1.7, and srtmm > 5 sltmm.

Fourth, concerning localization, the best investigated
material is heavily doped crystalline Si:P.9,40 In the mK
region, ds/dT changes sign at a P concentration of about
4 £ 1018 cm¡3, when s � 60 V¡1cm¡1, see Figure 3 of
Stupp et al.,50 compare to Rosenbaum et al.61 At room-
temperature, however, due to the electron-phonon
scattering in the exhaustion region, dr/dT stays positive
within the very wide s range from 10¡3 to 103 V¡1cm¡1,
except for a small interval around 102V¡1cm¡1, see Figure 1
of the study by Bullis et al.,62 performed at NIST. (Si:P does

not comply with Mooij’s rule.) This wide s range is related
to a P concentration range from roughly 1013 to about
1020 cm¡3; see Figure 4 of Thurber et al.63 Hence, for room
temperature, inferring the character of conduction from the
sign of dr/dT fails dramatically: samples are marked as
metallic even if the P concentration is smaller by a factor of
105 than the critical concentration obtained from low-
temperature measurements. Furthermore, in contrast to the
above considered materials, srtmm< 2£ 10¡5sltmm for the
region of low P concentrations.

In summary, the classification of the conduction char-
acter according to the sign of dr/dT at an arbitrarily cho-
sen measuring temperature is usually highly
questionable. The reason is the absence of any non-ana-
lyticity in the control parameter dependence of the con-
ductivity at such hypothetical MIT points. Moreover,
this criterion suffers from considerable uncertainties. In
particular, when it is applied to room-temperature data,
both, false-metallic and false-insulating classifications in
comparison to corresponding low-temperature evalua-
tions are not unlikely.

2.2. Sign change of dρ/dT in the limit as T→ 0

In the previous subsection, we demonstrated that the
identification of the nature of conduction according to
the sign of dr/dT at some arbitrary measuring tempera-
ture leads to severe problems. Nevertheless, the question
arises whether or not such a differential approach may
indicate the MIT at least in the limit as T ! 0. In
order to apply this criterion, one would have to deter-
mine the control parameter value for which dr/dT D 0
at various temperatures. Its T ! 0 limit would identify
the MIT.

In practice, in particular for two-dimensional systems,
the focus is on the transport at the lowest experimentally
accessible temperature, Tlea, often in the mK range.43,44

That means, the sign change of dr/dT (Tlea, x) is regarded
as the indication of the MIT, instead of a corresponding
T ! 0 extrapolation. Of course, this approach can be
meaningful only if jd2r/dT 2j is so small at this hypothet-
ical MIT that the influence of Tlea on its location is negli-
gible. Fortunately, this condition seems to be often
fulfilled; the width of the corresponding x range, how-
ever, decreases with T.

Nevertheless, one should be very cautious since the
issue is far more profound than it appears at first glance:
Using this criterion means to favor a particular character
of the MIT, namely discontinuity, and thus the existence
of a finite minimum metallic conductivity. Our state-
ment can be substantiated in two ways: it results from a
short mathematical consideration, and from purely
experimental experience.
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First, we take the mathematical perspective. Suppose
the properties of the investigated material can be contin-
uously modified where the extent of the modification is
measured by a real control parameter x with x 2 [xa, xb].

Focusing now on the T region (0, Tlea], we consider
s(T, x) and dr/dT (T, x) to be continuous functions of T
and x, where s(T, x) > 0. Without loss of generality, we
suppose that, when T D const. 2 (0, Tlea], both these
functions increase strictly monotonically with x. Sup-
pose, furthermore, that dr/dT (Tlea, xa) < 0 and that
dr/dT(Tlea, xb) > 0. Then, dr/dT (Tlea, x) changes sign at
some critical control parameter value, xc 2 (xa, xb), and
sc D s(Tlea, xc) > 0.

In practically applying the hypothetical MIT criterion
considered in this subsection, as pointed to above, we
suppose that (i) dr/dT(T, xc) D 0 for any T 2 (0, Tlea],
and hypothesize that (ii) xc marks the MIT.

From (i) and the suppositions above, we deduce that,
in case x < xc and T 2 (0, Tlea], dr/dT (T, x) < 0 holds,
so that ds/dT(T, x) > 0. Thus, s(T, x) 4 s(Tlea, x) < sc
and therefore, limT!0 s(T, x) < sc. Finally, due to (ii),
we even expect that, for x < xc, limT!0 s(T, x) D 0. Such
a limiting behavior may result when, on the insulating
side of the MIT, the rapid decrease of s(T, x D const.)
sets in at the lower temperature the closer x to xc; see
Subsections 2.4 and 2.5. For x � xc and T 2 (0, Tlea], we
obtain s(T, x) � s(Tlea, x) � sc in an analogous way, so
that limT!0 s(T, x) � sc in this x region.

Therefore, under the above physically plausible sup-
positions, the hypothetical MIT criterion considered
here implies that limT!0 s(T, x) is discontinuous at xc —
the limit jumps there from 0 to sc — and that sc has the
meaning of a finite minimum metallic conductivity.
Thus, in the present situation, already by the choice of
the MIT criterion, one determines which character of the
MIT one will infer from the experimental data.

Now, we consider the experimental experience: For
many three-dimensional systems, the s value which cor-
responds to dr/dT changing sign at low T was found to
roughly agree with Mott’s minimum metallic conductiv-
ity estimate,3,13,64

sMDC
e2

�hdc
: (1)

Here, dc denotes the interatomic distance of the trans-
port enabling constituents at the MIT (e.g., P atoms in
crystalline Si:P) and C a numerical constant of order
0.025 to 0.05; dc D nc

¡1/3, where nc is the corresponding
critical density. For example, Ganguly et al.65 explicitly
used this sign change criterion to determine the value of
sM for oxide systems. Further support for this correla-
tion comes from the original references of the data

compiled in Figure 10 of Mott and Kaveh;66 moreover,
concerning crystalline Si:P and amorphous Si1¡xCrx, see
Figure 3 of Stupp et al.;50 and Figure 7 of M€obius et al.,60

respectively. Thus, in the literature, using the criterion
dr/dT D 0 at Tlea for defining the MIT usually results in
support for Mott’s idea of the finite minimum metallic
conductivity.

It has to be stressed, however, that the frequently
observed correlation between the features dr/dT D 0
and s D sM concerns only measurements at Tlea. With-
out a further assumption, it does neither identify the
MIT nor does it imply that Mott’s reasoning is correct.
In particular, this correlation alone does not justify
the conclusion that, for each sample with negative
dr/dT(Tlea, x), the conductivity s(T ) cannot saturate at
some nonzero value (far) below sM as T ! 0. In other
words, this experimental experience is not sufficient to
exclude that there might be metallic samples with nega-
tive dr/dT(Tlea, x). Hence, interpreting solely the corre-
lation between the Tlea-related features dr/dT D 0 and
s D sM as evidence for Mott’s minimum metallic con-
ductivity theory overvalues the experimental findings.

In this sense, relying only on the MIT criterion
dρ/dT D 0 in the limit as T ! 0 means to bias the data
analysis, and to presume the existence of a finite mini-
mum metallic conductivity. That is why the correspond-
ing conclusion by Siegrist et al.31 is not surprising. It is
the natural consequence of these authors focusing on the
sign change of dr/dT.

Note, furthermore, that the MIT criterion dr/dT D 0
in the limit as T ! 0 does not seem to be in accord with
any of the currently available microscopic theories. First,
because of the following argument, this criterion is
incompatible with the interpretation in terms of an
Anderson transition caused by the mobility edge crossing
the Fermi energy. According to this model, just at the
MIT, the number of electrons (or holes) excited to
extended states would be proportional to T. It is hard to
believe that these electrons do not cause a corresponding
increase in s with rising T.20 (Thus, the derivation of
Eq. (1) as zero-temperature evaluation of the Kubo-
Greenwood formula by Mott13 is not consistent with his
interpretation of experimental data in terms of the acti-
vation energy of hopping tending to zero as x ! xc in
the same work.) Our incompatibility argument, however,
does not disprove the hypothetical MIT criterion consid-
ered here because the interpretation in terms of an
Anderson transition is based on a strong simplification:
it neglects the electron-electron interaction. Second, to
the best of our knowledge, also the currently available
microscopic theories incorporating electron-electron
interaction cannot provide a justification for this crite-
rion. The reason is that none of them yields its logical
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consequence, that is a discontinuous MIT with a finite
minimum metallic conductivity.

Now, if the sign change of dr/dT in the limit as T! 0
did not arise from the MIT, how could it be understood?
An alternative explanation was provided by an analysis
of the influence of the electron-electron interaction:
according to Altshuler and Aronov, the electron-electron
interaction should yield a T 1/2 contribution to s(T ).39

Rosenbaum et al. pointed out that its sign should be
determined by the relative importance of exchange and
Hartree terms, which in turn is controlled by the ratio of
screening length and Fermi wave length.5,61 Therefore,
the variation of the screening length may cause two sign
changes of the T 1/2 contribution.61 This interpretation
has been very influential up to now.

Nevertheless, in our opinion, the applicability of this
theoretical idea by Rosenbaum et al.61 is highly question-
able: the point is that the value of the exponent, 1/2,
seems to disagree with the experimental findings. For
samples which exhibit negative dr/dT at Tlea and which
were classified as metallic in the respective original publi-
cations, a series of such discrepancies is presented in our
Section 4.

Concerning samples with positive dr/dT at Tlea, being
very likely metallic, doubts about the exponent value 1/2
arise from three publications: already Figure 1 of
Rosenbaum et al.61 shows that, for crystalline Si:P, the
exponent 1/3 enables a clearly better approximation of
the experimental data than 1/2. Figures 3a and 3b of Dai
et al.67 testify that, for crystalline Si:B, s vs. T 1/2 plots
exhibit substantial curvature in the low-T range. Dai
et al.67 model this feature by additionally taking into
account a localization contribution to s(T ), but the devi-
ation visible in Figure 3b questions the physical meaning
of such fits. These observations are consistent with a
study of amorphous Si1¡xCrx in which a power law con-
tribution to s(T ) with the exponent 0.19 § 0.03 was
identified by collective augmented power law fits to sets
of conductivity differences of pairs out of 15 samples.68

Remarkably, the corresponding decomposition of s(T)
ceases to be applicable when, with decreasing x, dr/dT at
Tlea changes sign from plus to minus.68

Furthermore, in a very recent theoretical investigation,
Di Sante et al. studied the interplay of thermal lattice
deformations and static disorder in the vicinity of the
MIT.69 Claiming continuity of the transition, they state
the existence of a control parameter interval within which
dr/dT is negative although s tends to finite values when
T ! 0, and denote it as region of “bad insulators”. (The
choice of this name is not in accord with the definition of
an insulator as we use it here.) The authors conclude that,
in this control parameter range, transport is governed by
the strong T dependence of the density of states, rather

than by the T dependence of the scattering of the elec-
trons.69 However, Di Sante et al. focus on the situation of
a half-filled band, and it seems at least questionable
whether their conclusions remain valid for arbitrary band
filling. Moreover, the quantitative comparison of this the-
ory to experiment is hindered by the following: Di Sante
et al.69 do not report any specific exponent value for the
power law governing s(T) at the MIT.

According to the above three paragraphs, the theoreti-
cal interpretations of the sign change of dr/dT given by
Rosenbaum et al.61 and Di Sante et al.69 should be con-
sidered with great caution, so that alternative hypotheses
have to checked too. Therefore, at the current stage, it
seems quite possible that the criterion dr/dT D 0 in the
limit as T! 0 may indeed identify the MIT.

Due to the described unclear situation, the devel-
opment of a more appropriate theory is required.
Fortunately, one of its features can be easily predicted
because, for dimensional reasons, Eq. (1) is robust,
also with respect to the incorporation of electron-
electron interactions: If a theory yields a relation
which links the distance dc with any characteristic
conductivity value, and if electron charge, Planck con-
stant, effective mass, and permittivity are the only
dimensioned parameters of this theory, then the so
obtained relation must be universal and have the
form of Eq. (1); for the proof see Appendix A. Inde-
pendently of the character of the MIT, the condition
dr/dT D 0 in the limit as T ! 0 is a natural way to
define such a characteristic conductivity value. In case
a finite minimum metallic conductivity exists, it
should equal a universal multiple of this characteristic
conductivity value; it might even coincide with this
value.

We now continue with our phenomenological analy-
sis: Currently, to the best of our knowledge, the MIT cri-
terion dr/dT D 0 in the limit as T ! 0 is only a
hypothesis. How could it be justified? It seems natural to
regard all samples with dr/dT > 0 at Tlea as metallic.
However, for the inverse approach, the classification of
all samples with dr/dT < 0 at Tlea as insulating, further
arguments and/or additional measurements are required.
In particular, this concerns the r(T ) curves with small
negative slope, for which the interpretation in terms of
activated transport may seem counterintuitive.

Nevertheless, one can easily imagine a situation
where such samples are indeed insulating. Let us
assume that some kind of hopping is the only rele-
vant conduction mechanism and that, as already sur-
mised by Mott,13 its mean activation energy tends
continuously to 0 as the MIT is approached. In this
case, the existence of insulating samples with quite
flat, nonexponential r(T ) is not counterintuitive but
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natural. All the samples close to the MIT for which
the characteristic temperature, corresponding to the
mean hopping energy, is smaller than the lowest mea-
suring temperature should behave this way; see also
Subsections 2.4 and 2.5.

Thus, also the identification of insulating samples
in the penultimate paragraph according to the sign of
dr/dT for T ! 0 may be correct. To find out
whether or not it is correct indeed, we have to ask:
Which value does the mean hopping energy tend to
as the MIT is approached? Empirical support for the
hypothesis that the mean hopping energy continu-
ously approaches zero comes from scaling of the
s(T, x D const.) curves for various values of x on the
insulating side of the MIT, see Subsection 2.5.

In conclusion, the unclear situation described above
poses the challenge to find out which of the samples with
nonexponential r(T ) and dr/dT < 0 at Tlea are metallic
and which are insulating. Various approaches to this
question will be discussed in the following subsections.

2.3. Breakdown of the augmented power law
approximation

An alternative to considering dr/dT at Tlea is to detect
the MIT by quantitatively analyzing measurements in
some low-temperature range in terms of a microscopic
theory: Starting from a theory-based ansatz for s(T)
with adjustable parameters, one determines the value of
the control parameter at which this equation ceases to be
valid. Ideally, such an analysis should be performed for
both sides of the MIT. In this subsection, we focus on
the metallic side. For the corresponding consideration of
the non-metallic region, see Subsection 2.4.

Considering metallic conduction, augmented power
laws,

s T; xð ÞD a xð ÞC b xð ÞTp; (2)

were derived for different situations. Altshuler and Aro-
nov38 studied the superposition of electron-electron
interaction and static disorder and obtained p D 1/2.
They derived, however, Eq. (2) from a perturbation the-
ory, so that its applicability very close to the MIT is at
least questionable. Nevertheless, in various low-T experi-
ments, Eq. (2) has been claimed to describe measured
data rather well, see, for example, Zabrodskiĭ and Zino-
v’eva17 and Thomas et al.22

Newson and Pepper39 additionally incorporated the T
dependence of the diffusion constant into the result by
Altshuler and Aronov; for this they used the Einstein
relation linking conductivity and diffusion constant.
Their approach again results in Eq. (2), but with a

smaller exponent: now p D 1/3, see Newson and Pep-
per39 and compare Maliepaard et al.70 The derivation,
however, presumes a � b T 1/3. In several cases, this ver-
sion of Eq. (2) was claimed to be more appropriate for
describing the experimental data than Eq. (2) with p D
1/2, see Waffenschmidt et al.,23 Givan and Ovadyahu,33

and Maliepaard et al.70

In practice, the choice of the value of p seems not to
influence the conclusion about the qualitative character
of limT!0 s(T, x) in the vicinity of the MIT.50 Neverthe-
less, a modification of p as well as a variation of the T
range taken into account in the fit usually cause a small
shift of the resulting MIT point; an example will be given
in Subsection 4.2.

In a few studies, extensions of Eq. (2) were used to
model the experimental data. For example, investigating
crystalline Si:(P,B), Hirsch et al.71 included a second
T-dependent term accounting for a weak-localization
correction due to inelastic electron-electron collisions,

s T; xð ÞD a xð ÞC b xð ÞTp C c xð ÞTq (3)

with q D 3/4. Not surprisingly, including such a second
T-dependent term improves the fit quality even if
the model is not physically justified;71–73 see also
Subsection 2.6.

In all data analyses based on Eq. (2) or (3), the diag-
nosis of the breakdown of the theoretical description is
the crucial point. There are the following two approaches
to this problem; both have to be combined to ensure that
the sample classification is as reliable as possible.

First, relying on the validity of the considered ansatz,
one determines the value of the control parameter at
which one of the adjustable parameters ceases to have a
physically reasonable value. In the present situation, one
asks at which value of x the parameter a reaches 0.

Second, one checks for systematic deviations of the
adjusted theoretical s(T) relation from the experimental
data. This, however, is a fuzzy condition: The precision
and accuracy of the experimental data as well as the
width of the considered T interval have great influence
on strength and assessment of deviations. Presumably
because of these uncertainties, the search for systematic
deviations has played only a minor role in the literature.
Thus, essential information was often lost; we will dem-
onstrate this in Sections 3 and 4.

It is important to note that, when using solely the first
approach, one demands only one of two necessary condi-
tions for the validity of Eq. (2) to be satisfied. Thus, in
such an analysis, there is a considerable risk that some
insulating samples very close to the MIT are misinter-
preted as metallic. Therefore, since the function
s(T D const., x) seems to be continuous at the MIT for
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any T> 0, it is not unlikely that one only gets out what is
put into the model used in the data analysis, that is the
continuity of limT!0 s(T, x). For this reason, analyses
based solely on augmented power law fits without careful
applicability checks exhibit a substantial bias in favor of a
continuous MIT.

The way out of this dilemma is to consider another
observable additionally to s(T ). To that end, however, it
is not necessary to measure a further transport coeffi-
cient or some thermodynamic observable. Already con-
sidering a specific derivative of s(T ) can be very helpful
as will be explained in Subsections 2.6 and 2.8. The situa-
tion concerning the incorporation of alternative observ-
ables will be discussed in Subsection 2.7.

2.4. Breakdown of the stretched Arrhenius law
approximation

We now turn to the insulating side of the MIT. There, at
low T, the transport proceeds by some kind of hopping
conduction. Such mechanisms cause s(T, x D const.) to
follow a stretched Arrhenius law,

s T; xð ÞD s0 xð Þ exp ¡ T0 xð Þ=Tð Þnð Þ: (4)

The characteristic temperature T0 depends on the dis-
tance to the MIT; it seems to vanish as the MIT is
approached,13 see also Subsection 2.2. The exponent n is
mechanism-dependent: Thermal excitation over some
finite gap implies n D 1. In case of variable-range hop-
ping without Coulomb interaction, n equals 1/3 and 1/4
for two- and three-dimensional systems, respectively,74

compare, for example, Figure 8s in the Supplementary
Information of Siegrist et al.31 If, however, Coulomb
interaction has to be taken into account in variable-range
hopping, n D 1/2 is expected for two-dimensional as well
as for three-dimensional samples,75 see also Zabrodskiĭ
and Zinov’eva17 and M€obius et al.60

The prefactor s0 may be weakly T-dependent, which
is neglected in our Eq. (4). A reliable determination of n
is therefore only possible if the s values cover a very
wide range, ideally several orders of magnitude.

It seems natural to classify all those samples as insu-
lating for which s(T ) approximately obeys Eq. (4). (In
doing so, one implicitly assumes this relation to be valid
down to T D 0.) However, simply regarding all other
samples as metallic is not justified for the following two
reasons.

First, there is no sharp distinction between exponen-
tial and nonexponential s(T ): For example, assume the
ratio s(6 K)/s(4.2 K) amounts to 256, 16, 4, 2, 1.4, 1.2,
1.1, 1.05, 1.02, or 1.01. At which value could metallic
behavior set in?

Second, in its pure form, an exponential law such
as Eq. (4) is usually only an approximation valid for
T � T0. However, as already pointed to in Subsec-
tion 2.2, T0(x) seems to vanish continuously as the MIT
is approached. This limiting behavior, which is very
likely but not completely certain, has an important con-
sequence: Consider s(T, x D const.) measurements by
means of some cryostat down to its lowest experimen-
tally accessible temperature, Tlea. Then, for any
value of Tlea, there is a finite interval of x adjacent to
the MIT within which T0(x) is smaller than Tlea. Thus,
for all samples belonging to this interval of x, it is
impossible to observe an exponential decrease in s(T)
by orders of magnitude using the specific cryostat
although these samples are insulating. Compare
Figure 1 of M€obius et al.21 and the explanation in its
caption.

Note that the second argument holds regardless of the
experimental technique used, for studies down to 4.2 K
as well as for measurements in a dilution refrigerator.
With respect to the continuous variation of the control
parameter x, one can even state: Since the T scale is set by
T0(x), it is very likely impossible to stay at low tempera-
tures while passing the MIT.

Because of this problem, and due to the possible
weak T dependence of s0, fits based on Eq. (4) do not
allow the reliable identification of insulating samples
very close to the MIT. Therefore, these samples may
easily be misinterpreted as metallic in a corresponding
analysis. In evaluating experimental data, one is quite
often confronted with such interpretation ambiguities
since the critical exponent of the characteristic tempera-
ture, T0(x), seems to be rather large. In studies of crys-
talline n-Ge:(As,Ga) and amorphous Si1¡xCrx, in which,
at low T, the s(T, x D const.) could be well approxi-
mated by Eq. (4) with n D 1/2, critical exponent values
of 2.1 § 0.1 and 3.0 § 0.4, respectively, were
obtained.17,76

Note, moreover, that an unambiguous classification
of metallic and insulating samples based solely on
describing s(T) alternatively by Eqs. (2) or (4) is in
principle impossible if s(T) is proportional to Tp at the
MIT: The two analytic functions modeling s(T) on both
sides of the MIT do not fit together at the critical value of
x, in contradiction to the experimental experience that
s(T D const., x) seems to be continuous for any T > 0.

2.5. Breakdown of scaling of T dependences of σ

In several studies of two- and three-dimensional
systems,17,20,41,42,60,77,78 but by far not in all such investi-
gations, the identification of insulating samples has
been facilitated by empirical scaling of s(T, x D const.)
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curves,

s T; xð ÞD sscal T=T0 xð Þð Þ: (5)

Here, T0(x) denotes an x-dependent characteristic tem-
perature; T0(x) > 0. This equation links measurements
on different samples. In particular, it relates samples
with quite flat s(T ) to samples with exponential s(T).
We remark that, for three-dimensional systems, the scal-
ing relation Eq. (5) is incompatible with basic ideas of
the scaling theory of localization, despite the similarity of
the terms used.79

The important point is that, provided Eq. (5) remains
valid when T ! 0, limT!0 s(T, x) is independent of x.
Thus, in all the samples for which the s(T, x D const.)
data sets are linked to each other by this relation, the
nature of electrical conduction must be the same. We
stress that this statement does not rely on specific
assumptions of any particular microscopic theory, in
contrast to the analysis methods discussed in Subsec-
tions 2.3 and 2.4.

Deep in the non-metallic region where s follows a
stretched exponential T dependence according to Eq. (4),
scaling is reflected by the prefactor s0(x) being a con-
stant independent of x. For n D 1/2, such a behavior has
been observed quite often.17,20,41,42,60 This exponential
limit of Eq. (5) has a twofold relevance: It indicates that
all the samples with s(T, x) satisfying Eq. (5) belong to
the insulating phase. Furthermore, it enables to define an
absolute scale of T0.

Therefore, when the MIT is approached from the
insulating side, the breakdown of the validity of Eq. (5)
very likely indicates the transition; for a detailed reason-
ing see Appendix B. This criterion has a great advantage
over the approaches discussed in the previous subsec-
tions: In a scaling analysis, the reduced temperature,
T/T0, may vary over several orders of magnitude, com-
pare Figure 4 in M€obius et al.20 and Figure 2 in Liu
et al.77 Thus, the reliability of s(T ! 0) extrapolations
and the trustworthiness of sample classifications close to
the MIT can be considerably improved by utilizing the
scaling relation Eq. (5).

Note, however, that there are two essential precondi-
tions for Eq. (5) being possibly valid. First, it can only
hold if all but one conduction mechanisms are frozen
out. Therefore, its applicability is always limited by some
material-dependent upper temperature threshold, Tutt,
the value of which is determined by the maximum toler-
able contribution of the second most relevant mecha-
nism to s(T).60 In the case of amorphous Si1¡xCrx, it
amounts to roughly 50 K;60 for doped crystalline semi-
conductors, it is far smaller and may even fall below 1 K,
compare Subsection 4.5. Second, Eq. (5) can only be

valid over a wide range of the reduced temperature T/T0

if there is merely a single transport-relevant length scale,
that means, if the disordered solid considered is suffi-
ciently homogeneous. To ensure this, the influences of
macroscopic and mesoscopic inhomogeneities have to be
effectively suppressed. Here, we remind that such a scal-
ing of s(T, x D const.) curves seems to be destroyed by
clustering.41,60

In its general form, the scaling relation Eq. (5) to hold
can be concluded from experimental data for a set of k
samples either by a master curve construction20,77,78 or
by checking whether or not d ln s/d lnT is a function of
s alone.60 The former approach requires adjusting the
quotients of the T0 values for (k ¡1) pairs of samples by
means of rescaling T, while the latter procedure is
parameter-free. The degree to which Eq. (5) can be
experimentally verified depends not only on the set of
control parameter values considered as well as on
precision and accuracy of resistance, temperature, and
geometry measurements, but also on how well the pre-
conditions specified in the previous paragraph are
fulfilled.

The scaling of s(T, x D const.) curves according to
Eq. (5) has been interpreted as indication of the existence
of a finite minimum metallic conductivity, smm, that
means of the MIT being discontinuous.20,41,56,60,78 This
conclusion, however, is based on several more or less
hidden assumptions. In order to identify them, we illu-
minate the details of this scaling analysis by means of a
short mathematical consideration in Appendix B. There,
we show that, under quite natural suppositions, the scal-
ing of the T dependences of s for several values of x
implies T0(x) ! 0 as x tends to the MIT value xc and,
moreover, that the limit limt!1 sscal(t) coincides with
the minimum metallic conductivity smm.

Furthermore, Appendix B explains why, because of
the finiteness of smm, the s(T, x D const.) must become
more and more flat when the MIT is approached, in
accord with the MIT criterion “Sign change of dr/dT in
the limit as T ! 0” considered in Subsection 2.2. This
feature of s(T, x), however, has an unpleasant conse-
quence: there is always some close vicinity of the MIT
where it is impossible to prove scaling by constructing a
mastercurve sscal(T/T0(x)) out of overlapping pieces.

As a side remark, we mention here that the observa-
tion of scaling according to Eq. (5) together with the
plausible suppositions made in Appendix B imply a sur-
prising conclusion: At any fixed T 2 (0, Tutt], when vary-
ing x, one should cross a sharp boundary, located at xc,
between non-metallic and metallic conduction. In other
words, the zero-temperature phenomenon MIT – a
discontinuous quantum phase transition – should be
the endpoint of a line of continuous phase transitions
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in the finite-T part of the (x, T )-plane. Therefore,
s(T D const., x) should exhibit a non-analyticity at xc;
see Section 4 of M€obius,41 in particular Figure 9 therein,
and the introduction of M€obius.80 In consequence,
@s/@T (T D const., x), too, should have a non-analyticity
at the MIT, just where it changes sign.

In the case of amorphous Si1¡xCrx, this hypothesis of
a line of continuous phase transitions is supported by
two observations: (i) The optimal exponent of a power
law contribution to s(T, x) changes qualitatively just
when ds/dT D 0, see M€obius68. (ii) The relation between
two coefficients of a phenomenological model of s(T, x)
for the metallic side seems to exhibit a non-analyticity
coinciding with ds/dT D 0, see M€obius et al.60 and
M€obius76.

The direct identification of such a composition tuned
phase transition in s(T D const., x) would likely be hin-
dered by the requirement of an extremely high degree
of sample-to-sample reproducibility; presumably, Ds/s
would have to amount to one to a very few percent. How-
ever, if shallow impurity states play the dominant role,
this problem can be circumvented by tuning the critical
doping concentration by means of stress or magnetic field
instead of tuning the doping concentration itself. In the
two-dimensional case, this problem can be avoided by
tuning the charge carrier concentration via a gate voltage;
by reanalyzing such an experiment, first indications of the
hypothesized peculiarity in s(T D const., x) separating
regions of metallic and non-metallic conduction at finite T
were detected in M€obius.80 Moreover, focusing on correla-
tions between s(T, x D const.) and appropriate derivatives
of this function or between s(T D const., x) and the expo-
nent of an augmented power law approximation of
s(T, x D const.) may help; see M€obius.68

Nevertheless, in all these approaches, inhomogeneities
can easily smooth out the hypothetical finite-T phase
transition. Paradoxically, their influence should be less
disturbing when the measurements are performed at
intermediate temperatures rather than at extremely low
ones.80 The reason is that, in the insulating x range,
when T < Tutt, the following holds for the immediate
neighborhood of the MIT: the smaller T, the steeper is
s(T D const., x), and the wider is the s range affected by
a given, fixed uncertainty of x.

Finally, motivated by a dimensional consideration, we
point to a possible universality of homogeneous disor-
dered solids. Consider samples of two kinds of three-
dimensional disordered solids. Suppose that the mea-
sured s(T, x) satisfy Eq. (5) with two separate sscal(t). Let
us define both the respective scales of T0 by means of
Eq. (4). Then, although the minimum metallic conduc-
tivity value smm D limt!1 sscal(t) is a material-depen-
dent quantity, the ratio sscal(t)/smm should be a

universal function of the reduced temperature t D T/T0.
This should hold not only when sscal depends on t in an
exponential manner, but also in the range of nonexpo-
nential behavior of sscal(t). Thus, the quotient of the
characteristic conductivity values s0, defined by Eq. (4),
and smm, corresponding to ds/dT D 0, should be mate-
rial-independent, as well; for amorphous Si1¡xCrx, it
amounts to 0.46 § 0.14, compare M€obius et al.20 and
M€obius et al.60

2.6. Bounds obtained from the logarithmic
derivative of σ(T)

Both the analyses of s(T) data based on Eqs. (2) and (4),
which were discussed in Subsections 2.3 and 2.4, respec-
tively, have an inherent disadvantage: they may misinter-
pret insulating samples very close to the MIT as metallic.
The risk of such a misclassification can be largely reduced
by additionally evaluating the logarithmic derivative,

w Tð ÞD d ln s
d lnT

; (6)

see M€obius et al.,21 M€obius,72 and Hirsch et al.73 Here, lns
instead of s is considered in order to simplify the examina-
tion of an exponentially wide conductivity range. This
quantity is differentiated with respect to lnT instead of
with respect to T to enable the clear discrimination between
metallic and non-metallic s(T) which is explained in the
following.

The logarithmic derivative w(T) exhibits qualitatively
different behavior for the augmented power law, Eq. (2)
with p> 0, and for the stretched Arrhenius relation, Eq. (4)
with n> 0. In the former case, that is for metallic samples,

w Tð ÞD p b Tp

aC b Tp
(7)

holds, where a C b Tp D s(T) > 0 and a D s(0) > 0. In
case the MIT is continuous, the logarithmic derivative stays
constant at the MIT itself, w(T)D p due to aD 0.

Equation (7) looks simple but provides several experi-
mentally checkable conclusions. Thus, for metallic sam-
ples, as T vanishes, w(T) becomes proportional to T p and
tends to 0. If, moreover, b > 0, then, as T increases far
beyond (a/b)1/p, w(T) approaches p. Therefore, plotting w
vs. T p can test the validity of Eq. (2) over a wide T range.

Furthermore, if measurements yield w > 0 for a
hypothetically metallic sample, then the parameter b
has to be positive as well. Hence, 0 < w (T ) < p
must be fulfilled.

Even more important, for w > 0 and thus b > 0, the
logarithmic derivative w(T) always decreases with
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diminishing T. This is obvious from rewriting Eq. (7) as

w Tð ÞD p 1¡ a
aC b Tp

� �
: (8)

In other words, for a sample with w > 0 to be metallic,
dw/dTmust be positive.

Consequently, if measurements yield simultaneously a
positive value of w and a negative value of dw/dT, then
s(T ) cannot be described by some augmented power law
with a positive exponent. In this case, the sample consid-
ered is very likely not metallic but insulating. (Focusing
on the slope of w(T), we make use of a second derivative
(in a generalized sense) of s(T) instead of a first deriva-
tive as it is considered in the dr/dT D 0 criteria of the
MIT discussed in Subsections 2.1 and 2.2.)

Assume now, s(T ) follows the stretched Arrhenius
relation Eq. (4) with positive T0 and positive n, indicating
that the considered sample is insulating. In this case, we
obtain

w Tð ÞD n T0=Tð Þn: (9)

Thus, w (T ) is always positive. It increases with
diminishing T, so that dw/dT < 0, and it diverges as
T ! 0.

It has to be stressed, however, that Eq. (9) can be
expected to be a good quantitative description of experi-
mental data only for the exponential limit. For this, T
has to be smaller than T0, so that wmust exceed n.

Nevertheless, for any positive w, even if w � n, nega-
tive dw/dT indicates non-metallic transport as, starting
from Eq. (2), we concluded in the above considerations
of w(T ) for the metallic side. Therefore, in this way, also
a large part of the samples with quite flat s(T ) can be
unambiguously classified. We remark that, if s(T, x)
obeys scaling according to Eq. (5), then dw/dT should be
negative even for any positive w;60 see Appendix B.

In addition to its simplicity and unbiasedness for
broad classes of conceivable s(T ), the discrimination
between metallic and insulating samples based on the
sign of dw/dT has still another big advantage: graphs of
w(T ) for sample sets close to the MIT contain direct,
valuable information on the character of the MIT. This
can be understood as follows.

Suppose the MIT is continuous and, on its metallic
side, s(T, x) obeys Eq. (2) with some positive exponent
p. Thus, w(T) D p would hold at the MIT itself. Now,
according to experimental experience, w(T D const., x)
always seems to decrease strictly monotonically when
the MIT is approached from the insulating side and then
crossed. Hence, as soon as the MIT has been crossed,
that means as soon as w < p, dw/dT should be positive.

Therefore, for any supposed value of p, the existence
of samples with simultaneously 0 < w < p and
dw/dT < 0 is a strong argument against the hypothetical
continuity of the MIT, that means against the continuity
of limT!0 s(T, x).

10,21

The latter argument will play a central role in our
reanalysis of numerous experimental studies of the MIT
in Section 4. It will be supported by an exploration of
possible structures of sets of w(T) curves in Section 5.
Therein, we compare four qualitatively different phe-
nomenological models and exemplify how the character
of the zero-temperature phenomenon MIT determines
qualitative features of the separatrix between metallic
and insulating w(T) at finite T.

At this point, however, we have to emphasize a physi-
cal restriction on utilizing the simply structured Eqs. (7)
and (9): they can only be valid if the temperature is so
low that all but one conduction mechanisms are frozen
out. There are many cases where this condition is not
met. For example, in amorphous semiconductor transi-
tion-metal alloys, some high-temperature mechanism
seems to considerably enhance the conductivity on both
sides of the MIT above a threshold of the order of
50 K.10,41,60 It yields a positive contribution to w(T )
which increases with T. For insulating samples, its super-
position with the hopping contribution, Eq. (9), causes
w(T ) to exhibit a minimum; the corresponding T value
tends to 0 as the MIT is approached.10,21 Such a behavior
of w(T ) is not restricted to amorphous solids, it can also
be observed for nanocrystalline GeSb2Te4 above about
50 K; see Subsection 3.1, as well as for crystalline
CdSe:In above about 2 K, see Subsection 4.5.

Over the last two and a half decades, evaluating the
logarithmic derivative w(T) for individual samples has
proven to be very effective in checking the validity of
the augmented power law, Eq. (2), as well as of its
extended version, Eq. (3); see, for example, M€obius and
Adkins,10 Rosenbaum et al.,57 M€obius,72 Hirsch et al.,73

and Yang et al.81 For this aim, the w(T ) data which are
obtained by numerical differentiation directly from the
measured s(T) are contrasted with the approximations
of w(T ) resulting from analytic differentiation of
Eqs. (2) or (3) with adjusted parameter values. This
comparison highlights small but possibly qualitative
deviations between experimental points and s(T)
fits.72,73 In particular, as pointed to above, for slowly
varying s(T), the repeatedly observed increase in w(T )
with decreasing T is not compatible with the metallic
nature of transport; such samples should be insulat-
ing.72,73 This data analysis approach will be basic to the
reconsideration of a series of experimental key investi-
gations of the MIT in various disordered solids in our
Section 4.
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In several cases, a second type of deviation between
the w (T ) obtained by numerical differentiation and
the corresponding analytical differentiation of the
augmented power law, Eq. (2) fitted to s(T ), has
been observed: according to these w vs. Tp plots, the
numerically obtained w (T ) reaches 0 or rapidly tends
to 0 already at some finite T in disagreement with
Eq. (7). Such a behavior may arise from a superposition
of two mechanisms, see, for example, Figures 8 and 9 in
M€obius et al.21 Alternatively, the rapid decrease at finite
T may occur due to the measured s(T ) data following
an augmented power law with an exponent which is
considerably larger than p; this seems to be the case in
our Figure 8 below roughly 50 mK. Thermal decoupling
of sample and thermometer is a possible reason for
such behavior of w (T ). This explanation is particularly
likely if, for different samples, the rapid decrease of
w (T ) always sets in at roughly the same temperature.
For example, Figure 1b of Sachser et al.53 seems to indi-
cate a related problem; more such cases will be dis-
cussed in our Section 4.

Finally, we take up the universality hypothesis on the
scaling of the T dependences of s in different homoge-
neous disordered solids which was formulated in the last
paragraph of the previous subsection. It implies that
w(T/T0) may be a material-independent function. In this
case, for a series of insulating samples of different such
solids, in the region of sufficiently low T, all the w(T)
curves together would form a common flow diagram
without intersections. More specifically, for arbitrary two
of these w(T ) curves, provided the respective codomains
overlap each other, it would even be possible to collapse
them by rescaling T for one of the two samples by an
appropriate factor.

2.7. Behavior of other observables near the MIT

In the preceding subsections, we discussed six MIT crite-
ria which all focus on specific features of the temperature
dependence of the conductivity (or resistivity). As we
will see in Sections 3 and 4, the respective classifications
of samples into metallic and insulating ones often con-
tradict each other. This begs the question of what addi-
tional information on the location of the MIT can be
gained from studying other observables. At first glance,
the idea of using such additional information to reach a
less ambiguous classification may look promising. How-
ever, one has to be aware of two fundamental difficulties.

First, the MIT definition is based on the limit of s as
T ! 0. Furthermore, it presupposes that electric field
strength and frequency are infinitely small and that the
sample size is infinitely large; these three conditions are
sufficiently well fulfilled in most experiments. Likewise,

when, instead of s, another observable is considered, it is
essential to determine its limiting value as T ! 0 for
each sample; often, additionally, the limit concerning a
further measurement parameter tending to zero has to
be taken. These tasks may be very demanding, in particu-
lar in case the alternative observable diverges or tends
from finite values to zero at one side of the MIT: one has
to be aware that, in the non-metallic region, nonexpo-
nential and exponential s(T ) may be correlated with
qualitatively different T dependences of the alternative
observable.

Second, we will see in Sections 3 and 4 how reanalyses
of s(T, x) data from various publications uncover sys-
tematic, apparently generic inconsistencies in the respec-
tive interpretations based on current localization theory.
Thus, a sound and successful microscopic theory on the
T dependence of the observable s seems not to be avail-
able at present. Since, however, this quantity is funda-
mental in discriminating between metals and insulators,
it is therefore unlikely that present theories on other
observables can yield more reliable results than the avail-
able theories on s(T ). Consequently, we primarily take
an empirical perspective also in this subsection.

In the following, we discuss in detail studies of two
alternative observables and illuminate the biases inherent
in the data analyses of the respective publications. First,
we turn to the behavior of the Hall coefficient, RH. At
crystalline Ge:Sb, the dependence of this quantity on
the donor concentration, n, was studied by Field and
Rosenbaum.82 The authors stated that conductivity, s,
and inverse Hall coefficient, 1/RH, simultaneously tend
to zero as the MIT is approached from the metallic side.
This seems to be substantiated by Figures 1 and 3 in
Field and Rosenbaum.82 Discussing these measurements,
Field and Rosenbaum pointed out that their conclusion
conflicts with theoretical work by Shapiro and Abrahams
who expected RH to be almost constant close to the
MIT.82,83

At first glance, the mentioned graphs look very con-
vincing, but great caution is advised in interpreting them
for four reasons: (i) On s as well as on RH, only data
taken at one particular temperature, 8 mK, were pub-
lished in Field and Rosenbaum.82 Because they do not
allow any T ! 0 extrapolation, these data alone are of
limited value, see the second paragraph of this subsec-
tion. (ii) The smallest shown value of s(8mK, n) is not
clearly smaller than Mott’s estimate of the minimum
metallic conductivity sM, but it roughly agrees with sM.
Hence, also for this reason, the authors’ conclusion that
limT!0 s(T, n) is continuous at the MIT has to be con-
sidered as localization theory biased interpretation, and
their identification of the MIT point needs to be ques-
tioned. (iii) The reliability of the authors’ evaluation of
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the critical behavior of 1/RH is strongly restricted by the
uncertainty in locating the MIT which has been uncov-
ered in the previous points. (iv) In case the MIT was
indeed continuous, the samples might not be close
enough to the MIT to observe the theoretically expected
asymptotic behavior of RH, as was already discussed in
Field and Rosenbaum.82

Therefore, the conclusion by Field and Rosenbaum
that, for Ge:Sb, 1/RH tends to zero as the MIT is
approached cannot be regarded as well founded. Later,
however, their interpretation was supported by Dai et al.84

The latter authors investigated the T dependence of the
Hall coefficient of crystalline Si:B for a series of samples,
all of which they considered to be metallic. Unfortunately,
this publication itself does not include any corresponding
s(T, n) data. However, one can relate these results on RH
to the measurements of s(T, n) in Dai et al.51 performed
by the same authors; samples of same origin as well as
the same concentration scale were used in both cases.

Dai et al. extrapolated the T dependence of 1/RH to
T D 0 by adjusting the parameters of the ansatz
1/RH(T) D 1/RH(0) C mHT 1/2; see Figure 2 of Dai
et al.84 In checking the authors’ conclusions from this
plot, doubts arise from two problems: (i) For the two
samples with the lowest dopant concentrations, n D
4.16 and 4.11 £ 1018 cm¡3, the adjusted augmented
power laws well approximate the experimental data only
within rather small T intervals. For the former sample,
the width of the corresponding T 1/2 range roughly equals
the extrapolation gap, while, for the latter sample, it is
even considerably smaller than the gap. (ii) As we will see
in Subsection 4.3, at least the sample with n D
4.11 £ 1018 cm¡3 is presumably in fact insulating, so that,
in this case, 1/RH would likely tend to zero if T were
diminished further, in contradiction to the extrapolation
by Dai et al.

Because of these two problems, one cannot be sure of
the interpretation of the RH(T, n) data for Si:B by Dai
et al.84 as well. In our opinion, these data are not sufficient
to exclude that limT!0 1/RH(T, n) might tend to a nonzero
value when the MIT is approached from the metallic side.

Finally, let us consider the study of the Hall effect in
Si:As by Koon and Castner.85,86 This investigation
addresses both sides of the MIT rather than only the
metallic side as Field and Rosenbaum82 and Dai et al.84

do: Figure 4b of Koon and Castner86 presents RH(T ) for
three metallic and one insulating samples. According to
this plot, it seems not unlikely that jRHj depends on T
and n qualitatively in the same way as the resistivity r.

This similarity motivates the following hypothesis: In
case the MIT is discontinuous (in contrast to the perspec-
tive taken by Koon and Castner), jlimT!0 1/RH(T, n)j
could tend to a finite minimum metallic value when the

MIT is approached from the metallic side and jump to
zero at the MIT itself. For dimensional reasons, see also
Appendix A, this minimum metallic value should be pro-
portional to the critical dopant concentration, nc. The
above hypothesis may be supported by the compilation of
data presented in Figure 3 of Koon and Castner,85

although with the exception of the Ge:Sb points from Field
and Rosenbaum82 included therein. Because, however,
Field and Rosenbaum82 do not report T dependences of
RH, see above, it remains open whether or not these Ge:Sb
data are a valid counterexample to our hypothesis.

Hence, as shown in the above paragraphs, at the cur-
rent stage, studying the Hall coefficient does not substan-
tially simplify the MIT identification task. Instead,
similar severe extrapolation problems for T ! 0 as they
impede the identification of the transition point and the
study of its vicinity on the basis of s(T ) data hamper
also the analysis of RH(T ). Moreover, trying to identify
the MIT on the basis of the Hall coefficient is hindered
by far less information on this quantity being available in
the literature than on the conductivity.

As a second alternative observable, we now consider
the single-particle density of states obtained from tunnel-
ing experiments, more precisely, the control parameter
dependence of the zero-bias density of states. Investigat-
ing amorphous NbxSi1¡x, Hertel et al.19 reported the for-
mation of a square-root zero-bias anomaly as the MIT is
approached from the metallic side and the opening of a
gap on the insulating side. The authors claimed a coinci-
dence of, on the one hand, limT!0 s(T, x) reaching zero
and, on the other hand, the zero-bias density of states
vanishing.19

Unfortunately, Hertel et al.19 present only the extrapo-
lated s(T D 0, x) data and not the original T dependences
of s. However, a part of the latter data is displayed in
Figures 1 and 8 of the follow-up publication by Bishop
et al.87 According to Figure 8 of Bishop et al.,87 at low T,
the experimental s(T) substantially deviate from the
s D a C b T 1/2 behavior stated by Hertel et al.19 Hence,
the corresponding T ! 0 extrapolations as well as the
location of the MIT derived therefrom are called into
question. (The published information is not sufficient for
a detailed reanalysis such as presented for various other
substances in our Sections 3 and 4.)

For the following four reasons, also the MIT identifi-
cation by means of tunneling experiments in Hertel
et al.19 is not conclusive: (i) These measurements of the
density of states were performed only at a single temper-
ature, 2 K, see Figure 2 of Hertel et al.,19 which again ren-
ders a serious T ! 0 extrapolation impossible, compare
the second paragraph of this subsection. (ii) To estimate
the density of states for zero tunneling voltage based on
values taken at finite tunneling voltages, the authors
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extrapolated an augmented power law approximation,
N(E) D A C B E1/2. However, the N(E) vs. E1/2 plots in
Figure 2 of Hertel et al.19 exhibit a significant curvature
in the energy range taken into account in adjusting A
and B. (iii) Without presenting any evidence, the authors
interpreted the deviations between these fits and the
measuring results for tunneling voltages below about
1 mV as an effect of thermal fluctuations. However, with-
out comparison with data for other T values, such a spec-
ification of the corresponding voltage range remains
speculation, and so do the zero-voltage extrapolations in
Figure 2 of Hertel et al.19 (For a Coulomb gap occurring
on the insulating side of the MIT, the finite-T effect can
be quite large and influence the density of states at ener-
gies far above kBT, see Figures 1 in Wolf et al.,88 Sandow
et al.,89 Sarvestani et al.90) (iv) The permittivity diverges
as the MIT is approached from the insulating side.91

Thus, for T D 0, the width of the Coulomb gap is
expected to tend to zero there. Hence, the density
increase caused by thermal fluctuations should be partic-
ularly large at the MIT. These expectations are not met
by that tunneling-voltage dependence of the density of
states which is ascribed to the allegedly critical Nb con-
tent in Figure 2 of Hertel et al.19

The problems discussed in the two paragraphs above
invalidate the main points of the interpretation in Hertel
et al.19 In our opinion, neither the extrapolated conduc-
tivity values nor the tunneling data which were published
therein can reliably locate the MIT. Therefore, this
experiment cannot be regarded as conclusive support for
the MIT being continuous.

In addition to Hall coefficient and single-particle den-
sity of states, various other alternative observables have
been studied close to the MIT over the last decades, in
particular, dielectric susceptibility,91,92 magnetic suscep-
tibility,93 thermopower,94 and noise.95,96 Reconsidering
all these experiments is beyond the scope of our work.
Nevertheless, we emphasize that the general remarks on
the interpretation difficulties of such investigations made
in the second and third paragraphs of this subsection are
valid in all these cases.

2.8. Combination of criteria

Let us turn back to the temperature and control parameter
dependences of the conductivity or resistivity on which the
MIT definition is based. The discussion in Subsections 2.2
to 2.6 provided us with the following two apparently gener-
ally applicable, sufficient but not necessary classification
conditions: On the one hand, all samples with dr/dT > 0,
and thusw< 0, at the lowest experimentally accessible tem-
perature, Tlea, are very likely metallic. On the other hand, all
samples with simultaneously w > 0 and dw/dT < 0 at Tlea

are with high likelihood insulating. Only for the very few
samples that do not fall into one of these two categories,
additional measurements at temperatures below Tlea are
necessary for a reliable decision.

This cautious classification is denoted as d lns/d lnT
approach in the following. It has the invaluable advantage
to be almost unbiased with respect to the character of the
MIT. The price one pays is that it can only bracket the
location of the MIT. However, the corresponding control
parameter gap is far narrower than the uncertainty inter-
val in an analysis by means of stretched Arrhenius law
fits. The reason is that, simultaneously, the conditions
w > 0 and dw/dT < 0 are fulfilled also by a great fraction
of those insulating samples for which only nonexponential
s(T) can be observed above Tlea; see Subsection 2.6.

In summary, mainly three approaches are available for
determining the MIT point: the criterion dr/dT D 0 in
the limit as T ! 0 (or at the lowest accessible T), the
criterion a D 0 for augmented power law approximations
s D a C b Tp, and the d lns/d lnT approach described in
the previous paragraphs. For low-temperature measure-
ments at a few K or below, the resulting critical values of
the control parameter may be close to each other. Simulta-
neously, however, the conclusions about the character of
the MIT can differ qualitatively due to the biases inherent
in the first and second criteria, which favor discontinuity
and continuity of the MIT, respectively. Therefore, only if
the sample classification according to the d lns/d lnT
approach turns out to agree either with the corresponding
results from the first criterion or with those from the sec-
ond, one will be able to state that consistency of the data
evaluation has been reached.

In the next two sections, we combine the three
approaches to critically examine first the statement by Sieg-
rist et al.31 on the specific character of the MIT in phase-
changematerials and then the commonwisdom on the con-
tinuity of theMIT in broad classes of disordered solids.

3. Character of the MIT in GeSb2Te4

3.1. Temperature dependences of the conductivity

We now examine the recent study by Siegrist et al.31

which investigated the MIT in GeSb2Te4 and related
phase-change materials on increasing annealing temper-
ature. In this work, the authors claim to have detected
the existence of a finite minimum metallic conductivity.
They conclude this result from log r vs. T plots, Figures 2
and 3 in Siegrist et al.,31 using the sign change of dr/dT
at the measuring temperature as MIT criterion.

The authors emphasize their observation to be sur-
prising. They do so despite various related prior
work;8,46 see also Subsection 2.2. In the literature, one
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finds several studies of the MIT in disordered systems
which contain graphs resembling Figure 3 of Siegrist
et al.31 In particular, already more than four decades ago,
Yamanouchi et al. obtained similar results for crystalline
Si:P; see the log-log plot Figure 1 of Yamanouchi et al.16

This investigation was one of the experiments to which
Mott referred as support for his hypothesis of the mini-
mum metallic conductivity.37,66

Later, however, the s(T) studies of crystalline Si:P
were extended to the mK range.22,23,50 These measure-
ments were evaluated by T ! 0 extrapolations based on
s D a C b Tp

fits; see Subsection 2.3. In these analyses,
p D 1/2 was supposed by Thomas et al.22 and by Stupp
et al.,50 whereas Waffenschmidt et al.23 started from p D
1/3. All these three groups inferred that the MIT is con-
tinuous. This development raises the question whether
the conclusion drawn by Siegrist et al. could merely be a
consequence of the perspective chosen, i.e., of using the
sign change of dr/dT as MIT criterion.

To elucidate this problem, we now evaluate in detail
r(T) data for GeSb2Te4 from Figure 3 of Siegrist et al.31

For this aim, we digitized the curves for the four lowest
annealing temperatures, Tann D 150, 175, 200, and 225 �C.
They are redrawn in a s vs. T 1/2 plot in our Figure 1. This
graph tests for the relation s(T) D a C b T 1/2, the Altshu-
ler-Aronov case of the augmented power law, Eq. (2).38

Corresponding regression lines which incorporate all data
points from one temperature decade, 5–50 K, are included
in Figure 1.

For Tann D 200 and 225 �C, the regression lines seem
to nicely approximate the experimental data, not only in
the temperature range that was used in adjusting the
parameters, but even beyond it up to roughly 100 K.
(One should not overestimate the fit quality for Tann D
175 �C, since these s values are so small that the substan-
tial relative deviations are not noticeable in Figure 1.)
Note that, for Tann D 225 �C, the s D aC b T 1/2 extrapo-
lation yields s(T D 0) D 3.6 V¡1cm¡1. This value is
smaller by a factor of 100 than the estimate of the mini-
mum metallic conductivity for GeSb2Te4 by means of
the dr/dT D 0 criterion in Siegrist et al.,31 300 to
500 V¡1cm¡1.

In the augmented power law approach, the MIT is
indicated by a D 0; see Subsection 2.3. Thus, according
to our Figure 1, the critical value of Tann should amount
to roughly 200 �C. This value deviates considerably from
the result 275 �C which was obtained in Siegrist et al.31

by means of the dr/dT D 0 criterion. Therefore, the
question arises how to classify the samples annealed at
temperatures in between these two values, in particular
the sample obtained by annealing at 225 �C: According
to our Figure 1, it should be metallic, but Figure 3 of
Siegrist et al.31 suggests that it is presumably insulating.

One and a half years after a first preliminary version
of this review had been made available at arXiv.org, see
M€obius,97 three of the authors of Siegrist et al.31 submit-
ted a subsequent study of the MIT in GeSb2Te4, Volker
et al.47 Apparently, in Siegrist et al.31 and Volker et al.,47

(almost) identical sample preparation procedures were
used, compare the preparation details given in the Sup-
plementary Information of Siegrist et al.31 and in
Section 2 of Volker et al.47 with each other. Volker
et al.47 not only extended the explored T range by one
order of magnitude down to 0.35 K but also changed
their interpretation approach: in locating the MIT, they
attached particular importance to the s D a C b T 1/2

approximation, now trusting in it as “the most widely
accepted extrapolation method”.47 Indeed, Figure 2 of
Volker et al.47 shows that, again, this ansatz works rather
well. Thus, it supports our above conclusion on the good
quality of s D a C b T 1/2 approximations of part of the
data published in Siegrist et al.31 Simultaneously, it yields
that the critical annealing temperature should fall
between 200 and 225 �C, but closer to the former value.
This result only slightly exceeds our above estimate of
roughly 200 �C obtained from the s(T ) in Siegrist et al.31

Hence, together, Siegrist et al.31 and Volker et al.,47

form a prime example of the decisive influence of the
MIT criterion used on the character of the MIT derived.
However, not mentioning the reinterpretation of their
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Figure 1. (Color online) Temperature dependences of the con-
ductivity of four GeSb2Te4 films redrawn from Figure 3 of Siegrist
et al.31 According to that plot, all these samples are considered
as insulating in Siegrist et al.31 The black straight lines which are
overlaid with colored dashes show corresponding s D a C b T 1/2

approximations. The T interval 5 to 50 K taken into account in
adjusting the respective parameters a and b is marked by a hori-
zontal bar .
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previous data in M€obius97 although citing that source,
Volker et al.47 implicitly ascribe their altering the MIT
characterization which they had previously concluded in
Siegrist et al.31 only to the focus on the lowest T decade.
This way, they hide the interpretation ambiguity from
the reader.

Nevertheless, the s D a C b T 1/2 approximations are
not perfect. Volker et al.47 point to the weak curvature of
their s vs. T 1/2 plots limiting the applicability range of
the augmented power law; they mention similar findings
for the alternative exponent 1/3. This feature is not spe-
cific to the lowest T decade of their study, which was not
taken into consideration in Siegrist et al.,31 and thus also
not in the above examination of that work. One
can already note it carefully inspecting the curve for
Tann D 225 �C in our Figure 1. A detailed investigation
of such weak deviations will be presented for the example
of crystalline Si:P in Subsection 4.2.

To gain additional information for the controversial
classification of the s(T ) data from Siegrist et al.,31 we
now study the T dependence of the logarithmic deriva-
tive w, defined by Eq. (6) above. Figure 2 shows w(T) for
the four samples already considered in Figure 1. It com-
pares results obtained by direct numerical differentiation
of the experimental data with functions derived from

analytic differentiations of various fits to the experimen-
tal s(T).

The numerically calculated w(T ) points were
obtained from the lnT (ln s) relations as follows. Sliding
a ln s window along the curve, we calculated the slope
by means of linear regression. In this procedure, we
related the respective value of the slope to that ln s value
where the truncation error is particularly small, that
means, where it is only of second order in the width of
the ln s window; for a detailed explanation see
Appendix C. To determine the corresponding value of
lnT, we used linear regression. In the present case,
numerically calculating 1/w D d lnT/d ln s instead of w
was advantageous with respect to finding a window
width which is almost optimal simultaneously at low and
high T. This width was chosen as small as possible, but
so large that digitization effects and random errors are of
negligible influence. The values 0.30, 0.15, 0.15, and 0.10
were used for Tann D 150, 175, 200, and 225 �C, respec-
tively. To ensure that the width of the related T interval
does not fall below 1.75 K, the ln s window was corre-
spondingly expanded if necessary.

The reliability of this procedure was checked in two
different ways. First, for Tann D 150 �C, additionally, the
s(T ) data were also reconstructed from the log r vs.
T ¡1/4 plot in Figure 8s of the Supplementary Informa-
tion of Siegrist et al.31 At low T, this graph has a far bet-
ter resolution than Figure 3 of Siegrist et al.31 Thus,
w(T) could be determined using a ln s window of width
0.3 over the whole T range, without the occasional inter-
val expansion mentioned above. Figure 2 shows that
both the independently obtained w(T) curves for Tann D
150 �C nicely agree with each other. Second, several
unusual patterns of the curves were analyzed. For exam-
ple, in the case of Tann D 150 �C, the minimum at 63 K
turned out not to be an artifact of the digitization but to
originate from an offset of the parts of the curve below
61 K and above 65 K by roughly 1 K. This offset is also
visible in a large magnification of the original graph.
Hence, although the published s(T) data are sufficiently
precise for an overview, they exhibit artifacts which sub-
stantially influence w(T). Therefore, one should be cau-
tious in judging the abnormal features of w(T ) discussed
in the following.

Figure 2 compares the curves obtained by numerical
differentiation from the reconstructed experimental data
with several theoretical approximations: The dashed,
full, and dashed-dotted thin lines relate to activated
transport in insulating samples according to Eq. (4) with
n D 1/4, 1/2, and 1, respectively. The corresponding
expressions for w(T ) include only one adjustable param-
eter, T0, see Eq. (9). Thus, to compare with the experi-
mental data, the values of T0 were chosen such that
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Figure 2. (Color online) Temperature dependences of the loga-
rithmic derivative of the conductivity, w, for the four GeSb2Te4
data sets shown in Figure 1. For Tann D 150 �C, these values
(dark-colored) are compared to data resulting from Figure 8s of
the Supplementary Information of Siegrist et al.31 (light-colored);
see text. Black curves overlaid with colored dashes correspond to
the regression lines in Figure 1. They indicate metallic behavior if
w ! 0 as T ! 0. To check for activated transport, dashed, full,
and dashed-dotted thin lines give approximations of w(T) by
Eq. (9) for n D 1/4, 1/2 and 1, respectively, see text.
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w(20 K) agrees with the result of numerical differentia-
tion. The black curves overlaid with colored dashes are
based on the Altshuler-Aronov approximation for metal-
lic samples, Eq. (2) with p D 1/2. They result from ana-
lytic differentiation of the regression curves in Figure 1.

We now discuss Figure 2 in detail. For Tann D 200 and
225 �C, within a wide T range, the curves obtained by
numerical differentiation of the s(T ) data agree rather
well with the analytically differentiated s D a C b T 1/2

regressions. Thus, the impression from Figure 1 is sup-
ported that already annealing at 225 �C should be suffi-
cient to reach clearly metallic behavior. Hence, from this
perspective, the MIT seems to be continuous, at variance
with Siegrist et al.31

For Tann D 150 �C, the low-T part of w(T) clearly
indicates activated transport due to its negative slope, as
expected. In this case, below roughly 50 K, the interpreta-
tion in terms of variable-range hopping of Mott type
(Eq. (4) with n D 1/4) by Siegrist et al. seems to be con-
firmed. However, significant deviations are visible below
9 K. The shape of w(T) suggests that they are presum-
ably not real but originate from experimental inaccura-
cies. Note, moreover, the qualitative change of w(T) at
roughly 50 K. The positive slope of w(T) above 50 K is
not compatible with any description of a hopping mecha-
nism by Eq. (4). However, such a behavior is not unusual:
it points to a second mechanism contributing;21,41,60 com-
pare also Subsection 4.5, devoted to crystalline CdSe:In.

So far so good, but what about the measurements on
the sample annealed at 175 �C? For this sample, the find-
ings are confusing: It should exhibit activated transport
according to the unphysical s(T ! 0) extrapolation in
Figure 1. (The corresponding s D a C b T 1/2

fit implies
a divergence of w(T) at finite T, indicated by the black
line overlaid with red dashes in Figure 2.) Hence, in the
low-T region, the slope of w(T ) should be negative as for
the three shown approximations for activated transport
according to Eq. (9). In fact, however, the slope of the
w(T ) curve obtained by numerical differentiation of the
s(T ) data is positive down to the smallest T considered.
This discrepancy raises serious doubts about the consis-
tency of all the sample classifications obtained from the
s D a C b T 1/2

fits in Figure 1.
How could one understand the contradiction? On the

one hand, the temperature might not be low enough.
This would be the case if the above-mentioned high-T
mechanism had a strong influence even at temperatures
of a few K. Consequently, for the samples annealed at
200 and 225 �C, the usual s D a C b T 1/2

fits in Figure 1
would be applicable only by chance. Moreover, also the
Mott variable-range hopping behavior for Tann D 150 �C
would not be generic but result from the superposition
of two mechanisms.

Another possibility is that the exponent of the aug-
mented power law might increase when the MIT is
approached. Thus, the simple s D a C b T 1/2 extrapola-
tion procedure might erroneously classify a metallic sam-
ple as insulating. However, such a considerable increase
of p in the vicinity of the MIT seems to contradict the
common experience with other disordered solids; see
Subsection 2.3 and Section 4.

On the other hand, the positive slope of w(T) at low
temperatures for Tann D 175 �C might also be caused by
various experimental problems such as incomplete ther-
malization, Joule heating, or sample inhomogeneities.
The low-T deviations for Tann D 150 �C mentioned
above point in this direction. They may originate from a
continuous resistance measurement with too fast sliding
temperature. A more clear picture will probably be
gained when, for a comparably small number of T values,
the resistance is always measured only after careful ther-
malization.21 Of course, the effect of such an improve-
ment of the measurement has to be checked for all
samples. In particular, it will be intriguing to see how,
for Tann D 200 and 225 �C, the seemingly good agree-
ment between measured data and regression lines in
Figure 1 and between numerically and analytically
obtained w(T ) curves in Figure 2 will be influenced. Will
it persist or disappear?

A first answer to this question is given by Figure 3 of
the subsequent publication by Volker et al.,47 already
pointed to above. It presents w(T ) curves derived from
measurements on GeSb2Te4 films down to 0.35 K. To
simplify the comparison of our Figure 2 with that dia-
gram, we here condense w(T ) data sets obtained from
both Siegrist et al.31 and Volker et al.47 in a common
plot, Figure 3. For this aim, we digitized Figures 1 and 2
of Volker et al.47 and calculated the corresponding w(T )
sliding windows containing eight neighboring data
points along the ln s(lnT) curves of the samples f, g, h,
and i; these films had been annealed at 175, 200, 225,
and 250 �C, respectively. Additionally, as precision check
of our procedure, Figure 3 includes data points of sample
g obtained by digitizing the w(T ) presented in Figure 3
of Volker et al.47

Our Figure 3 contains a lot of valuable information as
we will see in this and the next four paragraphs. Note,
above about 140 K, both the w(T ) for Tann D 175 �C
from Siegrist et al.31 (old) and Volker et al.47 (new) agree
rather well with each other. The same can be said about
the two w(T ) curves for Tann D 225 �C from Siegrist
et al.31 and for Tann D 200 �C from Volker et al.47 On the
contrary, below about 100 K, the respective old and new
curves qualitatively differ from each other: While the old
w(T ) seem to decrease with T down to the lowest T
taken into account in such a way that both the
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corresponding samples should be metallic, see above, the
new w(T ) clearly increase with decreasing T at the lower
end of the T range considered which indicates non-
metallic conduction. Based on the common assumption
that the new data are more precise than the old ones, we
conclude that experimental artifacts are the most likely
origin of the unusual behavior of the old w(T ) for

Tann D 175 �C, discussed above. Simultaneously, we
mention that, according to the w(T ) of sample g, doubts
also arise about the low-T decrease of the w(T) of the
old sample annealed at 200 �C.

In consequence of their low-T upturns, both the w(T)
of samples f and g exhibit minima. They occur at about
100 K for sample f, annealed at 175 �C, and at roughly
12 K for sample g, annealed at 200 �C. Thus, this T value
seems to decrease as the MIT is approached. Such a
behavior is already known from a-Si1¡xCrx and
a-Si1¡xNix;

10,21 moreover, it is present also in the case of
crystalline CdSe:In as will be shown in Subsection 4.5.

The crucial point now is the following. According to
w(T), sample g is clearly non-metallic. Its minimum w
value, however, falls considerably below 1/2; it amounts
to about 0.35. This finding is incompatible with
the hypothesis of a continuous MIT at which s / T 1/2

since w(T D const., Tann) decreases monotonically with
increasing Tann; see Subsection 2.6.

This conclusion is supported by the behavior of w(T)
for sample h. In this case, w(T) seems to be roughly con-
stant below about 20 K; w amounts to 0.14 in this T
range. Focusing on the diagram region highlighted by a
red circle, one sees that this feature is clearly inconsistent
with the properties of the w(T ) curves resulting from
hypothetical s D aC b T 1/2 for several values of the quo-
tient a/b, which is the only adjustable parameter here.
Therefore, the T ! 0 extrapolation by means of this
ansatz in Volker et al.,47 yielding a D 11.2 V¡1cm¡1 so
that sample h should be metallic, cannot be trusted. (It is
strange that this problem was not mentioned in that
work.) Even worse, according to our Figure 3, it is not
justified to conclude that the w(T) of sample h vanishes
as T ! 0. For both these reasons, the classification of
this sample as metallic in Volker et al.47 is presumably
not correct. Because, however, just this classification is
basic to the central statement of Volker et al.47 that the
MIT is most likely continuous, this main conclusion of
that publication has to be called into question as well.

Finally, concerning sample i, annealed at 250 �C and
considered as clearly metallic in Volker et al.,47 we point
to the apparent knee in w(T ) at about 4 K. It could be
interesting to check this unusual feature by repeating the
measurements with lower current and increased
precision.

Concluding, taken as a whole, the situation is para-
doxical. On the one hand, our analysis of the s(T) data
published in the original study, in which Siegrist et al.31

had claimed the MIT to be discontinuous, showed that
the ansatz s D a C b T 1/2 seems to work nicely: it yields
reasonable descriptions of experimental w(T ) for two
samples which were classified as insulating in Siegrist
et al.31 This finding is not consistent with the sample
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Figure 3. (Color online) Comparison of temperature depend-
ences of the logarithmic derivative of the conductivity, w,
obtained from two consecutive studies of GeSb2Te4. The
three curves marked by the respective annealing tempera-
tures are a zoom-in of Figure 2. They were obtained from
Siegrist et al.31; for explanations see the caption of Figure 2
and the related text. The data sets for the samples f, g, h,
and i, marked blue, were obtained from the subsequent pub-
lication (Volker et al.47) by means of digitizing Figures 1 and
2 therein and calculating w(T) numerically, see text; as preci-
sion check, data for sample g, marked by magenta C here,
were redrawn from Figure 3 of (Volker et al.47). These four
samples had been annealed at 175, 200, 225, and 250 �C,
respectively. For comparison with theory, the dashed-dotted
lines represent w(T) resulting from hypothetical s D a C b T 1/2

with a/b D 1/4, 1, 4, and 16 (from top to bottom).
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classification in that work and might be an indication of
the MIT being continuous. On the other hand, in the
subsequent publication, Volker et al.,47 the explored T
range was extended by one order of magnitude down to
0.35 K and the measurement precision was apparently
improved. Therein, the authors make use of the ansatz
s D a C b T 1/2 and state the MIT to be most likely con-
tinuous. However, the w(T ) curves presented in Figure 3
of that work and the ones in our Figure 3 clearly imply
that this ansatz is not applicable in the immediate vicin-
ity of the hypothetical MIT. Thus, the continuity of the
MIT is called into question.

These contradictions highlight how the “common
wisdom” interpretation bias can play a subtle but deci-
sive role in MIT studies. In Section 4, we will show that
also numerous publications on the MIT in various other
disordered solids suffer from such bias problems. In
doing so, considering different choices of the control
parameter, x, we will identify the likely generic features
of the w(T, x D const.) flow diagrams for the vicinity of
an MIT.

3.2. Critical charge carrier concentration

The second argument based on which Siegrist et al.31

ascribe an “unparalleled quantum state of matter” to
GeSb2Te4 is the allegedly strong deviation of their data
from the Mott criterion,98

n 1=3
c a �

H D 0:26§ 0:05: (10)

This universal relation links the critical charge carrier
concentration, nc, of the MIT to the effective Bohr radius,
aH

�, of the localized states. Its structure — without spe-
cific value at the right-hand side — follows already from
a dimensional analysis, see Appendix A. Originally, such
a criterion was derived by Mott.99 Later, Edwards and
Sienko extended its applicability by incorporating more
realistic wave functions of the localized states, see
Edwards and Sienko,98 especially Table I as well as
Figure 1 therein. In that work, the simple estimate of aH

�

originally used, which incorporates only the effective
electron mass and the permittivity, was refined.

Figure 5 of Siegrist et al.31 depicts the claimed discrep-
ancy between Eq. (10) and the experimental finding.
Siegrist et al. comment on this deviation in a firm man-
ner: “This estimate fails completely for GeSb2Te4, where
the observed critical carrier concentration at the MIT
determined by Hall measurements is 2.0 £ 1020 cm¡3.
This carrier concentration reproduces the observed min-
imum metallic conductivity. This consistently indicates
that the critical charge carrier concentration is more
than a factor of 25,000 larger than the Mott prediction!

We are not aware of any other solid where a similar devi-
ation has been observed.”31

This statement, however, is based on a highly ques-
tionable assumption: Siegrist et al. presume that the
transport proceeds via shallow impurity states. Only the
wave functions of such states may have an extension of
more than 100 A

�
. In contrast, the wave functions of

defect states deep in the gap are far more localized.
Unlike Siegrist et al., we think it is very likely that these
deep states govern the electrical conduction process in
GeSb2Te4. Our interpretation is supported by the follow-
ing series of independent arguments.

According to Ch. 4.2.2 of Yu and Cardona,100 impu-
rity levels tend to be shallow if the cores (atom minus its
outer valence electrons) of host and impurity atoms
resemble each other. If, however, the defect induces a
substantial strongly localized potential, the arising cen-
tral cell corrections usually cause the corresponding
impurity level to be a deep one. Vacancies belong to the
second of these two classes of crystal imperfections. How
they give rise to deep levels is discussed in Ch. 4.3 of Yu
and Cardona;100 see also Figure 4.5 therein.

In this context, it is noteworthy that Siegrist et al. con-
clude from their measurements that the concentration of
vacancies in GeSb2Te4 is high; see Figure 6a in Siegrist
et al.31 and the last but one paragraph on page 4 of the
Supplementary Information of Siegrist et al.31 In the lat-
ter, the authors state “... the empty lattice sites play a cru-
cial role in reducing the electrical conductivity in these
phase-change materials.” Hence, the concentration of
deep levels in the gap should be high and substantially
affect the electronic transport.

The influence of vacancies on the electronic structure
of various configurations of GeSb2Te4 was recently inves-
tigated by Zhang et al. by means of density functional
theory calculations.101 These authors showed that a high
concentration of vacancies implies a high density of
states at the Fermi energy. Studying the inverse partici-
pation ratio of the cubic GeSb2Te4 phase with random
occupation, they observed that these states are localized
to regions of only 25–60 atoms. Their volume is smaller
by orders of magnitude than the spatial extension of a
shallow impurity state.

The annealing process in Ge2Sb2Te5 films, a related
material, was studied by Kato and Tanaka.102 They con-
cluded that, in the face-centered cubic phase, the chemi-
cal potential is situated 0.15 eV above the valence band
edge.102 This value is considerably larger than the excita-
tion energy of a shallow doping level, estimated as
8.6 meV in Siegrist et al.31 Thus, this position of the
chemical potential supports the hypothesis that deep lev-
els with strongly localized wave functions play an essen-
tial role.
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Furthermore, for the following two reasons, it is
unlikely that conventional shallow impurity states
played an important role in the experiment by Sieg-
rist et al.: (i) Textbook derivations of the properties
of a shallow impurity state consider a single impurity
in an otherwise perfect infinite crystal. It is therefore
questionable to make use of these results in a situa-
tion with a very large number of crystal imperfections
within the range of the hypothetical shallow donor or
acceptor wave function. (ii) Due to the nanocrystal-
line structure, boundary effects as well as strain may
considerably influence the electronic properties of the
crystallites. Thus, additional doubts on the applicabil-
ity of these textbook derivations arise from the grain
size of the nanocrystalline GeSb2Te4 films being only
of the order of 10 to 20 nm, see p. 4 of the Supple-
mentary Information of Siegrist et al.31 In the case of
an effective Bohr radius of 100 A

�
, the probability

density would still have substantial finite values at a
grain surface for almost all shallow impurity states.

Our counter-arguments to the interpretation in Sieg-
rist et al.31 which have been presented in the previous
paragraphs raise the following question: How does a
“standard” material behave in an analogous annealing
experiment? Such a study was performed by Song and
co-workers for amorphous Si very heavily doped with P
or B.103 (For crystalline Si, these elements are typical
shallow donors and acceptors, respectively.) These
authors deposited a-Si:H films with P and B concentra-
tions of 0.41 and 0.42 atomic percent, respectively. Thus,
in both cases, the spatial concentration of the dopants
amounts to about 2 £ 1020 cm¡3. This value is roughly a
factor of 50 larger than the critical concentrations for the
MIT in crystalline Si:P and Si:B. Nevertheless, the amor-
phous films showed clearly activated conduction at
room temperature. Their conductivities amounted to
3.4 £ 10¡4 and 1.28 £ 10¡3 V¡1cm¡1, respectively.

In the annealing, the films were dehydrogenated and
heavily doped nanocrystalline Si was formed. In this pro-
cess, the conductivity increased by orders of magnitude
up to 5.3 and 130 V¡1cm¡1 for the P- and B-doped
films, respectively. Simultaneously, the “conductivity
activation energy”, T d ln s/d lnT, decreased by a factor
of 10 for P doping and the conductivity almost
completely lost its T dependence in the case of B doping.
In terms of classifying the character of conduction
according to the sign of dr/dT at the measuring temper-
ature as in Siegrist et al.,31 this means the MIT had still
not been reached in the case of P doping, although the P
concentration was so much higher than the critical con-
centration for crystalline Si:P. However, for B doping,
the MIT had probably already almost been reached or
even crossed. The findings described here resemble to a

large extent the observations in GeSb2Te4 by Siegrist
et al. This similarity is a further clear argument against
their claim that this phase-change material exhibits an
“unparalleled quantum state of matter”.

Song et al. interpret their results in terms of a shift of the
Fermi energy due to annealing.103 Simultaneously with the
change of the activation energy, the character of the partici-
pating states should alter, from deep, strongly localized
states toward shallow, far more extended states. In this pro-
cess, according to Eq. (10), the critical charge carrier concen-
tration, nc, decreases. Hence, such an MIT happens
primarily due to a variation of nc, similar to the MIT caused
by applying stress to heavily doped crystalline Si;22,23 see
also Subsection 4.2. The same mechanism should govern
theMIT in GeSb2Te4, where the transition occurs sometime
in the recrystallization process, not at its end.

Summarizing the above arguments, it seems to be very
likely that strongly localized states deep in the gap play
the crucial role in the transport close to the annealing-
induced MIT in GeSb2Te4. These states have a far smaller
spatial extension than the shallow states. Hence, it is not
meaningful to relate the critical charge carrier concentra-
tion to the effective Bohr radius of shallow states. In this
way, the discrepancy between critical charge carrier den-
sity and effective Bohr radius stressed by Siegrist et al.31

is traced back to the authors using an inappropriate value
for the latter quantity. Therefore, also concerning the
Mott criterion, GeSb2Te4 is not special.

4. Comparison with other solids

One might shrug off the ambivalence of the GeSb2Te4
measurements discussed above considering them to
be ambiguous results for a special, complex material.
However, as we will see, contradictory information is
also contained in various publications on the MIT in dis-
ordered solids which conclude that, at the transition,
limT!0 s(T, x) is a continuous function of the control
parameter x. To illustrate these contradictions, we now
examine several older investigations of crystalline ele-
mental and compound semiconductors, heavily doped
with different impurities, as well as recent studies of dis-
ordered Gd and nanogranular Pt-C. In this process, to
uncover the bias inherent to the usual data evaluations,
we analyze in particular the respective w(T, x D const.)
flow diagrams; moreover, we demonstrate how, in the
augmented power law approach, exponent and tempera-
ture range influence the sample classification.

4.1. Crystalline Si:As

First, we turn to crystalline Si:As, an n-type semiconduc-
tor, which was studied in great detail by Shafarman
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et al.18 For a series of uncompensated samples with
charge carrier concentration, n, between 6.85 £ 1018 and
32.8 £ 1018 cm¡3, these authors investigated s(T, n)
down to 0.5 K. They claimed that, at sufficiently low T,
the conductivity of their allegedly metallic samples can be
well described by s(T, n) D a(n) C b(n)T 1/2. Supposing
continuity of the MIT and limT!0 s(T, n) / (n ¡ nc)

m

on its metallic side, where nc denotes the critical As con-
centration and m the corresponding critical exponent,
Shafarman et al. obtained m D 0.60 § 0.05; this value is
consistent with previous results for Si:P.18,22 Close to the
MIT, on the insulating side, below 8 K, the authors
observed s(T) to be well approximated by Eq. (4) with
n D 1/4, which seems to indicate Mott type variable-
range hopping.

From the perspective of Section 2, the following
points of Shafarman et al.18 are particularly interesting.
According to its Figure 8, at low T, while n is varied,
ds/dT changes sign when s � 50 V¡1cm¡1, in agree-
ment with corresponding Si:P data.50,61 However, in con-
trast to previous findings on Si:P,22,48 none of the
possibly metallic Si:As samples has an extrapolated
s(T D 0) which is smaller than half this value, despite
the dense distribution of As concentration values consid-
ered: For n D 8.67 £ 1018 cm¡3, Figure 8 of Shafarman
et al.18 depicts s(T D 0) � 28 V¡1cm¡1. For the samples
with n D 8.63 and 8.59 £ 1018 cm¡3, whose character
Shafarman et al. regarded as not decidable, it is obvious
from Figure 11a of that reference that s D a C b T 1/2

extrapolations to T D 0 are problematic due to the consid-
erable curvature of the s vs. T 1/2 plots. Anyway, focusing
on the data below 1 K for these two samples, we obtained
the estimates s(T D 0) � 30 and 28 V¡1cm¡1, respec-
tively. Finally, the sample with the next lower value of the
charge carrier concentration, n D 8.48 £ 1018 cm¡3, was
classified as insulating in Shafarman et al.18

Note, moreover, that for the two samples with n D
8.63 and 8.59 £ 1018 cm¡3, s varies only by roughly 15%
between 0.5 and 4 K. As already remarked in Shafarman
et al.,18 such a s range is much too small to draw reliable
conclusions from the alternative stretched exponential
fits presented in Figure 11b therein.

In this context, it is very instructive to explore the log-
arithmic derivative w(T, n) for the Si:As data from Sha-
farman et al.18 Our Figure 4 presents w(T, n D const.)
for six samples with n D 7.79 to 8.63 £ 1018 cm¡3. This
interval includes the four samples which Shafarman
et al.18 considered as the clearly insulating ones closest to
the MIT as well as the two samples which remained
unclassified in that study, see above. Partly, the data were
redrawn from Figure 4 of Shafarman et al.18 partly, they
were obtained by digitizing Figure 11b of Shafarman
et al.18 and subsequent numerical differentiation of

ln s(lnT) based on Appendix C. In these calculations,
always, eight neighboring data points were taken into
account.

For all samples considered in Figure 4, the inequal-
ities w > 0 and dw/dT < 0, on sliding average, hold
simultaneously, in clear contradiction to the examples
of w (T ) curves for hypothetical s(T ) following pure
augmented power laws. In fitting the theoretical w (T )
to experimental data, there would be only a single
adjustable parameter, the ratio a/b. Therefore, such a
comparison is very meaningful. Thus, according to
Subsection 2.6, all these samples, including the two
samples which could not be classified in Shafarman
et al.18 are very likely insulating.

Moreover, since w(T D const., n) decreases with
increasing n in the proximity of the MIT, our Figure 4
allows for a conclusion on the separatrix between metal-
lic and non-metallic regions. It is very unlikely that
w(T ) � 1/2 or 1/3 holds at the MIT itself. Hence, for
Si:As, it is also very unlikely that s(T) follows a pure
power law with exponent 1/2 or 1/3 just at the MIT.
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Figure 4. (Color online) Temperature dependences of the loga-
rithmic derivative of the conductivity, w, for six crystalline Si:As
samples investigated in Shafarman et al.18 Here, ~n indicates the
donor concentration as multiple of 1018 cm¡3. The points for ~nD
7:79 to 8.48 are redrawn from Figure 4 of Shafarman et al.18; we
use the same symbols as in the original plot but another T scale.
In addition, points for ~nD 8:59 and 8.63 are included which we
obtained from the data published in Figure 11b of Shafarman
et al.18; see text for details. The straight lines only serve as guides
to the eye. The dashed-dotted lines represent w(T) resulting from
hypothetical s D a C b T 1/2 with a/b D 1, 3, and 10 (from top to
bottom). To facilitate judging the slope for the samples with the
smallest values of w, dashed gray lines mark constant w D 0.05
and 0.1.
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We emphasize that dw/dT < 0 for all the samples
considered in our Figure 4 despite of the very weak T
dependences of s which a part of them exhibits within
the T range studied; for four of them, w < 0.2, for two of
them, even w < 0.1. Thus, as we will see in Section 5,
this diagram is in accord with the hypothesis that
limT!0 s(T, n) is discontinuous at the MIT, whereas, for
any T > 0, s(T D const., n) is continuous. This hypothe-
sis conflicts with the data analysis by Shafarman et al.,18

but it is supported by the above stated lack of possibly
metallic Si:As samples with finite s(T D 0) extrapola-
tions below half the s value at which, at low T, ds/dT
changes sign when n is varied.

4.2. Crystalline Si:P

We now consider a similar material, crystalline Si:P, also
an n-type semiconductor. It was intensively investigated
by groups from Bell Laboratories and from Karlsruhe
University down to temperatures of the order of 10 mK,
far lower than in the Si:As study considered above. In
these Si:P investigations, the MIT was tuned by changing
the P concentration, n,48–50 and, alternatively, by varying
its critical P concentration, nc, by applying stress, S; thus
nc D nc(S).

22,23 In the literature, this series of Si:P studies
has been regarded as key experiments confirming the
continuity of limT!0 s(T, n ¡ nc) at n D nc.

5,6,11

A discontinuity of limT!0 s(T, n ¡ nc) was still not
definitely ruled out in the first of these works, Rosen-
baum et al.48 In the subsequent publications, however,
the continuity of limT!0 s(T, n ¡ nc) was implicitly pre-
sumed when the measurements were analyzed only by
means of the augmented power law ansatz, Eq. (2). In
doing so, these analyses paid little attention to the con-
siderable curvature of the s vs. T 1/2 plots being obvious
in the respective Figures 1 of Thomas et al.,22 Waffen-
schmidt et al.,23 and Stupp et al.50 —In this regard, these
diagrams resemble a corresponding plot for crystalline
Si:As, Figure 11a of Shafarman et al.,18 compare previous
subsection. —Due to the curvature, the s(T D 0) extrap-
olations significantly depend on which T interval is con-
sidered in the s D a C b T 1/2

fits.
There is one exception among the Si:P studies men-

tioned above: In the report on their stress tuning of the
MIT, Waffenschmidt et al.23 state that, close to the MIT,
at low T, s D a C b T 1/3 would better describe the experi-
mental data than s D a C b T 1/2. At first glance, this
seems to be confirmed by their Figure 2a which shows
almost linear s vs. T 1/3 plots for 0.014K 4 T 4 0.216K;
in this representation, the interpolation interval is by a fac-
tor of about 1.5 wider than the extrapolation gap. One
should note, however, that the impression of a substantial

curvature which one gains from the s vs. T 1/2 plots in
Figure 1 of Waffenschmidt et al.23 arises under quite
other conditions: therein, the width of the T 1/2 data range
exceeds that of the corresponding low-temperature gap
by a factor of about 6.5. Thus, on this basis, a fair com-
parison of both approximations is impossible.

Therefore, to examine whether the ansatz sD aC b T 1/3

truly better describes the Si:P data published in Waffen-
schmidt et al.23 than the ansatz s D a C b T 1/2, we
now reproduce and extend the augmented power law
analysis of these measurements. In doing so, we also
aim to find out to what extent the sample classification
depends, first, on the T range taken into account in the
fits and, second, on the exponent of the augmented
power law used.

Our Figure 5 replots s(T, S) data from Figure 1 of
Waffenschmidt et al.23 in a s vs. T 1/3 diagram considering
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Figure 5. (Color online) Temperature dependences of the con-
ductivity of a Si:P sample with P concentration 3.21 £ 1018 cm¡3

under uniaxial stress, S, in s vs. T 1/3 representation. The data are
redrawn from Figure 1 of Waffenschmidt et al.23 Compared to
Figure 2a of that work, a wider T range is displayed; the part
additionally taken into account, 0.216–0.729 K, is marked by
shading. The same interval of S values as in Figure 2a of Waffen-
schmidt et al.23 is considered here; from top to bottom, S D 2.00,
1.94, 1.87, 1.82, 1.77, 1.72, 1.66, and 1.61 kbar; different colors
are used to facilitate the inspection of the diagram. (The data of
s(T, 1.66 kbar) are left out in Figure 2a of Waffenschmidt et al.23)
The black straight lines show respective s D a C b T 1/3 approxi-
mations: they are given as full lines within the T interval consid-
ered in the fits, 0.014–0.216 K as in Figure 2a of Waffenschmidt
et al.,23 and as dashed lines in the extrapolation regions outside
of it. For comparison, the s D a C b T 1/3 approximation of
s(T, 1.72 kbar) within the alternative T interval 0.047–0.729 K is
presented as orange line, full within this interval and dashed-dot-
ted in the extrapolation region.
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the same interval of stress, S, as Figure 2a of Waffenschmidt
et al.,23 but a wider T range. For clarity, we shaded the T
region additionally included into consideration here.

Figure 5 shows clearly that substantial deviations
from the s D a C b T 1/3 approximations given in
Figure 2a of Waffenschmidt et al.23 set in immediately
above the T interval taken into account in that dia-
gram, 0.014 K 4 T 4 0.216 K. A more detailed
inspection leads to the conclusion that precursors of
these deviations are already detectable below 0.216 K
for S D 2.00, 1.94, 1.87, 1.82, 1.77, and 1.72 kbar,
that means, in particular for the stress values to
which the presented augmented power law fits ascribe
metallic conduction. Furthermore, our diagram dem-
onstrates for the case S D 1.72 kbar that, due to the
curvature of s(T 1/3), the resulting sample classifica-
tion may depend on the T interval considered in the
augmented power law fit. Finally, we draw the read-
er’s attention to the weak s-shaped deviations of the
measured data from the augmented power law
approximations in our Figure 5; we will come back to
this point later.

As alternative plots, our Figures 6a and 6b present the
same data sets in analogous s vs. T 1/2 and s vs. T 1/4 dia-
grams, respectively; p D 1/4 is a purely empirical choice.
Comparing them with our Figure 5 and with each other
is very instructive as is detailed in the following three
paragraphs.

First, this comparison makes clear that the sample
classification depends to a substantial extent on the
exponent value presumed; two, three, and four of the
considered S values are classified as belonging to the
insulating range for p D 1/2, 1/3, and 1/4, respectively.

Second, it illustrates the problem that any attempt to
find out which value of the exponent, p, of the aug-
mented power laws yields the most reliable estimate of
limT!0 s(T, S) is hindered by the uncertainty about the
choice of the rating method. There are (at least) three
easily accessible figures of merit for such a comparison:
mean square deviation, width of the T region considered,
and ratio of the width of the interpolation interval to
that of the extrapolation gap in the s vs. Tp plot. (A
mathematically strict approach would have to be based
on assumptions about s(T, S D const.) which cannot be
verified at this stage.) For example, on the one hand, the
mean square deviation of the approximations shown in
Figure 6a is significantly smaller than that of the fits pre-
sented in Figure 5. On the other hand, in Figure 5, the T
range taken into account in the fits is considerably wider
than that in Figure 6a. The above-mentioned ratio of
interpolation interval to extrapolation gap, however, is
the same in both cases.

Third, the comparison of Figures 5, 6a, and 6b
shows that, concerning T, the applicability range of
the augmented power law approximation is the wider
the smaller the value of p. We got support for this
finding when we adjusted the parameter p for the indi-
vidual s(T, S D const.) by numerically minimizing the
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Figure 6. (Color online) Temperature dependences of the con-
ductivity of a Si:P sample under uniaxial stress, redrawn from
Figure 1 of Waffenschmidt et al.23 The same data as in our
Figure 5 are shown, but now in (a) s vs. T 1/2 and (b) s vs. T 1/4

representations. Here, the straight lines refer to s D a C b T p

approximations within the intervals (a) 0.014–0.090 K and
(b) 0.014–0.316 K for p D 1/2 and 1/4, respectively; the high-
temperature regions not taken into account in these fits are
shaded. For further details see caption of Figure 5.
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mean square deviation: For all data sets displayed in
Figure 5, the optimum value of p considerably
decreases with increasing upper bound of the consid-
ered T interval. Moreover, it is noteworthy that this
optimum p value varies substantially with S, too.

Summarizing the above three points, we have demon-
strated how biased interpretations based solely on a sin-
gle s vs. Tp diagram are. Furthermore, concerning the
examined data sets, we have seen that it is impossible to
draw any definite conclusion on the optimum exponent,
in contradiction to the interpretation in Waffenschmidt
et al.23 In consequence, it is also not possible to locate
the transition point from metallic to insulating conduc-
tion in an unambiguous manner by means of the aug-
mented power law approach.

Nevertheless, the question arises why, as Figure 5
shows, the s D a C b T 1/3 ansatz can approximate the
measured data over more than one decade of T values
reasonably well. To clarify this point, our Figure 7 dis-
plays a magnification of the weak deviations between
measured data and corresponding approximations to
which we already pointed in the above discussion of
Figure 5.

It is noteworthy that all but one of the curves in
Figure 7 have a pronounced s-shape. This feature indi-
cates that the respective s(T, S D const.) exhibit inflec-
tion points in the s vs. T 1/3 plot Figure 5. Thus, it is not
surprising that s D a C b T 1/3 approximations, corre-
sponding to straight lines therein, seem to work nicely
over a rather broad T range in the vicinity of these
points.b

We remark, moreover, that such an s-shape seems
not to be consistent with the used ansatz: if a pure
s D a C b T 1/3 behavior was approached with
decreasing T, the deviation should have a parabolic-
like shape at sufficiently low T. Thus, also for this
reason, the extrapolations to T D 0 given in Figure 5
have to be called into question.

The problems with the augmented power law analysis
described above are another strong motivation for an as
unbiased as possible examination of the MIT studies on
Si:P. Therefore, we now reanalyze these measurements
inspecting the behavior of the logarithmic derivative
w(T, n D const., S D const.). In doing so, we start with
considering three experiments in which the MIT was
tuned by varying the P concentration, n, that is, Rosen-
baum et al.48,49 and Stupp et al.50

Our Figure 8 contrasts w(T, n D const.) which we
obtained from the data published in these works with
curves resulting from hypothetical s(T) obeying aug-
mented power laws, for details see its caption. This dia-
gram shows a more complex behavior than our
corresponding Figure 4 on Si:As. The following features
of the experimental data are particularly remarkable.

First, there are two T regions with qualitatively
different behavior of w(T, n D const.). At high T, the
w(T, n D const.) have negative slope similar to the Si:As
data in Figure 4, whereas, at low T, the w(T, n D const.)
decrease with T and seem to tend to 0. The transition
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Figure 7. (Color online) Temperature dependences of devia-
tions of the measured s(T, S D const.) for Si:P, published in
Waffenschmidt et al.,23 from the corresponding s D a C
b T 1/3 approximations shown in our Figure 5. In order to
ensure simultaneously high resolution and compact presenta-
tion, Ds(T, S) D s(T, S) ¡ a(S) ¡ b(S) T 1/3 C c(S) with appro-
priately chosen values of c(S) is presented here. From top to
bottom, S D 2.00, 1.94, 1.87, 1.82, 1.77, 1.72, 1.66, and
1.61 kbar; the horizontal black lines mark the corresponding
c(S). For further details see caption of Figure 5.

b The effect of the inflection point becomes clear when, as a simple example,
linear approximations of f .x/D sin.x/ and g.x/D cos.x/ around xD 0 are
compared: While f~.x/D 0:99 x satisfies jf .x/¡ f~.x/j< 0:001 as long as
jxj< 0:285, ~g.x/D 0:999 fulfills jg.x/¡ ~g.x/j< 0:001 only within a far
smaller interval, jxj< 0:063.
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temperature between both regimes, however, is experi-
ment-specific: It amounts to 0.3 K for the data from Rosen-
baum et al.49 and to roughly 0.1 K for the measurements in
Stupp et al.50

Second, the comparison of the experimental data to
hypothetical w(T) curves which were obtained from pure
augmented power law behavior of s(T), Eq. (2) with
p D 1/2, reveals qualitative discrepancies in both regions:
at high T, experimental relations and hypothetical curves
have slopes of opposite sign; at low T, the experimental
relations vanish far more rapidly with decreasing T than
the hypothetical curves. The latter feature corresponds to
the observation in Rosenbaum et al.49 that the measured
s(T) obeys Eq. (2) with p D 2, which, however, has not
been followed up in subsequent publications.

Third, focusing on the data obtained from Stupp
et al.,50 marked by black symbols in Figure 8, we highlight

the strong similarity between the w(T, n D const.) of the
two groups of samples which were classified in that work
as metallic and insulating, respectively; see caption of
Figure 8. In particular, we encourage the reader to
compare the three middle curves with each other:
They result from the data for the samples with
n D 3.50, 3.52, and 3.56 £ 1018 cm¡3 which were regarded
in Stupp et al.50 as insulating, as very close to the MIT, and
as metallic, respectively.

Next, we turn to the experiments in which the MIT in
Si:P was tuned bymeans of stress, that is by varying the crit-
ical P concentration. Data from such publications by
Thomas et al.22 and by Waffenschmidt et al.23 are reana-
lyzed in our Figure 9. The latter measurements seem to be
particularly precise; therefore, the detailed discussion of the
augmented power law approach in the first part of this sub-
section focused on them. Here, in Figure 9, the colored
curves relate to data published in Waffenschmidt et al.23

Also in Waffenschmidt,104 w(T, SD const.) diagrams were
derived therefrom. Similarities with and differences to our
Figure 9 will be discussed at the end of this subsection.

In comparing the colored curves with w(T ) relations
obtained from previous experiments as well as with
results from Coulomb glass theory, we made the follow-
ing observations: (i) On the one hand, down to roughly
0.1 K, there is a nice agreement with a w(T ) curve which
results from the data in Stupp et al.,50 measured without
stress; the corresponding s, however, differ by a factor of
about 2.7 at 0.8 K, compare Figure 3 of Waffenschmidt
et al.23 and the related discussion in that work. On the
other hand, the w(T ) obtained from Waffenschmidt
et al.23 agree only qualitatively with the w(T ) derived
from the previous stress tuning of the MIT by Thomas
et al.22 (ii) In a part of the non-metallic region, for
w 0 0.7 and 0.05K < T < 0.1 K, the colored w(T ) can
be well approximated by Eq. (9) with n D 1/2 corre-
sponding to variable-range hopping in the Coulomb
glass; this finding is of high significance because only one
parameter had to be adjusted in each such fit. (iii) As for
the measurements without stress discussed above, the
w(T ) obtained from Waffenschmidt et al.23 exhibit puz-
zling maxima at low T. In this case, however, they occur
only at roughly 50 mK, that is at a considerably lower
temperature than in the other studies.

Concerning the character of the MIT, two features of
the data from Waffenschmidt et al.23 reanalyzed in our
Figure 9 are particularly important. First, all these col-
ored w(T ) curves show the maxima pointed to above,
not only the curves which should be related to metallic
behavior according to Waffenschmidt et al.,23 i.e. the
curves with max (w) < 1/3. Even for the stress values for
which max (w) > 1, what implies with very high likeli-
hood non-metallic behavior, such maxima are present.
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Figure 8. (Color online) Comparison of temperature dependen-
ces of the logarithmic derivative of the conductivity, w, obtained
from three studies on crystalline Si:P in which the MIT was tuned
by varying the P concentration, n: The colored filled circles result
from the three upper curves in Figure 2 of Rosenbaum et al.,48

we always considered four neighboring ln s(ln T) points in calcu-
lating w. The magenta line was derived from the curve for n D
3.75 £ 1018 cm¡3 in Figure 1 of Rosenbaum et al.49 The black
symbols result from Figure 1 of Stupp et al.50 when always five
neighboring points are taken into account; from top to
bottom, they refer to n D 3.38, 3.45, 3.50, 3.52, 3.56, 3.60, and
3.67 £ 1018 cm¡3. According to the interpretation of Stupp
et al.,50 the upper three of these black curves should correspond
to insulating samples, whereas the lower three curves should
originate from metallic conduction. The sample to which the
medium curve (n D 3.52 £ 1018 cm¡3) relates is considered in
Stupp et al.50 to be located very close to the MIT. The dashed-
dotted lines represent w(T) which result from hypothetical rela-
tions s D a C bT 1/2 with a/b D 0.01, 0.1, and 1 (from top to bot-
tom). Dashed gray lines mark constant w D 0.1, 0.2, and 0.3.
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Therefore, and because the maxima occur at roughly the
same T for all stress values and, moreover, at clearly
lower T than in the studies without stress analyzed in
Figure 8, we think one should consider the measure-
ments below about 50 mK with caution.

Second, above this temperature, dw/dT < 0 holds for
all curves presented. Thus, according to Subsection 2.6,
we regard all these stress values to belong to the insulat-
ing side of the MIT. This interpretation is corroborated
by the comparison with the hypothetical w(T ) obtained
from s D a C b T 1/3 in the inset of Figure 9. In Waffen-
schmidt et al.,23 however, all the measured s(T ) from
which we obtained the curves in the inset were classified
as metallic.

The observation that, above 50 mK, dw/dT < 0 also
when w is clearly smaller than 1/3, even when w is of the
order 0.1, accords with the findings for Si:As discussed
above. Thus, the same reasoning as for Si:As suggests the
hypothesis that Si:P exhibits a discontinuous MIT; but
this is in contradiction to the measurements below
50 mK in Waffenschmidt et al.23

Finally, for completeness, we refer to the three
w(T, S D const.) diagrams in the Ph.D. thesis by Waffen-
schmidt,104 presented in Figures 4.16 and 4.17 of that ref-
erence; unfortunately, neither of them was included in
the corresponding journal publication, that is Waffen-
schmidt et al.23 These diagrams resemble our Figure 9,
but they have less explanatory power for two reasons:
(i) The random deviations of the w(T) points in Waffen-
schmidt104 are considerably larger than those of the
points in our Figure 9 because, in Waffenschmidt,104

seven neighboring s(T) points were considered in the
calculation of the w values whereas we always took 30 of
these very dense data points into account. (ii) In the
above-mentioned diagrams of Waffenschmidt,104 linear
T scales are used whereas our Figure 9 presents w vs.
T 1/2 and vs. T 1/3. Thus, our plots provide better compro-
mises between the demands for a wide T range and a
high low-T resolution; moreover, for p D 1/2 and 1/3,
they have a higher significance in testing of hypothetical
approximate w / Tp for w � p, as it follows from
s D a C b Tp.

Nevertheless, also the lower plot in Figure 4.16
of Waffenschmidt,104 shows clearly that, for 0.1 K <

T < 0.6 K and 0.1 < w < 0.2, the slope of w(T) is nega-
tive, in agreement with our analysis above, but in contra-
diction to the interpretation in Waffenschmidt et al.23

4.3. Crystalline Si:B

The question arises whether the inconsistencies in the
augmented power law approximations of s(T) which
have been demonstrated for Si:As and Si:P in the previ-
ous two subsections occur only in n-type Si. Therefore,
we consider now uncompensated crystalline Si:B. More
than two decades ago, this p-type semiconductor was
studied by Dai et al.51 in order to obtain the critical
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Figure 9. (Color online) Comparison of temperature dependen-
ces of the logarithmic derivative of the conductivity, w, obtained
from two experiments on crystalline Si:P in which the MIT was
tuned by varying the critical P concentration by means of stress:
The points marked by black circles result from data in Figure 1 of
Thomas et al.22; three neighboring ln s(ln T) points were consid-
ered in each numerical differentiation. From top to bottom, they
relate to S D 5.73, 6.33, 6.59, and 6.71 kbar. Thomas et al.22 con-
cluded that the first two S values (empty circles) belong to the
insulating range, whereas the latter two values (filled circles)
belong to the metallic range. The colored curves were obtained
from s(T, S) data presented in Figure 1 of Waffenschmidt et al.23;
in the calculation of these w(T), we took always 30 neighboring
s(T) points into account. From top to bottom, S D 1.50, 1.56,
1.61, 1.66, 1.72, 1.77, and 1.82 kbar. In Waffenschmidt et al.,23

according to augmented power law fits, only the s(T, S D const.)
for the last two stress values were interpreted as indicating
metallic conduction. For comparison, data for one sample from
Stupp et al.,50 measured without stress, are included; they are
marked by triangles as in our Figure 8. The two dashed
black curves represent Eq. (9) for Efros-Shklovskii hopping with n
D 1/2; the only free parameter, T0, was adjusted at T D 0.1 K.
With enhanced resolution concerning w, the inset shows
w(T, S D const.) for S D 1.77, 1.82, 1.87, 1.94, 2.00, and 2.17 kbar
obtained from s(T, S) data published in Figure 1 of Waffen-
schmidt et al.23 In that work, all these stress values were regarded
to belong to the metallic range. In the inset, the w values are
plotted vs. T 1/3 to facilitate a better test of the approximation
s D a C b T 1/3 used in Waffenschmidt et al.23 The dashed-dotted
lines show hypothetical w(T) for this ansatz with a/b D 0.1, 0.3, 1,
and 3. In both plots, gray lines mark constant w to simplify the
judgement of the slope of the curves.
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exponent of limT!0 s(T, n) concerning the B concentra-
tion, n, for the hypothetically continuous MIT.

About ten years later, in Sarachik and Dai,42 two of
these authors reported scaling of the T dependences of
s(T, n) in the hopping region, compare Subsection 2.5.
Therein, they stressed that the scaling curve also includes
data for three samples interpreted as metallic in their
previous work and concluded that additional careful
investigations down to “as low a temperature as possible”
are required to solve this puzzle.

Our Figure 10 presents w(T, n D const.) relations
obtained from the data published in Sarachik and Dai42

and Dai et al.,51 for details see its caption. This plot
resembles our corresponding graph for Si:As, Figure 4,
to a large extent as it is explicated in the following two
paragraphs.

Consider first the w(T) for the three samples with n D
3.85, 3.92, and 3.95 £ 1018 cm¡3, classified as insulating
in Dai et al.51 as well as in Sarachik and Dai.42 In all three
cases, simultaneously, the smallest value of w falls clearly
below 0.5, while, on sliding average, the respective slope

dw/dT is obviously negative. As discussed in Subsection
2.6, this finding is incompatible with the hypothesis of a
continuous MIT with s / T 1/2 just at the transition.

We now turn to the three samples which were
assumed to be metallic in Dai et al.51 but regarded as
insulating in Sarachik and Dai,42 that means the samples
with n D 4.11, 4.20, and 4.30 £ 1018 cm¡3. We empha-
size that, on the average, dw/dT is clearly negative for the
former two of these samples, notwithstanding that w is
far smaller than 0.5, even considerably smaller than 0.2.
In consequence, also from the perspective chosen here,
these two samples are very likely insulating.

Concerning the third of these samples, n D 4.30 £
1018 cm¡3, a definite conclusion is not possible for us at
the current state because the digitized data are not pre-
cise enough to reach a reliable decision on the sign of
dw/dT. We remark, however, that also a scaling analysis
as in Sarachik and Dai42 is rather uncertain in this case:
The T dependences of s for n D 4.20 and 4.30 £
1018 cm¡3 are so weak that these curves cannot be made
to overlap each other in a mastercurve construction.
Therefore, one has to rely on the implicit assumptions
discussed in detail in Appendix B. In particular, one has
to trust in the mean hopping energy tending to zero as
the MIT is approached, that means in ds/dT D 0 mark-
ing the MIT at sufficiently low temperature.

Summarizing this subsection, we conclude that the
inconsistencies in the augmented power law approxima-
tions of s(T ) for heavily doped crystalline Si seem not to
be specific to n-type doping. This interpretation is also
supported by observations on partially compensated
Si:(P,B); see Figures 1 in M€obius72 and Hirsch et al.73

4.4. Crystalline 70Ge:Ga

The next question to answer is: Might the inconsistencies
of the augmented power law approximations of s(T)
close to the MIT which were pointed out in the previous
subsections be specific only to heavily doped Si?

This is not the case as our Figure 11 shows. For six
70Ge:Ga samples with different values of the Ga acceptor
concentration, n, it presents w(T, n D const.) curves
which we obtained from data by Watanabe et al.;52 for
details see the caption of Figure 11. These authors used
an elaborate sample preparation technique based on neu-
tron transmutation for doping to achieve a high degree
of homogeneity;52 for an earlier MIT study utilizing this
technology, see Zabrodskiĭ and Zinov’eva.17 Moreover,
they applied a two-step irradiation process in order to
fine-tune the concentration of Ga acceptors close to the
MIT.52

Watanabe et al. analyzed their data by means of aug-
mented power law fits and interpreted them in terms of a
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Figure 10. (Color online) Temperature dependences of the loga-
rithmic derivative of the conductivity, w, for eight crystalline Si:B
samples investigated in Sarachik and Dai 42 and Dai et al.51 The
acceptor concentration ~n is given as multiple of 1018 cm¡3. The
data marked black were obtained by digitizing Figure 1 of Sara-
chik and Dai,42 while the colored points result from the digitiza-
tion of Figure 2 of Dai et al.51 For both data sets, always six
neighboring ln s(ln T) points were considered in the numerical
differentiation. The full lines only serve as a guide to the eye,
while the black and colored dashed lines arise from linear regres-
sion of w(T 1/2). The dashed-dotted lines represent w(T) resulting
from the hypothetical relation s D a C b T 1/2 with a/b D 0.3, 1,
and 3 (from top to bottom). To facilitate judging the slope for
the samples closest to the MIT, dashed gray lines mark constant
w D 0, 0.05, 0.1, and 0.15.
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continuous MIT.52 This way, they classified the samples to
which the upper three curves in Figure 11 are related as
insulating, whereas they regarded the samples from which
the lower three curves result as metallic.52 Concerning the
latter three samples, the authors concluded that s(T) can
be well approximated by augmented power laws with p D
1/2 far from the MIT and p D 1/3 in its immediate
vicinity.52

To check this interpretation, our Figure 11 contrasts
the w(T, n D const.) relations obtained by numerical dif-
ferentiation from the measured s(T, n D const.) with
w(T) curves resulting from analytical differentiation of
hypothetical s D a C b Tp with p D 1/2 and 1/3, evalu-
ated for several values of a/b. This graph strongly resem-
bles the corresponding plots in the previous subsections.
In detail, we interpret it as follows.

Consider first the sample with the smallest w, that is, the
sample with n D 1.912 £ 1017 cm¡3. In this case, in agree-
ment with Watanabe et al.,52 analytically differentiated
s D aC b T 1/2 with a/bD 4 seems to well approximate the
curve obtained from the measured data by numerical

differentiation. Note, however, that w < 0.1 holds for this
sample in the entire T range considered here.

Simultaneously, due to the strong discrepancies
between the slopes of the numerically calculated w(T )
curves and the analytically obtained ones, the hypothesis
s D a C b T 1/2 clearly fails for all other samples. In par-
ticular, within the region 0.3 < w < 0.5, positive slopes
of the w(T, n D const.) would be expected if the MIT
were continuous and s were proportional to T 1/2 at the
transition itself. In fact, however, on sliding average,
dw/dT is negative in this w region. Thus, again, and in
agreement with Watanabe et al.,52 the approximation
s D a C b T 1/2 is not applicable in the immediate vicin-
ity of the hypothetical MIT.

The question whether or not an augmented power law
with p D 1/3 may be valid close to a continuous MIT
cannot be finally decided for 70Ge:Ga here because the
s(T ) data are not precise enough. Nevertheless, at the
current stage, there are more cons than pros as is
explained in the following three paragraphs.

In trying to answer this question, we focus on the other
two samples which were regarded as metallic in Watanabe
et al.,52 that is, on the samples with n D 1.861 and
1.863 £ 1017 cm¡3; for them, 0.2 < w < 0.35 holds within
the T interval studied in Figure 11. In the medium T range
of this graph, at first glance, the w(T) obtained by numeri-
cal differentiation from the measured data and the results
of analytical differentiation of augmented power laws with
p D 1/3 seem to be consistent with each other, in accor-
dance withWatanabe et al.52 However, the substantial devi-
ations between the respective curves which occur at the
lower and upper ends of the T interval considered in
Figure 11 clearly conflict with this interpretation.

Note, moreover, that the w(T ) curves for n D 1.853,
1.856, and 1.863 £ 1017 cm¡3 exhibit unusual bumps at
about 0.5 K, presumably resulting from some measure-
ment artifacts. These features raise additional doubts
about the plausibility of the seeming consistency in the
medium T range for n D 1.861 and 1.863 £ 1017 cm¡3 to
which we pointed in the previous paragraph.

Finally, we remark that, on average over the whole
T range, dw/dT seems to be slightly negative and
approximately zero for the samples with n D 1.861 and
1.863 £ 1017 cm¡3, respectively. Therefore, at least the
former sample should actually be insulating in contradic-
tion to the classification by Watanabe et al.52

In consequence, since w(T D const., n) decreases with
increasing n, the data reconsidered here seem to imply
the following conclusion: if the MIT is continuous and
s(T ) / Tp at the MIT itself, then p 9 0.25; alternatively,
the MIT may be discontinuous. Hence, because of the
above arguments, the interpretation by Watanabe et al.
that s D a C b T 1/3 in the immediate vicinity of the MIT
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Figure 11. (Color online) Temperature dependences of the loga-
rithmic derivative of the conductivity, w, for six crystalline neu-
tron transmutation doped 70Ge:Ga samples investigated by
Watanabe et al.52 They are shown as colored curves and relate to
Ga concentrations, n, of 1.853, 1.856, 1.858, 1.861, 1.863, and
1.912 £ 1017 cm¡3, from top to bottom.52 To obtain these rela-
tions, we reconstructed the s(T, n D const.) from Figure 1 of
Watanabe et al.52 and differentiated the individual ln s(ln T)
numerically considering groups of 30 neighboring data points.
The dashed and dashed-dotted lines represent w(T) curves result-
ing from hypothetical s D aC b Tp with pD 1/2 and 1/3, respec-
tively. Here, a/bD 0.1, 0.5, and 4 for pD 1/2, whereas a/b D 0.08
and 0.2 for p D 1/3. To facilitate judging the slope of w(T),
dashed gray lines mark constant w D 0.2 and 0.3.
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is unlikely to be valid. An improvement of precision and
accuracy of these s(T ) measurements should be very
promising.

4.5. Crystalline CdSe:In

In the previous subsections, we have examined MIT
studies of only elemental semiconductors. Now we ask
whether the characteristic features of s(T, n) and
w(T, n) which we have exposed therein can be identified
also in reports on compound semiconductors. First, we
turn to n-type CdSe, a II-VI semiconductor. The (actual
or alleged) hopping conduction in In-doped compen-
sated CdSe was analyzed from different perspectives in
three subsequent publications: Zhang et al.54 probed the
Coulomb gap; they interpreted their measurements in
terms of a crossover between s(T) following Eq. (4) with
n D 1/2 at low T and Eq. (4) with n D 1/4 at high T.
Later, reinterpreting and extending these investigations,
universality of the crossover and two-parameter scaling
were claimed by Aharony et al.55 and by Zhang and Sara-
chik,56 respectively. (Zhang et al.54 and Aharony et al.55

consider the same five samples, but dopant concentra-
tion values were redetermined in Aharony et al.55 Out of
these publications, only Zhang and Sarachik56 present
s values in absolute units.)

Remarkably, for the sample with the highest net
donor concentration among the ones investigated in
Zhang and Sarachik,56 s(T ) changes only by a factor of
about 2.4 over the lowest decade of the T range studied,
that is, between 0.062 and 0.62 K; see Figure 1 therein. In
terms of simple approximations, this low value can be
interpreted in three different ways: (i) In case, the sample
was located just at a continuous MIT, so that s(T ) fol-
lowed a pure power law, the quotient 2.4 would corre-
spond to an exponent of roughly 0.4. (ii) If, alternatively,
s(T ) could be described by the augmented power law
Eq. (2) with p D 1/2, then, in consequence of the ratio
2.4, the constant contribution a would be positive and
thus indicate metallic conduction. (iii) Of course, such a
low ratio could also result from variable-range hopping
described by Eq. (4) with T0 being comparable to the T
values considered. For n D 1/2 and 1/4, the ratio 2.4
implies T0 D 0.10K and 0.99K, respectively; Table I of
Zhang et al.54 reports T0 D 0.10K and 0.65K, respec-
tively, relating to data for higher temperatures in the lat-
ter case.

Because of this ambiguity, it should be very interesting
to find out whether or not T ! 0 extrapolations based
on the augmented power law Eq. (2) with p D 1/2 can be
used for the classification of the CdSe:In samples, too,
and which result they yield. To clarify these points, we
digitized the s(T ) data published in Figure 1 of Zhang

and Sarachik56 focusing on the three samples with the
highest net donor concentrations. These data are
redrawn in a s vs. T 1/2 plot in Figure 12 here.

When covering the shaded part of our graph, one sees
that Eq. (2) seems to be reasonably well fulfilled between
about 0.06 and 0.5 K, that means over almost one tem-
perature decade as also in our Figure 1 on GeSb2Te4
films. According to the corresponding T ! 0 extrapola-
tions, the CdSe:In sample with the highest net donor
concentration, n D 2.65 £ 1017 cm¡3, should be metallic
in contradiction to the interpretation in Zhang and Sara-
chik,56 while the two others should be insulating in
agreement with that work.

Additionally taking the data points between 0.5 and
1 K into account, however, totally changes the situation.
The previously obtained augmented power law fits
now cease to be good approximations of the experi-
mental data, so that the T ! 0 extrapolation for
n D 2.65 £ 1017 cm¡3 and the therefrom concluded
sample classification are called into question.

The here demonstrated interpretational ambiguity of
augmented power law fits to s(T ) data sheds bright light
on how questionable this approach is for CdSe:In, too.
Thus, our Figure 12 shows a further example of the
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Figure 12. (Color online) Temperature dependences of the con-
ductivity of three CdSe:In samples redrawn from Figure 1 of
Zhang and Sarachik.56 The values of the net donor concentration,
~n, are given as multiple of 1017 cm¡3; they are taken from Table I
of that work. All these samples are regarded as insulating in
Zhang and Sarachik.56 The straight lines show respective s D
a C b T 1/2 approximations: They are given as full lines within the
T range considered in the fits, 0.06–0.5 K, and as dashed lines in
the extrapolation region outside of it. The region above 0.5 K is
shaded to simplify the discussion.
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decisive influence of the choice of the MIT criterion on
the sample classification obtained.

Note the resemblance between this graph and corre-
sponding plots for Si:P, Figure 1 of Stupp et al.50 and our
Figures 5 and 6. From all these graphs, it is obvious how
strongly the usual localization theory motivated aug-
mented power law extrapolation results depend on
which T interval is chosen to fit Eq. (2) to the experimen-
tal data. Nevertheless, together, these figures support the
idea that the character of the MIT should be the same in
CdSe:In and Si:P.

The next question, of course, concerns the behavior of
a set of w(T, n D const.) curves for CdSe:In. To answer
it, we digitized the s(T) data for five samples published
in Figure 1 of Aharony et al.55 This graph includes values
from a very wide T range, from about 60 mK up to
roughly 100 K. Utilizing the numerical differentiation
method explained in Appendix C, we calculated
1/w(T, n D const.) sliding a ln s window of width 1.0
along the lnT (ln s) curves, analogously to our approach
in Subsection 3.1. To guarantee that at least 7 data points
are taken into account in each slope calculation, the ln s
window was correspondingly expanded if necessary.
This procedure ensures that the random errors of the w
values are kept small in the medium temperature range,
where w(T ) seems to vary only slowly.

The resulting w(T, n D const.) data are presented in
Figure 13. Three features of this graph deserve particular

attention. First, for T 9 1K, all w(T, n D const.) exhibit
negative slope, in agreement with Figure 3b of Zhang
et al.54 Therefore, we support the sample classification
in Zhang et al.,54 Aharony et al.,55 and Zhang and
Sarachik56 where all these samples are considered as
insulating. Moreover, we point out that the considerable
negative slope of w(T ) is the origin of the problems with
the augmented power law approximations of s(T) dis-
cussed above.

Second, in contrast, at high T, that means above
roughly 15 K, w increases with T for all samples consid-
ered here. This behavior very likely arises from a second
conduction mechanism yielding a substantial contribu-
tion to s(T), see the discussion in Subsection 2.6, and
compare Figure 3.

Third, in between the low- and high-T regimes, all
w (T, n D const.) exhibit pronounced minima. The
corresponding temperature value, Tmin(n), decreases
as n increases, that means as the MIT is approached,
and so does wmin(n) D w (Tmin(n), n). (This feature
could already be foreshadowed from inspection of
Figure 3b of Zhang et al.,54 restricted to T 9 10 K.)
Such characteristic minima are not special to CdSe:In,
they were observed already in amorphous alloys, see
Figure 7 in M€obius and Adkins10 and Figures 7a/b in
M€obius et al.21 for a-Si1¡xCrx and a-Si1¡xNix, respec-
tively; see also our Figure 3 on GeSb2Te4. Finally, we
stress that, for the CdSe:In sample closest to the MIT,
wmin � 0.2. This is incompatible with the idea of a
continuous MIT at which s(T ) / Tp with
p D 1/2 or 1/3; for the reasoning, see Subsection 2.6.

Concluding this subsection, we encourage the reader
to compare Figure 13 to the diagrams in our Section 5.
They show the behavior of w(T, x) in the vicinity
of the MIT for four simple, qualitatively different
phenomenological models of s(T, x), where x stands for
an arbitrary control parameter. In our opinion, Figure 13
closest resembles Figure 23. The latter diagram presents
a set of w(T, x D const.) curves for a discontinuous
MIT which is superimposed by an additional high-
temperature conduction mechanism and for which
ds/dT D 0 indicates the transition point in the low-T
limit. This resemblance is in accord with the interpreta-
tion in Zhang and Sarachik,56 where the existence of
a finite minimum metallic conductivity was concluded
from two-parameter scaling of the T dependences of s.

4.6. Crystalline n-Cd0.95Mn0.05Se

In certain cases, alternatively to utilizing stress, the MIT
can also be tuned by applying a magnetic field. Thereby,
the variation of the critical dopant concentration can
originate from two effects acting in opposite directions.
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Figure 13. (Color online) Temperature dependences of the loga-
rithmic derivative of the conductivity, w, for the five crystalline
CdSe:In samples investigated in Zhang et al.54 and Aharony
et al.55 The values of w(T, n) were obtained from Figure 1 of Ahar-
ony et al.55 as described in the text. The net dopant concentra-
tions ~n, given as multiple of 1017 cm¡3, are taken from Table I of
Aharony et al.55
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On the one hand, the field squeezes the dopant wave
functions and thus increases the critical dopant concen-
tration. On the other hand, the field reduces the effective
disorder by partially aligning d-spins which, in turn,
affect the current carrying shallow impurity levels via s-d
exchange interaction; this way, the field reduces the criti-
cal dopant concentration. For details see Shklovskii and
Efros105 and Dietl et al.,27 respectively.

As an example of employing the second of these
effects in the study of the MIT, we now evaluate the
investigation of the semimagnetic crystalline semicon-
ductor n-Cd0.95Mn0.05Se described in Wojtowicz et al.26

and Dietl et al.27 In these measurements, the magnetic
field was directed perpendicular to the current. Thus,
interpretation complications can arise from the tensor
character of the conductivity. However, Wojtowicz
et al.26 claim the magnetoresistance to be isotropic in
this case, so that the corresponding corrections should
be negligible in the data evaluation. In the following, we
take this assumption for granted.

To inspect an as broad as possible T range, to ask for the
limit of the linear range of s(T 1/2, H D const.) analogously
to our approach in Subsection 4.2, and, moreover, to check
our digitization, we took into consideration all available
published data. Thus, we digitized not only the apparently
identical plots of s(T, H D const.) vs. T 1/2 in Figure 1a of
Wojtowicz et al.26 and Figure 6 of Dietl et al.,27 but also the
log10 r(T D const., H) vs. H 1/2 diagram Figure 4 of Dietl
et al.,27 which includes data from a wider T range.

Surprisingly, the digitization precision check uncov-
ered a systematic mismatch between these data sets: Our
Figure 14 shows that, in particular, the presumably
“more original” data points in Figure 4 of Dietl et al.27

mark significantly larger values of s(0.3 K, H) than the
corresponding data points in Figure 1a of Wojtowicz
et al.26 and Figure 6 of Dietl et al.27; this temperature is
indicated by an arrow. The first impression is confirmed
by the detailed presentation of the mismatch in our
Figure 15, showing that this deviation considerably
exceeds the random digitization errors. (Of course, we
double-checked this finding very carefully.)

Two strange effects may help to evaluate this discrep-
ancy. First, all s(T 1/2, H D const.) given in Figure 6
of Dietl et al.27 can be described almost exactly by
s D a(H) C b(H)T 1/2, compare our Figure 14, whereas
the s(T 1/2, H D const.) obtained from Figure 4 of that
work exhibit a slight s-shape, similarly to our finding for
Si:P in Subsection 4.2. Second, if, instead of the actually
presented values, the data from Figure 4 of Dietl et al.27

were shown in Figure 6 of that work (or in Figure 1a of
Wojtowicz et al.26), then the quality of the fits to Finkel’-
stein’s renormalization group equations therein would
be considerably damaged. Of course, 30 years after

publication, it may be impossible to solve this puzzle.
However, in future work, caution is advised in drawing
conclusions from Figures 1a of Wojtowicz et al.26 and
Figure 6 of Dietl et al.27

What do the logarithmic temperature derivatives
w(T, H D const.) tell us about this MIT? To answer the
question, we calculated w starting from lns(lnT) rela-
tions obtained from Figure 4 of Dietl et al.27; in this case,
we considered all pairs of neighboring T values. The
results are presented in our Figure 16. Again, the numeri-
cally obtained relations differ qualitatively from the w(T)
expected according to the hypothetical s D a C b T 1/2.
As for Si:P, all w(T, H D const.) exhibit maxima at
roughly the same temperature, at about 0.2 K in the pres-
ent case. Such a maximum occurs even for the field
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Figure 14. (Color online) Temperature dependences of the
conductivity of an n-Cd0.95Mn0.05Se sample with net In-donor
concentration 4 £ 1017 cm¡3 under various magnetic fields
published in Wojtowicz et al.26 and Dietl et al.27; from top to
bottom, H D 28.5, 25.2, 22.7, 20.2, 17.7, 15.2, 12.7, and
10.3 kOe. The data marked by red £ and green C are
redrawn from the apparently identical plots in Figure 1a of
Wojtowicz et al.26 and Figure 6 of Dietl et al.27; the data given
by blue circles were obtained by digitizing the r(H, T D const.)
curves in Figure 4 of Dietl et al.27 The orange straight lines refer
to s D a C b T 1/2 approximations of the data from Figure 6 of
Dietl et al.27 for the interval 0.059–0.493 K; they are given as
full lines within this range and as dashed lines in the extrapola-
tion region outside of it.
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strength 10.3 kOe which, according to the corresponding
maximum value of w, as well as to Dietl et al.,27 should
clearly fall into the insulating region. Furthermore, above
this temperature, up to 0.4 K, a considerable decrease
of w with increasing T is present also for the H values

interpreted as belonging to the metallic region in
Dietl et al.,27 even for the largest field, for which w falls
down to about 0.3. Therefore, although we consider these
data with caution due to the discrepancies uncovered
above, we conclude that they can definitely not be inter-
preted to indicate a continuous MIT at which s / T 1/2.

4.7. Crystalline Cd0.95Mn0.05Te0.97Se0.03:In

Persistent photoconductivity is another elegant way to
fine-tune the MIT.28–30 It seems to be based on the exis-
tence of deep donors (or acceptors) with the capture rate
being very small at low temperatures.28 Thus, at low T,
the excitation of electrons (or holes) from such levels to
shallow states by illumination can cause a very long-last-
ing conductivity increase.

G»�od et al.29 used this effect to study the MIT in the
diluted magnetic semiconductor Cd0.95Mn0.05Te0.97Se0.03:In.
They aimed to compare with the transition tuned in com-
pound semiconductors by magnetic field; see the previous
subsection.

G»�od et al.29 investigated four samples with different
degrees of doping; the room-temperature electron con-
centrations were reported to range from 1.8 £ 1017 to
3.1 £ 1017 cm¡3. Before and after illumination, s(T ) was
measured between about 20 and 500 mK. At the end,
this report concludes: “The obtained data contradict sug-
gestions that the polaron formation could result in a dis-
continuous transition.”

To check this statement, we digitized the s(T ) shown
in Figures 1 and 2 of G»�od et al.29 and obtained w(T)
therefrom by numerical differentiation considering
always sets of three neighboring points. The results of
this data evaluation are presented in our Figure 17. In
several aspects, as detailed below, this graph strikingly
resembles our Figures 8 and 9, which concern Si:P.

Note, in particular, that all w(T) curves in Figure 17
have negative slope above about 170 mK, even when
w < 0.2. This feature conflicts with the interpretation by
G»�od et al., who claimed that part of their s(T) originate
from metallic transport. These authors, however, left
open which of the individual s(T ) they considered to
indicate metallic transport and which not; in other
words, they did not define a specific MIT point. Further-
more, as already stressed above for various disordered
solids, this feature is incompatible with the assumption
of a continuous MIT with s being proportional to T 1/2

or T 1/3 at the transition.
Note, moreover, that all w(T ) exhibit clear maxima at

roughly the same temperature, at about 140 mK, inde-
pendently of the respective maximum value of w(T ). In
this context, we mention the investigation of the light-
induced MIT in a related compound semiconductor,
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Figure 15. (Color online) Mismatch between the digitized values
of the data sets published in Figures 4 and 6 of Dietl et al.27 This
diagram presents s Figure 4ð Þ¡ s Figure 6ð Þð Þ=s Figure 6ð Þj T;Hið Þ
vs. T 1/2 for the Hi values listed in the caption of Figure 14.

Figure 16. (Color online) Temperature dependences of the loga-
rithmic derivative of the conductivity, w, for an n-Cd0.95Mn0.05Se
sample studied in Dietl et al.,27 in which the MIT was tuned by
varying the critical dopant concentration by means of magnetic
field; compare caption of Figure 14. The data presented here
were obtained from Figure 4 of Dietl et al.27; the color-coded
symbols have the same meaning as in our Figure 15. For compar-
ison, the dashed-dotted lines represent w(T) resulting from the
hypothetical relation s D a C b T 1/2 with a/b D 0.03, 0.1, 0.3,
and 1 (from top to bottom).
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crystalline Cd1¡xMnxTe:In, by Leighton et al.30 Examin-
ing that study uncovered similar strange behavior of
w(T ), but in that case at higher temperatures: all w(T )
obtained from the data in Leighton et al.30 exhibit max-
ima at roughly 0.5 K.106

Finally, concerning Figure 17, we point to the rapid
decrease of all w(T) with decreasing T below about
110 mK, far more rapid than expected according to
Eq. (2) with p D 1/2. Qualitatively, it resembles the rapid
decrease of the w(T) curves for Si:P in Figure 8 below
about 50 mK. In the case of Cd0.95Mn0.05Te0.97Se0.03:In,
this feature results from the saturation tendency of the
individual s(T ) below roughly 100 mK apparent in
Figures 1 and 2 of G»�od et al.29. The authors speculated
that this saturation may be related to spin glass freezing,
but they seem not to have followed up on this idea in
later publications. To us, this feature is more likely due
to some experimental artifacts.

4.8. Disordered Gd

We turn now to non-crystalline solids. For several such
substances, already more than a decade ago, the aug-
mented power law approach to locating the MIT was
shown to fail, see M€obius and Adkins10 and citations
therein. Here, from this group of solids, we first examine
the recent investigation of disordered Gd films by Misra
et al.32 By means of rf magnetron sputtering, the authors
grew thin Gd films on substrates held at 130 K.32 These
films were found to be stable below 77 K. Their sheet
resistance could be tuned by annealing at the deposition
temperature.32

Misra et al. evaluated their data by means of a scaling
analysis taking for granted continuity of the MIT; they
considered the T region from about 5 up to about 50 K.
At first glance, their interpretation seems to work nicely;
see Figure 3 in Misra et al.32 Several parameters, how-
ever, have to be adjusted in that approach, which is
always associated with a certain risk of misinterpretation.
Therefore, we examine here the justification of the aug-
mented power law fits with adjustable exponents to the
measured s(T ) data, the first step of that scaling analysis.

In their Figure 2, Misra et al. present a plot of w(T )
for a series of samples. It exhibits a T-independent sepa-
ratrix between metallic and insulating samples, a feature
which seems to corroborate the assumed continuity of
the MIT, compare Figure 20 in our Section 5. This con-
clusion, however, is not justified for a simple reason: the
authors present only the analytical differentiations of
their augmented power law fits to s(T ) but no numeri-
cally differentiated experimental data. Thus, concerning
the continuity of the MIT, first and foremost, Misra et al.
only got out what they put into their data analysis.

Our Figure 18 compares w(T) relations resulting
from the numerical differentiation of the original data
with estimates obtained by the analytical differentiation
of augmented power law fits. In the former approach, it
was non-trivial to find a good compromise between two
contradictory demands on the window width. On the
one hand, the window shifted along the ln s(lnT) curves
has to be sufficiently wide to damp the random fluctua-
tions; on the other hand, it has to be kept sufficiently
small so that not too much of the low-T part of w(T ) is
lost. Therefore, we use here a window of variable width:
at low T, we consider the first two data points, then the
first three points, and so on until the lnT window
reaches the width 0.3; after this, we hold the width con-
stant and shift the window along the curve. This
approach is not ideal, but it seems to be the best one can
do in this case. Certainly, it might overvalue random
fluctuations at low T.
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Figure 17. (Color online) Temperature dependences of the loga-
rithmic derivative of the conductivity, w, for light-controlled
transport in crystalline Cd0.95Mn0.05Te0.97Se0.03:In studied in G»�od
et al.29 The presented w(T) data were obtained from the s(T)
data published in G»�od et al.,29 as described in the text. Here, we
use the same geometric symbols as in the original s(T) plots: All
colored symbols relate to data from Figure 1 of G»�od et al.,29

which reports on measurements of one sample after different
illumination times (increasing from top to bottom here); black
empty and solid symbols denote data obtained from the s(T) of
four samples shown in Figure 2 of G»�od et al.29 which were mea-
sured before and after long illumination, respectively. For com-
parison, dashed-dotted lines represent w(T) resulting from the
hypothetical relation s D a C b T 1/2 with a/b D 0.01, 0.1, and 1
(from top to bottom). To facilitate judging the slope of the w(T),
dashed gray lines mark constant w D 0.2 and 0.1.
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At about 8 K, our Figure 18 shows a qualitative
change in the behavior of the w(T) curves obtained by
numerical differentiation. Below this threshold, they
exhibit pronounced upturn-like deviations from the ana-
lytically differentiated augmented power law fits to the
s(T ) data points between 8 and about 50 K. Remarkably,
these upturns have qualitatively the same shape for all
the samples considered here, independently of R0, the
sheet resistance at 5 K, and independently of whether
w(T ) decreases or increases with T above 10 K. Hence, it
is unlikely that they occur only by chance.

We stress that these upturns are not only present in
the w(T) of the samples with R0 � 23.77 kV, classified as
insulating in Misra et al.,32 but also in the w(T) of the
samples with R0 4 21.54 kV, considered as metallic
therein. Because this feature is not compatible with the
hypothetically metallic s(T ) being described by an aug-
mented power law, its presence questions the sample
classification in Misra et al.32

The amplitude of the upturns decreases with R0. This
might be related to the onset of this feature being shifted
to lower T with decreasing R0. To some extent, this

finding resembles results for insulating samples of amor-
phous Si1¡xNix; in that case, the w(T, x D const.) exhibit
pronounced upturns which are shifted to lower T with
increasing x, see Figure 7 of M€obius et al.21 Compare
also Figures 3 and 13 in our review, regarding GeSb2Te4
and CdSe:In, respectively.

Anyway, the presented comparison of both approaches
to obtaining w(T) shows that the interpretation in Misra
et al.32 is not conclusive. More precise measurements
taking into account also moderately lower temperatures
are required to reach convincing results.

4.9. Nanogranular Pt-C

As further recent examples of studies on non-crystalline
systems, we consider now the investigations of the MIT
vicinity of nanogranular W-C and Pt-C published in
Huth et al.107 and Sachser et al.,53 respectively. These
experiments investigated the electrical transport in
mesoscopic samples of granular films which were pro-
duced by focused electron beam induced deposition of a
metal-organic precursor and, in the case of Pt-C, subse-
quent electron beam irradiation. Due to the very small
size of the samples, precise such electrical measurements
are demanding.

For six W-based granular films, Figure 5 of Huth
et al.107 shows w(T 1/2) data obtained by numerical
differentiation. Its inset compares these data with analyt-
ically differentiated augmented power law approxima-
tions for three of the samples. Two problems are obvious
here. Below roughly 30 K, w depends on the W content
in a nonsystematic manner. Furthermore, the curves
obtained by numerical differentiation of the measured
data and by analytical differentiation of the augmented
power law approximations, respectively, deviate consid-
erably from each other in this T region.

The latter problem is even more striking in the study
of Pt-C by Sachser et al.53 as we will show now. Accord-
ing to Figure 2a of this publication, s D a C b T 1/2

fits
seem to well approximate the measured data between
about 1.5 and about 20 K. To check this conclusion, our
Figure 19 compares data obtained by numerical differen-
tiation of ln s(lnT ) with analytic differentiations of
s D a C b T 1/2 approximations for three of the investi-
gated samples. We interpret it as follows.

For the two samples labeled by squares and trian-
gles, which were irradiated with doses of 0.48 and
0.64 mC/mm2, respectively, the results of both
approaches clearly contradict each other. The numeri-
cal differentiation yields w (T ) increasing with
decreasing T down to roughly 8 K and then rapidly
decreasing below this temperature. These data suggest
that w (T ) may either vanish proportionally to a high
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Figure 18. (Color online) Temperature dependences of the loga-
rithmic derivative of the conductivity, w, for seven samples of dis-
ordered Gd investigated in Misra et al.32 For this reanalysis, we
digitized a part of the data sets published in Figure 1 of Misra
et al.,32 displaying T dependences of the normalized conductivity
sn. The samples are labeled by their sheet resistance at 5 K, R0.
We obtained the values of w(T) in two ways: crosses mark results
of numerical differentiation obtained sliding a window of variable
width along the ln sn(ln T) curves, for details see text; dashed-
dotted lines result from analytical differentiation of augmented
power law fits with freely adjustable exponents to the experi-
mental sn(T; R0) above 8 K.
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power of T 1/2 as T ! 0 or reach 0 already between 1
and 2 K.c —Note the resemblance to our Figure 8 on
Si:P, in particular to the behavior of the colored
curves below 50 mK therein, as well as to our
Figure 17 regarding persistent photoconductivity in
Cd0.95Mn0.05Te0.97Se0.03:In. —On the contrary, the
analytically differentiated augmented power law
approximations decrease monotonically with T every-
where and reach 0 only at T D 0. The sample labeled
by crosses, which was irradiated with a dose of
0.80 mC/mm2, exhibits similar behavior of w (T ) but
less pronounced.

Thus, the w(T ) obtained by analytical differentiation
of s D a C b T 1/2

fits to measured s(T ) substantially

differ from the results of numerical differentiations not
only above 10 K but also below 4 K. Hence, the goodness
of the fits shown in Figure 2a of Sachser et al.53 arises
only from the restriction to the transition region between
two qualitatively different regimes which both cannot be
described by s D a C b T 1/2. We remark that this inter-
pretation is already suggested by careful inspection of
the s vs. T 1/2 plots for 0.80 and 1.28 mC/mm2 in Figure
2a of Sachser et al.53

The discrepancies uncovered here may be overlooked
on first reading of Sachser et al.53 for two strange
reasons: (i) For the sample irradiated with a dose of
0.64 mC/mm2, Figure 2a of Sachser et al.53 does not
include any s(T ) points below 4 K, whereas Figure 1b
thereof presents w(T ) data for this sample down to
2.3 K. (ii) For the sample obtained by irradiation with a
dose of 0.48 mC/mm2, the w(T ) data in Figure 1b of
Sachser et al.53 are not consistent with the s(T) values
given in Figure 2a thereof: if these w(T) data are correct,
then the s vs. T 1/2 plot must exhibit a saturation tail at
low T as it is present in Figure 2a of Sachser et al.53

for the two samples irradiated with doses of 0.80 and
1.28 mC/mm2, respectively, but it does not.

In this way, the comparison presented in our Figure 19
disproves one of the central conclusions drawn by
Sachser et al.53: It is not justified to claim the presence of
a universal T 1/2 contribution to s(T ) at low tempera-
tures as the authors did.

4.10. Common features of all w(T, x) diagrams

Concluding this part of review, we highlight the destruc-
tive result common to all the examinations of various
experiments from the literature presented in the current
section: For none of the samples with w> 0.1, the behav-
ior of w(T) can be understood in terms of a metallic con-
duction mechanism which causes s(T ) to obey an
augmented power law, Eq. (2), with p D 1/2 or 1/3 over a
wide T range.

Simultaneously, we emphasize the constructive result of
these analyses. In all examined experiments, there is a wide
T range within which the following correlation exists. The
logarithmic derivative w(T) seems to always increase with
decreasing T when w> 0.1, that means not only when w>

1/2, as for (almost) exponential s(T), but also even when
0.1< w4 1/2 arising from comparably weak T dependen-
ces of s. Only one 70Ge:Ga sample withw� 0.25 considered
in Subsection 4.4 might form a slight exception; on broad
average,w(T) is roughly constant in this case.

This correlation conflicts with the classification into
metallic and insulating samples according to augmented
power law extrapolations to T D 0 used in most of the
studies examined here. Furthermore, since, at fixed T,
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Figure 19. (Color online) Comparison of temperature dependen-
ces of the logarithmic derivative of the conductivity, w, obtained
in two different ways for three nanogranular Pt-C samples from
Sachser et al.53 These samples were prepared by focused electron
beam induced deposition and subsequent electron beam irradia-
tion. Data points marked by green squares and magenta triangles
are redrawn from Figure 1b of Sachser et al.53 They result from
numerical differentiation of the measured s(T) values and refer
to two samples irradiated with doses of 0.48 and 0.64 mC/mm2,
respectively. In addition, data for a sample irradiated with
0.80mC/mm2 are included, labeled by black crosses. They were
obtained by digitizing Figure 2a of Sachser et al.53 and subse-
quent numerical differentiation, in which pairs of neighboring
ln s(ln T) points were considered. The dashed-dotted curves,
relating to the same measurements of the three samples, were
determined by analytical differentiation of the s D a C b T 1/2

fits
presented in Figure 2a of Sachser et al.53 The dashed gray lines
mark constant w D 0.1 and 0.2.

cAccording to own experimental experience with macroscopic samples, but
in contradiction to Sachser et al.53 we suppose that Sachser et al. applied a
far too high bias voltage to their samples, causing thermal decoupling in
the low-T region.

CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES 37



w seems to decrease monotonically when the MIT is
approached from the insulating side, for example with
increasing dopant concentration, this correlation is
incompatible with the idea of a continuous MIT at which
s / Tp with p > 0.1.

Additionally, in some but not all studies, our exami-
nations have uncovered a qualitatively different behavior
at the lower end of the T range investigated: here, w(T )
decreases with T and vanishes far more rapidly than pro-
portionally to T 1/2. At the crossover between both sce-
narios, these w(T ) exhibit pronounced maxima with the
unusual characteristics described in the following two
paragraphs.

Concerning the corresponding temperature value,
Tmax, we emphasize two findings. On the one hand, in
each of the individual experiments, Tmax seems to be
almost independent of the control parameter. On the
other hand, for Si:P, Tmax differs considerably from
experiment to experiment; see Subsection 4.2.

Concerning the peak value of w(T, x D const.), note
the following: for Si:P and Cd0.95Mn0.05Te0.97Se0.03:In,
such extrema were found even in the region w 0 1, that
means for apparently clearly insulating samples; see Sub-
sections 4.2 and 4.7, respectively.

Together, the findings described in the previous two
paragraphs give rise to serious doubts about the sound-
ness of the maxima and thus of the very rapid decreases
of w(T) with decreasing T below Tmax.

Because of the observations listed above, none of the
experimental studies analyzed here can be considered as
conclusive support for a continuous MIT. Instead, as we
will show in Section 5, contrasting flow diagrams of
w(T, x D const.) obtained from four qualitatively differ-
ent phenomenological models for the dependence of s
on T and control parameter x with Figures 4 and 10,
with the “high-temperature” parts of Figures 8, 9, 17,
and 19, as well as with the “low-temperature” part of
Figure 13 favors the opposite interpretation. This com-
parison supports the hypothesis that limT!0 s(T, x)
exhibits a discontinuity at the MIT. Nevertheless, since
the experimental data are not completely consistent, fur-
ther and more precise measurements are encouraged.

5. Four possible scenarios of w(T, x)

In the previous two sections, considering various solids,
we have presented numerous diagrams of T dependences
of the logarithmic derivative of the conductivity,
w(T, x D const.), which were obtained by numerical dif-
ferentiation of experimental data from the literature. In
most cases, independently of the nature of the control
parameter, x, these results strikingly conflict with the
interpretation in the respective publication.

However, as summarized in Subsection 4.10, our dia-
grams exhibit obvious similarities with each other.
These features are intriguing because, as already pointed
to in Section 2.6 and in M€obius et al.,21 such plots of
w(T, x D const.) for several samples with different val-
ues of x can be an informative fingerprint of the charac-
ter of the MIT.

The direct quantitative evaluation of w(T, x) is hin-
dered by experimental uncertainties and by the necessity
of assumptions on s(T, x). Therefore, we here take the
opposite approach and analyze the consequences of qual-
itatively different phenomenological hypotheses: for four
very simple phenomenological models describing s(T, x)
close to the MIT, we obtain families of w(T, x D const.)
curves. In this way, we demonstrate how the character of
the MIT determines the qualitative features of such flow
diagrams and thus evaluate alternative interpretations of
s(T, x) measurements.

First, we assume the MIT occurring at xc to be contin-
uous. That means, we suppose s(T D const., x) to be
continuous there not only at any finite T but also in the
limit T ! 0. To construct a simple but sufficiently flexi-
ble model of s(T, x) with these characteristics, we start
from Eq. (10) of M€obius et al.21: we combine modified
stretched exponential and augmented power law
dependences for the insulating and metallic sides of the
MIT, respectively, so that

s T; xð ÞD

Tp exp.¡ T0 xð Þ=Tð Þp/
a xð ÞC b xð ÞTp

for
x < xc

x � xc
;

(
ð11Þ

where T0(x), a(x), and b(x) are continuous functions,
and where T0(x) decreases monotonically with x,
whereas a(x) increases monotonically with x. Further-
more, in order to ensure continuity at xc, we presume
T0(x ! xc ¡ 0) D 0, a(x ! xc C 0) D a(xc) D 0, and
b(x ! xc C 0) D b (xc) D 1. In Eq. (11), for simplicity,
all quantities are given in dimensionless form. More-
over, the exponents of the transport mechanisms
involved are assumed to have the same value, p; cer-
tainly, this guess is a gross simplification, but aban-
doning it would not modify the qualitative features
discussed below. Our continuity and monotonicity
presumptions on T0(x), a(x), and b(x) as well as our
simplifying assumption on the exponents also apply
to the three models considered below.

Figure 20 shows the flow diagram of w(T, x D const.)
for two versions of Eq. (11), b(x) � 1 and b(x) D 1 ¡
0.15 a(x). In both cases, the regions with metallic and
non-metallic behavior do not overlap each other; they
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are separated by a horizontal line, w(T, xc) D p. Above
this separatrix, that is for non-metallic behavior, the
slope, dw/dT, is always negative, while, below the separa-
trix, that is in the metallic region, dw/dT is positive
whenever w > 0; compare Section 2.6.

On the metallic side of the MIT, when b(x) � 1 as in
Eq. (10) of M€obius et al.,21 our Eq. (11) yields only func-
tions w(T, x D const.) which are positive everywhere
except at T D 0. Hence, for realizing a sign change of
ds/dT and thus of w(T D const., x), the parameter b
must depend on the control parameter x. In Figure 20,
we model such a situation by means of the assumption
b (x) D 1 ¡ 0.15 a(x). (This relation between a(x) and
b(x) leads to a good resolution of the family of curves;
moderately modifying it does not alter the qualitative fea-
tures of Figure 20 provided that b(xc) D 1 remains valid.)

One property of this model is particularly noteworthy.
The MIT and the sign change of ds/dT occur at different
values of a and therefore at different values of x; for
Eq. (11) with b(x) D 1 ¡ 0.15 a(x), when a D 0 and
when a D 6.7, respectively. Hence, according to the
model considered here, these phenomena are different in
nature, which also follows from the mathematical con-
sideration in Subsection 2.2 by logical contraposition.

Furthermore, just at the MIT described by Eq. (11),
ds/dT D p Tp¡1. Hence, this derivative is positive at any
finite T; it diverges as T! 0 if p < 1.

Second, for studying how a discontinuous MIT is
reflected in the w(T, x D const.) flow diagram, the above
model of a continuous MIT has to be modified only
slightly. We incorporate an additional constant into the
prefactor for the insulating side and change the limiting
value of the constant part for the metallic side. Thus we
obtain the following generalization of Eq. (11) of M€obius
et al.21:

s T; xð ÞD

1CTpð Þ exp.¡ T0 xð Þ=Tð Þp/
a xð ÞC b xð ÞTp

for
x < xc

x � xc

(
ð12Þ

with T0(x ! xc ¡ 0) D 0, a(x ! xc C 0) D a(xc) D 1,
and b(x ! xc C 0) D b(xc) D 1. This model exhibits a
discontinuity in limT!0 s(T, x), whereas s(T D const., x)
remains continuous for any T > 0; compare Figure 11 of
M€obius et al.21

Figure 21 presents the flow diagram of w(T, x D const.)
for two versions of Eq. (12), that is for b(x) � 1 and for
b(x)D 1¡ 0.15 (a(x)¡1). Again, in both cases, the metal-
lic and non-metallic regions do not overlap each other and,
within the metallic region, w> 0 is correlated with positive
slope of w(T, xD const.).

However, in the non-metallic region, x < xc, the
w(T, xD const.) now have negative slopes for all x values
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Figure 20. (Color online) Behavior of the logarithmic derivative of
the conductivity, w(T, x D const.), for the continuous MIT mod-
eled by Eq. (11). Dashed (red): non-metallic with T0

p D 3, 1, 0.3,
0.1, 0.03, and 0.01 (from top to bottom); dashed-dotted (black):
metallic with a D 0.01, 0.03, 0.1, 0.3, 1, 3, 10 and b � 1 (from top
to bottom); short-dashed (blue): metallic with a D 1, 3, 10 and b
D 1 ¡ 0.15 a (for smaller values of a, such curves would almost
coincide with the corresponding relations for b � 1); full (green):
separatrix, i.e., w(T, x D xc). The horizontal dashed gray line marks
w D 0.
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Figure 21. (Color online) Behavior of w(T, x D const.) for the dis-
continuous MIT modeled by Eq. (12), at which ds/dTpD 1.
Dashed (red): non-metallic with T0

p D 3, 1, 0.3, 0.1, 0.03, and
0.01 (from top to bottom); dashed-dotted (black): metallic
with a D 1.1, 1.4, 2, 3, 5, 10 and b � 1 (from top to bottom);
short-dashed (blue): metallic with a D 2, 3, 5, 10 and
b D 1 ¡ 0.15 (a ¡ 1); full (green): separatrix, w(T, x D xc). To
facilitate judging the slope of the curves, dashed gray lines
mark constant w D 0, 0.25 p, 0.5 p, 0.75 p, and p.
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only in the limit T ! 0, in contrast to the curve set in
Figure 20. At finite T, the sign of the slope varies: four of
the curves exhibit a minimum; it occurs if and only if
T0 < 1. The corresponding temperature, Tmin(x), can
take any positive value, whereas 0 < w(Tmin, x) < p.

Note, when the MIT is approached from the insulat-
ing side, that means when T0 ! 0, both Tmin(x) and
w(Tmin, x) decrease and tend to zero; this can also be eas-
ily derived analytically. In consequence, the separatrix
w(T, x D xc) tends to zero as T vanishes, unlike the sepa-
ratrix in Figure 20.

Because of the minima in w(T, x D const.), for this
model, simultaneously exhibiting positive w and negative
slope of w(T, xD const.) at a certain measuring tempera-
ture is sufficient but not necessary for a sample to be
insulating. Furthermore, the identification of insulating
samples is hindered by the following restriction: the
closer x to xc, the lower the temperatures which have to
be considered in order to rule out the possibility of
metallic conduction by means of detecting dw/dT < 0.

As in the case of Eq. (11), the parameter b must
depend on x when a sign change of w(T D const., x) is to
be described. In Figure 21, we emulate such a situation
assuming b(x) D 1 ¡ 0.15 (a(x) ¡1) in analogy to our
above consideration of a continuous MIT.

Again, the MIT and the sign change of ds/dT, now
occurring when a D 1 and a D 7.7, respectively, do not
coincide. Moreover, as for the model of a continuous MIT
considered above, just at the MIT, ds/dT D p T p¡1 is pos-
itive at any finite T, and diverges as T ! 0 if p < 1.

Third, the question arises how to construct a model
which yields a sign change of ds/dT just at the MIT
itself. According to Subsection 2.2, such an MIT must be
discontinuous. Thus we start from Eq. (12). Small modi-
fications are sufficient to reach our aim. We only omit
the T dependence of the preexponential factor for x < xc,
appropriately change the limit of b(x), and obtain

s T; xð ÞD

exp.¡ T0 xð Þ=Tð Þp/
a xð ÞC b xð ÞTp

for
x < xc

x � xc

(
ð13Þ

with T0(x ! xc ¡ 0) D 0, a(x ! xc C 0) D a(xc) D 1,
b(x 6¼ xc) < 0 and b(x! xc C 0) D b(xc) D 0. This way,
the discontinuity of limT!0 s(T, x) as well as the conti-
nuity of s(T D const., x) for T > 0 are maintained. Now,
for any T > 0, ds/dT D 0 holds at and only at xc.

The flow diagram of w(T, x D const.) for this model is
given in Figure 22, where b(x) D ¡0.15 (a(x) ¡ 1) is
assumed in analogy to the cases previously considered.
Again, as in Figure 20 illustrating Eq. (11), non-metallic

and metallic regions are separated by a horizontal line,
but here by w(T, xc) D 0. Within the metallic region, in
contrast to Figure 20, w(T, x) is now negative for any
x > xc and any T > 0. Furthermore, we point out that, in
Figure 22, the slope dw/dT is always negative on both
sides of the MIT.

One specific feature of Eq. (13) has to be stressed: on
the insulating side of the MIT, the T dependences of s
can be scaled according to Eq. (5). As discussed in
Appendix B, this universality implies that, at the MIT,
for any T> 0, ds/dTD 0, so that dw/dTD 0; in the pres-
ent case, this follows also directly from Eq. (13) and is
confirmed by Figure 22.

Fourth, in experiments, however, this inference on ds/dT
may only be valid as low-temperature approximation; see
Subsections 2.1 and 2.6. Therefore, we now incorporate into
Eq. (13) the influence of an additional high-temperature con-
duction mechanism which enlarges s(T, x) on both sides of
the MIT, the more, the higher T. To that end, we follow the
data analysis approach of a multiplicative decomposition of
s(T) in the hopping region proposed in M€obius et al.60 and
extrapolate the contribution of the high-temperaturemecha-
nism from the non-metallic into themetallic region similarly
as inM€obius.76 This results in

s T; xð ÞD

1C h Tð Þð Þ exp.¡ T0 xð Þ=Tð Þp/
a xð ÞC b xð ÞTpC h Tð Þ for
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Figure 22. (Color online) Behavior of w(T, x D const.) for the dis-
continuous MIT modeled by Eq. (13), at which ds/dT changes
sign. Dashed (red): non-metallic with T0

p D 3, 1, 0.3, 0.1, 0.03,
and 0.01 (from top to bottom); short-dashed (blue): metallic with
a D 1.1, 1.4, 2, 3, 5, 10 and b D ¡0.15 (a ¡ 1) (from top to bot-
tom); full (green): separatrix, w(T, x D xc).
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with T0(x), a(x), and b(x) fulfilling the same conditions as
for Eq. (13). In line with M€obius,76 we assume the high-
temperature contribution, h(T), to be independent of x.
Furthermore, in order to keep the low-temperature behavior
described by Eq. (13), we demand that h(T) /Tp ! 0 as
T ! 0. Under this condition, the qualitative influence of
h(T) on the flow diagram of w(T, x D const.) does not
depend on the specific form of h(T). As an example, we
consider here h(T) D 0.01T 4p, describing a quadratic T
dependence in case pD 1/2.

The flow diagram of w(T, x D const.) for Eq. (14)
with b(x) D ¡0.15 (a(x) ¡ 1) is shown in Figure 23. It
resembles Figure 21, which illustrates Eq. (12), in two
aspects. On the insulating side of the MIT, there are
minima, but now in all curves. Furthermore, the separa-
trix, w(T, xc), is T-dependent and, again, tends to zero
as T ! 0.

In the present case, however, w(T, xc) vanishes as
T ! 0 far more rapidly than in Figure 21 obtained from
Eq. (12). For the immediate vicinity of the MIT, more
precisely, for T p

0 � 0.3 and Tlea < 1, this difference
has important consequences. When curves relating to
the same value of T0 are compared, the minimum of
w(T, x D const.) is reached in Figure 23 at a considerably
higher temperature than in Figure 21. Therefore, the
width of the x interval within which w(T, x D const.)
exhibits positive slope at given Tlea despite x < xc is far
smaller for Eq. (14) than it is for Eq. (12). Furthermore,

at Tlea, the smallest positive value of w which is corre-
lated with negative dw/dT is now far smaller as well. For
these reasons, Eq. (14) may be considered to be more
“experimentalist-friendly” than Eq. (12).

On the metallic side of the MIT, two new features
arise from the high-temperature contribution h(T ).
With increasing T, all these w(T, x D const.) first pass
through a minimum. Then they change sign at some
larger T value. The latter feature indicates the existence
of minima in s(T, xD const.) as they have been observed
in experiments on crystalline n-Ge:(As,Ga) and Si:As as
well as on amorphous Si1¡xCrx and Si1¡xNix; we refer
here to Figure 1 of Zabrodskiĭ and Zinov’eva,17 Figure 4a
of Koon and Castner,86 Figure 7 of M€obius et al.,60 and
Figure 8a of M€obius et al.21, respectively. The corre-
sponding T values are the lower the closer x to xc; see
M€obius et al.60

Finally, we highlight a noteworthy relation between
the flow diagrams presented in this section: qualita-
tively, Figures 21 and 22 can be understood as result-
ing from Figure 23 by zooming the T scale out or in,
respectively.

In the current section, we have presented four sim-
ple phenomenological models of s(T, x) close to the
MIT yielding flow diagrams of w (T, x D const.)
which qualitatively differ from each other. The com-
parison of experimental graphs to these diagrams can
be very helpful in evaluating different hypotheses on
the MIT: Note the qualitative similarities between our
Figures 4 and 10, on the one hand, and our Figure 22,
on the other hand, as well as the resemblance of
Figure 13 of the present work and Figure 7 of M€obius
and Adkins10 to our Figure 23. All these similarities
support the hypothesis of a discontinuous MIT. Note,
furthermore, the qualitative differences between our
Figures 4, 10, and 13, on the one hand, and Figure 20,
on the other hand. These discrepancies disprove the
phenomenological model of a continuous MIT con-
sidered here, Eq. (11), for any value of p above 0.1.

6. Summarizing discussion

6.1. Analysis of the available MIT criteria

In the preceding sections, motivated by the recent,
seemingly very surprising publication on phase-
change materials by Siegrist et al.,31 we have exam-
ined and critically reviewed the measurement inter-
pretations in numerous experimental studies of the
MIT in disordered solids. To find out whether or not
the results of Siegrist et al.31 are striking indeed, we
started in Section 2 with elucidating the fundamentals
of the corresponding data analyses. For this aim, we
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Figure 23. (Color online) Behavior of w(T, xD const.) for a discon-
tinuous MIT which is superimposed by a high-T mechanism
contributing to the electrical conduction on both sides of the
MIT. This transition is modeled by Eq. (14) with h(T) D 0.01 T 4p.
Here, just at the MIT, ds/dT D 0 holds only in the limit as T ! 0.
For the meaning of the dashed red, short-dashed blue, and full
green lines see caption of Figure 22. The dashed gray line indi-
cates w D 0.
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discussed in detail the available approaches to locate
the MIT, that means to discriminate between metallic
and insulating samples. In doing so, we showed that
making this decision is by far not as simple as it
might seem at first glance: our investigation
highlighted substantial biases inherent to the diverse
available methods. Although these biases predeter-
mine the result on the character of the MIT to a large
extent, their influence has been overlooked in many
publications. The related problems are summarized in
the following paragraphs.

The MIT in disordered solids is primarily a zero-tem-
perature phenomenon. Therefore, in contrast to early
studies as well as to the recent one by Siegrist et al.,31

conclusions concerning this matter can be drawn only
by means of T ! 0 extrapolations. As an approximate
substitute, the value of some physical observable at the
lowest measuring temperature may be identified with its
value at T D 0. Such an approximation, however, seems
to be meaningful only if the considered observable
changes sign at the MIT and if, simultaneously, the cor-
responding control parameter value is sufficiently weakly
T-dependent.

In this sense, the empirical criterion “sign change of
dr/dT at the lowest experimentally accessible tempera-
ture” has often been used in the literature. However, too
little attention has been paid to the point that the sup-
posed validity of this criterion necessarily implies that
limT!0 s(T, x) is a discontinuous function of the control
parameter x and jumps from zero to some finite value at
the MIT. In a number of cases, this conductivity value
was found to roughly equal Mott’s estimate of the hypo-
thetical minimum metallic conductivity. However, as
shown in Appendix A, such a correlation is natural
already for dimensional reasons.

Consequently, as long as claiming all samples with
negative dr/dT to be insulating is only an assumption in
the data analysis, this correlation alone must not be con-
sidered a confirmation of Mott’s theory. Thus, the crite-
rion “sign change of dr/dT at the lowest experimentally
accessible temperature” exhibits a substantial interpreta-
tion bias toward a discontinuous MIT with a finite mini-
mum metallic conductivity.

We stress that this criterion seems to be incompatible
with the currently available microscopic theories. First,
since it implies the existence of a finite minimum metal-
lic conductivity, it conflicts with all the theories which
yield continuity of the MIT, in particular with the scaling
theory of localization. Second, since it presumes
ds/dT D 0 to hold just at the MIT, it is incompatible
with the idea of an Anderson transition, occurring when
the Fermi energy crosses a mobility edge. The latter
interpretation, however, neglects electron-electron

interaction. Therefore, this discrepancy is not a valid dis-
proof of the hypothesis that, in the limit T ! 0, the MIT
is connected with dr/dT changing sign.

An alternative approach which has been frequently
applied for the last three decades tries to find out when
the metallic region is left while the control parameter is
varied. In this case, the breakdown of the augmented
power law approximation of s(T ) is taken as MIT crite-
rion. However, the usual restriction of the breakdown
identification to only ask whether or not the adjusted
parameter values are physically meaningful implies a
substantial analysis bias. The reason is that the possibility
of an approximation breakdown indicated by small but
systematic deviations between measured data and
adjusted function is ignored this way.

In a similar manner, s(T ) ceasing to be describable by
a stretched Arrhenius law may be interpreted as indica-
tion of leaving the insulating region. Such a parameter
adjustment, however, is not meaningful when the mean
hopping energy is smaller than the lowest experimentally
accessible temperature. Moreover, this classification
method has the drawback that, in these data analyses,
samples with very weak T dependences of s are often
classified as metallic without further checks.

Thus, both the two approaches based on augmented
power law fits and on stretched Arrhenius law fits,
respectively, tend to misclassify weakly insulating sam-
ples as metallic. In consequence, the continuity of the
MIT concluded in such data evaluations may be only an
artifact, and not real.

We stress the significance of just these weakly insulat-
ing samples, which exhibit merely nonexponential s(T)
within the accessible T range. Their reliable discrimina-
tion from metallic ones is of central importance to the
trusty characterization of the MIT: an incorrect classifi-
cation of one or of a very few samples can easily change
the answer to the question whether limT!0 s(T, x) is a
continuous function of the control parameter x or
whether it exhibits a discontinuity at the MIT. Therefore,
the mentioned tendency to misinterpret weakly insulat-
ing samples as metallic causes an interpretation bias
toward continuity of the MIT. Furthermore, in case the
MIT were indeed continuous, such a misclassification
could considerably modify the obtained value of the criti-
cal exponent of limT!0 s(T, x).

One cannot escape this problem. Since the mean hop-
ping energy very likely continuously tends to zero when
the MIT is approached from the insulating side, going to
lower and lower temperatures is of limited value in the
characterization of the MIT. In each real experiment,
there is a control parameter region of finite width in
which only nonexponential s(T ) can be observed
although the corresponding samples are insulating. For
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this reason, every success in unambiguously classifying a
given set of samples which is reached by diminishing the
lowest accessible T value is ruined again when the den-
sity of the considered values of the control parameter is
increased.

In other words, the relevant temperature scale is set by
the mean hopping energy. Hence, very likely in each
experiment, when continuously varying the control
parameter, one passes the MIT at infinitely high tempera-
ture, even if the measurements are performed at a few mK.

We remark that related severe experimental difficul-
ties arise also for another reason: The critical exponent
of the characteristic temperature seems to be rather large;
it was estimated to amount to 2.1 § 0.1 for crystalline
n-Ge:(As,Ga) and to 3.0 § 0.4 for amorphous Si1¡xCrx;
see Zabrodskiĭ and Zinov’eva17 and M€obius,76 respec-
tively. Therefore, we expect that, to reduce the width of
the control parameter region within which only nonex-
ponential s(T ) can be observed merely by a factor of 2,
the lowest measuring temperature has to be diminished
at least by a factor of 4, possibly even by one order of
magnitude.

In this context, the study of the logarithmic tempera-
ture derivative of the conductivity, w(T ) D d ln s/d lnT,
has turned out to be very helpful in classifying
individual samples: Assume, on the metallic side of
the MIT, s(T, x) follows an augmented power law,
s(T, x) D a(x) C b(x)Tp. Then, for any metallic
sample with negative dr/dT, corresponding to positive
w, on the one hand, w (T ) tends to zero as T ! 0
and, on the other hand, w (T ) cannot exceed p. It is
particularly important that, in this case, the slope of
the logarithmic derivative is positive, dw/dT > 0.
Consequently, under the assumption made, all sam-
ples for which, at low T, the inequalities w > 0 and
dw/dT < 0 simultaneously hold cannot be metallic,
but must be insulating.

This criterion has the big advantage to unambiguously
identify also a large part of the weakly insulating samples
with nonexponential s(T ). It should be noted, however,
that it is based on an assumption, although a plausible
one: for each metallic sample with w > 0, the deviation
of s(T) from exact augmented power law behavior is
expected to be sufficiently small, that means at least so
small that dw/dT retains the positive sign.

Simultaneously, the evaluation of the logarithmic
derivative w yields valuable information also on two
other points. First, it is very sensitive to experimental
inaccuracies which, despite being small, may qualita-
tively alter the judgement on the nature of conduction of
individual samples; see Sections 3 and 4 for several
examples. Second, even more importantly, flow diagrams
of w(T ) for sets of control parameter values enable

conclusions about the character of the MIT. Such dia-
grams for simple phenomenological models of continu-
ous and discontinuous transitions differ substantially
from each other; this was demonstrated in some detail in
our Section 5. In particular, if the MIT is continuous and
s D a C b Tp holds on its metallic side, then 0 < w < p
implies dw/dT > 0. Conflicts between this implication
and experimental findings turned out to be central to
our study.

6.2. The case GeSb2Te4

The above summarized analysis of the available data
evaluation approaches provided the basis for critically
examining the interpretations in various experimental
studies of the MIT in our Sections 3 and 4. In the former
part, we scrutinized the seemingly surprising conclusions
of the recent work by Siegrist et al.31 on the MIT in
phase-change materials, which motivated our work.
These authors claimed that GeSb2Te4 differs from other
disordered systems in two features: the character of the
MIT and the strong deviation of the critical charge car-
rier concentration from the Mott criterion estimate. Our
reanalysis of data from Siegrist et al.31 in Section 3 dis-
proved both these claims of differences by means of the
following two arguments.

First, as demonstrated in Subsection 3.1, the s(T)
curves of GeSb2Te4 obtained from Siegrist et al.31 resemble
data from other disordered solids in the following sense.
There are two GeSb2Te4 samples for which, between
about 5 and 100 K, s(T) can be well approximated by the
ansatz s D a C b T 1/2. For one of these samples, the
parameter a has a positive value being by a factor of 100
smaller than the minimum metallic conductivity estimate
in Siegrist et al.,31 whereas, for the other, a is approxi-
mately zero. For the T range from 0.35 to about 2 K, an
analogous finding was reported in a very recent subse-
quent study of the MIT in GeSb2Te4, Volker et al.,

47 pub-
lished by three of the authors of Siegrist et al.31 In many
previous publications of experiments on various disor-
dered solids, such situations were interpreted as indicating
continuity of the MIT, where all samples with positive val-
ues of a were regarded as metallic. Siegrist et al.,31 how-
ever, classified the sample for which a has a small positive
value as clearly insulating and concluded the existence of
a finite minimum metallic conductivity. The obvious con-
tradiction between both these interpretations supports the
sceptical perspective taken in our Introduction: Siegrist
et al.31 is a notable example of how the choice of the data
evaluation method may predetermine the conclusion on
the character of the MIT.

Second, the asserted deviation of the critical charge car-
rier concentration from the Mott criterion value is
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unfounded since the latter was obtained in Siegrist et al.31

from an unrealistic guess of the effective Bohr radius of
the participating states: In Subsection 3.2, several argu-
ments were given for the electronic transport in the insu-
lating region close to the MIT proceeding via deep defect
states presumably originating from vacancies instead of
via shallow impurity states as presupposed in Siegrist
et al.31 The latter states can only be crucial in high-quality
crystalline semiconductors, additionally provided that the
cores of host and impurity atoms resemble each other.

In consequence, there is no reason to agree with Siegrist
et al.31 with respect to ascribing an unusual quantum state
of matter to GeSb2Te4 and related phase-changematerials.

Nonetheless, in Subsection 3.1, also the widely-used
analysis by means of s D a C b T 1/2

fits was found to be
problematic. We checked the validity of this approxima-
tion by considering the logarithmic derivative w(T). From
this perspective, the GeSb2Te4 sample from Siegrist et al.31

which was prepared by annealing at Tann D 175 �C is
particularly puzzling: According to the s D a C b T 1/2

fit,
it should be clearly insulating, in agreement with the clas-
sification in Siegrist et al.31 However, although w > 1/2
within a wide T range reaching down to roughly 10 K,
w(T) seems to vanish as T ! 0. Such a behavior may
indicate metallic transport with an augmented power law
exponent considerably exceeding 1/2 or, alternatively, a
superposition of at least two T-dependent mechanisms.
Moreover, this behavior of w(T) may originate from ther-
mal decoupling or from sample inhomogeneities. In all
these cases, the s D a C b T 1/2 analysis as a whole cannot
be trusted.

Thus, the data evaluation by Siegrist et al., the extrap-
olations of the s D a C b T 1/2 approximations to T D 0,
and the analysis of the low-T behavior of w(T ) yield clas-
sifications of the samples into insulating and metallic
ones which pairwise contradict each other. Therefore,
based on the data in Siegrist et al.,31 a precise determina-
tion of the transition point between metallic and insulat-
ing behavior is impossible. In consequence, in analyzing
these data, the answer to the question whether the MIT
in GeSb2Te4 is continuous or discontinuous depends on
the perspective taken.

In part, the contradictions discussed above may origi-
nate from specific features of the s(T ) data sets which
arise from experimental imperfections. This hypothesis
is suggested by our comparison of the low-T part of the
experimental w(T ) curves of the two most insulating
GeSb2Te4 samples from Siegrist et al.31 with the theoreti-
cal expectations for three different mechanisms of acti-
vated conduction.

Further, strong support for this hypothesis comes from
the results of the subsequent GeSb2Te4 study by Volker
et al.47 In this work, the investigated T range was extended

by one order of magnitude down to 0.35 K; apparently,
the samples were prepared in the same way as in Siegrist
et al.31 According to the measurements by Volker et al.,47

also for the samples annealed at 175 and 200 �C, w(T)
clearly increases with decreasing T at the lower end of the
T range considered; for the latter sample, w(T) has a min-
imum value of 0.35. Moreover, for Tann D 225 �C, w(T) is
roughly constant between 0.6 and 20 K and amounts to
0.14 there, in clear contradiction to the behavior of analyt-
ically differentiated hypothetical s D a C b T 1/2. Thus, all
these three samples are very likely insulating.

Beyond the classification of the individual samples,
these findings contain valuable information on the charac-
ter of the MIT. Because of the low values taken by w, the
w(T) for the samples annealed at 200 and 225 �C clearly
conflict with the interpretation in terms of a continuous
MIT with s / T 1/2 at the transition, in contrast to the
interpretation in Volker et al.,47 but in agreement with the
results for many other disordered solids in our Section 4.

Nevertheless, Siegrist et al.31 and Volker et al.47 dem-
onstrated the possibility to fine-tune localization in
GeSb2Te4 by annealing. In this approach, various prepa-
ration parameters, in particular the composition, can be
kept constant. Thus, future such experiments with
enhanced precision and accuracy of the s(T ) measure-
ments will very likely yield further valuable information
on the MIT in disordered systems. At the current stage,
however, one related question on GeSb2Te4 is still
completely open: To what extent do percolation effects
arising from inhomogeneities on the grain size scale
caused by segregation mask the generic behavior of
homogeneous disordered solids?

6.3. Comparison with other solids

Naturally, while analyzing the MIT in phase-change
materials, we were confronted with the question of how
trustworthy the interpretations in publications on the
MIT in other disordered solids are. Therefore, in Section
4, we examined a large number of such studies, in partic-
ular frequently cited key publications. The results are
alarming: The interpretation problems described above
are not specific to the reanalyzed GeSb2Te4 measure-
ments. Instead, the inspection of w(T) curve sets for fur-
ther nine different disordered solids uncovered serious
inconsistencies of the augmented power law interpreta-
tion in all these cases. Our observations concerning this
matter are summarized in the following paragraphs.
(a) The evaluation of data for crystalline Si:As from

Shafarman et al.18 lead to an important conclusion:
when, at fixed T, in consequence of increasing donor
concentration n, the MIT is approached from the
insulating side, the slope of w(T, n D const.) at low

44 A. M€OBIUS



T stays negative while w decreases down to w values
below 0.1. This is incompatible with the assumption
of a continuous MIT at which s(T) / T 1/2 or
s(T) / T 1/3, in contrast to the interpretation in the
original work (Shafarman et al.18).

(b) The MIT in crystalline Si:P was studied in particu-
larly great detail in the literature. Therefore, exem-
plarily, we here reproduced and extended the
augmented power law analysis from Waffen-
schmidt et al.23 Our respective diagrams demon-
strate the considerable ambiguity of such sample
classifications: the obtained transition point
depends on the T range considered and in particu-
lar on the exponent of T assumed; moreover, the
optimum exponent value varies substantially with
temperature and distance to the MIT. Further-
more, our check of the augmented power law
approach showed that the rather wide linear range
in the s vs. T 1/3 plot presented in Waffenschmidt
et al.23 does not result from convergence to asymp-
totic behavior, but that it is implied by inflection
points of the measured s(T 1/3). In order to gain
deeper insight, we turned to inspecting w(T ) and
observed the following. Contrary to the case of
Si:As, the w(T) of Si:P exhibit maxima, not only
for possibly metallic but also for clearly insulating
samples. However, because the corresponding tem-
perature, Tmax, seems to be almost independent of
the distance to the MIT and because, moreover, its
value is experiment-specific, serious doubts about
the reliability of the measurements close to and
below the respective Tmax are suggested. Neverthe-
less, remarkably, in the temperature range between
the puzzling maxima and about 0.6 K, a similar
behavior is present as in the case of crystalline
Si:As: at fixed T, while w decreases with increasing
P concentration or increasing stress, dw/dT stays
negative at least until w � 0.1. Hence, extrapola-
tions based on s D a C b T 1/2 or s D a C b T 1/3

are not justified, so that the conclusions about the
continuity of the MIT in Thomas et al.,22 Waffen-
schmidt et al.,23 Rosenbaum et al.,48,49 and Stupp
et al.50 are called into question.

(c) The results on w (T, n D const.) for the p-type
semiconductor Si:B, for which the original publi-
cations by Sarachik and Dai42 and by Dai et al.51

present different interpretations, resemble the
findings on the n-type semiconductor Si:As to a
large extent. Again, continuity of the MIT with
s(T ) / T 1/2 or s(T ) / T 1/3 just at the transition
can be excluded.

(d) Also the w(T, n D const.) curves for neutron-trans-
mutation-doped 70Ge:Ga obtained from the data in

Watanabe et al.52 qualitatively resemble the corre-
sponding results for Si:As. Our inspection of the
w(T, n D const.) for 70Ge:Ga lead to the conclusion
that s(T) / T 1/2 at the MIT can definitely be ruled
out, while s(T) / T 1/3 at the MIT, as concluded in
Watanabe et al.,52 is very unlikely but not impossible.
Improving the precision of the s(T) measurements
should enable a final decision on the latter hypothesis.

(e) In contrast to all other experiments examined in
Section 4, the publications on crystalline CdSe:In
which we considered there (Zhang et al.,54 Ahar-
ony et al.,55 Zhang and Sarachik 56) focus merely
on allegedly insulating samples. Because, however,
these studies of various aspects of the hopping con-
duction took into account also samples with only
rather weak T dependences of s, trying to approxi-
mate these s(T, n D const.) by augmented power
laws is suggested. Indeed, a s vs. T 1/2 plot shows
that, when the analysis is restricted to the T range
0.06–0.5 K, one of the CdSe:In samples could be
regarded as metallic as well; this resembles the situ-
ation for GeSb2Te4 discussed in Section 3. When,
however, a wider T range is considered, a substan-
tial curvature of this s(T 1/2) becomes obvious and
questions the T! 0 extrapolation according to the
ansatz s D a C b T 1/2, just as in the case Si:P. Our
subsequent inspection of w(T, n D const.) uncov-
ered interesting similarities to three doped elemen-
tal semiconductors: below about 1 K, these curves
strongly resemble the corresponding relations for
crystalline Si:As, Si:B, and 70Ge:Ga; dw/dT is always
negative, even if w � 0.2. On the contrary, for
CdSe:In, above about 15 K, dw/dT is always posi-
tive, very likely due to a second conduction mecha-
nism substantially contributing to s(T). The
temperature value at which, between the two
regions, w(T, n D const.) has its minimum
decreases as the MIT is approached, similarly as it
was previously observed in studies of a-Si1¡xCrx
and a-Si1¡xNix; this feature seems to occur in the
case of GeSb2Te4, too, see Section 3.

(f) As an example of tuning the MIT by applying a
magnetic field of variable field strength H, we con-
sidered the study of the semimagnetic crystalline
semiconductor n-Cd0.95Mn0.05Se published in Woj-
towicz et al.26 and Dietl et al.27 In this case, our
data analysis uncovered significant inconsistencies
between the values published, on the one hand, in
the almost identical s vs. T 1/2 diagrams in
Figures 1a and 6 of Wojtowicz et al.26 and Dietl
et al.,27 respectively, and, on the other hand, in the
log10 r vs. H 1/2 diagram Figure 4 of Dietl et al.,27

presenting detailed data on a wider (T, H)-range.
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Thus, substantial doubts about the reliability of the
data basis for the theoretical interpretation in these
publications arise. Furthermore, our analysis
showed that the behavior of the w(T, H D const.)
obtained numerically from the data presented in
Figure 4 of Dietl et al.27 clearly conflicts with the
w(T ) resulting from hypothetical s D a C b T 1/2:
Again, pronounced maxima of w(T) occur for all
considered values of H at roughly the same temper-
ature, here at about 0.2 K, even if the transport is
very likely non-metallic. Moreover, from 0.2 to
0.4 K, w decreases considerably in all cases, even
for the largest field, and thus highest conductivity,
for which w falls down to about 0.3. Hence, these
data cannot be understood in terms of a continu-
ous MIT at which s / T 1/2.

(g) Evaluating the s(T ) data from the attempt in G»�od
et al.29 to fine-tune the MIT in the persistent pho-
toconductor crystalline Cd0.95Mn0.05Te0.97Se0.03:In
by illumination, we obtained a set of w(T ) curves
which qualitatively resemble the results for Si:P: All
w(T ) exhibit maxima at roughly 0.14 K, although
in several cases the behavior of w(T ) above 0.14 K
seems to indicate clearly exponential character of
s(T ). Below this temperature, the w(T ) decline far
more rapidly with decreasing T than expected in
consequence of s D a C b T 1/2. Above it, in all
cases, dw/dT stays negative at least up to 0.4 K,
even if w is only a little larger than 0.1. Hence, the
interpretation in G»�od et al.29 that a part of the
s(T ) shown therein exhibits metallic behavior
seems unfounded.

(h) The annealing-induced MIT in thin films of disor-
dered Gd was studied in Misra et al.32 by means of
a scaling analysis relying upon s D a C b Tp

approximations with adjusted p and w (T ) rela-
tions obtained analytically therefrom. However,
the w (T ) which we obtained by numerical differ-
entiation of the s(T ) from Misra et al.32 exhibit
substantial systematic low-temperature deviations
from the analytical differentiation of respective
s D a C b Tp approximations. Thus, our observa-
tion questions the basic assumptions of that work
and, in consequence, the validity of the scaling
analysis therein.

(i) Finally, for nanogranular Pt-C studied in Sachser
et al.,53 the numerically obtained w(T) data (par-
tially from Sachser et al.53) clearly conflict with
w(T) curves which we derived analytically from the
s D a C b T 1/2

fits therein. Again, all numerically
obtained w(T) have maxima at about the same
Tmax. Below Tmax, they decrease far more rapidly
with T than expected according to s D a C b T 1/2;

above Tmax, the slopes of numerically and analyti-
cally obtained w(T) have opposite signs. These find-
ings disprove one of the main results of Sachser
et al.,53 that is the presence of a T 1/2 contribution to
s(T) at low T. Furthermore, it is noteworthy that,
concerning important low-T details, Figures 1b and
2a of Sachser et al.53 presenting w vs. T 1/2 and nor-
malized s vs. T 1/2, respectively, are clearly not con-
sistent with each other.

6.4. Conclusions

As a whole, our reanalyses in Sections 3 and 4 provide
overwhelming evidence against the usual, localization
theory motivated interpretations of the conductivity data
in terms of a continuous MIT with s(T ) / Tp and
p D 1/2 or 1/3 at the transition.

Let us leave aside for a moment the experiment-
dependent part of the inconsistencies between aug-
mented power law approximations of s(T ) on the one
hand and numerically derived w(T) curve sets on the
other hand, that is the T region below and close to the
puzzling maxima of w(T). Then the following feature is
common to most of the w(T ) sets which we obtained in
examining numerous studies on various disordered sol-
ids in Section 4: When, at fixed T, the MIT is approached
from the insulating side, while dw/dT stays negative, w
decreases down to w values below 0.2, in the cases of
Si:As, Si:P, and Si:B even down to w values below 0.1.d

Because of its apparent universality, this feature cannot
be explained in terms of sample-specific inhomogenei-
ties. Thus, it conflicts with all existing and future theories
which yield continuity of the MIT and s(T) / Tp with
p > 0.1 at the transition itself.

The following possibilities remain: (i) Even at the low-
est T considered, several mechanisms might superimpose
each other, for all disordered solids considered in similar
ways. (ii) The MIT might be continuous but with the
exponent p being very small, p < 0.1. (iii) The MIT
might be discontinuous, so that the minimum metallic
conductivity would be finite.

To us, the discontinuity hypothesis (iii) seems to have
the greatest likelihood to be valid for two reasons. First, it
is supported by the comparison of the w(T) flow diagrams
obtained from experiments on many solids in Section 4
with the results for the phenomenological models consid-
ered in Section 5. According to this comparison, the MIT
seems to be indicated by ds/dT changing sign at infinitely

dVery recently, studying the transition from activated to metallic conduction
in nano-crystalline Mo films, S. Sharma et al.109 found for T � 4 K that
dw/d T remains negative when w decreases down to even 0.01; see
Figure 10 therein.
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small T. Second, as we discussed in Subsection 2.5, the dis-
continuity hypothesis is consistent with the scaling of the
T dependences of s in the hopping region which had
been observed in several MIT studies. As detailed in
Appendix B, it is very likely that, even for any T within
the temperature validity range of such a scaling relation,
the MIT occurs precisely at that control parameter
value at which ds/dT D 0. Nevertheless, at the current
stage, because of the puzzling experiment-dependent
features of w(T ) left aside for the moment, we consider
our outcome for the character of the MIT still only as
speculation, although as a well-founded one.

By questioning the s(T ! 0) extrapolations based on
augmented power laws and thus the resulting sample
classifications, our findings also shed new light on the
long-standing critical exponent puzzle of the MIT;50,51,71

see, in particular, Table I in Hirsch et al.71. They suggest
a surprisingly simple solution: all the different critical
exponent values for the control parameter dependence
of limT!0 s(T) in the metallic region which have been
reported for various experiments in the literature may
not have any physical meaning.

In future experiments, to achieve a compelling phe-
nomenological description of s(T ) close to the MIT, the
transition has to be considered from different perspec-
tives. In particular, in each such study, consistent w(T)
data sets for a series of samples have to be obtained from
experiment by numerical differentiation. Because w(T)
is very sensitive to small errors of s(T), high precision
and accuracy of the measurements are most important.
Hence, additionally to ensuring optimum preparation
reproducibility and a high degree of sample homogene-
ity, the following aspects have to be taken care of.

For each individual data point, as in M€obius
et al.,21 the resistance measurement should best be
performed only after temperature equilibration has
been completed, instead of taking data while T is
slowly floating. Since the s(T ) curves are only weakly
structured, the therefore necessary reduction in the
number of data points is not an issue. Furthermore,
the linearity of the current-voltage relation has to be
carefully checked to eliminate the influence of Joule
heating as well as that of non-Ohmic effects. Last but
not least, thermal decoupling problems have to be
eliminated very thoroughly, even if they are so small
that they are almost not noticeable in a conventional
plausibility inspection of s(T ). For corresponding
tests, w (T ) data from insulating samples are very use-
ful: they are expected to show systematic control
parameter dependence and dw/dT 4 0 down to the
lowest measuring T. To meet all the listed prerequi-
sites is absolutely necessary for the reliability of
experimental investigations of the MIT.

Such a strategy focusing on high-quality w(T) dia-
grams for sets of samples should enable sensitive checks
of the individual data analysis approaches. Thus, it
should be very helpful in resolving discrepancies between
data evaluations from different perspectives as they have
been uncovered in this review. Only if precision and/or
accuracy improvements fail to yield an unambiguous
sample classification on the basis of w(T ), the intricate
extension of the temperature range toward lower T will
be indispensable to locate the MIT and to reach a con-
vincing conclusion about its character.

Furthermore, in consequence of the experience
gained in our data analyses, we suggest for future
experiments to also attach particular importance to
the detailed study of the control parameter region
where, at the lowest experimentally accessible temper-
ature, ds/dT changes sign. A careful, unbiased analy-
sis of the corresponding weak T dependences of s,
incorporating samples with positive ds/dT as well as
ones with negative ds/dT, may be very interesting. It
could yield hints whether the hypothesis about the
existence of a line of continuous phase transitions in
the finite-T part of the (x, T )-plane proposed in Sub-
section 2.5 may have a chance to be true. —If this
idea turns out to be true indeed, it will considerably
simplify the unambiguous identification of the MIT.
—In such an analysis, the relation between the values
of ds/dT and of the optimal exponent of a corre-
sponding augmented power law approximation, in
which all three parameters are adjusted, may yield
valuable information. For a first detailed investigation
of this matter see M€obius,68 in particular Figure 5
therein. Moreover, searching for a non-analyticity in
the relations between the parameters of phenomeno-
logical models of s(T, x D const.) which is correlated
with ds/dT D 0 in the low-T limit may be a promis-
ing strategy, compare M€obius et al.60 and M€obius.76

The MIT in disordered solids has fascinated physicists
for more than 50 years. Nevertheless, for numerous pub-
lications of experiments on various such substances, the
reanalyses of the reported data from different perspec-
tives in this review have uncovered serious interpretation
inconsistencies. According to our comparison with qual-
itatively different phenomenological models for tempera-
ture and control parameter dependences of the
conductivity, the hypothesis of a discontinuous MIT
occurring precisely when ds/dT changes sign at infinitely
small T has a considerably greater likelihood to correctly
describe nature than current localization theory claiming
continuity of the MIT. It is time to solve this puzzle. For
experimentalists, improving the measurement precision
should be the most promising strategy. For theoreticians,
constructing a microscopic model which is capable to
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explain the seemingly generic features of the behavior of
d ln s/d lnT illuminated in this review should be a very
rewarding challenge.
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Appendix A: Dimensional analysis of relations
between characteristic charge car-
rier concentrations and minimum
metallic conductivity

When it is known which input quantities are relevant,
dimensional analysis can yield valuable restrictions on
the possible outcome of detailed theories. Here, we apply
this approach to studying the MIT in heavily doped crys-
talline semiconductors. In the field of impurity conduc-
tion, all theories with the smallest possible material
specificity have four dimensioned parameters: the uni-
versal constants electron charge, e [A s], and reduced
Planck constant, �h [kg m2 / s], as well as the material
parameters effective mass, m� [kg], and permittivity, e
[(A2 s4) / (kg m3)].

For determining the critical charge carrier concentra-
tion of the MIT, one expresses the edge length of the
cube containing one charge carrier, in the following
denoted as characteristic length, lc [m], as product of
powers of the input parameters,

lc DC1 e
a1 �hb1 m�g1e d1 ; (A1)

where C1 is a dimensionless number. Dimensional analy-
sis yields the following system of equations for the
powers of the units kg, m, s, and A.

b1C g1 ¡ d1D 0

2b1 ¡ 3 d1D 1

a1 ¡b1 C 4 d1D 0

a1 C 2 d1D 0

Thus, we obtain a1 D ¡2, b1 D 2, g1 D ¡1, and d1 D 1
what results in

lc DC1
�h2e
e2m� : (A2)

Since the coefficient matrix of the above system of linear
equations is nonsingular, the dimensionless number C1

is independent of all dimensioned parameters. Hence,
the constant C1 is universal, and Eq. (A2) describes a
proportionality.

Not surprisingly, lc agrees with the effective Bohr
radius up to a dimensionless constant. Therefore, for
three-dimensional systems, the corresponding critical
concentration, nc D 1/lc

3, must satisfy a universal relation
with the structure of Eq. (10), where only the constant at
the right-hand side remains undetermined.

The condition dr/dT D 0 in the limit as T ! 0
defines a second characteristic length, elc , a corresponding
density, fnc , and a characteristic conductivity value, sc.
In analogy to Eq. (A2), the characteristic length elc must
fulfill the relation

elc DfC1

�h2e
e2m� ; (A3)

where fC1 is likewise a universal constant. Therefore,
the ratio elc / lc must be universal and the ratio of the
corresponding charge carrier concentrations, fnc / nc, as
well. According to experiment, the latter quotient
should be only slightly larger than 1 in case the MIT
is continuous, while it is identical to 1 for a discontinu-
ous MIT at which dr/dT changes sign in the limit as
T ! 0.

Let us consider now the characteristic conductivity,
sc. Expressed in SI base units, it is a multiple of
(A2 s3) / (kg m3) in the three-dimensional case. This
quantity, too, must equal a product of powers of the
input parameters,

sc DC2 e
a2 �hb2 m�g2e d2 ; (A4)

where C2 is dimensionless. We get the following system
of equations for the powers of the units kg, m, s, and A.

b2 C g2¡ d2D ¡ 1

2b2¡ 3 d2D ¡ 3

a2¡b2 C 4 d2 D 3

a2 C 2 d2 D 2

Solving yields a2 D 4, b2 D ¡3, g2 D 1, and d2 D ¡1
such that

sc DC2
e4m�

�h3e
: (A5)
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Since the coefficient matrix of the above system of
linear equations is nonsingular, C2 is a universal con-
stant, too.

Note that, on the right-hand side of this equation,
all the material dependence is contained in the quotient
m�=e. This is also the case on the right-hand side of
Eq. (A3) determining elc . Therefore, sc, elc , and fnc are
linked by a universal relation, that is, by

sc DfC1C2
e2

�h elc DfC1C2
e2

�h
fnc 1=3

: (A6)

As a further characteristic conductivity value, the
minimum metallic conductivity, smm, be it finite or zero,
can be determined in the same way as sc. Thus, it must
be related to the critical charge carrier concentration, nc,
by an equation of the same form as Eq. (A6),

smm DC3
e2

�hlc
DC3

e2

�h
n 1=3
c ; (A7)

where C3 is universal, too. We point out that, up to the
dimensionless prefactor, which remains unknown in
such a consideration, Eq. (A7) agrees with Eq. (1).

In conclusion, considering the three-dimensional
case, we have shown that the structures of Eqs. (1) and
(10) are robust against various theoretical approxima-
tions. In particular, these equations must also result from
a theory, which takes electron-electron interaction per-
fectly into account.

For the two-dimensional case, it can be shown in an
analogous manner that sc is a universal quantity being
independent of m� and e.

Appendix B: Mathematical aspects of scaling
analyses relating s (T, x = const.)
data sets of several samples with
each other

Suppose we have found that s(T, x) exhibits the follow-
ing features: (i) For T 2 [Tlea, Tutt] and s 2 [sa, sb], the
s(T, x) data of all samples investigated satisfy the scaling
relation Eq. (5), repeated here for better readability,

s T; xð ÞD sscal T=T0 xð Þð Þ; (B1)

where values of the control parameter, x, values span
the interval [xa, xb]; in the following, we abbreviate
the quotient T/T0(x) by t. (ii) At the lower end of
[sa, sb], s(T, x D const.) decreases exponentially with

T according to Eq. (4),

s T; xð ÞD s0 xð Þ exp ¡ T0 xð Þ=Tð Þnð Þ: (B2)

The validity of the scaling relation Eq. (B1) implies that
s0(x) is an x-independent constant.

As discussed in Subsection 2.5, we infer from (i) and
(ii) that [xa, xb] belongs to the insulating side of the MIT.
Strictly speaking, this conclusion relies on two plausible
suppositions: (iii) For T 2 [Tlea, Tutt], Eq. (B1) is valid for
any x 2 [xa, xb]. (iv) limT!0 s(T, x) D 0 holds as conse-
quence of (ii) and (iii) for any x 2 [xa, xb].

In our further analysis, considering the T interval
(0, Tutt], we rely on three plausible presumptions about
the vicinity of the MIT: (v) The conductivity s(T, x) is a
continuous function of both T and x. (vi) Without loss
of generality, for any T > 0, s(T D const., x) increases
strictly monotonically with x. (vii) On the insulating side
of the MIT, s(T, x D const.) increases strictly monotoni-
cally with T within the scaling domain.

In consequence of the suppositions (vi), (vii), of
Eq. (B1), and since @s/@x D dsscal(t)/dt @t/@x D
dsscal(t)/dt (¡T/T0(x)

2) dT0(x)/dx D
dsscal(t)/dt (1/T0(x)) (¡T/T0(x)) dT0(x)/dx D
dsscal(t)/dt @t/@T (¡T/T0(x)) dT0(x)/dx D
@s/@T (¡T/T0(x)) dT0(x)/dx so that dT0 xð Þ=dx D
¡ T0 xð Þ=Tð Þ @s=@x = @s=@T , the function T0(x) must
decrease strictly monotonically with increasing x and
can thus be inverted. Hence, there is a function x0(T)
with x0(T0(x)) D x. Furthermore, because of (vi), the
critical control parameter value of the MIT, xc, must
exceed xb.

Now, as key to the physical interpretation, we make a
first generalizing hypothesis: (viii) We suppose that the
scaling relation Eq. (B1) holds whenever T 2 (0, Tutt],
s 2 (0, sb], as well as x � xa and that limt!0 sscal(t) D 0.

The generalizing hypothesis (viii) has two immediate
consequences: It excludes metallic conduction within the
whole considered scaling domain and thus implies the
existence of a finite minimum metallic conductivity,
smm, related to T 2 (0, Tutt], where smm � sb. Further-
more, hypothesis (viii) means that, for x � xa, there is no
non-metallic conduction without s(T, x) satisfying
Eq. (B1) at sufficiently low T. Thus, this way, the corre-
sponding control parameter interval is extended beyond
xb up to the MIT at xc.

We reach an important conclusion on T0(x): Without
loss of generality, be sscal(T/T0(x) D 1) D s

$ 2 [sa, sb].
For T 2 (0, Tlea], we have s(T, xa) 4 s(Tlea, xa) 4 sa,
whereas, for approaching the MIT at xc from the metallic
side, s(T, xc C 0) � smm � sb. Thus, according to (v),
(vi), and the intermediate value theorem, for any arbi-
trarily small ~T , there is one and only one ~x with
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s.~T;~x/ D s$ . Since, because of (viii) and the definition
of s

$

, T0 ~xð Þ equals ~T , we conclude that T0(x) can take
arbitrarily small values. Therefore, due to T0(x) decreas-
ing strictly monotonically with increasing x and due to
the physical condition T0(x) > 0, the x domain of
sscal(T/T0(x)) ends at lim~T! 0 x0.T~/, and so does the
validity region of the scaling relation Eq. (B1).

This control parameter value marks the MIT,
xc D lim~T! 0x0.T~/, because, as concluded above, for x �
xa, there is no non-metallic conduction without s(T, x)
satisfying Eq. (B1) at sufficiently low T. In other words,
the generalizing hypothesis (viii) together with the conti-
nuity and the strict monotonicity of s(T D const., x)
imply T0(x) ! 0 as x ! xc ¡ 0. In this sense, under the
above suppositions, scaling of the s(T, x D const.) curves
for various x answers the question about the
limiting behavior of the mean hopping energy, posed in
Subsection 2.2.

Until now, by the condition s(T, x)4 sb, the domain
of the argument t D T/T0(x) of the scaling function
sscal(t) is restricted to the finite interval (0, tb] where tb is
given by sscal(tb) D sb. Thus, we are confronted with the
following problem: according to experimental experi-
ence, close to the MIT, the scaling verification is hin-
dered by the increasingly weak T dependence of s as
x ! xc, see, e.g., Figures 4 and 1 of M€obius et al.20 and
Liu et al.,78 respectively. This is the natural consequence
of Tutt/T0(x) diverging as x! xc.

Note, because of this singularity, to verify Eq. (B1) by
means of a mastercurve construction also for the region
{T 4 Tutt, x < xc, s > sb}, one would need an infinite
number of samples. In consequence, there always is a
finite x interval adjacent to the MIT where one cannot
reliably verify Eq. (B1) by experiment. Since it would
seem unphysical, however, that scaling would break
down just when x approaches xc, we rely on a second
generalizing hypothesis: (ix) We suppose Eq. (B1) to be
valid whenever T 2 (0, Tutt] and x 2 [xa, xc). Within
this domain, s(T, x) 4 s(Tutt, x) < s(Tutt, xc), so that
sc D limx! xc¡ 0 s Tutt; xð ÞD s Tutt; xcð Þ can be inter-
preted as maximum non-metallic conductivity.

Because of supposition (v), generalizing hypothesis
(ix), and limx! xc ¡ 0 T0 xð ÞD 0, we finally obtain that
s T; xcð ÞD limx! xc ¡ 0 s T; xð ÞD limT0 ! 0 sscal T=T0ð ÞD
limt!1 sscal tð ÞD limT0 ! 0 sscal Tutt=T0ð ÞD sc holds for
any T 2 (0, Tutt]. (In the insulating region, the limits for
x and T do not commute, sc D limT! 0 limx! xc s T; xð Þ 6¼
limx! xc limT! 0 s T; xð ÞD 0.)

Furthermore, we now see that, due to the monotonic-
ity supposition (vi), provided T4 Tutt holds, the relation
s(T, x) < sc is satisfied if and only if x < xc. Hence,

because of the continuity supposition (v), the maximum
non-metallic conductivity coincides with the minimum
metallic conductivity, sc D smm.

For the MIT itself, x D xc, we showed above that
s is independent of T; thus @s(T, xc)/@T D 0. We
now ask for the behavior of @s(T, x)/@T in the insu-
lating vicinity of the MIT: Due to Eq. (B1) and sup-
positions (vii) and (ix), sscal(t) increases monotonically
with t. Therefore, the finiteness of sc D limt!1 sscal(t)
implies that dsscal(t)/d ln t ! 0 as t ! 1. Because,
moreover, dsscal(t)/d ln t D dsscal(T/T0)/d lnT D
Tdsscal(T/T0)/dT D T@s(T, x)/@T, we thus obtain that,
for any T 2 (0, Tutt], @s(T, x)/@T continuously tends to
zero as x! xc ¡ 0.

This way, the scaling relation Eq. (B1) together with a
few plausible assumptions imply the condition dr/dT D
0 to mark the MIT and to yield the value of the mini-
mum metallic conductivity. Since scaling according to
Eq. (B1) is a low-T phenomenon, our mathematical
consideration supports the empirical MIT criterion
“dr/dT D 0 in the limit as T ! 0”, discussed in detail in
Subsection 2.2.

One may now ask, what would happen if any of
the above suppositions were violated in some respect,
e.g., (v) by a small positive step in s(T D const., x) at
xc, whereas, as x ! xc ¡ 0, Eq. (B1) and the limiting
behavior T0(x) ! 0 were maintained for T 2 (0,
Tutt]. In this case, the answer is that, together with
the monotonicity supposition (vi) on the x depen-
dence of s, these relations would be sufficient to
imply the existence of a finite minimum metallic con-
ductivity. This can also be easily shown by an indirect
proof: Suppose the MIT is continuous and
limx! xc C 0 s T; xcð ÞD b Tp. Then, for T < (sc/b)

1/p, we
get limx! xc ¡ 0 s T; xð ÞD sc > limx! xc C 0 s T; xð Þ in
contradiction to our monotonicity supposition.

The situation would be totally different if T0 tended to
a finite value as x ! xc. Then limx! xc ¡ 0 s T; xð Þ would
be T-dependent, in contrast to our conclusion
limx! xc ¡ 0 s T; xð ÞD sc D const: drawn above. The
limit would fall off exponentially as T ! 0. Therefore,
in consequence of the very likely continuity of s(T D
const., x), limx! xc C 0 s T; xð Þ would fall off exponentially
as well, so that the MIT would be continuous. Note
that this limiting behavior would be incompatible with
the generalizing supposition (viii). Moreover, just
on the metallic side of the MIT, s(T, x D const.) had to
follow a stretched Arrhenius law augmented by a small
x-dependent constant contribution instead of an aug-
mented power law. To the best of our knowledge, how-
ever, such a situation has not been reported up to now.
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Appendix C: Method for numerical differentia-
tion of functions given by noisy
values at non-equidistant points

The present study relies to a large extent on the as
accurate as possible numerical differentiation of func-
tions given by sets of experimental data points. For
explaining our approach to this numerical task, we
first remind that uncertainties of derivative values
approximated by difference quotients originate both
from random errors of the data and from nonlinear-
ities of the considered function. To reduce the influ-
ence of random errors, the argument intervals used to
calculate the difference quotients should be as wide as
possible. However, the wider the interval, the stronger
is the influence of nonlinearities. In consequence,
there is an optimum interval width; its size depends
on which differentiation formula is used.

When not only two, but many data points are taken
into account, the corresponding averaging further
reduces the influence of their random errors. Thus, we
aim to slide a window along the curve and to estimate
the local slope by means of linear regression on all data
points within the window. In case of equidistant argu-
ment values, this can be realized by applying a special
Savitzky-Golay filter; in this approach, the slope value is
related to the average of the smallest and largest argu-
ment values within the window.108

For the present study, however, we need a procedure
which is applicable to the general case of non-equidistant
arguments. The approach which we use in this work has
proved to be very effective in our research for many
years; in particular, Eqs. (8) and (9) of M€obius et al.21

were obtained this way. However, this approach seems to
be widely unknown. Therefore, we present here a short
derivation in general notation.

The idea of our procedure is the following. In each
regression, we additionally determine that argument
value for which the linear regression slope is expected to
be the best approximation of the derivative. In other
words, we ask: For which argument choice do nonlinear-
ities have the smallest influence?

To answer this question, we need an adequate quanti-
fication of these deviations. The truncation error, result-
ing from the truncation of the corresponding Taylor
series, is best suited for this aim. We remind here that, in
considering difference quotients obtained from two data
points with the arguments differing by h, the midpoint
formula is far superior to forward and backward differ-
entiation formulas. The reason is the following: in the
former case, the leading term of the truncation error aris-
ing from nonlinearities is proportional to h2, while in the
latter cases it is proportional to h and thus usually far

larger; the random error is always the same and propor-
tional to h¡1. Therefore, for the midpoint formula, the
total error is considerably smaller and the optimum
interval width is much wider than for the forward or
backward formulas.

Consider now the physical quantities x and y which
are linked by the function y D f (x). Assume, we per-
formed k measurements and obtained the data points
(xi, yi), where at least two of the xi values differ from
each other. Assume, furthermore, that the uncertainties
of the xi are negligible and that the random errors of all
yi have the same standard deviation. (The generalization
of the approach described here to the case of different
standard deviations of the random errors of the individ-
ual yi is straightforward.)

In the first step, capturing only lowest-order nonli-
nearities, we approximate f (x) by the quadratic ansatz

’ xð ÞD aC b xC c x2; (C1)

where the values of the parameters a and b have to be
adjusted, and where, for the moment, we assume that we
know the value of c.

To determine the values of a and b, we minimize the
sum of the squared deviations,

X
i

yi¡ a¡ b xi¡ c xi
2

� �2 ! min: (C2)

Differentiation with respect to a and b yields the normal
equations,

a kC b
P

i xi D P
i yi ¡ c

P
i xi

2; (C3)

a
P

i xiC b
P

i xi
2 D P

i xi yi¡ c
P

i xi
3; (C4)

so that

b D b0 C b1 c (C5)

with

b0 D k
P

ixi yi¡
P

ixi
P

jyj

k
P

ixi
2¡ P

ixi
� �2 ; (C6)

b1 D ¡ k
P

ixi
3 CP

ixi
P

jxj
2

k
P

ixi
2¡ P

ixi
� �2 : (C7)

Equation (C6) is the well-known result for the slope
obtained by linear regression. Finally, combining
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Eqs. (C1) and (C5), we get the derivative approximation

d’
dx

xð ÞD b0 C b1C 2 xð Þ c: (C8)

Now, the decisive idea is to focus on that x value, xa,
where we do not need the knowledge of c, which we only
pretended to have above. The prefactor of c on the right-
hand side of Eq. (C8) vanishes at

xa D ¡ b1
2

D k
P

ixi
3 ¡P

ixi
P

jxj
2

2 k
P

ixi
2 ¡ P

ixi
� �2� � : (C9)

Thus, at xa, as in the case of the midpoint formula of
differentiation, the quadratic contribution to ’(x) has no
influence on the calculated value of d’/dx.

Hence, for any quadratic polynomial f (x), arbitrarily
positioned xi, and negligible random errors of yi, the lin-
ear regression slope b0 when related to the specific argu-
ment average xa exactly equals the derivative value. (In
the case when the xi are equidistant, xa reduces to the
mean value of smallest and largest xi considered, which
is in agreement with Savitzky and Golay.108 For k D 2, as
well as for k D 3 with equidistant xi, our result is identi-
cal to the midpoint formula of differentiation.)

In the second step, we consider an arbitrary analytic
function f (x), but neglect the random errors of the yi.
Inserting the Taylor expansion of f (x) about xa into
Eq. (C6) yields after a short calculation

b0 D df
dx

xað Þ C

1
6

k
P

ixi
4 ¡P

ixi
P

jxj
3

k
P

ixi
2¡ P

ixi
� �2 d3f

dx3
xað Þ C…; (C10)

where xiD xi¡ xa. Hence, when rescaling all xi by a fac-
tor a, one has to multiply the leading term of the trunca-
tion error of d f / d x(xa) by the factor a2. In this sense,
when the number of data points and all quotients of argu-
ment differences, xi ¡ xj, are kept fixed, the truncation

error of the value of d f / d x(xa) is proportional to the
square of the window width, (max {xi} ¡ min {xi})

2. Thus,
this truncation error is usually far smaller than that of the
value of d f / d x(x) for x 6¼ xa, which is proportional to the
window width itself. This result corresponds to the prop-
erties of the truncation errors of two-point formulas men-
tioned above.

Therefore, relating to xa often enables the use of quite
wide windows including rather large numbers of data
points. In this way, the random errors of the derivative
values, obtained by numerical differentiation, are usually
considerably reduced compared to the random disper-
sion of values resulting from two-point formulas. Note,
however, that these random errors are always correlated
over the window width. Furthermore, due to the averag-
ing, the prefactor in the truncation error of the derivative
value obtained by our approach is usually appreciably
smaller than that for the two-point midpoint formula
considering the same argument interval. In consequence,
a far smaller total uncertainty of the value of df/dx can
be reached by linear regression with relating the slope
to xa than by applying common difference quotient
approaches.

It is worth mentioning that the influence of the trun-
cation error may be diminished even further. For this
aim, f (x) has to be transformed to a function f(ξ) with
weaker nonlinearity. After calculating df/dξ by means of
the procedure described above, one obtains the df/dx
data using common differentiation rules.

Finally, we would like to emphasize that the pre-
sented method is very flexible. We have utilized it in
various ways, sliding a window along experimental
relations f (x) and obtaining pointwise d f / d x from all
(xi, yi) within the window. As always with numerical
differentiation, the art of applying this method consists
in the choice of an appropriate window width which
ensures a reasonable compromise between conflicting
demands. On the one hand, the random errors of the
obtained derivative values of f (x) should be as small as
possible, while, on the other hand, the truncation errors
should not be too large and the essential features of
df/dx(x) must not be smeared out too much.

CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES 55


	Abstract
	1. Introduction
	2. Criteria for detecting the MIT
	2.1. Sign change of dρ/dT at the measuring temperature
	2.2. Sign change of dρ/dT in the limit as T → 0
	2.3. Breakdown of the augmented power law approximation
	2.4. Breakdown of the stretched Arrhenius law approximation
	2.5. Breakdown of scaling of T dependences of σ
	2.6. Bounds obtained from the logarithmic derivative of σ(T)
	2.7. Behavior of other observables near the MIT
	2.8. Combination of criteria

	3. Character of the MIT in GeSb2Te4
	3.1. Temperature dependences of the conductivity
	3.2. Critical charge carrier concentration

	4. Comparison with other solids
	4.1. Crystalline Si:As
	4.2. Crystalline Si:P
	4.3. Crystalline Si:B
	4.4. Crystalline Ge:Ga
	4.5. Crystalline CdSe:In
	4.6. Crystalline n-Cd0.95Mn0.05Se
	4.7. Crystalline Cd0.95Mn0.05Te0.97Se0.03:In
	4.8. Disordered Gd
	4.9. Nanogranular Pt-C
	4.10. Common features of all w(T, x) diagrams

	5. Four possible scenarios of w(T, x)
	6. Summarizing discussion
	6.1. Analysis of the available MIT criteria
	6.2. The case GeSb2Te4
	6.3. Comparison with other solids
	6.4. Conclusions

	Acknowledgments
	References

